
University of Pennsylvania
ScholarlyCommons

Center for Human Modeling and Simulation Department of Computer & Information Science

6-1994

Pipeline Rendering: Interactive Refractions,
Reflections and Shadows
Paul Joseph Diefenbach
University of Pennsylvania

Norman I. Badler
University of Pennsylvania, badler@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/hms

Part of the Engineering Commons, and the Graphics and Human Computer Interfaces
Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/198
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Diefenbach, P., & Badler, N. I. (1994). Pipeline Rendering: Interactive Refractions, Reflections and Shadows. Displays, 15 (3),
173-180. http://dx.doi.org/10.1016/0141-9382(94)90006-X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76389527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=repository.upenn.edu%2Fhms%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/0141-9382(94)90006-X
http://repository.upenn.edu/hms/198
mailto:repository@pobox.upenn.edu

Pipeline Rendering: Interactive Refractions, Reflections and Shadows

Abstract
A coordinated use of hardware-provided bitplanes and rendering pipelines can create ray-trace quality
illumination effects in real time. We provide recursive reflections through the use of secondary viewpoints,
and present a method for using a homogeneous 2D projective image mapping to extend this method for
refractive surfaces. We extend the traditional use of shadow volumes to provide reflected and refracted
shadows as well as reflected and refracted lighting. A shadow blending technique is demonstrated, and the
shadow and lighting effects are incorporated into our recursive viewpoint paradigm. Finally, we incorporate
material properties including a translucency model to provide a general framework for creating physically
approximate renderings. These techniques are immediately applicable to areas such as 3D modelling,
animation and interactive environments to produce more realistic images in real time.

Keywords
real time, rendering pipeline, animation

Disciplines
Computer Sciences | Engineering | Graphics and Human Computer Interfaces

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/hms/198

http://repository.upenn.edu/hms/198?utm_source=repository.upenn.edu%2Fhms%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages

Pipeline rendering: interactive
refractions, reflections and shadows
Paul J Diefenbach and Norman I Badler

A coordinated use of hardware-provided bitplanes and rendering
pipelines can create ray-trace quality illumination effects in real
time. We provide recursive reflections through the use of secondary
viewpoints, and present a method for using a homogeneous 2D
projective image mapping to extend this method for refractive
surfaces. We extend the traditional use of shadow volumes to
provide reflected and refracted shadows as well as reflected and
refracted lighting. A shadow blending technique is demonstrated,
and the shadow and lighting effects are incorporated into our
recursive viewpoint paradigm. Finally, we incorporate material
properties including a translucency model to provide a general
framework for creating physically approximate renderings. These
techniques are immediately applicable to areas such as 3D
modelling, animation and interactive environments to produce
more realistic images in real time.

Keywords: real time, rendering pipeline, animation

Much attention has been devoted to photo-realistic rendering
techniques as ray-tracing and radiosity packages have
become increasingly sophisticated. These methods provide
a basic foundation of visual cues and effects to produce
extremely high quality and highly accurate images at a
considerable cost, namely computation time. Neither of
these techniques has any widespread application in true
interactive environments, such as animation creation and
virtual worlds.

Many so-called interactive environments such as Virtual
Building systems ~'2 rely on precomputation of static
environments to form progressive radiosity solutions.
Other systems dealing with lighting effects 3 rely on a
series of images from a single viewpoint. All of the systems
suffer from large computational overheads and unchange-
able geometry. Even in incremental radiosity solutions 4,

Department of Computer Science, University of Pennsylvania, Philadelphia,
PA 19104, USA
Paper received: 16 April 1994; revised: 6 June 1994

geometry changes require significant re.computation time.
In addition, radiosity-based solutions inhibit the use of
reflective and refractive surfaces.

Systems based on forward ray-tracing 5 are either non-
interactive or else suffer from the problems inherent in the
technique 6. Only a few attempt to handle indirect illumi-
nation accurately 7. Backward ray-tracing systems s-l° more
accurately handle caustics, but again these methods are
very time-intensive and not remotely interactive. Even the
fastest ray-tracing systems require static geometry to
achieve their results n.

