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Abstract

The frequency-domain data of a multivariable system in different operating points is used to design a robust controller
with respect to the measurement noise and multimodel uncertainty. The controller is fully parametrized in terms of matrix
polynomial functions and can be formulated as a centralized, decentralized or distributed controller. All standard performance
specifications like H2, H∞ and loop shaping are considered in a unified framework for continuous- and discrete-time systems.
The control problem is formulated as a convex-concave optimization problem and then convexified by linearization of the
concave part around an initial controller. The performance criterion converges monotonically to a local optimum or a saddle
point in an iterative algorithm. The effectiveness of the method is compared with fixed-structure controller design methods
based on non-smooth optimization via multiple simulation examples.
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1 Introduction

Recent developments in the fields of numerical optimiza-
tion, computer and sensor technology have led to a sig-
nificant reduction of the computational time of optimiza-
tion algorithms and have increased the availability of
large amounts of measured data during a system’s opera-
tion. These progresses make computationally demanding
data-driven control design approaches an interesting al-
ternative to the classical model-based control problems.
In these approaches, the controller parameters are di-
rectly computed by minimizing a control criterion which
is a function of measured data. Therefore, a parametric
model of the plant is not required and there are no un-
modeled dynamics. The only source of uncertainty is the
measurement noise, whose influence can be reduced sig-
nificantly if the amount of measurement data is large.

Frequency-domain data is used in the classical loop-
shaping methods for computing simple lead-lag or PID
controllers for SISO stable plants. The Quantitative
Feedback Theory (QFT) uses also the frequency re-
sponse of the plant model to compute robust controllers
(Horowitz, 1993). In these approaches the controller pa-
rameters are tuned manually using graphical methods.
New optimization-based algorithms have also been pro-
posed recently (Mercader et al., 2016). The set of all sta-
bilizing PID controllers withH∞ performance is obtained
using only the frequency-domain data in Keel and Bhat-
tacharyya (2008). This method is extended to design of
fixed-order linearly parameterized controllers in Parast-
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vand and Khosrowjerdi (2015, 2016). The frequency re-
sponse data are used in Hoogendijk et al. (2010) to com-
pute the frequency response of a controller that achieves a
desired closed-loop pole location. A data-driven synthesis
methodology for fixed structure controller design prob-
lems with H∞ performance is presented in Den Hamer
et al. (2009). This method uses the Q parameterization
in the frequency domain and solves a non-convex op-
timization problem to find a local optimum. Another
frequency-domain approach is presented in Khadraoui et
al. (2013) to design reduced order controllerswith guaran-
teed bounded error on the difference between the desired
and achieved magnitude of sensitivity functions. This ap-
proach also uses a non-convex optimization method.

Another direction for robust controller design based on
frequency-domain data is the use of convex optimiza-
tion methods. A linear programming approach is used to
compute linearly parametrized (LP) controllers for SISO
systems with specifications in gain and phase margin as
well as the desired closed-loop bandwidth in Karimi et al.
(2007); Saeki (2014). A convex optimization approach is
used to design LP controllers with loop shaping and H∞
performance in Karimi and Galdos (2010). This method
is extended to MIMO systems for computing decoupling
LP-MIMO controllers in Galdos et al. (2010). Recently,
the necessary and sufficient conditions for the existence
of data-drivenH∞ controllers for SISO systems has been
proposed in Karimi et al. (2016).

The use of the frequency response for computing SISO-
PID controllers by convex optimization is proposed in
Hast et al. (2013). This method uses the same type of

Preprint submitted to Automatica 4 May 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148031205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


linearization of the constraints as in Karimi and Galdos
(2010) but interprets it as a convex-concave approxima-
tion technique. An extension of Hast et al. (2013) for
the design of MIMO-PID controllers by linearization of
quadratic matrix inequalities is proposed in Boyd et al.
(2016) for stable plants. A similar approach, with the
same type of linearization, is used in Saeki et al. (2010)
for designing LP-MIMO controllers (which includes PID
controllers as a special case). This approach is not lim-
ited to stable plants and includes the conditions for the
stability of the closed-loop system.

