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Pipeline Rendering: Interactive Refractions, Reflections and Shadows

Abstract
A coordinated use of hardware-provided bitplanes and rendering pipelines can create ray-trace quality
illumination effects in real time. We provide recursive reflections through the use of secondary viewpoints,
and present a method for using a homogeneous 2D projective image mapping to extend this method for
refractive surfaces. We extend the traditional use of shadow volumes to provide reflected and refracted
shadows as well as reflected and refracted lighting. A shadow blending technique is demonstrated, and the
shadow and lighting effects are incorporated into our recursive viewpoint paradigm. Finally, we incorporate
material properties including a translucency model to provide a general framework for creating physically
approximate renderings. These techniques are immediately applicable to areas such as 3D modelling,
animation and interactive environments to produce more realistic images in real time.
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Pipeline rendering: interactive 
refractions, reflections and shadows 
Paul J Diefenbach and Norman I Badler 

A coordinated use of hardware-provided bitplanes and rendering 
pipelines can create ray-trace quality illumination effects in real 
time. We provide recursive reflections through the use of secondary 
viewpoints, and present a method for using a homogeneous 2D 
projective image mapping to extend this method for refractive 
surfaces. We extend the traditional use of shadow volumes to 
provide reflected and refracted shadows as well as reflected and 
refracted lighting. A shadow blending technique is demonstrated, 
and the shadow and lighting effects are incorporated into our 
recursive viewpoint paradigm. Finally, we incorporate material 
properties including a translucency model to provide a general 
framework for creating physically approximate renderings. These 
techniques are immediately applicable to areas such as 3D 
modelling, animation and interactive environments to produce 
more realistic images in real time. 

Keywords: real time, rendering pipeline, animation 

Much attention has been devoted to photo-realistic rendering 
techniques as ray-tracing and radiosity packages have 
become increasingly sophisticated. These methods provide 
a basic foundation of visual cues and effects to produce 
extremely high quality and highly accurate images at a 
considerable cost, namely computation time. Neither of 
these techniques has any widespread application in true 
interactive environments, such as animation creation and 
virtual worlds. 

Many so-called interactive environments such as Virtual 
Building systems ~'2 rely on precomputation of static 
environments to form progressive radiosity solutions. 
Other systems dealing with lighting effects 3 rely on a 
series of images from a single viewpoint. All of the systems 
suffer from large computational overheads and unchange- 
able geometry. Even in incremental radiosity solutions 4, 
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geometry changes require significant re.computation time. 
In addition, radiosity-based solutions inhibit the use of 
reflective and refractive surfaces. 

Systems based on forward ray-tracing 5 are either non- 
interactive or else suffer from the problems inherent in the 
technique 6. Only a few attempt to handle indirect illumi- 
nation accurately 7. Backward ray-tracing systems s-l° more 
accurately handle caustics, but again these methods are 
very time-intensive and not remotely interactive. Even the 
fastest ray-tracing systems require static geometry to 
achieve their results n. 

In contrast, advanced hardware architectures such as the 
SGI Reality Engine TM have brought an added level of 
realism to interactive environments through the use of 
sophisticated graphic pipelines and added levels of screen 
buffer information. These features have enabled software 
developers to bring previously unavailable details such as 
shadows and mirrors to many interactive applications. 
Even the most basic graphics systems today now support 
some level of image masking and manipulation, common to 
the image-processing community for years. These hardware 
provisions have yet to be fully exploited, though clever 
programming techniques by several implementors have 
produced real-time shadows and mirrors j2,j3. 

This paper expands these techniques to include not only 
reflection but a technique for refractive surfaces as well. 
The model presented extends the current reflection tech- 
niques to provide an arbitrary level of refraction and 
reflection for use in 'hall-of-mirror' type environments and 
to provide a close approximation for refractive objects. A 
corrective image transform is presented to correct for 
perspective distortions during the image mapping of the 
secondary refracted image. In addition, a method for 
combining the previously exclusionary shadow and mirror 
stencilling methods is demonstrated which not only 
preserves shadows in all secondary images, but which also 
accounts for refraction and reflection of the light and 
shadows in the primary and secondary images as well. 
Finally, the use of hardware-provided features such as fog 
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and texture blending is shown to provide simulation of 
varying material properties such as translucency and 
shininess. Combined, these techniques provide a real-time 
alternative to ray-tracing for creating fast, approximate 
reflective and refractive lighting effects. Furthermore, the 
techniques described provide a foundation for more advanced 
rendering features such as anisotropic reflections and 
caustics. 

