

UNIVERSIDADE NOVA DE LISBOA
FACULDADE DE CIÊNCIAS E TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

INCLUDING CONTEXT IN A ROUTING ALGORITHM

FOR THE INTERNET OF THINGS

POR:

VÍTOR BRUNO HORTA CARVALHO

DISSERTAÇÃO APRESENTADA NA FACULDADE DE CIÊNCIAS E TECNOLOGIA DA UNIVERSIDADE NOVA DE LISBOA

PARA OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA INFORMÁTICA

ORIENTADOR: PROF. DOUTOR PEDRO ABÍLIO DUARTE DE MEDEIROS

LISBOA

2010

2

 5

AGRADECIMENTOS / ACKNOWLEDGEMENTS

Sir Isaac Newton, em 1676 escreveu o seguinte: “If I have seen further it is only by standing

on the shoulders of giants.”. Desta forma inicio assim os agradecimentos, a todos vocês que

me permitiram estar aqui neste momento, um muito obrigado, vocês são os meus gigantes.

Em primeiro lugar um agradecimento a toda a minha família que independentemente de

tudo, sempre acreditou em mim e deu-me a possibilidade e a força para continuar a estudar.

Em especial à minha mãe por toda a força que sempre teve e ao meu pai que embora não

me possa ver neste momento, sempre lutou pela minha felicidade, a ambos que sempre me

guiaram pelo caminho do amor e da verdade, este trabalho também é vosso.

Aos amigos! Aos amigos de A a Z, de Norte a Sul, mas sempre intemporais e que realmente

sentem a mensagem! Às noitadas de estudos (e nem sempre), ao famoso semicírculo, à

alegria, às leituras dramáticas nocturnas, às noites na praia, às pausas, e ao companheirismo

que sempre demonstraram, um muito obrigado! Mas também… à minha equipa de

Taekwondo por me mostrar o verdadeiro espírito de equipa e claro, ao David Nunes por

toda a sua mestria e amizade: obrigado a vós!

Um muito obrigado ao Mestre Pedro Maló por todo o conhecimento transmitido e por me

ter aberto as portas do mundo da investigação dentro do GRIS e claro, sem esquecer, aos

Putos!

Por fim, agradeço ao Prof. Pedro Medeiros toda a dedicação e orientação que permitiu a

este trabalho ter sido realizado, contribuindo não só para a minha vida académica, mas

também, pessoal.

6

 7

SUMÁRIO

SUMÁRIO

A chamada “Internet of Things” assume que um grande número de dispositivos usados no

dia a dia venham a estar ligados à Internet. Este cenário abrirá espaço a um conjunto

alargado de novas aplicações, mas a ligação à rede de um conjunto enorme de nós, que

podem ser ligados e desligados, mover-se e que têm limitações quanto às capacidades de

processamento e comunicação, levanta a necessidade de serem colocados no terreno

algoritmos de encaminhamento de mensagens diferentes daqueles que são usados hoje em

dia. Nesta tese, procura-se contribuir para o desenvolvimento desse tipo de algoritmos.

Em particular, é ensaiada a ideia de os algoritmos de encaminhamento poderem aumentar o

seu desempenho a vários níveis – tempo de entrega de mensagens, número de mensagens

perdidas, consumo de energia, etc. – se nas decisões sobre o encaminhamento das

mensagens puder ser utilizado o Contexto. No âmbito desta tese, o Contexto corresponde a

uma colecção de informação organizada que o algoritmo de encaminhamento recolhe do

ambiente que rodeia os nós que fazem parte da rede, e que lhe permite tomar decisões de

encaminhamento mais correctas. A informação usada pode estar relacionada com questões

de baixo nível – localização do nó, potência necessária para enviar uma mensagem, etc –

como com constrangimentos associados à aplicação – prioridade de uma mensagem, tempo

máximo para entregar, etc.

Com o objectivo de avaliar esta abordagem, nesta tese propõe-se um algoritmo de

encaminhamento de mensagens chamado C-AODV. Como o nome sugere, este algoritmo

baseia-se no algoritmo AODV, modificando-o em vários aspectos; em particular é

introduzida a possibilidade de usar a informação extraída do contexto para efectuar um

melhor encaminhamento das mensagens.

Para avaliar a capacidade da solução proposta, foi utilizado o simulador NS-3 e feitos

diversos testes que permitiram verificar a funcionalidade do algoritmo e que indiciam que a

proposta feita é válida.

8

ABSTRACT

The “Internet of Things” assumes that a large number of devices which are used on a daily

basis will eventually become connected to the Internet. This scenario will provide room for a

large set of new applications, however the network connections of an enormous set of

nodes, which can be connected and disconnected, can move around and which have

limitations with regards to their processing and communication capabilities, raises the need

for the development of new message routing algorithms, different from those being in use

today. In this thesis, a contribution is made towards the development of this type of

algorithms.