In this paper, a new data-driven controller design ap-
proach is proposed based on the frequency response of
multivariable systems and convex optimization. Contrar-
ily to the existing results in Galdos et al. (2010); Boyd
et al. (2016); Saeki et al. (2010), the controller is fully
parameterized and the design is not restricted to LP or
PID controllers. The other contribution is that the con-
trol specification is not limited to H∞ performance. The
H2, H∞ and mixed H2/H∞ control problem as well as
loop shaping in two- and infinity-norm are presented in
a unified framework for systems with multimodel uncer-
tainty. A new closed-loop stability proof based on the
Nyquist stability criterion is also given.

It should be mentioned that the problem is convexified
using the same type of approximation as the one used
in Boyd et al. (2016); Saeki et al. (2010). Therefore, like
other fixed-structure controller design methods (model-
based or data-driven), the results are local and depend
on the initialization of the algorithm.

2 Preliminaries

The system to be controlled is a Linear Time-Invariant
Multi-Input Multi-Output (LTI-MIMO) system repre-
sented by a multivariable frequency response model
G(ejω) ∈ Cn×m, where n is the number of outputs and
m the number of inputs. The frequency response model
can be identified using the Fourier analysis method from
m sets of input/output sampled data as (Pintelon and
Schoukens, 2001):

G(ejω) =

[
N−1∑
k=0

y(k)e−jωTsk

][
N−1∑
k=0

u(k)e−jωTsk

]−1

(1)

where N is the number of data points for each exper-
iment, u(k) ∈ Rm×m includes the inputs at instant k,
y(k) ∈ Rn×m the outputs at instant k and Ts is the sam-
pling period. Note that at least m different experiments
are needed to extract G from the data (each column
of u(k) and y(k) represents respectively the input and
the output data from one experiment). We assume that
G(ejω) is bounded in all frequencies except for a set Bg

including a finite number of frequencies that correspond
to the poles of G on the unit circle. Since the frequency
function G(ejω) is periodic, we consider:

ω ∈ Ωg =

{
ω

∣∣∣∣− π

Ts
≤ ω ≤ π

Ts

}
\Bg (2)

A fixed-structure matrix transfer function controller is
considered. The controller is defined as K = XY −1,
where X and Y are polynomial matrices in s for
continuous-time or in z for discrete-time controller de-
sign. This controller structure, therefore, can be used for
both continuous-time or discrete-time controllers. The
matrix X has the following structure:

X =




X11 . . . X1n

...
. . .

...

Xm1 . . . Xmn


 ◦ Fx (3)

whereX and Fx arem×n polynomial matrices and ◦ de-
notes the element by element multiplication of matrices.
The matrix Fx represents the fixed known terms in the
controller that are designed to have specific performance,
e.g. based on the internal model principle. For discrete-
time controllers, we have:

X(z) = Xpz
p + · · ·+X1z +X0 (4)

where Xi ∈ Rm×n for i = 0, . . . , p contain the controller
parameters. In the same way the matrix polynomial Y
can be defined as:

Y =



Y11 . . . Y1n

...
. . .

...

Yn1 . . . Ynn


 ◦ Fy (5)

where Y and Fy are n × n polynomial matrices. The
matrix Fy represents the fixed terms of the controller,
e.g. integrators or the denominator of other disturbance
models. The set of frequencies of all roots of the deter-
minant of Fy on the stability boundary (imaginary axis
for continuous-time controllers or the unit circle for the
discrete-time case) is denoted by By.

The matrix Y for discrete-time case can be written as:

Y (z) = Izp + · · ·+ Y1z + Y0 (6)

where Yi ∈ Rn×n for i = 0, . . . , p−1 contain the controller
parameters. In order to obtain low-order controllers, a
diagonal structure can be considered for Y that makes
its inversion and implementation easier too. Note that
Y (ejω) should be invertible for all ω ∈ Ω = Ωg\By.