In contrast, advanced hardware architectures such as the
SGI Reality Engine TM have brought an added level of
realism to interactive environments through the use of
sophisticated graphic pipelines and added levels of screen
buffer information. These features have enabled software
developers to bring previously unavailable details such as
shadows and mirrors to many interactive applications.
Even the most basic graphics systems today now support
some level of image masking and manipulation, common to
the image-processing community for years. These hardware
provisions have yet to be fully exploited, though clever
programming techniques by several implementors have
produced real-time shadows and mirrors j2,j3.

This paper expands these techniques to include not only
reflection but a technique for refractive surfaces as well.
The model presented extends the current reflection tech-
niques to provide an arbitrary level of refraction and
reflection for use in 'hall-of-mirror' type environments and
to provide a close approximation for refractive objects. A
corrective image transform is presented to correct for
perspective distortions during the image mapping of the
secondary refracted image. In addition, a method for
combining the previously exclusionary shadow and mirror
stencilling methods is demonstrated which not only
preserves shadows in all secondary images, but which also
accounts for refraction and reflection of the light and
shadows in the primary and secondary images as well.
Finally, the use of hardware-provided features such as fog

0141-938219410310173-08 ©1994 Butterworth-Heinemann Ltd
Displays Volume 15 Number 3 1994 173

Pipeline rendering: P J Diefenbach and N I Badler

and texture blending is shown to provide simulation of
varying material properties such as translucency and
shininess. Combined, these techniques provide a real-time
alternative to ray-tracing for creating fast, approximate
reflective and refractive lighting effects. Furthermore, the
techniques described provide a foundation for more advanced
rendering features such as anisotropic reflections and
caustics.

DEFINITIONS

For the purposes of this paper, we shall introduce terms
common to users in the GL environment. Stencilplanes are
essentially an enhanced Z-buffer mentioned in Reference
14. In its simplest form, pixels are written only if the
current stencil value (analogous to the current Z value) of
the destination pixel passes the defined stencil test.
Depending on the result, the pixel is written and the stencil
value is changed.

Shadow volumes are volumes bounded by silhouette
faces. A silhouette face is a face created for each edge of
an object by extending that edge away from the light source
along the light-ray direction.

An accumulation buffer is a secondary image buffer to
which the current image can be added. The resulting image
can also be divided by a constant. This enables a blending
of images or image features.

In-out refractions are refractions that occur when light
passes from one medium to another and back to the first,
such as light traversing through a piece of glass. There is
an entry refraction and an exit refraction, producing a
refracted ray parallel to the incident ray.

elements also add additional realism for animations and
interactive environments. Refractive images are similar in
concept to reflections, but more complex in practice.

While a mirrored image directly corresponds to the
reflective surface to which it maps, a refracted image maps
to a distorted image space. Simply performing a second
rendering in the stencilled area does not overlay the correct
image portion. This is demonstrated in Figure 1. The area
visible through the transparent surface in the refracted view
is different from the image area from the original view-
point; areas outside the refracting surface and even in front
may be visible in the refracted image (Plate 1). This differ-
ence is due to two factors: the difference between incident
and refracted viewpoints, and the perspective distortion.

Because the incident angle does not equal the refracted
angle, the refracted image is rotated with respect to the
original image. This is further compounded by the rotated
image plane undergoing a perspective distortion different
from the perspective distortion of the original plane. The
perspective transformations are the same, but because the
planes have different orientations, the resulting distortions
are different. The result is that a refractive square planar
face, for example, maps to two different quadrilaterals in
the original versus the refracted images.

The refractive image I r does correspond to the original

R E F L E C T I O N S

Reflections are a useful tool in interactive modelling and an
important element for creating realistic animations. A
reflective image corresponds to an inverted image from a
secondary viewpoint. In other words, the reflected image is
the flipped image from a viewpoint on the 'other' side of
the mirror. This analogy provides the basis for mirror
reflection in systems such as that described in Reference
13.

Mirrors are implemented by rendering the entire environ-
ment, exclusive of the mirrored surface. The mirrored
surface is drawn with Z-buffering, creating a stencil mask
on pixels where the mirror is visible. A second rendering
of the environment is then performed from the reflected
viewpoint, drawing only over the previously masked
pixels. Because the reflected angle (angle from mirror plane
to reflected viewpoint) is the negative of the incident angle
and because the image is flipped, the reflected image
directly 'fits' onto the mirror.