In particular, the idea which is tested is whether routing algorithms can improve their

performance at various levels, such as, message delivery time, number of messages lost,

power consumption, etc., if in the routing decisions these algorithms can make use of the

concept of “Context”. Within the framework of this thesis, the “Context” is the organized

collection of information which the routing algorithm collects from the environment

surrounding the network nodes, and which allows it to make better routing decisions. This

information can be related to low-level issues, such as, node location, power required to

send a message, etc., as well as, with constraints related to the application, such as, message

priority, maximum delivery time, etc.

In order to evaluate this approach, this thesis proposes a routing algorithm called C-AODV.

As the name suggests, it is based on the ADOV algorithm, however it is modified in several

aspects; in particular, the possibility of using information collected from the context can be

utilized to improve message routing.

In order to test the proposed solution, several tests were performed on the NS-3 simulator

which allowed the evaluation of the algorithm functionalities. The tests performed indicate

that the proposed solution is valid.

 9

To Bianca

10

SYMBOLOGY AND NOTATIONS

IoT Internet of Things

RWI Real World Internet

MANET Mobile Ad hoc Networks

LAN Local Area Network

RTD Research, Technology and Development

TCP/IP Transmission Control Protocol / Internet Protocol

RFID Radio Frequency Identification

W3C World Wide Web Consortium

RDF Resource Description Framework

RDFS RDF Schema

OWL Web Ontology Language

XML Extensible Markup Language

IPv4 Internet Protocol version 4

QoS Quality of Service

ISO International Organization for Standardization

DHT Distributed Hash Table

ACM Association for Computing Machinery

 11

WWW World Wide Web

URL Uniform Resource Locator

12

CONTENTS

1. INTRODUCTION ... 17

1.1. GENERAL INTRODUCTION AND MOTIVATION ... 17

1.2. PROBLEM DESCRIPTION AND CONTEXT... 18

1.3. PROPOSED SOLUTION AND WORK SCOPE .. 20

1.4. MAIN CONTRIBUTIONS EXPECTED ... 22

1.5. RESEARCH METHODOLOGY ... 22

1.6. DOCUMENT STRUCTURE .. 24

2. RELATED WORK ... 26

2.1. REACTIVE ROUTING PROTOCOLS... 26

2.1.1. Dynamic source routing .. 27

2.1.2. Ad hoc on-demand distance vector ... 28

2.1.3. Location-aided routing.. 34

2.1.4. Ant-colony-based routing ... 36

2.2. CONTEXT ANALYSIS .. 38

2.2.1. The notion of context .. 38

2.2.2. The context in routing ... 39

2.3. NETWORK SIMULATORS ANALYSIS .. 40

2.3.1. Network simulators .. 40

2.3.2. Network simulator comparison ... 43

3. PROPOSED ALGORITHM .. 45

3.1. ASSESSING REACTIVE ROUTING PROTOCOLS .. 45

3.2. EXTENDING AODV .. 46

3.2.1. Including Context .. 46

3.2.2. Including AODV-PA and MNH ideas... 48

4. C-AODV PROOF-OF-CONCEPT .. 53

4.1. CHOOSING CONTEXT TYPES ... 53

4.2. C-AODV IN NS-3 ... 54

4.2.1. Introducing a new routing algorithm in NS-3 ... 54

4.2.2. Changing NS-3 AODV implementation .. 57

5. TESTS AND VALIDATION .. 61

5.1. BRIEF COMMUNICATION TEST ... 63

5.1.1. Setup and configuration ... 63

5.1.2. Results obtained ... 63

 13

5.1.3. Test conclusions ..64

5.2. TEST IN A CONTROLLED NETWORK ..65

5.2.1. Setup and configuration ..65

5.2.2. Results obtained ...69

5.2.3. Test conclusions ..70

5.3. MOBILITY TEST ..72

5.3.1. Setup and configuration ..72

5.3.2. Results obtained ...73

5.3.3. Test conclusions ..74

5.4. TEST FOR EXTENSIBILITY ...75

5.4.1. Setup and configuration ..75

5.4.2. Results obtained ...80

5.4.3. Test conclusions ..81

5.5. VERDICT AND SOLUTION CONFORMANCE ..83

6. CONCLUSIONS AND FUTURE WORK ...85

7. BIBLIOGRAPHY ...86

ANNEX A. NETWORK TOPOLOGIES ...95

A.1. STRUCTURED NETWORKS ...95

A.2. NON-STRUCTURED NETWORKS ..99

ANNEX B. ROUTING ALGORITHM CLASSES AND COMPARISONS .. 102

B.1. GLOBAL / PROACTIVE ROUTING PROTOCOLS .. 102

B.2. ON-DEMAND / REACTIVE ROUTING PROTOCOLS ... 105

B.3. HYBRID ROUTING PROTOCOLS ... 108

B.4. ROUTING ALGORITHMS CLASSES COMPARISON ... 111

ANNEX C. RWI NETWORK ARCHITECTURE – RTD ROADMAP .. 113

ANNEX D. HARDWARE AND SOFTWARE CONSIDERATIONS .. 114

D.1. HARDWARE AND SOFTWARE USED .. 114

D.2. INSTALLATION AND CONFIGURATION OF THE NSNAM ... 114

14

LIST OF FIGURES

Figure 1.1 Work Scope ... 21

Figure 1.2 Research Methodology .. 23

Figure 2.1 Accumulation in RREQ and RREP messages .. 32

Figure 2.2 Two routes from the nest to the food place ... 36

Figure 2.3 NS-3 basic model ... 42

Figure 3.1 Layer communication scheme ... 45

Figure 3.2 Routing behaviour ... 47

Figure 3.3 A possible network .. 50

Figure 4.1 Implementation scenario ... 53