DEFINITIONS 

For the purposes of this paper, we shall introduce terms 
common to users in the GL environment. Stencilplanes are 
essentially an enhanced Z-buffer mentioned in Reference 
14. In its simplest form, pixels are written only if the 
current stencil value (analogous to the current Z value) of 
the destination pixel passes the defined stencil test. 
Depending on the result, the pixel is written and the stencil 
value is changed. 

Shadow volumes are volumes bounded by silhouette 
faces. A silhouette face is a face created for each edge of 
an object by extending that edge away from the light source 
along the light-ray direction. 

An accumulation buffer is a secondary image buffer to 
which the current image can be added. The resulting image 
can also be divided by a constant. This enables a blending 
of images or image features. 

In-out refractions are refractions that occur when light 
passes from one medium to another and back to the first, 
such as light traversing through a piece of glass. There is 
an entry refraction and an exit refraction, producing a 
refracted ray parallel to the incident ray. 

elements also add additional realism for animations and 
interactive environments. Refractive images are similar in 
concept to reflections, but more complex in practice. 

While a mirrored image directly corresponds to the 
reflective surface to which it maps, a refracted image maps 
to a distorted image space. Simply performing a second 
rendering in the stencilled area does not overlay the correct 
image portion. This is demonstrated in Figure 1. The area 
visible through the transparent surface in the refracted view 
is different from the image area from the original view- 
point; areas outside the refracting surface and even in front 
may be visible in the refracted image (Plate 1). This differ- 
ence is due to two factors: the difference between incident 
and refracted viewpoints, and the perspective distortion. 

Because the incident angle does not equal the refracted 
angle, the refracted image is rotated with respect to the 
original image. This is further compounded by the rotated 
image plane undergoing a perspective distortion different 
from the perspective distortion of the original plane. The 
perspective transformations are the same, but because the 
planes have different orientations, the resulting distortions 
are different. The result is that a refractive square planar 
face, for example, maps to two different quadrilaterals in 
the original versus the refracted images. 

The refractive image I r does correspond to the original 

R E F L E C T I O N S  

Reflections are a useful tool in interactive modelling and an 
important element for creating realistic animations. A 
reflective image corresponds to an inverted image from a 
secondary viewpoint. In other words, the reflected image is 
the flipped image from a viewpoint on the 'other' side of 
the mirror. This analogy provides the basis for mirror 
reflection in systems such as that described in Reference 
13. 

Mirrors are implemented by rendering the entire environ- 
ment, exclusive of the mirrored surface. The mirrored 
surface is drawn with Z-buffering, creating a stencil mask 
on pixels where the mirror is visible. A second rendering 
of the environment is then performed from the reflected 
viewpoint, drawing only over the previously masked 
pixels. Because the reflected angle (angle from mirror plane 
to reflected viewpoint) is the negative of the incident angle 
and because the image is flipped, the reflected image 
directly 'fits' onto the mirror. 

ORIGINAL IMAGE 

R E F R A C T I O N S  

Just as reflections provide strong visual cues, refractive 

COMPOSITE IMAGE 

Figure 1 Refracted image versus camera image 
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image Io through a 2D bijective projective mapping M3. 
This mapping is the intersection of the 3D image mapping 
set M4 with the reflective planar surface 9 :  

Io = trM3 (1) 

where 

M3 = M4 c~ ~ (2) 

and 

M 4 = e- lCrCo- Ie  (3)  

In Equation (3) P is the perspective transform and Co and 
Cr are the original and refracted camera transforms, 
respectively. 

This results in a 2D projective transform of arbitrary 
quadrilateral to quadrilateral described in Reference 15 and 
included in the Appendix. This transform, described by a 
3 x 3 homogeneous transform, can be applied directly to 
the screen-viewport mapping to distort the refractive 
image into the normal image space. In hardware that 
supports user-defined transforms, this transform can be 
inserted directly at the end of the rendering pipeline. In 
systems where this is not possible, such as the Silicon 
Graphics TM architecture, this transform can be implemented 
as a 4 x 4 homogeneous transform inserted in the world-to- 
unit pipeline. The resulting transform is constructed with a 
zero scale factor for Z so that the mapping is to the Z = 0 
plane. Without this mapping, the tapering and skewing 
effects from the quadrilateral distortion affect the Z 
coordinates. This scaling does, however, preclude the use 
of the Z-buffer for hidden surface removal as all image 
points now have the same Z value. This method also does 
not allow for the translucency simulation described below, 
due to the loss of depth. 