ORIGINAL IMAGE

R E F R A C T I O N S

Just as reflections provide strong visual cues, refractive

COMPOSITE IMAGE

Figure 1 Refracted image versus camera image

174 Displays Volume 15 Number 3 1994

image Io through a 2D bijective projective mapping M3.
This mapping is the intersection of the 3D image mapping
set M4 with the reflective planar surface 9 :

Io = trM3 (1)

where

M3 = M4 c~ ~ (2)

and

M 4 = e- lCrCo- Ie (3)

In Equation (3) P is the perspective transform and Co and
Cr are the original and refracted camera transforms,
respectively.

This results in a 2D projective transform of arbitrary
quadrilateral to quadrilateral described in Reference 15 and
included in the Appendix. This transform, described by a
3 x 3 homogeneous transform, can be applied directly to
the screen-viewport mapping to distort the refractive
image into the normal image space. In hardware that
supports user-defined transforms, this transform can be
inserted directly at the end of the rendering pipeline. In
systems where this is not possible, such as the Silicon
Graphics TM architecture, this transform can be implemented
as a 4 x 4 homogeneous transform inserted in the world-to-
unit pipeline. The resulting transform is constructed with a
zero scale factor for Z so that the mapping is to the Z = 0
plane. Without this mapping, the tapering and skewing
effects from the quadrilateral distortion affect the Z
coordinates. This scaling does, however, preclude the use
of the Z-buffer for hidden surface removal as all image
points now have the same Z value. This method also does
not allow for the translucency simulation described below,
due to the loss of depth.

Note also that this method does not produce true refract-
ions, merely a close approximation to the refractive image.
In a true refractive image, every ray incident to the
refractive plane bends according to its angle with the plane;
this method, however, uses only one incident angle. In
practice, two angles are used to provide more realistic
results with the system. First, the incident ray is taken from
the camera location to the refracting face centre to
determine whether the incident angle is greater than the
critical angle. If this is the case, the surface is taken to be
wholly reflective. If the angle is less than the critical angle,
the incident angle for Snell's Law is taken at the point of
intersection of the view vector (camera's negative Z axis)
and the plane in which the refracting face lies. This method
ensures that the critical angle is reached as the plane moves
tangentially to the view, yet the refracted image is seen as
a smooth scrolling of the background behind the face.

R E F R A C T I V E S H A D O W S *

While the above method does produce accurate reflective

*Although only refractions arc mentioned henceforward, the methods
described are applicable for reflections with only minor variations

Pipeline rendering: P J Diefenbach and N I Badler

images and close approximations for refractive surfaces, it
does not produce accurate lighting effects from these
surfaces. Light reflects off a mirror and refracts through
glass, producing different shadows than if not present. To
produce a more accurate image, these effects must also be
taken into account. Therefore, any shadow-generation
method must not only work in conjunction with the
stencilling method described above, but it must also be
affected by the reflective and refractive surfaces in a scene.

Our shadows are implemented using the traditional
shadow volume technique described by Heidmann ~2. This
technique uses the in-out principle of silhouette faces to
mask regions inside the shadow volume.

To understand how this method must be extended for
refractive surfaces, examine Figure 2. This figure displays
the complex shadow patterns caused by objects on both
sides of a refracting surface. Note that this is not an exact
representation but instead a hybrid model used in our
system to demonstrate the refracting effects more clearly.
The rays are refracted as in a change of medium; they do
not represent true in-out refraction of a material with a
thickness. With in-out refraction, the refracted rays are
parallel to the incident rays and merely offset, thereby not
permitting direct light to fall within the light volume ~6.
Although the included images were generated with this
change-of-medium model, in-out refractions are achieved
merely by changing the refracting function (or by placing
back-to-back refracting faces with opposing indices of
refraction in the current model).

To model shadows accurately, each of the above-
mentioned features must be included in our shadow model.
To accomplish this, we require a two-pass shadow-
generation approach. The first phase generates all shadows
and lighting falling within the refracted light area. The
second pass renders all lighting and shadows outside this
area. This method creates both the shadow and caustic
effects of the refractive surface.