Figure 4.2 Overview of NS-3 features ... 54

Figure 4.3 NS-3 Modules .. 56

Figure 5.1 Inheritance diagram of V4Ping ... 62

Figure 5.2 Brief communication topology ... 63

Figure 5.3 Simple test configuration ... 65

Figure 5.4 Node B in controlled network .. 67

Figure 5.5 Mobility test changes... 73

Figure 5.6 Brownian movement in two paths (Cohen, 1986) .. 76

Figure A.1 Chord (El-Ansary & Haridi, 2005) ... 95

Figure A.2 Down pointers in Viceroy (El-Ansary & Haridi, 2005) ... 98

Figure A.3 Bluetooth Scatternet (source ACM) ... 99

Figure A.4 A Scalefree Network .. 100

Figure A.5 Growth and Preferential Attachment .. 101

Figure C.1 RWI network architecture – RTD Roadmap .. 113

 15

LIST OF TABLES

Table 1.1 IoT Application Domains - Description and Examples .. 17

Table 2.1 Simulators comparison ... 43

Table 3.1 Example of a proposed routing table for node S ... 51

Table 4.1 The routing table .. 57

Table 5.1 Controled test conclusions .. 70

Table 5.2 Comparison in controlled network .. 72

Table 5.3 Parameters for the test ... 79

Table 5.4 Extensibility results ... 81

Table B.1 Comparison between routing protocols .. 112

Introduction 17

1. INTRODUCTION

1.1. GENERAL INTRODUCTION AND MOTIVATION

In the vision of the Commission of the European Communities (European Parliament, 2008),

the Internet of Things (IoT) is one of the most promising explorations of the next generation

of the Internet as we know it. In this vision, objects (“things”) can take a part in the Internet

by exchanging, gathering, storing or processing information, leading to new forms of services

and new business opportunities. Citizens, society and environment will all benefit from it

(Table 1.1).

According to (European Commission, 2010) the IoT is a “dynamic global network

infrastructure with self capabilities based on a standard and interoperable communication

protocols where physical and virtual “things” have identities, physical attributes, and virtual

personalities and use intelligent interfaces, and are seamlessly integrated into the

information network”, the Internet.

TABLE 1.1 IOT APPLICATION DOMAINS - DESCRIPTION AND EXAMPLES

Domain Description Indicative examples

Industry Activities involving financial or

commercial transactions between

companies, organisations and other

entities

Manufacturing, logistics, service

sector, banking, financial
governmental

authorities, intermediaries,

etc.

Environment Activities regarding the protection,

monitoring and development of all

natural resources

Agriculture & breeding, recycling,

environmental management services,

energy management, etc.

Society Activities/ initiatives regarding the

development and inclusion of
societies,

cities, and people

Governmental services towards
citizens

and other society structures (e-
participation),

e-inclusion (e.g. aging,

disabled people), etc.

18 Introduction

This idea was even awarded Time Magazine’s #30 Best Invention of 2008: “*…+ intends to

create a new kind of network that will allow sensor-enabled physical objects — appliances in

your home, products in a factory, cars in a city — to talk to one another, the same way

people communicate over the Internet” (30. The Internet Of Things - TIME's Best Inventions

of 2008 - TIME, 2010).

According to (European Commission, 2010), show that today, there are almost 1.5 billion PCs

and over 1 billion cell phones connected to Internet. These devices will move towards the

IoT in which 50 to 100 billion devices will be connected to the Internet by 2020. Some

projections indicate that in the same year, the number of mobile machine sessions will be 30

times higher than the number of mobile person sessions. Not considering only machine-to-

machine communications but also communications among all kinds of objects, then the

number of networked object will be orders of magnitude above those of today.

Most of the nodes of this network will have the following characteristics:

 Limited power capability;

 Wireless receivers and transmitters with limited range, facing the use of multi-hop

communication;

 Mobility: nodes will move, possibly becoming disconnected;

 Volability: nodes can be switched on and off often.

These network objects will be organized in networks, these networks will be very different

regarding criteria like the number of nodes, topology, organization, etc.

More information about network topologies can be found in ANNEX A.

1.2. PROBLEM DESCRIPTION AND CONTEXT

In the context described above, networks may look similar to what we call now Mobile Ad

hoc Network (MANET), due to its ad hoc nature and the possibility of node’s joining and

leaving the network at any time.