Note also that this method does not produce true refract- 
ions, merely a close approximation to the refractive image. 
In a true refractive image, every ray incident to the 
refractive plane bends according to its angle with the plane; 
this method, however, uses only one incident angle. In 
practice, two angles are used to provide more realistic 
results with the system. First, the incident ray is taken from 
the camera location to the refracting face centre to 
determine whether the incident angle is greater than the 
critical angle. If this is the case, the surface is taken to be 
wholly reflective. If the angle is less than the critical angle, 
the incident angle for Snell's Law is taken at the point of 
intersection of the view vector (camera's negative Z axis) 
and the plane in which the refracting face lies. This method 
ensures that the critical angle is reached as the plane moves 
tangentially to the view, yet the refracted image is seen as 
a smooth scrolling of the background behind the face. 

R E F R A C T I V E  S H A D O W S *  

While the above method does produce accurate reflective 

*Although only refractions arc mentioned henceforward, the methods 
described are applicable for reflections with only minor variations 
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images and close approximations for refractive surfaces, it 
does not produce accurate lighting effects from these 
surfaces. Light reflects off a mirror and refracts through 
glass, producing different shadows than if not present. To 
produce a more accurate image, these effects must also be 
taken into account. Therefore, any shadow-generation 
method must not only work in conjunction with the 
stencilling method described above, but it must also be 
affected by the reflective and refractive surfaces in a scene. 

Our shadows are implemented using the traditional 
shadow volume technique described by Heidmann ~2. This 
technique uses the in-out principle of silhouette faces to 
mask regions inside the shadow volume. 

To understand how this method must be extended for 
refractive surfaces, examine Figure 2. This figure displays 
the complex shadow patterns caused by objects on both 
sides of a refracting surface. Note that this is not an exact 
representation but instead a hybrid model used in our 
system to demonstrate the refracting effects more clearly. 
The rays are refracted as in a change of medium; they do 
not represent true in-out refraction of a material with a 
thickness. With in-out refraction, the refracted rays are 
parallel to the incident rays and merely offset, thereby not 
permitting direct light to fall within the light volume ~6. 
Although the included images were generated with this 
change-of-medium model, in-out refractions are achieved 
merely by changing the refracting function (or by placing 
back-to-back refracting faces with opposing indices of 
refraction in the current model). 

To model shadows accurately, each of the above- 
mentioned features must be included in our shadow model. 
To accomplish this, we require a two-pass shadow- 
generation approach. The first phase generates all shadows 
and lighting falling within the refracted light area. The 
second pass renders all lighting and shadows outside this 
area. This method creates both the shadow and caustic 
effects of the refractive surface. 

LIGHT 

1 :  PRIMARY LIGHT 
2 :  PRIMARY AND 

REFRACTED LIGHT 
(NOT PRESENT WHEN 
E X I T  REFRACTIONS) 

3 :  C U B E ' S  REFRACTED 
SHADOW & 

PRIMARY LIGHT 
4 :  C U B E ' S  REFRACTED 

SHADOW 

5 : CUBE ' S REFRACTED 
SHADOW & SPHERE ' S 
sHADOW FROM 
REFRACTED LIGHT 

6 : SPHERE ' S SHADOW 
FROM REFRXCTED 
LIGHT 

7 : REFRXCTED LIGHT 
8 : REFRACTING SURFACE ' S 

SHADOW 

Figure 2 Light interaction with refractive surface 
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In the first pass, a light v o l u m e  17 is generated for the 
refracting face. Shadow volumes are then generated for 
shadows falling inside this volume. This itself includes two 
cases, objects inside the volume generating shadows, and 
objects outside the volume whose shadows get refracted 
into the volume. In the first case, the shadow volume cannot 
intersect the refracting plane, for to do so would place the 
object outside the light volume. In the second case, the 
shadow volume must intersect the refracting plane in order 
to be refracted into the light volume. Because true in-out  
refraction results in refracted rays parallel to incident rays, 
objects outside the light volume cannot cast shadows into 
the light volume directly from the primary light source. 
Both intersection cases can be checked during the shadow 
volume generation. A simple pre-shadow generation check 
using dot-products can determine if the object is on the 
appropriate side of the refracting plane and can save having 
to generate the shadow volume. 