LIGHT

1 : PRIMARY LIGHT
2 : PRIMARY AND

REFRACTED LIGHT
(NOT PRESENT WHEN
E X I T REFRACTIONS)

3 : C U B E ' S REFRACTED
SHADOW &

PRIMARY LIGHT
4 : C U B E ' S REFRACTED

SHADOW

5 : CUBE ' S REFRACTED
SHADOW & SPHERE ' S
sHADOW FROM
REFRACTED LIGHT

6 : SPHERE ' S SHADOW
FROM REFRXCTED
LIGHT

7 : REFRXCTED LIGHT
8 : REFRACTING SURFACE ' S

SHADOW

Figure 2 Light interaction with refractive surface

Displays Volume 15 Number 3 1994 175

Pipeline rendering: P J Diefenbach and N I Badler

In the first pass, a light v o l u m e 17 is generated for the
refracting face. Shadow volumes are then generated for
shadows falling inside this volume. This itself includes two
cases, objects inside the volume generating shadows, and
objects outside the volume whose shadows get refracted
into the volume. In the first case, the shadow volume cannot
intersect the refracting plane, for to do so would place the
object outside the light volume. In the second case, the
shadow volume must intersect the refracting plane in order
to be refracted into the light volume. Because true in-out
refraction results in refracted rays parallel to incident rays,
objects outside the light volume cannot cast shadows into
the light volume directly from the primary light source.
Both intersection cases can be checked during the shadow
volume generation. A simple pre-shadow generation check
using dot-products can determine if the object is on the
appropriate side of the refracting plane and can save having
to generate the shadow volume.

The second pass creates shadows for the entire environ-
ment. Even the refracted light volume region is included.
This captures the shadow effect caused by the refractive
surface itself.

R E C U R S I O N

Both methods for rendering shadows and for rendering
refraction and reflection require use of the stencil planes.
While it might seem that the refraction stencil mask value
would be a logical choice for the zero value in the shadow
algorithm, this is not the case. In order to have recursive
refractions, we instead choose a value which is three-
quarters of the maximum stencil value for our 'zero'
shadow value, and one-half of the maximum for our
minimum shadow stencil value. This provides half of the
stencil buffer for shadow calculation and half for recursive
levels. These values can be adjusted according to the
recursion level needed or the shadow object complexity.

We choose zero for our render area value; this is the
stencil mask value for drawing at every level of recursion.
At each level of recursion, all values less than the stencil
minimum are incremented by one (setting the current
rendering area to one), and the new refractive surface is
drawn setting the stencil value to zero. The refracted image
is then drawn in the zero stencil area, and the process is
repeated for all other refractive surfaces. Once the desired
recursion level has been reached, all stencil values less than
the shadow minimum are decremented (with zero capped),
which essentially puts us back one level of recursion. The
process is then repeated for the next retractive surface,
with stencil values incremented by one and the surface
creating a stencil mask of zero. This process is illustrated
in Figure 3 and Plate 2.

At each level of recursion, shadows must be drawn in the
valid area. The reason for our choice of shadow zero is now
apparent; it avoids conflict with our recursive refraction
levels. All stencil values of zero at each level are changed
to the shadow zero, and shadows are then rendered as
described above using the in-out method. The shadow zero
should be chosen so that the in-out method does not go

Figure 3 Re, cursive stencilling

below the shadow minimum or above the maximum stencil
value in order to prevent conflict with the refraction
stencils. After all shadows are drawn, all stencil values
greater than shadow minimum are reset to zero, for
continuation of the refraction recursion. The entire pro-
cedure is seen in Figure 4.

S O F T S H A D O W S A N D C A U S T I C S

While the above algorithm does handle the constituent
effects of primary and indirect illumination, diffuse light is
incrementally added, resulting in producing only the umbra
of the shadows. In order to produce the penumbra, an
accumulation of the lighting effects from the primary as
well as refracted lights must occur. Fortunately, we can use
an accumulation buffer to do just this.

There are two methods for performing this accumulation
of lighting effects. The first method is to treat each shadow
calculation as independent and sum each resulting image.
Areas that receive light from both the source and refracted
light volume produce caustic effects (Plate 3). This method
has limitations when using a single accumulation buffer due
to the non-independent effects of different lights.