Relatively to these kinds of networks, some characteristics must be considered, like

dynamism, rapid-changing patterns, random and multi-hop (Corson & Macker, 1999). The

Introduction 19

nodes are equipped with some kind of communication receiver and transmitter, and

depending on the transmission power or channel frequency, a multi-hop network can exist

between them.

In order to support the communication between all the nodes, the communication

mechanism must tackle the following aspects:

Issue 1. Partial or local notion of network information: the solution must work

efficiently despite the partial knowledge of its surroundings and constant changes in

the network. The definition of a route must take care of heuristics that could help the

system decide the best choice in the current situation. This restriction is imposed

because devices may have limitations, like storage, power or processing power, not

allowing the devices to have a notion of the entire network due to the number of

participants;

Issue 2. Different routing decisions based on multiple routes: the solution must make

different routing decisions based on the possibility of different kinds of networks

with different properties. Those decisions must be aware of the paths that messages

may travel and choose the more useful route to destination;

Issue 3. Zero management network with self-configuring behaviour: when a device joins

or leaves the network, it must be aware of its neighbours and their properties. Also,

the neighbours must be aware of new devices and changes in the network, due to

failures, devices leaving the network or mobility. With this approach, participants

may configure themselves in order to adapt to changes and new parameters;

Issue 4. Information exchange within the whole system: the solution must acquire

information from all parts of the system and also allow the system to acquire

information from it. This exchange of information between layers works in a loop

which can improve the efficiency of the device and in this case, routing decisions. The

bottom layers (network, logical and physical) can use top layer information, like

traffic information, in order to change routes and the top layers can use routing

information in order to have a more accurate notion of the network participants.

20 Introduction

With this property, devices may acquire more information about themselves and the

network at different levels, adapted to the current situation.

The proposed work is to implement a routing algorithm in a context of the IoT. This is

mandatory due to the possibility of the nodes join and leave network leading it to an

incoherent state of routing and so, an inefficient network. This network can be used on small

and micro enterprises in many industries fields. These industries fields will be able to

improve its logistical tracking and tracing, production, monitoring, maintenance, product

safety, quality and information; as example, food and construction industries can take

advantages of this work.

Briefly, the research question of this work is: how to conceive a routing algorithm that

works and operates efficiently in a network environment that changes arbitrarily?

1.3. PROPOSED SOLUTION AND WORK SCOPE

The base line solution of this work is acknowledging the existence of two major classes of

routing algorithms: adaptive and nonadaptive algorithms (Tanenbaum, 1996). Nonadaptive

algorithms do not make routing decisions based in traffic or topology, this is also called static

routing; in contrast, adaptive algorithms make their decisions answering the changes in

network topology, traffic analysis or some after periodic evaluation. Another facet of routing

is the metric for routing that can be based on shortest-path routing, network usage

optimization and policy routing.

It is clear that this thesis will be based in an adaptive algorithm because nodes can join and

leave the network, changing the topology and traffic flow. Since in the IoT the nodes are

mobile, a mix between shortest-path routing and network usage optimization will be

explored. This class of routing algorithms can also be divided in two other types of routing:

the global/proactive routing and the reactive/on-demand routing algorithms (Abolhasan,

Introduction 21

2003). In proactive routing all the routes being calculated at start-up and maintained in a

periodical process; in reactive routing when a node wants to communicate with another, the

route is calculated at that moment; another type of routing, hybrid routing, which consists of

a mix of the two already mentioned.

Due to concern of saving nodes’ capabilities, like power or storage, the reactive routing

protocols were chosen for this work, however a more complete research and analysis

between proactive, reactive and hybrid routing algorithms can be found in ANNEX B.

FIGURE 1.1 WORK SCOPE

In order to bring advantages and innovations when compared to other solutions, the

proposed work aims to use the notion of Context to improve the efficiency of the routing

algorithm, by giving it some knowledge about its surroundings. The Context is the

information that can be used to characterize a situation of a person, object or the

surroundings. This knowledge can be retrieved in many ways, in particular, it may be

retrieved from the upper layers, like the application layer, or even the messages that pass

through the network, but it can also be retrieved from the lower layers, like physical

information from the device where it operates, power information or processing capabilities.

A graphical vision of this approach is presented in Figure 1.1.

22 Introduction

1.4. MAIN CONTRIBUTIONS EXPECTED

The main contribution expected is the design, implementation and preliminary tests of a

routing algorithm that aims at being scalable, efficient and fault tolerant IoT.

This study will also make a contribution to the project FP7-216420 CuteLoop (CuteLoop -

Customer in the Loop, 2010) entitled "Customer in the Loop: Using Networked Devices

enabled Intelligence for Proactive Customers Integration as Drivers of Integrated Enterprise",

partially funded by European Commission, that meant to explore the interaction between

enterprise actors and devices, to realize distributed and autonomous control of business

processes; but also in a contribution for an emerging field of studying, the IoT where

common objects are embedded in the environment work together and in synergy to

accomplish added-value goals that improve business performance and the overall quality of

life.

This work can also be used to achieve more knowledge for the RWI Network Architecture

(ANNEX C) around the Communication and Routing problem, facing the driver “Maximum

connectivity with minimum consumption” in the scope of (FIA, 2009).