The second pass creates shadows for the entire environ- 
ment. Even the refracted light volume region is included. 
This captures the shadow effect caused by the refractive 
surface itself. 

R E C U R S I O N  

Both methods for rendering shadows and for rendering 
refraction and reflection require use of the stencil planes. 
While it might seem that the refraction stencil mask value 
would be a logical choice for the zero value in the shadow 
algorithm, this is not the case. In order to have recursive 
refractions, we instead choose a value which is three- 
quarters of the maximum stencil value for our 'zero'  
shadow value, and one-half of  the maximum for our 
minimum shadow stencil value. This provides half of the 
stencil buffer for shadow calculation and half for recursive 
levels. These values can be adjusted according to the 
recursion level needed or the shadow object complexity. 

We choose zero for our render area value; this is the 
stencil mask value for drawing at every level of recursion. 
At each level of  recursion, all values less than the stencil 
minimum are incremented by one (setting the current 
rendering area to one), and the new refractive surface is 
drawn setting the stencil value to zero. The refracted image 
is then drawn in the zero stencil area, and the process is 
repeated for all other refractive surfaces. Once the desired 
recursion level has been reached, all stencil values less than 
the shadow minimum are decremented (with zero capped), 
which essentially puts us back one level of recursion. The 
process is then repeated for the next retractive surface, 
with stencil values incremented by one and the surface 
creating a stencil mask of zero. This process is illustrated 
in Figure 3 and Plate 2. 

At each level of recursion, shadows must be drawn in the 
valid area. The reason for our choice of shadow zero is now 
apparent; it avoids conflict with our recursive refraction 
levels. All stencil values of zero at each level are changed 
to the shadow zero, and shadows are then rendered as 
described above using the in-out  method. The shadow zero 
should be chosen so that the in-out  method does not go 

Figure 3 Re, cursive stencilling 

below the shadow minimum or above the maximum stencil 
value in order to prevent conflict with the refraction 
stencils. After all shadows are drawn, all stencil values 
greater than shadow minimum are reset to zero, for 
continuation of the refraction recursion. The entire pro- 
cedure is seen in Figure 4. 

S O F T  S H A D O W S  A N D  C A U S T I C S  

While the above algorithm does handle the constituent 
effects of primary and indirect illumination, diffuse light is 
incrementally added, resulting in producing only the umbra 
of the shadows. In order to produce the penumbra, an 
accumulation of the lighting effects from the primary as 
well as refracted lights must occur. Fortunately, we can use 
an accumulation buffer to do just this. 

There are two methods for performing this accumulation 
of lighting effects. The first method is to treat each shadow 
calculation as independent and sum each resulting image. 
Areas that receive light from both the source and refracted 
light volume produce caustic effects (Plate 3). This method 
has limitations when using a single accumulation buffer due 
to the non-independent effects of different lights. 
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drawwindow(Camara) 
{ 

i f  (SHADOWS){ 
turn_lights_off(); 
draw_normal_ohjects(CmNra,ZERO); //ambient only 
for (each light){ 

apply_stencil(EQUAL, ZERO, REPLACE, SHAD_ZER0); 
draw.tel_shadows(); //draw shadows in ref areas 
apply_stemcil(GREATER, SHAD_MIN, REPLACE, SHAD_ZER0); 
draw.all_shadows(); //draw renaininsshadowe 
apply_stm~cil(GRFATER, SHAD_MIN, REPLACE, ZERO); 

} 
} e l s e  

dras_normal_objects(Casara,ZERO); 
i f  (REF) { 

REF_LEVEL++; 
draw_ref_objects(Casera); 
REF_LEVEL--; 

apply_stencil(COMP_FUNC, COMPoVALUE, PASS_FUNC, PASS_VALUE) 
{ 
atencil(COMP_FUNC, COMP_VALUE, PASS_FUNC, PASS_VALUE); 
apply_to.screenO; //apply stencil to every pixel 

} 

/*SHADOW ROUTINES*/ 

draw_ref_shadoesO 
{ 

for (each tel_face){ 
face_light_stancil(ref_face);  / / l i g h t  volmae 
t u r n _ l i g h t _ o n ( l i g h t )  ; 
lake_all_shadowaO4UST_IgTERSECT, ref_face); 
draw_norlalobjacts(C~uaara,SHAD_ZERO); 
apply_stencil(GREATER, SHAD_MIN, REPLACE, SHAD_ZERO); 
tel_light(light,tel_face); //love to ref position 
lake_all_shadows(CAN'T_INTERSECT, tel_face); 
draw_normal_objecta(Cmaara,SHAD_ZER0); 
apply_stencil(GREATER, SHAD_MIH, REPLACE, SHAD_ZER0); 