The control structure defined in this section is very gen-
eral and covers centralized, decentralized and distributed
control structures. The well-known PID control structure
for MIMO systems is also a special case of this structure.

3 Control Performance

It is shown in this section that classical control perfor-
mance constraints can be transformed to constraints on
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the spectral norm of the system and in general can be
reformulated as:

F ∗F − P ∗P < γI (7)

where F ∈ Cn×n and P ∈ Cn×n are linear in the opti-
mization variables and (·)∗ denotes the complex conju-
gate transpose. This type of constraint is called convex-
concave constraint and can be convexified using the Tay-
lor expansion of P ∗P around Pc ∈ Cn×n which is an ar-
bitrary known matrix (Dinh et al., 2012):

P ∗P ≈ P ∗
c Pc + (P − Pc)

∗Pc + P ∗
c (P − Pc) (8)

It is easy to show that the left hand side term is always
greater than or equal to the right hand side term, i.e. :

P ∗P ≥ P ∗Pc + P ∗
c P − P ∗

c Pc (9)

This can be obtained easily by development of the in-
equality (P − Pc)

∗(P − Pc) ≥ 0.

3.1 H∞ performance

Constraints on the infinity-norm of any weighted sensi-
tivity function can be considered. For example, consider
the mixed sensitivity problem:

min
K

∥∥∥∥∥ W1S

W2KS

∥∥∥∥∥
∞

(10)

where S = (I +GK)−1 is the sensitivity function, W1 is
the performance weight and W2 is the input weight. This
problem can be converted to an optimization problem on
the spectral norm as:

min
K

γ

subject to:[
W1S

W2KS

]∗ [
W1S

W2KS

]
< γI, ∀ω ∈ Ω

(11)

Note that the argument ejω has been omitted for
W1(e

jω), S(ejω),K(ejω) andW2(e
jω) in order to simplify

the notation. The above constraint can be rewritten as:

[W1(I +GK)−1]∗[W1(I +GK)−1]+

[W2K(I +GK)−1]∗[W2K(I +GK)−1] < γI (12)

and converted to a convex-concave constraint as follows:

Y ∗W ∗
1 γ

−1W1Y +X∗W ∗
2 γ

−1W2X

− (Y +GX)∗(Y +GX) < 0 (13)

If we denote P = Y + GX , using (9), a convex ap-
proximation of the constraint can be obtained around
Pc = Yc +GXc as:

Y ∗W ∗
1 γ

−1W1Y +X∗W ∗
2 γ

−1W2X

− P ∗Pc − P ∗
c P + P ∗

c Pc < 0 (14)

Therefore, using the Schur complement lemma, the H∞
mixed sensitivity problem can be represented as the fol-
lowing convex optimization problem with linear matrix
inequalities (LMIs):

min
X,Y

γ

subject to:

P ∗Pc + P ∗

c P − P ∗
c Pc (W1Y )∗ (W2X)∗

W1Y γI 0

W2X 0 γI


 > 0

(15)

for all ω ∈ Ω. This convex constraint is a sufficient con-
dition for the spectral constraint in (11) for any choice of
an initial controller Kc = XcY

−1
c .

3.2 H2 performance

In this section, we show how the H2 control performance
can be formulated as a convex optimization problem. We
consider the following H2 control performance:

min
K

‖W1S‖22 (16)

For a stable closed-loop system, this is equivalent to:

min
K

∫ π
Ts

− π
Ts

trace[Γ(ω)]dω

subject to:

W1[(I +GK)∗(I +GK)]−1W ∗
1 < Γ(ω) ∀ω ∈ Ω

(17)

where Γ(ω) > 0 is an unknown matrix function ∈ Rn×n.
Replacing K with XY −1, we obtain:

W1Y [(Y +GX)∗(Y +GX)]−1Y ∗W ∗
1 < Γ(ω) ∀ω ∈ Ω

which is equivalent to the following matrix inequality:

[
Γ(ω) W1Y

Y ∗W ∗
1 (Y +GX)∗(Y +GX)