1.5. RESEARCH METHODOLOGY

The research methodology of this work is based on the scientific method, composed by the

following steps (Schafersman, 1994):

1. Definition of Research Question;

2. Information Gathering and requirements;

3. Hypothesis formulation;

4. Experience perform;

5. Analysis of results and conclusions;

6. Publications.

Introduction 23

Question?

Resources?

Requirements?

Hypothesis
formulation

Proof-of-
concepts

Definition of
tests

Analisys of
results and
conclusions

Tests
successfully

Tests
unsuccessfully

Publications

New approach

Information gathering
and requirements

Definition of Research
Question

Hypothesis
formulation

Experience perform Analisys of results Publications

FIGURE 1.2 RESEARCH METHODOLOGY

1. DEFINITION OF RESEARCH QUESTION

Every research work begins with the definition of a problem, more specifically with the

Research Question. The Research Question of this work, as told before is “how to conceive a

routing algorithm that works and operates efficiently in a network environment that changes

arbitrarily?” and tries to give answers about how it is possible to develop a method to find

resources in a network composed by many devices with energy, storing, processing

concerns, among others.

2. INFORMATION GATHERING AND REQUIREMENTS

The requirements for a research work must be identified by a junction of the needs of both

industry and research challenges. In the vision of industry, it is necessary to evaluate the

applicability of the solution in the real world. The major application of this work is in small

and micro enterprises, namely in the food and construction industry. Therefore, it is

necessary to gather information about the requirements of these industries and also gather

scientific and technological information about the existing technical information, in this case,

routing algorithms. In this document, this step can be found in the Related work chapter,

where all the information was gathered and used as base to this work;

3. HYPOTHESIS FORMULATION

Based on the information gathered and in the knowledge of the requirements, the

formulation of an hypothesis is mandatory. In this phase, the definition of this conceptual

realization that will be the base for the analysis of the problem and the base for an

implementation of an experience in order to evaluate the hypothesis proposed. In the

chapter Proposed algorithm, the hypothesis for this dissertation is presented. This chapter is

all dedicated to a technological explanation of the proposed solution in order to understand

all the decisions made and enable the implementation phase.

24 Introduction

4. EXPERIENCE PERFORM

This phase aims to evaluate the hypothesis, by the experimental implementation of the

proposed solution as a proof-of-concept in order to gather information, like metrics,

behaviours or other kinds of results to evaluate them facing the hypothesis. All the results

must be taken in a controlled environment in order to minimize the samples’ noise but also,

to control all the results of the experiment. This step can be found in this document in

chapter C-AODV proof-of-concept. It presents the implementation details of this thesis, the

decisions made, the technologies used, in order to perform the experiment;

5. ANALYSIS OF RESULTS AND CONCLUSIONS

Facing the results obtained in the proof-of-concepts against the hypothesis, it is possible to

verify if this solution meets the requirements defined. The chapter Tests and Validation

presents the tests and the results obtained after the implementation. These results may be

addressed against the goals proposed on chapter 1.2. Finally, the chapter Conclusions and

future work presents the final conclusions of this dissertation. A critic evaluation of the

results obtained is made and a final conclusion for the overall work is performed.

6. PUBLICATIONS

The final phase of the scientific method is the publication and the exchange of the

information gathered on the experiment. This exchange is critical not only for avoiding the

redundancy of the tests for the proposed hypothesis, but also for the evolution of

knowledge and form new formulations of hypothesis based on the work done. Although this

work did not originate any publication, it is planned to do it, or in order to raise new

questions within the scientific community and enabling new discussions and future works

based on the conclusions taken for this work.

1.6. DOCUMENT STRUCTURE

This document is composed by the following main chapters:

 Related work: This chapter presents the state-of-the-art in the areas of reactive

routing protocols and network simulators;

Introduction 25

 Proposed algorithm: Where the proposed routing algorithm (C-AODV) is defined;

 C-AODV proof-of-concept: In this chapter an implementation of C-AODV is described;

 Tests and Validation: In this chapter, an assessment of C-AODV is performed;

 Conclusions and future work: Here the final conclusions of the work are outlined and

future work is discussed.

26 Related work

2. RELATED WORK

This chapter presents the state-of-research analysis to the proposed work, made by

performing a comprehensive literature review, mainly composed of reference papers in

selected journals and conferences, consulted in the Web of Science or in b-on libraries, in

reference books in the work domain, but also in the knowledge and experience acquired

with the involvement in the CuteLoop project (CuteLoop - Customer in the Loop, 2010).

The study is performed in the environment described in chapter 1.2 that is summarized

here:

 Nodes have heterogeneous characteristics, but most of them have low capabilities

either in computation capabilities and communication range. Also, nodes have power

limitations;

 Nodes do not have a full vision of the entire network. This happens because nodes can

be switched on/off and can move; in this last case, nodes can communicate with the

node that changed;

 The above node characteristics imply that when communicating between two nodes a

multi-hop route must be used. This route can change over time. In a given moment,

the route used can be influenced by parameters not relevant in traditional networks,

like the power consumed in the message transmitted over the hops.