} 
} 

draw_a11_shadoweO 
{ 
lake_all_shadows(ALWAYS, ref_face); 
draw_normal_objects(Casara,SHAD_ZER0); 
apply_stencil(GREATER, SHAD_MIN, REPLACE, SHAD_ZER0); 

} 

eake_all_shadon(MODE,ref_face) 
{ 

for (each face) 
draw_shadow_volmae(face,MODE,ref_face); 

} 

draw_shadow_voluleO 
{ 

lake_shadow_voltle(ref_face,sv,intersectJace); 
swi tch  (NODE){ 

case CAg'T_IFrEESECT: 
if (!(intersect_facen~ref_face)){ 
draw_shadow_stencil(sv); 
lake_shadow_volmae(intereect_face,HODE,ref_face); 

} 
case MUST_INTERSECT: 

if (intersect_facen~ref_face){ 
aake_shadow_volume(intersect_face,ALWAYS,O); 

} 
case ALWAYS: 

draw_shadow_stencil(sv); 
if (intersect_face){ 
lake_ehadow_voltuae(intereect_face,ALWAYS,0); 

} 

/*REF ROUTINES (Refraction and Reflection)*/ 

draw_ref_objecte(Ceuaera) 
{ 

i f  (REF_LEVEL-=I) 
clear_stencil(ZERO); 

apply_stencil(EQUAL, ZERO, REPLACE, REF_LEVEL); 
for (each ref_face){ 

stencil(EQUAL, REF_LEVEL, REPLACE, ZERO); 
draw_face(ref_face); //REF_LEVEL->0 where face 
HefCameraffiref_canera(ref_face,Camara); 
draw_window(REF_CAMERA); 
apply_stencil(EQUAL, ZERO, REPLACE, REF_LEVEL); 

apply_stencil(EQUAL, REF_LEVEL, REPLACE, ZERO); 

dras_normal_objects(Camera,STFN_VALUE) 
{ 

setup_view(Calera); //view frol camera 
stencil(EQUAL, STEN_VALUE, KEEP, STEN.VALUE); 
for (each non_ref object) 

draw_object(); 
} 

Figure 4 Recursion procedure 

The second method uses an extension of shadow 
volumes ~4 for soft shadows. By processing all shadow 
volumes without producing intermediate images, the stencil 
value of each pixel represents a 'darkness level' due to 
encasement in several shadow volumes. The actual lighting 
of the scene is performed after all shadow volumes have 
been generated. Assuming the darkness level is only greater 
than the zero stencil value, the scene is redrawn with diffuse 
lighting for areas whose stencil value is less than the 
shadow zero value. All stencil values are then decre- 
mented, and the image is redrawn. This process is repeated 
for each darkness level, accumulating each intermediate 
image. This produces a final image with intensities based on 
the number of enclosed shadow volumes. This method does 
not suffer from the problems inherent in the first method; 
however, extensive stencil value 'juggling' of the image is 
necessary. 

O B J E C T  A T T R I B U T E S  A N D  T R A N S L U C E N C Y  

Refraction and reflection need not be limited to purely 
transparent or purely specular surfaces, respectively. We 
can create a multitude of materials by rendering the refractive 
surface again after the refractive image is drawn. This 
second rendering is alpha-blended with the refracted scene. 
On the Iris Indigo TM system, this actually requires two 
additional renderings of the refractive face since lit faces 
cannot have a source alpha value. The first rendering is 
done without colour and sets the destination alpha value to 
the appropriate value. The second rendering is with lighting 
and a blending function depending on the destination pixel 
chosen. This permits hardware shading effects and other 
hardware rendering features such as textures to be blended 
with the refracted scene. 

In addition, translucency can be simulated using the 
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Plate l Undistorted and distorted refraction Plate 4 Effects of translucency 

Plate 2 Recursive reflection 

Plate 5 Combined effects 

hardware fog feature. Translucent objects act as a filter, 
with closer objects more clearly visible than more distant 
objects due to the random refractions that take place. This 
effect can be approximated using hardware fog features 
with the minimum fog set at the refractive plane distance 
and the maximum at the desired distance depending on the 
material property. Although fog is linear with respect to the 
view, the approximation is fairly accurate due to the limited 
angular displacement of the refracting plane owing to the 
critical angle. The effect of translucency versus simple 
alpha blending is demonstrated in Plate 4. The combined 
effects are seen in Plate 5. 

