8 research outputs found

    A collection of open problems in celebration of Imre Leader's 60th birthday

    Full text link
    One of the great pleasures of working with Imre Leader is to experience his infectious delight on encountering a compelling combinatorial problem. This collection of open problems in combinatorics has been put together by a subset of his former PhD students and students-of-students for the occasion of his 60th birthday. All of the contributors have been influenced (directly or indirectly) by Imre: his personality, enthusiasm and his approach to mathematics. The problems included cover many of the areas of combinatorial mathematics that Imre is most associated with: including extremal problems on graphs, set systems and permutations, and Ramsey theory. This is a personal selection of problems which we find intriguing and deserving of being better known. It is not intended to be systematic, or to consist of the most significant or difficult questions in any area. Rather, our main aim is to celebrate Imre and his mathematics and to hope that these problems will make him smile. We also hope this collection will be a useful resource for researchers in combinatorics and will stimulate some enjoyable collaborations and beautiful mathematics

    Gallai-Ramsey numbers for graphs and their generalizations

    Get PDF

    Clique Factors: Extremal and Probabilistic Perspectives

    Get PDF
    A K_r-factor in a graph G is a collection of vertex-disjoint copies of K_r covering the vertex set of G. In this thesis, we investigate these fundamental objects in three settings that lie at the intersection of extremal and probabilistic combinatorics. Firstly, we explore pseudorandom graphs. An n-vertex graph is said to be (p,ÎČ)-bijumbled if for any vertex sets A, B ⊆ V (G), we have e( A, B) = p| A||B| ± ÎČ√|A||B|. We prove that for any 3 ≀ r ∈ N and c > 0 there exists an Δ > 0 such that any n-vertex (p, ÎČ)-bijumbled graph with n ∈ rN, ÎŽ(G) ≄ c p n and ÎČ â‰€ Δ p^{r −1} n, contains a K_r -factor. This implies a corresponding result for the stronger pseudorandom notion of (n, d, λ)-graphs. For the case of K_3-factors, this result resolves a conjecture of Krivelevich, Sudakov and SzabĂł from 2004 and it is tight due to a pseudorandom triangle-free construction of Alon. In fact, in this case even more is true: as a corollary to this result, we can conclude that the same condition of ÎČ = o( p^2n) actually guarantees that a (p, ÎČ)-bijumbled graph G contains every graph on n vertices with maximum degree at most 2. Secondly, we explore the notion of robustness for K_3-factors. For a graph G and p ∈ [0, 1], we denote by G_p the random sparsification of G obtained by keeping each edge of G independently, with probability p. We show that there exists a C > 0 such that if p ≄ C (log n)^{1/3}n^{−2/3} and G is an n-vertex graph with n ∈ 3N and ÎŽ(G) ≄ 2n/3 , then with high probability G_p contains a K_3-factor. Both the minimum degree condition and the probability condition, up to the choice of C, are tight. Our result can be viewed as a common strengthening of the classical extremal theorem of CorrĂĄdi and Hajnal, corresponding to p = 1 in our result, and the famous probabilistic theorem of Johansson, Kahn and Vu establishing the threshold for the appearance of K_3-factors (and indeed all K_r -factors) in G (n, p), corresponding to G = K_n in our result. It also implies a first lower bound on the number of K_3-factors in graphs with minimum degree at least 2n/3, which gets close to the truth. Lastly, we consider the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze and Martin, where one starts with a dense graph and then adds random edges to it. Specifically, given any fixed 0 < α < 1 − 1/r we determine how many random edges one must add to an