2.1. REACTIVE ROUTING PROTOCOLS

These protocols calculate their routes only when required by the source, through a process

which is usually called on-demand route discovery. Due to the possible changes in the

network, a minimum of static information related to the network must be stored. This class

of algorithms can handle this problem.

Related work 27

2.1.1. DYNAMIC SOURCE ROUTING

This analysis is based on the Dynamic Source Routing (DSR) proposal presented in (Johnson,

Maltz, & Hu, 2004).

This protocol is targeted for multi-hop ad-hoc networks that may have mobility problems. It

is composed by two mechanisms, “Route Discovery” and “Route Maintenance”. This

protocol is entirely on-demand, allowing it to scale automatically and supporting multiple

routes, for example, for load balancing or to increase robustness. It is also a loop free

protocol, handles unidirectional links and is suitable for dynamic medium sized networks.

When a node S (initiator) wants to find a destination D (target), it starts the route discovery

process. It creates a route request with its own information, the target information, the

route request identification and space for including the identification of each of the nodes

already visited by the message. If a node is the target of a route request, it returns a route

reply to the initiator along the reverse route existing in the request, and, when the initiator

receives this route reply, it caches the route in the Route Cache for future sends. But, if a

node is not the target of a request message, it appends its address to the message and re-

transmits the message to its neighbours. In order to discard duplicates, if a node detects a

duplicated message, that message is discarded.

If a node does not know the route to a destination, it stores the packet in a Send Buffer, and

initiates the route discovery process as described above. There must be a limit for pending

discoveries processes because a node may be completely unreachable.

Regarding the maintenance mechanism, when a packet is exchanged, each node must

confirm that transaction. But the algorithm can also uses acknowledgment requests in order

to maintain connectivity. If after a maximum number of retries, no acknowledgment reply

has been received, then that link is treated as “broken” and removed from the Route Cache,

a “Route Error” packet is sent to every node that have used that link to forward a message.

A list of DSR family algorithms (algorithms that use DSR basics) is presented next.

DSR Variants

28 Related work

The Adaptive Multi-path QoS Aware Dynamic Source Routing Protocol for Mobile Ad-Hoc

Network builds highly disjoint path, distributing the packets among those paths; the

distribution of messages by the available paths is adjusted through the monitoring of node

mobility and message loss and round trip time (Hashim, Nasir, & Harous, 2006). This protocol

shows less number of dropped packet and better throughput, when compared to the basic

DSR.

The Adaptive algorithm for increasing the efficiency of DSR algorithm in Ad Hoc network is

another algorithm based on the DSR algorithm (Shqeerat, 2008). This protocol can adapt its

routing quickly in the presence of node mobility. This protocol also requires little overhead

during periods in which node does not move. This algorithm enhances the caching strategy

of DSR and extends it in order to improve error handling, load balancing, re-routing during

transmission and re-routing notification. Simulations show that this protocol can perform

well in a network with a high number of nodes, high load and mobility, and also reduced

overhead when compared with original version.

The Enhanced Reactive Dynamic Source Routing Algorithm Applied to Mobile Ad Hoc

Networks (ERDSR) protocol is another variant of DSR algorithm that chooses the route by

using the bandwidth and the number of hops of the available paths, and regulates

dynamically the value of Send_Timeout (Zhao, Zhan, Yao, & Yi, 2005). Compared to the basic

DSR, this protocol improves the average route length, the transmission delay and the packet

delivery ratio. Simulations show that this algorithm decreases the transmission delay and the

average path length and increases the packet delivery rate.

2.1.2. AD HOC ON-DEMAND DISTANCE VECTOR

This analysis is based on the Ad hoc on-demand distance vector (AODV) proposal presented

in RFC3561 (Perkins, Belding-Royer, & Das, 2003).

AODV is a routing algorithm that uses periodic message exchange to maintain the

connections and sequence numbering to avoid loops; the route discovery based on a

flooding mechanism. Each node L maintains a routing table where each record has the

following fields:

 Destination: address of a remote node R;

Related work 29

 Next Hop: address of a node J which is the first node in a route in between L and R;

 Hop Count: number of hops between L and R;

 Sequence Number: virtual timestamp allowing the disposal of duplicates.

This algorithm is based on three kinds of messages: Route Requests (RREQ), Route Replies

(RREP), and Route Errors (RERR):

 RREQ: these messages are emitted by a node S that wants to initiate the route

discovery for an unknown node D; the message is sent to all the neighbours1. The

main fields of these messages are:

o RREQ ID: unique identifier for the search of a node;

o RREQ Dest: Address of D;

o RREQ Origin: Address of S;

o RREQ Hop Count: number of hops already performed;

o SeqNo: Sequence number.

 RREP: reply to a RREQ message; originated by the node D or by an intermediate node K

that knows the route to D; the message is sent to the neighbour that is the source of

the RREQ message received. The content of each RREP message is:

o RREP Dest: Address of S;

o RREP Origin: Address of D;

o RREP Hop Count: number of hops already performed;

o SeqNo: Sequence number.