176 Displays Volume 15 Number 3 1994

Pipeline rendering: P J Diefenbach and N I Badler

drawwindow(Camara)
{

i f (SHADOWS){
turn_lights_off();
draw_normal_ohjects(CmNra,ZERO); //ambient only
for (each light){

apply_stencil(EQUAL, ZERO, REPLACE, SHAD_ZER0);
draw.tel_shadows(); //draw shadows in ref areas
apply_stemcil(GREATER, SHAD_MIN, REPLACE, SHAD_ZER0);
draw.all_shadows(); //draw renaininsshadowe
apply_stm~cil(GRFATER, SHAD_MIN, REPLACE, ZERO);

}
} e l s e

dras_normal_objects(Casara,ZERO);
i f (REF) {

REF_LEVEL++;
draw_ref_objects(Casera);
REF_LEVEL--;

apply_stencil(COMP_FUNC, COMPoVALUE, PASS_FUNC, PASS_VALUE)
{
atencil(COMP_FUNC, COMP_VALUE, PASS_FUNC, PASS_VALUE);
apply_to.screenO; //apply stencil to every pixel

}

/*SHADOW ROUTINES*/

draw_ref_shadoesO
{

for (each tel_face){
face_light_stancil(ref_face); / / l i g h t volmae
t u r n _ l i g h t _ o n (l i g h t) ;
lake_all_shadowaO4UST_IgTERSECT, ref_face);
draw_norlalobjacts(C~uaara,SHAD_ZERO);
apply_stencil(GREATER, SHAD_MIN, REPLACE, SHAD_ZERO);
tel_light(light,tel_face); //love to ref position
lake_all_shadows(CAN'T_INTERSECT, tel_face);
draw_normal_objecta(Cmaara,SHAD_ZER0);
apply_stencil(GREATER, SHAD_MIH, REPLACE, SHAD_ZER0);

}
}

draw_a11_shadoweO
{
lake_all_shadows(ALWAYS, ref_face);
draw_normal_objects(Casara,SHAD_ZER0);
apply_stencil(GREATER, SHAD_MIN, REPLACE, SHAD_ZER0);

}

eake_all_shadon(MODE,ref_face)
{

for (each face)
draw_shadow_volmae(face,MODE,ref_face);

}

draw_shadow_voluleO
{

lake_shadow_voltle(ref_face,sv,intersectJace);
swi tch (NODE){

case CAg'T_IFrEESECT:
if (!(intersect_facen~ref_face)){
draw_shadow_stencil(sv);
lake_shadow_volmae(intereect_face,HODE,ref_face);

}
case MUST_INTERSECT:

if (intersect_facen~ref_face){
aake_shadow_volume(intersect_face,ALWAYS,O);

}
case ALWAYS:

draw_shadow_stencil(sv);
if (intersect_face){
lake_ehadow_voltuae(intereect_face,ALWAYS,0);

}

/*REF ROUTINES (Refraction and Reflection)*/

draw_ref_objecte(Ceuaera)
{

i f (REF_LEVEL-=I)
clear_stencil(ZERO);

apply_stencil(EQUAL, ZERO, REPLACE, REF_LEVEL);
for (each ref_face){

stencil(EQUAL, REF_LEVEL, REPLACE, ZERO);
draw_face(ref_face); //REF_LEVEL->0 where face
HefCameraffiref_canera(ref_face,Camara);
draw_window(REF_CAMERA);
apply_stencil(EQUAL, ZERO, REPLACE, REF_LEVEL);

apply_stencil(EQUAL, REF_LEVEL, REPLACE, ZERO);

dras_normal_objects(Camera,STFN_VALUE)
{

setup_view(Calera); //view frol camera
stencil(EQUAL, STEN_VALUE, KEEP, STEN.VALUE);
for (each non_ref object)

draw_object();
}

Figure 4 Recursion procedure

The second method uses an extension of shadow
volumes ~4 for soft shadows. By processing all shadow
volumes without producing intermediate images, the stencil
value of each pixel represents a 'darkness level' due to
encasement in several shadow volumes. The actual lighting
of the scene is performed after all shadow volumes have
been generated. Assuming the darkness level is only greater
than the zero stencil value, the scene is redrawn with diffuse
lighting for areas whose stencil value is less than the
shadow zero value. All stencil values are then decre-
mented, and the image is redrawn. This process is repeated
for each darkness level, accumulating each intermediate
image. This produces a final image with intensities based on
the number of enclosed shadow volumes. This method does
not suffer from the problems inherent in the first method;
however, extensive stencil value 'juggling' of the image is
necessary.