n-vertex graph G with ÎŽ(G) ≄ α n to ensure that, with high probability, the resulting graph contains a K_r -factor. As one increases α we demonstrate that the number of random edges required ‘jumps’ at regular intervals, and within these intervals our result is best-possible. This work therefore bridges the gap between the seminal work of Johansson, Kahn and Vu mentioned above, which resolves the purely random case, i.e., α = 0, and that of Hajnal and SzemerĂ©di (and CorrĂĄdi and Hajnal for r = 3) showing that when α ≄ 1 − 1/r the initial graph already hosts the desired K_r -factor.Ein K_r -Faktor in einem Graphen G ist eine Sammlung von Knoten-disjunkten Kopien von K_r , die die Knotenmenge von G ĂŒberdecken. Wir untersuchen diese Objekte in drei Kontexten, die an der Schnittstelle zwischen extremaler und probabilistischer Kombinatorik liegen. Zuerst untersuchen wir Pseudozufallsgraphen. Ein Graph heißt (p,ÎČ)-bijumbled, wenn fĂŒr beliebige Knotenmengen A, B ⊆ V (G) gilt e( A, B) = p| A||B| ± ÎČ√|A||B|. Wir beweisen, dass es fĂŒr jedes 3 ≀ r ∈ N und c > 0 ein Δ > 0 gibt, so dass jeder n-Knoten (p, ÎČ)-bijumbled Graph mit n ∈ rN, ÎŽ(G) ≄ c p n und ÎČ â‰€ Δ p^{r −1} n, einen K_r -Faktor enthĂ€lt. Dies impliziert ein entsprechendes Ergebnis fĂŒr den stĂ€rkeren Pseudozufallsbegriff von (n, d, λ)-Graphen. Im Fall von K_3-Faktoren, löst dieses Ergebnis eine Vermutung von Krivelevich, Sudakov und SzabĂł aus dem Jahr 2004 und ist durch eine pseudozufĂ€llige K_3-freie Konstruktion von Alon bestmöglich. TatsĂ€chlich ist in diesem Fall noch mehr wahr: als Korollar dieses Ergebnisses können wir schließen, dass die gleiche Bedingung von ÎČ = o( p^2n) garantiert, dass ein (p, ÎČ)-bijumbled Graph G jeden Graphen mit maximalem Grad 2 enthĂ€lt. Zweitens untersuchen wir den Begriff der Robustheit fĂŒr K_3-Faktoren. FĂŒr einen Graphen G und p ∈ [0, 1] bezeichnen wir mit G_p die zufĂ€llige Sparsifizierung von G, die man erhĂ€lt, indem man jede Kante von G unabhĂ€ngig von den anderen Kanten mit einer Wahrscheinlichkeit p behĂ€lt. Wir zeigen, dass, wenn p ≄ C (log n)^{1/3}n^{−2/3} und G ein n-Knoten-Graph mit n ∈ 3N und ÎŽ(G) ≄ 2n/3 ist, G_pmit hoher Wahrscheinlichkeit (mhW) einen K_3-Faktor enthĂ€lt. Sowohl die Bedingung des minimalen Grades als auch die Wahrscheinlichkeitsbedingung sind bestmöglich. Unser Ergebnis ist eine VerstĂ€rkung des klassischen extremalen Satzes von CorrĂĄdi und Hajnal, entsprechend p = 1 in unserem Ergebnis, und des berĂŒhmten probabilistischen Satzes von Johansson, Kahn und Vu, der den Schwellenwert fĂŒr das Auftreten eines K_3-Faktors (und aller K_r -Faktoren) in G (n, p) festlegt, entsprechend G = K_n in unserem Ergebnis. Es impliziert auch eine erste untere Schranke fĂŒr die Anzahl der K_3-Faktoren in Graphen mit einem minimalen Grad von mindestens 2n/3, die der Wahrheit nahe kommt. Schließlich betrachten wir die Situation von zufĂ€llig gestörten Graphen; ein Modell, bei dem man mit einem dichten Graphen beginnt und dann zufĂ€llige Kanten hinzufĂŒgt. Wir bestimmen, bei gegebenem 0 < α < 1 − 1/r, wie viele zufĂ€llige Kanten man zu einem n-Knoten-Graphen G mit ÎŽ(G) ≄ α n hinzufĂŒgen muss, um sicherzustellen, dass der resultierende Graph mhW einen K_r -Faktor enthĂ€lt. Wir zeigen, dass, wenn man α erhöht, die Anzahl der benötigten Zufallskanten in regelmĂ€ĂŸigen AbstĂ€nden “springt", und innerhalb dieser AbstĂ€nde unser Ergebnis bestmöglich ist. Diese Arbeit schließt somit die LĂŒcke zwischen der oben erwĂ€hnten bahnbrechenden Arbeit von Johansson, Kahn und Vu, die den rein zufĂ€lligen Fall, d.h. α = 0, löst, und der Arbeit von Hajnal und SzemerĂ©di (und CorrĂĄdi und Hajnal fĂŒr r = 3), die zeigt, dass der ursprĂŒngliche Graph bereits den gewĂŒnschten K_r -Faktor enthĂ€lt, wenn α ≄ 1 − 1/r ist

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore