4,950 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Distributed Recognition of Reference Nodes for Wireless Sensor Network Localization

    Get PDF
    All known localization techniques for wireless sensor and ad-hoc networks require certain set of reference nodes being used for position estimation. The anchor-free techniques in contrast to anchor-based do not require reference nodes called anchors to be placed in the network area before localization operation itself, but they can establish own reference coordinate system to be used for the relative position estimation. We observed that contemporary anchor-free localization algorithms achieve a low localization error, but dissipate significant energy reserves during the recognition of reference nodes used for the position estimation. Therefore, we have proposed the optimized anchor-free localization algorithm referred to as BRL (Boundary Recognition aided Localization), which achieves a low localization error and mainly reduces the communication cost of the reference nodes recognition phase. The proposed BRL algorithm was investigated throughout the extensive simulations on the database of networks with the different number of nodes and densities and was compared in terms of communication cost and localization error with the known related algorithms such as AFL and CRP. Through the extensive simulations we have observed network conditions where novel BRL algorithm excels in comparison with the state of art

    Data Centric Storage Technologies: Analysis and Enhancement

    Get PDF
    This paper surveys the most relevant works of Data Centric Storage (DCS) for Wireless Sensor Networks. DCS is a research area that covers data dissemination and storage inside an ad-hoc sensor network. In addition, we present a Quadratic Adaptive Replication (QAR) scheme for DCS, which is a more adaptive multi-replication DCS system and outperforms previous proposals in the literature by reducing the overall network traffic that has a direct impact on energy consumption. Finally, we discuss the open research challenges for DCS

    Mobility-based Routing Overhead Management in Reconfigurable Wireless Ad hoc Networks

    Get PDF
    Mobility-Based Routing Overhead Management in Reconfigurable Wireless Ad Hoc Networks Routing Overheads are the non-data message packets whose roles are establishment and maintenance of routes for data packets as well as neighbourhood discovery and maintenance. They have to be broadcasted in the network either through flooding or other techniques that can ensure that a path exists before data packets can be sent to various destinations. They can be sent reactively or periodically to neighbours so as to keep nodes updated on their neighbourhoods. While we cannot do without these overhead packets, they occupy much of the limited wireless bandwidth available in wireless networks. In a reconfigurable wireless ad hoc network scenario, these packets have more negative effects, as links need to be confirmed more frequently than in traditional networks mainly because of the unpredictable behaviour of the ad hoc networks. We therefore need suitable algorithms that will manage these overheads so as to allow data packet to have more access to the wireless medium, save node energy for longer life of the network, increased efficiency, and scalability. Various protocols have been suggested in the research area. They mostly address routing overheads for suitability of particular protocols leading to lack of standardisation and inapplicability to other protocol classes. In this dissertation ways of ensuring that the routing overheads are kept low are investigated. The issue is addressed both at node and network levels with a common goal of improving efficiency and performance of ad hoc networks without dedicating ourselves to a particular class of routing protocol. At node level, a method hereby referred to as "link availability forecast", that minimises routing overheads used for maintenance of neighbourhood, is derived. The targeted packets are packets that are broadcasted periodically (e.g. hello messages). The basic idea in this method is collection of mobility parameters from the neighbours and predictions or forecasts of these parameters in future. Using these parameters in simple calculations helps in identifying link availabilities between nodes participating in maintenance of networks backbone. At the network level, various approaches have been suggested. The first approach is the cone flooding method that broadcasts route request messages through a predetermined cone shaped region. This region is determined through computation using last known mobility parameters of the destination. Another approach is what is hereby referred as "destination search reverse zone method". In this method, a node will keep routes to destinations for a long time and use these routes for tracing the destination. The destination will then initiate route search in a reverse manner, whereby the source selects the best route for next delivery. A modification to this method is for the source node to determine the zone of route search and define the boundaries within which the packet should be broadcasted. The later method has been used for simulation purposes. The protocol used for verification of the improvements offered by the schemes was the AODV. The link availability forecast scheme was implemented on the AODV and labelled AODV_LA while the network level implementation was labelled AODV_RO. A combination of the two schemes was labelled AODV_LARO

    Including context in a routing algorithm for the internet of things

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia InformĂĄticaThe “Internet of Things” assumes that a large number of devices which are used on a daily basis will eventually become connected to the Internet. This scenario will provide room for a large set of new applications, however the network connections of an enormous set of nodes, which can be connected and disconnected, can move around and which have limitations with regards to their processing and communication capabilities, raises the need for the development of new message routing algorithms, different from those being in use today. In this thesis, a contribution is made towards the development of this type of algorithms. In particular, the idea which is tested is whether routing algorithms can improve their performance at various levels, such as, message delivery time, number of messages lost, power consumption, etc., if in the routing decisions these algorithms can make use of the concept of “Context”. Within the framework of this thesis, the “Context” is the organized collection of information which the routing algorithm collects from the environment surrounding the network nodes, and which allows it to make better routing decisions. This information can be related to low-level issues, such as, node location, power required to send a message, etc., as well as, with constraints related to the application, such as, message priority, maximum delivery time, etc. In order to evaluate this approach, this thesis proposes a routing algorithm called C-AODV. As the name suggests, it is based on the ADOV algorithm, however it is modified in several aspects; in particular, the possibility of using information collected from the context can be utilized to improve message routing. In order to test the proposed solution, several tests were performed on the NS-3 simulator which allowed the evaluation of the algorithm functionalities. The tests performed indicate that the proposed solution is valid