]
> 0, ∀ω ∈ Ω (18)

The quadratic part can be linearized using (9) to obtain
a linear matrix inequality as:

[
Γ(ω) W1Y

Y ∗W ∗
1 P ∗Pc + P ∗

c P − P ∗
c Pc

]
> 0, ∀ω ∈ Ω (19)

Remark: The unknown function Γ(ω) can be approxi-
mated by a polynomial function of finite order as:

Γ(ω) = Γ0 + Γ1ω + · · ·+ Γhω
h (20)

In case the constraints are evaluated for a finite set of
frequencies ΩN = {ω1, . . . , ωN}, Γ(ω) can be replaced
with a matrix variable Γk at each frequency ωk.
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3.3 Loop shaping

Assume that a desired loop transfer function Ld is avail-
able and that the objective is to design a controller K
such that the loop transfer function L = GK is close to
Ld in the 2- or ∞-norm sense. The objective function for
the ∞-norm case is to minimize ‖L − Ld‖∞ and can be
expressed as follows:

min
K

γ

subject to:

(GK − Ld)
∗(GK − Ld) < γI ∀ω ∈ Ω

(21)

Replacing K with XY −1 in the constraint, we obtain:

(GX − LdY )∗γ−1(GX − LdY )− Y ∗Y < 0 (22)

Again Y ∗Y can be linearized around Yc using the linear
approximation in (9). Thus, the following convex formu-
lation is obtained:

min
X,Y

γ

subject to:[
Y ∗Yc + Y ∗

c Y − Y ∗
c Yc (GX − LdY )∗

GX − LdY γI

]
> 0

(23)

for all ω ∈ Ω. In a similar way, for minimizing ‖L−Ld‖22
the following convex optimization problem can be solved:

min
X,Y

∫ π
Ts

− π
Ts

trace[Γ(ω)]dω

subject to:[
Y ∗Yc + Y ∗

c Y − Y ∗
c Yc (GX − LdY )∗

GX − LdY Γ(ω)

]
> 0

(24)

for all ω ∈ Ω. Note that the resulting loop shaping con-
troller does not necessarily guarantee the closed-loop sta-
bility. This will be discussed in the next section, where
the stability conditions will be developed.

4 Robust Controller Design

4.1 Stability analysis

The stability of the closed-loop system is not necessarily
guaranteed even if the spectral norm of a weighted sen-
sitivity function is bounded. In fact, an unstable system
with no pole on the stability boundary has a bounded
spectral norm. In this section, we show that the closed-
loop stability can be guaranteed if some conditions in the
linearization of the constraints are met. More precisely,
the initial controller Kc = XcY

−1
c plays an important

role in guaranteeing the stability of the closed-loop sys-
tem with the resulting controller K. Our stability analy-
sis is based on the generalized Nyquist stability criterion
for MIMO systems that is recalled here for discrete-time

systems. Note that the results are also straightforwardly
applicable to the continuous-time case by modifying the
Nyquist contour.

Theorem 1 (Nyquist stability theorem)The closed-
loop system with the plant model G(z) and the controller
K(z) is stable if and only if the Nyquist plot of det(I +
G(z)K(z))

(1) makes NG + NK counterclockwise encirclements of
the origin, where NG and NK are, respectively, the
number of poles of G(z) and K(z) on the exterior of
the unit circle, and

(2) does not pass through the origin.

The Nyquist plot is the image of det(I + GK) as z tra-
verses the Nyquist contour (the unit circle) counterclock-
wise. We assume that the Nyquist contour has some small
detours around the poles of G(z) and K(z) on the unit
circle.

Definition 1 Let wno{F (z)} be the winding number, in
the counterclockwise sense, of the image of F (z) around
the origin when z traverses the Nyquist contour with some
small detours around the poles of F (z) on the unit circle.