O B J E C T A T T R I B U T E S A N D T R A N S L U C E N C Y

Refraction and reflection need not be limited to purely
transparent or purely specular surfaces, respectively. We
can create a multitude of materials by rendering the refractive
surface again after the refractive image is drawn. This
second rendering is alpha-blended with the refracted scene.
On the Iris Indigo TM system, this actually requires two
additional renderings of the refractive face since lit faces
cannot have a source alpha value. The first rendering is
done without colour and sets the destination alpha value to
the appropriate value. The second rendering is with lighting
and a blending function depending on the destination pixel
chosen. This permits hardware shading effects and other
hardware rendering features such as textures to be blended
with the refracted scene.

In addition, translucency can be simulated using the

Displays Volume 15 Number 3 1994 177

Pipeline rendering: P J Diefenbach and N I Badler

Plate l Undistorted and distorted refraction Plate 4 Effects of translucency

Plate 2 Recursive reflection

Plate 5 Combined effects

hardware fog feature. Translucent objects act as a filter,
with closer objects more clearly visible than more distant
objects due to the random refractions that take place. This
effect can be approximated using hardware fog features
with the minimum fog set at the refractive plane distance
and the maximum at the desired distance depending on the
material property. Although fog is linear with respect to the
view, the approximation is fairly accurate due to the limited
angular displacement of the refracting plane owing to the
critical angle. The effect of translucency versus simple
alpha blending is demonstrated in Plate 4. The combined
effects are seen in Plate 5.

Plate 3 Refracted caustics and shadows

L I M I T A T I O N S A N D E X T E N S I O N S

While the system described can produce fast, complex
images, it does suffer from several shortcomings. Because
it relies on multiple viewpoints, refractive and reflective
surfaces must be planar. Shadows suffer from aliasing
effects due to the use of image space precision in the

178 Displays Volume 15 Number 3 1994

Pipeline rendering: P J Diefenbach and N I Badler

calculation. In addition, the hardware shading (typically the
Phong modeP 8) used for the illumination model is widely
known for its inadequacies tg. In the same regard, the
system is hardware dependent on the number o f stencil and
accumulation bits, as well as the viewport-screen trans-
forms supported.

The rendering phase is also very time-dependent on the
complexity o f the environment as well as the recursion
level for refractions (reflections). Shadows require

0 (num-edges,recursive-depth) (4)

for each scene rendering, o f whichthere are

num_re f_ faces , (num_re f_ faces_ l)< iv,-d,p,h-,) (5)

For complex refractive surfaces, this expense can quickly
become prohibitive even when compared with ray-
tracing.

For scenes with a limited number of planar refractive and
reflective surfaces, or with a low recursive depth, this
system is very effective even with minimal hardware
support. The system currently runs effectively on an Iris
Indigo XS24 TM with 8 stencil bits and a 48-bit accumulation
buffer.

Additional hardware support would provide greater faci-
lities for creating more complex images. Multiple accumu-
lation buffers would provide greater shadow-blending
capabilities. Additional pipeline control such as viewport
transforms or additional fog features would enable distorted
refractions in conjunction with translucency.

The method can also be extended using the accumulation
buffer to handle partially reflective and partially refractive
surfaces, instead o f merely switching at the critical angle.
Anisotropic reflections 19 could be simulated based on the
orientation of the reflecting plane. Speedup can be achieved
by precomputation o f shadow volumes during static geo-
metric periods. Visibility checks between refractive
surfaces can also be used to reduce the number of scene
renderings.

CONCLUSIONS

We have described a series o f techniques for adding realism
to interactive environments and producing fast animations.
These techniques have the common thread of using the
hardware pipeline itself to produce illumination effects
commonly found only in non-interactive renderers such as
ray-tracers.

This paper is presented not only as an introduction to new
methods, but to serve as a platform from which to incor-
porate other hardware techniques to build a complete
interactive renderer, as described in Reference 20.

More control for direct manipulation of the rendering
pipeline is needed as well as more complex hardware
lighting models. With advanced hardware features finding
exotic uses in producing effects such as texture-mapped
shadows, this stresses the need for greater flexibility in user
interaction.

While there will always be a need for complex, very
accurate rendering packages, many situations require fast,
approximate solutions. The techniques outlined in this
paper provide such solutions for fast animation and inter-
active modelling.