    A COMMUNICATION FRAMEWORK FOR MULTIHOP WIRELESS ACCESS AND SENSOR NETWORKS: ANYCAST ROUTING & SIMULATION TOOLS

    Get PDF
    The reliance on wireless networks has grown tremendously within a number of varied application domains, prompting an evolution towards the use of heterogeneous multihop network architectures. We propose and analyze two communication frameworks for such networks. A first framework is designed for communications within multihop wireless access networks. The framework supports dynamic algorithms for locating access points using anycast routing with multiple metrics and balancing network load. The evaluation shows significant performance improvement over traditional solutions. A second framework is designed for communication within sensor networks and includes lightweight versions of our algorithms to fit the limitations of sensor networks. Analysis shows that this stripped down version can work almost equally well if tailored to the needs of a sensor network. We have also developed an extensive simulation environment using NS-2 to test realistic situations for the evaluations of our work. Our tools support analysis of realistic scenarios including the spreading of a forest fire within an area, and can easily be ported to other simulation software. Lastly, we us our algorithms and simulation environment to investigate sink movements optimization within sensor networks. Based on these results, we propose strategies, to be addressed in follow-on work, for building topology maps and finding optimal data collection points. Altogether, the communication framework and realistic simulation tools provide a complete communication and evaluation solution for access and sensor networks

    Routing and mobility strategies for mobile ad hoc networks

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A reliable and resource aware framework for data dissemination in wireless sensor networks

    Full text link
    Distinctive from traditional wireless ad hoc networks, wireless sensor networks (WSN) comprise a large number of low-cost miniaturized nodes each acting autonomously and equipped with short-range wireless communication mechanism, limited memory, processing power, and a physical sensing capability. Since sensor networks are resource constrained in terms of power, bandwidth and computational capability, an optimal system design radically changes the performance of the sensor network. Here, a comprehensive information dissemination scheme for wireless sensor networks is performed. Two main research issues are considered: (1) a collaborative flow of information packet/s from the source to sink and (2) energy efficiency of the sensor nodes and the entire system. For the first issue, we designed and evaluated a reactive and on-demand routing paradigm for distributed sensing applications. We name this scheme as IDLF-Information Dissemination via Label ForwarDing IDLF incorporates point to point data transmission where the source initiates the routing scheme and disseminates the information toward the sink (destination) node. Prior to transmission of actual data packet/s, a data tunnel is formed followed by the source node issuing small label information to its neighbors locally. These labels are in turn disseminated in the network. By using small size labels, IDLF avoids generation of unnecessary network traffic and transmission of duplicate packets to nodes. To study the impact of node failures and to improve the reliability of the network, we developed another scheme which is an extension to IDLF. This new scheme, RM-IDLF - Reliable Multipath Information dissemination by Label Forwarding, employ an alternate disjoint path. This alternate path scheme (RM-IDLF) may have a higher path cost in terms of energy consumption, but is more reliable in terms of data packet delivery to sink than the single path scheme (IDLF). In the latter scheme, the protocol establishes multiple (alternate) disjoint path/s from source to destination with negligible control overhead to balance load due to heavy data traffic among intermediate nodes from source to the destination. Another point of interest in this framework is the study of trade-offs between the achieved routing reliability using multiple disjoint path routing and extra energy consumption due to the use of additional path/s. Also, the effect of the failed nodes on the network performance is evaluated within the sensor system; Performance of the label dissemination scheme is evaluated and compared with the classic flooding and SPIN. (Abstract shortened by UMI.)

    Mobile ad hoc networks for intelligent systems

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. Mobile ad hoc networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. They do not rely on specialized routers for path discovery and traffic routing. Research on ad hoc networks has been extensively investigated in the past few years and related work has focused on many of the layers of the communications architecture. This research intends to investigate applications of MANET for intelligent systems, including intelligent transportation system (ITS), sensor network and mobile intelligent robot network, and propose some approaches to topology management, link layer multiple access and routing algorithms. Their performance is evaluated by theoretical analysis and off-the-shelf simulation tools. Most current research on ad hoc networks assumes the availability of IEEE 802.11. However, the RTS/CTS protocol of 802.11 still leads to packet collision which in turn decreases the network throughput and lifetime. For sensor networks, sensors are mostly battery operated. Hence, resolving packet collision may improve network lifetime by saving valuable power. Using space and network diversity combination, this work proposes a new packet separation approach to packet collision caused by masked nodes. Inter-vehicle communication is a key component of ITS and it is also called vehicular ad hoc network. VANET has many features different from regular MANETs in terms of mobility, network size and connectivity. Given rapid topology changes and network partitioning, this work studies how to organize the numerous vehicular nodes and establish message paths between any pair of vehicular nodes if they are not apart too far away. In urban areas, the inter-vehicle communication has different requirements and constraints than highway environments. The proposed position-based routing strategy for VANETs utilizes the traffic pattern in city environments. Packets are forwarded based on traffic lights timing sequence and the moving direction of relaying vehicles. A multicast protocol is also introduced to visualize the real time road traffic with customized scale. Only vehicles related to a source node\u27s planned trajectory will reply the query packet. The visualized real time traffic information therefore helps the driver make better decision in route planning when traffic congestion happens. Nowadays robots become more and more powerful and intelligent. They can take part in operations in a cooperative manner which makes distributed control necessary. Ad hoc robot communication network is still fresh field for researchers working on networking technology. This work investigates some key issues in robot ad hoc network and evaluate the challenges while establishing robot ad hoc networks
    • 

    corecore