Since the winding number is related to the phase of the
complex function, we have the following properties:

wno{F1(z)F2(z)} = wno{F1(z)}+wno{F2(z)} (25)

wno{F (z)} = −wno{F ∗(z)} (26)

wno{F (z)} = −wno{F−1(z)} (27)

Theorem 2 Given a plant model G, an initial stabilizing
controller Kc = XcY

−1
c with det(Yc) 	= 0, ∀ω ∈ Ω, and

feasible solutions X and Y to the following LMI,

(Y +GX)∗(Yc+GXc)+(Yc+GXc)
∗(Y +GX) > 0 (28)

for all ω ∈ Ω, then the controller K = XY −1 stabilizes
the closed-loop system if

(1) det(Y ) 	= 0, ∀ω ∈ Ω.
(2) The initial controller Kc and the final controller K

share the same poles on the stability boundary, i.e.
det(Y ) = det(Yc) = 0, ∀ω ∈ By.

(3) The order of det(Y ) is equal to the order of det(Yc).

Remark: Note that the condition in (28) is always met
when a convexified H∞ or H2 control problem has a fea-
sible solution because we have P ∗Pc + P ∗

c P > 0 in (15)
and (19).

Proof: The proof is based on the Nyquist stability crite-
rion and the properties of the winding number. The wind-
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ing number of the determinant of P ∗(z)Pc(z) is given by:

wno{det(P ∗Pc)} =wno{det(P ∗)} +wno{det(Pc)}
=− wno{det(I +GK) det(Y )}
+wno{det(I +GKc) det(Yc)}

=− wno{det(I +GK)}
− wno{det(Y )}+wno{det(Yc)}
+wno{det(I +GKc)} (29)

Note that the phase variation of det(P ∗Pc) for the small
detour in the Nyquist contour is zero, if Condition 2 of
the theorem is satisfied. In fact for each small detour, the
Nyquist plot of det(I +GK) and det(I +GKc) will have
the same phase variation because K and Kc share the
same poles on the unit circle. As a result, the winding
number of det(P ∗Pc) can be evaluated on Ω instead of
the Nyquist contour. On the other hand, the condition
in (28) implies that P ∗(ejω)Pc(e

jω) is a non-Hermitian
positive definite matrix in the sense that :


{x∗P ∗(ejω)Pc(e
jω)x} > 0 ∀x 	= 0 ∈ Cn (30)

and ∀ω ∈ Ω. This, in turn, means that all eigenvalues
of P ∗(ejω)Pc(e

jω), denoted λi(ω) for i = 1, . . . , n, have
positive real parts at all frequencies (Zhang et al., 2010):


{λi(ω)} > 0 ∀ω ∈ Ω, i = 1, . . . , n (31)

Therefore, λi(ω) will not pass through the origin and not
encircle it (i.e. its winding number is zero). As a result,
since the determinant of a matrix is the product of its
eigenvalues, we have:

wno{det(P ∗Pc)} = wno

{
n∏

i=1

λi

}
=

n∑
i=1

wno{λi} = 0

Since Kc is a stabilizing controller, based on the Nyquist
theorem wno{det(I+GKc)} = NG+NKc . Furthermore,
according to the argument principle wno{det(Y )} = δ −
NK and wno{det(Yc)} = δ−NKc , where δ is the order of
det(Y ) and det(Yc) according to Condition 3. Now using
(29), we obtain:

wno{det(I +GK)} =wno{det(I +GKc)}
− wno{det(Y )}+wno{det(Yc)}

=NG +NK (32)

which shows that Condition 1 of the Nyquist theorem is
met. Moreover, we can see from (31) that

det(P ∗Pc) =

n∏
i=1

λi(ω) 	= 0 ∀ω ∈ Ω (33)

Therefore, det(P ) = det(I + GK) det(Y ) 	= 0 and the
Nyquist plot of det(I + GK) does not pass through the
origin and Condition 2 of the Nyquist theorem is also
satisfied. �

Remark 1: A necessary and sufficient condition for
det(Y ) 	= 0 is Y ∗Y > 0. Since this constraint is concave,

it can be linearized to obtain the following sufficient LMI:

Y ∗Yc + Y ∗
c Y − Y ∗

c Yc > 0 (34)

This constraint can be added to the optimization prob-
lem in (15) in order to guarantee the closed-loop stability
for the mixed sensitivity problem. For the loop-shaping
problems in (23) and in (24), this condition is already
included in the formulation. Therefore, for guaranteeing
the closed-loop stability, the condition in (28) should be
added. This condition can be added directly or by consid-
ering an additionalH2 orH∞ constraint on a closed-loop
sensitivity function.