Plate 3 Refracted caustics and shadows 

L I M I T A T I O N S  A N D  E X T E N S I O N S  

While the system described can produce fast, complex 
images, it does suffer from several shortcomings. Because 
it relies on multiple viewpoints, refractive and reflective 
surfaces must be planar. Shadows suffer from aliasing 
effects due to the use of image space precision in the 
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calculation. In addition, the hardware shading (typically the 
Phong modeP 8) used for the illumination model is widely 
known for its inadequacies tg. In the same regard, the 
system is hardware dependent on the number o f  stencil and 
accumulation bits, as well as the viewport-screen trans- 
forms supported. 

The rendering phase is also very time-dependent on the 
complexity o f  the environment as well as the recursion 
level for refractions (reflections). Shadows require 

0 (num-edges,recursive-depth) (4) 

for each scene rendering, o f  whichthere  are 

num_re f_ faces , (num_re f_ faces_  l )< .. . . . .  iv,-d,p,h-,) (5) 

For complex refractive surfaces, this expense can quickly 
become prohibitive even when compared with ray- 
tracing. 

For scenes with a limited number of  planar refractive and 
reflective surfaces, or with a low recursive depth, this 
system is very effective even with minimal hardware 
support. The system currently runs effectively on an Iris 
Indigo XS24 TM with 8 stencil bits and a 48-bit accumulation 
buffer. 

Additional hardware support would provide greater faci- 
lities for creating more complex images. Multiple accumu- 
lation buffers would provide greater shadow-blending 
capabilities. Additional pipeline control such as viewport 
transforms or additional fog features would enable distorted 
refractions in conjunction with translucency. 

The method can also be extended using the accumulation 
buffer to handle partially reflective and partially refractive 
surfaces, instead o f  merely switching at the critical angle. 
Anisotropic reflections 19 could be simulated based on the 
orientation of  the reflecting plane. Speedup can be achieved 
by precomputation o f  shadow volumes during static geo- 
metric periods. Visibility checks between refractive 
surfaces can also be used to reduce the number of  scene 
renderings. 

CONCLUSIONS 

We have described a series o f  techniques for adding realism 
to interactive environments and producing fast animations. 
These techniques have the common thread of  using the 
hardware pipeline itself to produce illumination effects 
commonly found only in non-interactive renderers such as 
ray-tracers. 

This paper is presented not only as an introduction to new 
methods, but to serve as a platform from which to incor- 
porate other hardware techniques to build a complete 
interactive renderer, as described in Reference 20. 

More control for direct manipulation of  the rendering 
pipeline is needed as well as more complex hardware 
lighting models. With advanced hardware features finding 
exotic uses in producing effects such as texture-mapped 
shadows, this stresses the need for greater flexibility in user 
interaction. 

While there will always be a need for complex, very 
accurate rendering packages, many situations require fast, 
approximate solutions. The techniques outlined in this 
paper provide such solutions for fast animation and inter- 
active modelling. 
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APPENDIX 

2D Quadrilateral projective map 

The mapping of  a quadrilateral to quadrilateral can be 
accomplished by composing the mapping of  a quadrilateral- 
to-square with a square-to-quadrilateral. The two map- 
pings are adjoints o f  each other symbolically, and therefore 
only the square-to-quadrilateral mapping will be given. 
(This mapping is also equal to the perspective transform 
of  the camera rotation with respect to the normal of  the 
refracting plane, which is available directly from the matrix 
stack.) 

Displays Volume 15 Number 3 1994 179 



Pipeline rendering: P J Diefenbach and N I Badler 

Msq m e , 

f 

where 

g 

h =  

8x2 5x~ 8x2 
~Y ~ 6Yt ~ 
6xl F_,x 6xl ~2 
6yl ~y 8Yt ~ 

a = x l  - X o  +gx l  
b =x3 - x o  + hx3 
c = x  o 

d = Yl - Yo + gYl 
e =  y3 - yo + hy3 
f=Yo 

(A1) 

(A2) 

(A3) 

31) Quadrilateral projective map 

Given the 2D quadrilateral projective transform 

a d g ]  
Mqq3= b e h , 

c f i  
(A4) 

we create the 3D transform 

Mqq, = b e 0 , (A5) 
0 0 0 
c f O  

which clears depth values and disables Z-buffering and fog. 
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