 RERR: service message originated when a node loses direct contact to a node Y; the

message is sent to all the neighbours. The most important fields of this message are:

o RERR Dest: Address of node Y that became unreachable;

o SeqNo: Sequence number.

When a node S needs a route to a destination D, a RREQ is broadcasted, with the contents

indicated above; RREQ Hop Count is set to zero. Node S stores the tuple (D, RREQ ID) and

waits for a matching RREP message; the maximum waiting time is PATH_DISCOVERY_TIME

1
 Neighbors of node N are all the nodes that are one-hop distant of N.

30 Related work

which is a constant calculated according to the network characteristics. If no RREP message

is received, the tuple is removed and D is set to Destination Unreachable. In order to reduce

the overhead in the network, repeated attempts of RREQ are considered. Before sending a

new RREQ message trying to find node D, S must wait NET_TRAVERSAL_TIME milliseconds;

in case of a new failure S must wait 2 * NET_TRAVERSAL_TIME milliseconds to the next

retransmission; for each additional attempt the node must wait two times the previous

waiting time for the response - this strategy is called by binary exponential back-off.

When a node K receives a RREQ message the following situations must be considered:

 K address is the equal to RREQ Dest: K prepares a RREP message where RREP Dest is

RREQ Origin and RREP Origin is K address; RREP Hop Count is set to 0;

 K knows a route to RREQ Dest: K prepares a RREP message where RREP Dest is RREQ

Origin and RREP Origin is RREQ Dest; RREP Hop Count is the hop count associated to

the route to D;

 K does not know a route to RREQ Dest: K broadcasts the RREQ message received after

incrementing RREQ Hop Count.

When a node K receives a RREP message the following situations must be considered:

 K address is the equal to RREP Dest: K drops the packet and updates the routing table;

 K knows a route to RREP Dest: K forwards the RREP message to the next hop for the

RREP Dest and increments the hop count;

 K does not know a route to RREQ Dest: K drops the packet.

On receiving RREQ or RREP messages, the steps done for updating the routing table are the

same:

 The entry corresponding to the field RREP/RREQ Origin is considered for update;

 The update is only made if both of the two conditions following are true:

o The SeqNo in the message is greater than Sequence Number of the entry;

o The Hop Count in the message is lower than the Hop Count of the entry.

Related work 31

When a node K receives a RRER message the following situations must be considered:

 The SeqNo was already processed: K drops the packet;

 The SeqNo was not yet handled:

o K forwards the RERR message to the neighbours;

o K marks the routing table entry corresponding to RRER Dest as invalid.

To maintain connectivity, a node sends every HELLO_INTERVAL milliseconds a RREQ message

to each neighbour. This message receives immediately a RREP reply. This implies the update

of the routing tables.

As final conclusion, and following the information gathered on (Perkins, Belding-Royer, &

Das, 2003), AODV is an excellent choice for the establishment of an ad hoc network because:

 Low resources usage: The nodes only store the needed routes, broadcast is minimized

and memory requirements are low;

 Quick response to link failure: New routes are quickly established and inactive routes

are quickly aged because intermediate nodes can return a new routes;

 The usage of sequence numbers minimizes duplicates and prevents the creation of

network loops.

All these properties make AODV scalable to a large number of nodes. The only important

drawback is the possibility of long latency in route establishment. A list of AODV family

algorithms (algorithms that use AODV basics) is presented next.

AODV Variants

The current state-of-the-art in the AODV family includes many different modifications of the

original protocol are presented next.

The Reverse Adhoc On Demand Distance Vector Routing Algorithm (RAODV) discovers

many reverse routes from the source to the destination (Gowrishankar, Sarkar, &

32 Related work

Basavaraju, 2009). When the destination receives the RREQ message, it floods the network

with ReverseRouteRequest messages, creating multiple paths to the source and selecting the

best path based on the sequence number and the least hop count. If an intermediate route

in the reverse path fails, a RERR message is sent, letting the source and destination to

choose other paths.

Modified Reverse Ad Hoc On Demand Distance Vector (MRAODV) (Zarei, Faez, & Nya,

2008): in this protocol when the source wants to communicate with the destination, like in

AODV, it sends a RREQ message, but when the destination receives the RREQ message, it

broadcasts a ReverseRouteRequest (R-RREQ) message to find the source. When a node

receives the R-RREQ message, it calculates a metric called route stability (this metric is

related to the probability of route to persist for a certain time span). When the source node

receives the R-RREQ message, it will have multiple routes to the destination and it will

selects the best stable route to the destination. According to (Zahary & Ayesh, 2007),

MRAODV waits too much time to check if there are more routes; receiving so many routes

leads to memory overhead and delays.

Threshold Routes AODV (TRAODV) (Zahary & Ayesh, 2007) is similar to MRAODV just with

the addition of a time limit for waiting for alternative routes.