Remark 2: In practice, condition 3 of Theorem 2 is not
restrictive. Any initial controller of lower order than the
final controller can be augmented by adding an appropri-
ate number of zeros and poles at the origin in X and Y ,
thus satisfying the condition without affecting the initial
controller.

4.2 Multimodel uncertainty

The case of robust control design with multimodel un-
certainty is very easy to incorporate in the given frame-
work. Systems that have different frequency responses in
q different operating points can be represented by a mul-
timodel uncertainty set:

G(ejω) = {G1(e
jω), G2(e

jω), . . . , Gq(e
jω)} (35)

Note that the models may have different orders and may
contain the pure input/output time delay.

This can be implemented by formulating a different set
of constraints for each of the models. Let Pi = Y +GiX
and Pci = Xc+GiYc. Again taking the mixed sensitivity
problem as an example, the formulation of this problem
including the stability constraint would be:

min
X,Y

γ

subject to:

P ∗
i Pci + P ∗

ciPi − P ∗
ciPci (W1Y )∗ (W2X)∗

W1Y γI 0

W2X 0 γI


 > 0

Y ∗Yc + Y ∗
c Y − Y ∗

c Yc > 0 (36)

for i = 1, . . . , q ; ∀ω ∈ Ω

4.3 Frequency-domain uncertainty

The frequency function may be affected by the measure-
ment noise. In this case, the model uncertainty can be
represented as :

G̃(ejω) = G(ejω) +W1(e
jω)∆W2(e

jω) (37)
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where ∆ is the unit ball of matrices of appropriate dimen-
sion and W1(e

jω) and W2(e
jω) are known complex ma-

trices that specify the magnitude of and directional infor-
mation about the measurement noise. A convex optimiza-
tion approach is proposed in Hindi et al. (2002) to com-
pute the optimal uncertainty filters from the frequency-
domain data. The system identification toolbox of Mat-
lab provides the variance ofGij(e

jω) (the frequency func-
tion between the i-th output and the j-th input) from
the estimates of the noise variance that can be used for
computing W1 and W2.

The robust stability condition for this type of uncertainty
is (Zhou, 1998): ‖W2KSW1‖∞ < 1. If we assume that
W1(e

jω) is invertible for all ω ∈ Ω (i.e. it has no pole
on the unit circle), then a set of robustly stabilizing con-
trollers can be given by the following spectral constraints:[

P ∗Pc + P ∗
c P − P ∗

c Pc (W2X)∗

W2X I

]
> 0 (38)

Y ∗Yc + Y ∗
c Y − Y ∗

c Yc > 0 ; ∀ω ∈ Ω

where P = W−1
1 (Y +GX) and Pc = W−1

1 (Yc +GXc).

5 Implementation Issues

5.1 Frequency gridding

The optimization problems formulated in this paper con-
tain an infinite number of constraints (i.e. ∀ω ∈ Ω) and
are called semi-infinite problems. A common approach to
handle this type of constraints is to choose a reasonably
large set of frequency samples ΩN = {ω1, . . . , ωN} and
replace the constraints with a finite set of constraints at
each of the given frequencies. As the complexity of the
problem scales linearly with the number of constraints,
N can be chosen relatively large without severely impact-
ing the solver time. The frequency range [0, π/Ts] is usu-
ally gridded logarithmically-spaced. Since all constraints
are applied to Hermitian matrices, the constraints for
the negative frequencies between −π/Ts and zero will be
automatically satisfied. In some applications with low-
damped resonance frequencies, the density of the fre-
quency points can be increased around the resonant fre-
quencies. An alternative is to use a randomized approach
for the choice of the frequencies at which the constraints
are evaluated (Alamo et al., 2010).

Taking the mixed sensitivity problem as an example, the
sampled problem would be:

min
X,Y

γ

subject to:

P ∗Pc + P ∗

c P − P ∗
c Pc (W1Y )∗ (W2X)∗

W1Y γI 0

W2X 0 γI


 (ejω) > 0

[
Y ∗Yc + Y ∗

c Y − Y ∗
c Yc

]
(ejω) > 0 ; ω ∈ ΩN

(39)

5.2 Initial controller

The stability condition presented in Theorem 2 requires
a stabilizing initial controller Kc with the same poles on
the stability boundary (the unit circle) as the desired
final controller. For a stable plant, a stabilizing initial
controller can always be found by choosing:

[Xc,1, . . . , Xc,p] = 0, Xc,0 = εI (40)

with ε being a sufficiently small number. Furthermore, the
parameters of Yc should be chosen such that det(Yc) 	= 0
for all ω ∈ Ω. This can be achieved by choosing Yc such
that all roots of det(Yc) = 0 lie at zero, with Fy con-
taining all the poles on the unit circle of the desired final
controller. For example, to design a controller with inte-
gral action in all outputs, Yc = zp(z − 1)I can be con-
sidered. Alternatively, if a working controller has already
been implemented, it can be used as the initial controller.

When choosing an initial controller whose performance
is far from the desired specifications, it may occur that
either the optimization problem has no feasible solution,
or that the solver runs into numerical problems which
lead to an infeasible solution. These problems can often
be resolved by two approaches:

Re-initialization: The initial controller can be changed
with a systematic approach for stable plants by solving
the following optimization problem using a nonlinear
optimization solver with random initialization:

max
X,Y

a

subject to:


{
det(I +GXY −1)

} ≥ a ∀ω ∈ ΩN

(41)

Any solution to the above optimization problem will
be a stabilizing controller if the optimal value of a is
greater than -1. The problem can be solved multiple
times with different random initialization to generate a
set of initial stabilizing controllers, which can be used
to initialize the algorithm.

Relaxation: We can relax or even remove some of the
constraints. The relaxed optimization problem is then
solved and the optimal controller is used to initialize
the non-relaxed problem. As this new controller is com-
paratively close to the final solution, the issue is often
solved with this approach.

Since this work focuses on data-driven control design, for
unstable plants it is reasonable to assume that a stabiliz-
ing controller has been available for data acquisition, and
can thus be used as the initial controller.

It should be mentioned that the design of fixed-structure
controllers in a model-based setting also requires an ini-
tialization with a stabilizing controller, which is usually
integrated in the workflow. In the methods based on non-
smooth optimization like hinfstruct in Matlab (Apkar-
ian and Noll, 2006) or the public-domain toolbox HIFOO
(Burke et al., 2006), the controllers are randomly initial-
ized and maximum of the real part of the eigenvalues of a

6



closed-loop transfer function is minimized. The resulting
stabilizing controllers are then used for the optimization
of the objective function. Other model-based approaches
use an initial stabilizing controller to convert the bilin-
ear matrix inequalities to LMIs and solve it with con-
vex optimization algorithms. Therefore, from this point
of view, our data-driven approach is subject to the same
restrictions as the state-of-the-art approaches for fixed-
structure controller design in a model-based setting.

5.3 Iterative algorithm

Once a stabilizing initial controller is found, it is used to
formulate the optimization problem. Any LMI solver can
be used to solve the optimization problem and calculate a
suboptimal controllerK around the initial controllerKc.
As we are only solving an inner convex approximation
of the original optimization problem, K depends heavily
on the initial controllerKc and the performance criterion
can be quite far from the optimal value. The solution is
to use an iterative approach that solves the optimization
problem multiple times, using the final controller K of
the previous step as the new initial controller Kc. This
choice always guarantees closed-loop stability (assuming
the initial choice of Kc is stabilizing). Since the objective
function is non-negative and non-increasing, the iteration
converges to a local optimum or a saddle point of the orig-
inal non-convex problem (Yuille and Rangarajan, 2003).
The iterative process can be stopped once the change in
the performance criterion is sufficiently small.

6 Simulation Results

As an example, the mixed sensitivity problem for low-
order continuous-time controllers is considered. 10 plants
are drawn from the Compleib library (Leibfritz, 2006).
For comparison, the achieved performance is compared
with the results obtained using hinfstruct and HIFOO.
Parametric plant models are used in this example in or-
der to enable comparison with state-of-the-art methods.
However, it should be noted that, as our method is data-
driven, only the frequency responses of the plants are re-
quired for the controller design.

The objective is to solve the mixed sensitivity problem by
minimizing the infinity-norm of (10), where W2 = I and
W1 = (aks + 10)/(aks + 1) with ak being chosen based
on the bandwidth of the plant. Then, the optimization
problem in (39) is formed with N = 100 logarithmically
spaced frequency points in the interval [0.01, 500] rad/s,
where 500 is much larger than the bandwidth of all plants.
A second-order controller K(s) = X(s)Y (s)−1 is chosen
as follows:

X(s) = X2s
2 +X1s+X0 , Y (s) = Is2 + Y1s+ Y0

where Yi is a diagonal matrix in order to obtain a low-
order controller. To have a fair comparison, the same
method as in HIFOO is used to find a stabilizing initial
controller. The method uses a non-convex approach to
minimize the maximum of the spectral abscissa of the
closed-loop plant, and yields a stabilizing static output

Table 1
Comparison of optimal mixed sensitivity norms for 10 plants
from Compleib

Plant Name ak data-driven hinfstruct HIFOO

AC1 10 1.90 2.30 2.38

HE1 1 1.37 1.36 1.36

HE2 10 3.08 3.36 3.55

REA2 1 3.00 2.96 2.96

DIS1 1 7.27 7.31 7.34

TG1 0.1 9.54 8.89 9.75

AGS 1 2.14 2.16 2.16

BDT2 1 9.93 9.93 9.94

MFP 1 6.08 7.23 7.17

IH 1 4.83 10.01 28.73

feedback controllerKSOF. In order to satisfy Condition 3
of Theorem 2, the order of Yc is increased without chang-
ing the initial controller :

Xc(s) = (s+ 1)2KSOF , Yc(s) = (s+ 1)2I (42)

The names of the chosen plants in Compleib, the design
parameters and the obtained norms are shown in Table 1.
For comparison, the mixed sensitivity problems are also
solved for a second-order state-space controller using HI-
FOO and hinfstruct with 10 random starts. It can be seen
that the data-drivenmethod generally achieves about the
same or a lower norm. The superior results can be at-
tributed to the fact that the controller structure is of ma-
trix polynomial form, which has more parameters than a
state-space controller of the same order.

The solver time of one iteration step depends almost lin-
early on the number of points used for the frequency
gridding. It is also interesting to note that the controller
order has a minimal impact on the solver time, making
the algorithm well-suited for the design of higher-order
controllers. The number of iterations until convergence
mostly depends on the choice of the initial controller and
a solution is generally reached in less than 25 iterations.

7 Conclusions

The frequency response of a multivariable system can be
obtained through several experiments. This data can be
used directly to compute a high performance controller
without a parametric identification step. The main ad-
vantage is that there will be no unmodeled dynamics and
that the uncertainty originating from measurement noise
can be straightforwardly modeled through the weighting
frequency functions. A unified convex approximation is
used to convexify the H∞, H2 and loop shaping control
problems. Similar to the model-based approaches, this
convex approximation relies on an initial stabilizing con-
troller. Several initialization techniques are discussed and
an iterative algorithm is proposed that converges to a lo-
cal optimum or a saddle point of the original non-convex
problem. Compared to the other frequency-domain data-
driven approaches, the proposed method has a full con-

7



troller parametrization and also coversH2 and loop shap-
ing control design with a new closed-loop stability proof.
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