440 research outputs found

    Virtual tour

    Get PDF
    Interactive 3D Visualization of Architectural models might be the best way to get some idea about an Architecture Plan. Photo-realistic visualization often attracts the investors and customers for whom the architectural blueprints are obscure. Architectural Visualization is considered to have a bright future ahead of it as more and more architects and real estate developers are using this technology. Virtual Walk-through can give not only ideas about your building but its interiors and design too. The Architectural Virtual Environment also most widely used in Gaming and Entertainment Industry in creating a complex movie scenes or a game environment

    Fidelity metrics for virtual environment simulations based on spatial memory awareness states

    Get PDF
    This paper describes a methodology based on human judgments of memory awareness states for assessing the simulation fidelity of a virtual environment (VE) in relation to its real scene counterpart. To demonstrate the distinction between task performance-based approaches and additional human evaluation of cognitive awareness states, a photorealistic VE was created. Resulting scenes displayed on a headmounted display (HMD) with or without head tracking and desktop monitor were then compared to the real-world task situation they represented, investigating spatial memory after exposure. Participants described how they completed their spatial recollections by selecting one of four choices of awareness states after retrieval in an initial test and a retention test a week after exposure to the environment. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and also included guesses, even if informed. Experimental results revealed variations in the distribution of participants’ awareness states across conditions while, in certain cases, task performance failed to reveal any. Experimental conditions that incorporated head tracking were not associated with visually induced recollections. Generally, simulation of task performance does not necessarily lead to simulation of the awareness states involved when completing a memory task. The general premise of this research focuses on how tasks are achieved, rather than only on what is achieved. The extent to which judgments of human memory recall, memory awareness states, and presence in the physical and VE are similar provides a fidelity metric of the simulation in question

    Outdoor 3D illumination in real time environments: A novel approach

    Get PDF
    Comprehensive enlightenment is one of the fundamental components that virtualize the real environment. Accordingly, sky shading is one of the important components considered in the virtualization process. This research introduces the Dobashi method of sky luminance; additionally, Radiosity Caster Culling is applied to the virtual objects as the second thought for outside illumination. Pre-Computed Radiance Transfer is connected to ascertain the division of patches. Moreover, for real sky shading, the Perez model is utilized. By pre-ascertaining sky shading vitality and outside light, the vitality of the entire open air is figured ahead of time. The open air vitality is shared on virtual articles to make the situations more practical. Commercial videos and cartoon creators could utilize the strategy to produce real outside situations. © 2017

    The role of graphics super-workstations in a supercomputing environment

    Get PDF
    A new class of very powerful workstations has recently become available which integrate near supercomputer computational performance with very powerful and high quality graphics capability. These graphics super-workstations are expected to play an increasingly important role in providing an enhanced environment for supercomputer users. Their potential uses include: off-loading the supercomputer (by serving as stand-alone processors, by post-processing of the output of supercomputer calculations, and by distributed or shared processing), scientific visualization (understanding of results, communication of results), and by real time interaction with the supercomputer (to steer an iterative computation, to abort a bad run, or to explore and develop new algorithms)

    A psychophysical investigation of global illumination algorithms used in augmented reality

    Get PDF
    Global illumination rendering algorithms are capable of producing images that are visually realistic. However, this typically comes at a large computational expense. The overarching goal of this research was to compare different rendering solutions in order to understand why some yield better results when applied to rendering synthetic objects into real photographs. As rendered images are ultimately viewed by human observers, it was logical to use psychophysics to investigate these differences. A psychophysical experiment was conducted judging the composite images for accuracy to the original photograph. In addition, iCAM, an image color appearance model, was used to calculate image differences for the same set of images. In general it was determined that any full global illumination is better than direct illumination solutions only. Also, it was discovered that the full rendering with all of its artifacts is not necessarily an indicator of judged accuracy for the final composite image. Finally, initial results show promise in using iCAM to predict a relationship similar to the psychophysics, which could eventually be used in-the-rendering-loop to achieve photo-realism

    Pipeline Rendering: Interactive Refractions, Reflections and Shadows

    Get PDF
    A coordinated use of hardware-provided bitplanes and rendering pipelines can create ray-trace quality illumination effects in real time. We provide recursive reflections through the use of secondary viewpoints, and present a method for using a homogeneous 2D projective image mapping to extend this method for refractive surfaces. We extend the traditional use of shadow volumes to provide reflected and refracted shadows as well as reflected and refracted lighting. A shadow blending technique is demonstrated, and the shadow and lighting effects are incorporated into our recursive viewpoint paradigm. Finally, we incorporate material properties including a translucency model to provide a general framework for creating physically approximate renderings. These techniques are immediately applicable to areas such as 3D modelling, animation and interactive environments to produce more realistic images in real time

    ReLiShaft: realistic real-time light shaft generation taking sky illumination into account

    Get PDF
    © 2018 The Author(s) Rendering atmospheric phenomena is known to have its basis in the fields of atmospheric optics and meteorology and is increasingly used in games and movies. Although many researchers have focused on generating and enhancing realistic light shafts, there is still room for improvement in terms of both qualification and quantification. In this paper, a new technique, called ReLiShaft, is presented to generate realistic light shafts for outdoor rendering. In the first step, a realistic light shaft with respect to the sun position and sky colour in any specific location, date and time is constructed in real-time. Then, Hemicube visibility-test radiosity is employed to reveal the effect of a generated sky colour on environments. Two different methods are considered for indoor and outdoor rendering, ray marching based on epipolar sampling for indoor environments, and filtering on regular epipolar of z-partitioning for outdoor environments. Shadow maps and shadow volumes are integrated to consider the computational costs. Through this technique, the light shaft colour is adjusted according to the sky colour in any specific location, date and time. The results show different light shaft colours in different times of day in real-time

    A physiological Plant Growth Simulation Engine Based on Accurate Radiant Energy Transfer

    Get PDF
    We present a new model for plant growth simulation, taking into account the eco-physiological processes driving plant development with unprecedented fidelity. The growth model, based on a physiological analysis, essentially simulates the internal function of the plant, and has been validated against measured biological data with excellent results. We show how to account for the influence of light through photosynthesis, and thereby incorporate the effects of a given plant's immediate environment on its architecture, shape and size. Since biological matter is controlled by water transpiration and received radiant enery, the model requires efficient and accurate simulation of radiant energy exchanges. We describe a complete lighting simulation system tailored for the difficult case of plants, by adapting state-of-the-art techniques such as hierarchical instanciation for radiosity and general BRDF modeling. Our results show that (a) our lighting simulation system efficiently provides the required information at the desired level of accuracy, and (b) the plant growth model is extremely well calibrated against real plants and (c) the combined system can simulate many interesting growth situations with direct feedback from the environment on the plant's characteristics. Applications range from landscape simulation to agronomical and agricultural studies, and to the design of virtual plants responding to their environment
    corecore