REFERENCES

1 Airey, J M, Rohlf, J H and Brooks, F P 'Towards image realism with
interactive update rates in complex virtual building environments'.
ACM SIGGRAPH 1990, 24(2), 41-50

2 Teller, S J and S~quin, C H 'Visibility preprocessing for interactive
walkthroughs'. ACM Comp. Graphics 1991, 25(4), 61-69

3 Dorsey, J. PhD Thesis Cot'nell University, Ithaca, NY (1993)
4 Chen, S E 'Incremental radiosity: An extension of progressive

radiosity to an interactive image synthesis system'. ACM Comp.
Graphics 1990, 24(4), 135-144

5 Glassner, A S (ed) An Introduction to Ray Tracing, Academic Press,
London, 1989

6 Watt, A and Watt, M Advanced Animation and Rendering Techniques,
Addison-Wesley, Reading, MA, 1992

7 Kajiya, J 'The rendering equation'. ACM Comp. Graphics 1986,
20(4), 143-150

8 Arvo, J 'Backward ray tracing, developments in ray tracing'.
SIGGRAPH Course Notes 1986, 12

9 Heckben, P S and Hanrahan, P 'Beam tracing polygonal objects'.
ACM Comp. Graphics 1984, 18(3), 119-127

10 Chattopadhyay, S and Fujimoto, A 'Bi-directionai ray tracing'. CG
International "87 (1987) pp 335-343

11 S&luin, C H and Smyrl, E K 'Parameterizad ray tracing'. ACM Comp.
Graphics 1989, 23(4), 307-314

12 Heidmann, T 'Real shadows -- real time'. IRIS Universe 1991,
Nov-Dec,

13 Kingsley, E C, Schofield, N A and Case, K 'Sammie'. ACM Comp.
Graphics 1981, 15(3), 163-169

14 Brotman, L and Badler, N 'Generating soft shadows with a depth
buffer algorithm'. IEEE Corap. Graphics Applic. 1984, 4(10), 71-81

15 Heckbert, P S Master's Thesis, University of California, Berkley
(1989)

16 Kay, D S and Greenberg, D 'Transparency for computer synthesized
images'. ACM Comp. Graphics 1979, 158-164

17 Nishita, T 'A shading model for atmospheric scattering considering
luminous intensity distribution of light sources'. ACM Comp. Graphics
1987, 19(3), 303-310

18 Phong, Bui-Thong 'Illumination for computer-generated pictures'.
Commun. ACM 1975, 18(6), 311-317

19 Ward, G J 'A ray tracing solution for diffuse interreflection'. ACM
Comp. Graphics 1988, 22(4), 85-92

20 ten Hagen, P J W, Kujik, A A M and Trienekens, C G 'Display
architecture for VLSI-based graphics workstations'. Advances in
Computer Graphics Hardware L Record of First Eurographics
Workshop on Graphics Hardware 1986, pp 3-16

APPENDIX

2D Quadrilateral projective map

The mapping of a quadrilateral to quadrilateral can be
accomplished by composing the mapping of a quadrilateral-
to-square with a square-to-quadrilateral. The two map-
pings are adjoints o f each other symbolically, and therefore
only the square-to-quadrilateral mapping will be given.
(This mapping is also equal to the perspective transform
of the camera rotation with respect to the normal of the
refracting plane, which is available directly from the matrix
stack.)

Displays Volume 15 Number 3 1994 179

Pipeline rendering: P J Diefenbach and N I Badler

Msq m e ,

f

where

g

h =

8x2 5x~ 8x2
~Y ~ 6Yt ~
6xl F_,x 6xl ~2
6yl ~y 8Yt ~

a = x l - X o +gx l
b =x3 - x o + hx3
c = x o

d = Yl - Yo + gYl
e = y3 - yo + hy3
f=Yo

(A1)

(A2)

(A3)

31) Quadrilateral projective map

Given the 2D quadrilateral projective transform

a d g]
Mqq3= b e h ,

c f i
(A4)

we create the 3D transform

Mqq, = b e 0 , (A5)
0 0 0
c f O

which clears depth values and disables Z-buffering and fog.

180 Displays Volume 15 Number 3 1994

	University of Pennsylvania
	ScholarlyCommons
	6-1994

	Pipeline Rendering: Interactive Refractions, Reflections and Shadows
	Paul Joseph Diefenbach
	Norman I. Badler
	Recommended Citation

	Pipeline Rendering: Interactive Refractions, Reflections and Shadows
	Abstract
	Keywords
	Disciplines

	PII: 0141-9382(94)90006-X