The AODV with Path Accumulation (AODV-PA) is proposed by (Gwalani, Belding-Royer, &

Perkins, 2003). AODV-PA is similar to DSR, by including source route accumulation in AODV

as a route discovery technique. This is made when RREQ and RREP messages are passed

through the network, as each node appends its own address on the message and letting the

nodes update their routing tables with the information contained in that message (Figure

2.1).

FIGURE 2.1 ACCUMULATION IN RREQ AND RREP MESSAGES

Related work 33

Multiple Next Hops (MNH) (Porekar, 2003) and (Jiang & Jan, 2001) is another variant of

AODV. According to the authors, the main goal was a reduction of the bandwidth

consumption of AODV when searching a new route in the presence of a link failure. In the

routing table of each node, the entry corresponding to a given destination can have more

than one pair (nextHop, sequence number). The multiple routes can be detected by

receiving multiple RREP messages from different neighbours. The excessive number

multiples routes can lead to unjustified overhead related to the maintenance of this type of

routing tables.

AODV Variants comparison

According to (Jiang & Jan, 2001), the MNH algorithm has a good behaviour in new path

discovery after a link failure, because the routes are maintained by intermediate nodes. With

this property the path length is increased by one hop. However, this algorithm reduces time

on route discovery and route reconstruction.

The AODV-PA proposed by (Gwalani, Belding-Royer, & Perkins, 2003) shows good results

when compared to AODV in a network characterized by high load and high mobility

networks. This algorithm scales well for large networks and has a good packet delivery rate

and low delay. Its routing information decreases with an increase in the load and is suitable

for high load scenarios.

Comparisons made between TRAODV and MRAODV show better results of TRAODV with

route availability as a metric. This algorithm reduces the overall routing delay and waiting

and routing reconstruction overhead.

Between RAODV and MRAODV, the results show that RAODV outperforms MRAODV when a

route fails (Zarei, Faez, & Nya, 2008). In the presence of network changes, RAODV can easily

select new routes with minimum path length in the routes previously discovered. Compared

to AODV, RAODV has a good packet delivery ratio, is scalable in large networks and is

suitable for high mobility networks.

34 Related work

(Gowrishankar, Sarkar, & Basavaraju, 2009) performed some comparisons and the results

shows that RAODV shows better results than AODV.

With this analysis a few conclusions can be made about Issue 2 and Issue 3. Issue 3 is

directly accomplished by MNH because it adapt itself to network changes and using

information gathered from Issue 4, it can adapts intelligently improving routing. AODV

already enables Issue 3, because when a device enters in the network, it will search for its

neighbours with Hello messages, but MNH can adapt to link failures in an efficient way. In

order to adapt to the dynamic network, such as link failures but not device failures, this can

be achieved with flags in the routing tables, as proposed in AODV, instead of just deleting

the entries.

Issue 2 can be accomplished with AODV-PA, but with some changes in the algorithm. AODV-

PA only accumulates the references of the nodes where the message has been. To achieve

Issue 2, this algorithm must accumulate more information in order to be used in routing

decisions; this information can be the type of link between the node after and before, a

metric that represents the quality of the link or others, etc... With this behaviour, the routing

decisions can be more accurate and reliable because more information is exchanged but

only information that could be used for immediate decisions, not long term decisions, as

long term decision are not reliable because the network is dynamic.

2.1.3. LOCATION-AIDED ROUTING

This analysis is based on the Location-aided routing (LAR) proposal presented in (Ko &

Vaidya, 1998). LAR is a routing protocol that considers that the network is divided in request

zones; the criteria to join a given request zone is the location of a node (GPS coordinates).

Route discovery procedures occur in the context of a zone.

When a node wants to find a route, it initiates the route discovery phase based on the

flooding technique similar to the one used by DSR and AODV, by sending a route request

message to the neighbours. If a neighbour is not the destination, it re-broadcasts the

message to its neighbours. In order to avoid redundant transmissions, the nodes only

broadcast the request once; the duplicates are detected by the usage of sequence numbers.

Related work 35

If a node is the destination of a route request message, it sends a route reply to the sender

as in AODV. If a path discovery has failed, the requester must be aware (after a given

timeout), that is necessary to retransmit a route request.

The usage of location information in order to reduce routing overhead is the main goal of

this algorithm. Node positions may be acquired by some kind of positioning system (like

Global Positioning System – GPS).

Suppose that node S tries to find a route to node D, and that node S knows the location (X0,

Y0) of node D at time t0; if v is the speed of node S and also known, S can expect to find D at

time t1, in a circle centred in (X0, Y0) with radius v(t1-t0). This circle is called “expected zone”.

The notion of “request zone” is also important in the protocol. This means that a node only

forwards a route request for a node D, if D belongs to the request zone. In order to be able

to find a destination D, the expected zone should be included in the request zone.

A list of LAR family algorithms (algorithms that use LAR basics) is presented next.

LAR Variants

The Location Aided Cluster Based Energy-efficient Routing (LACBER) is an algorithm

proposed by (Deb, Roy, & Chaki, 2009) based on the LAR protocol. LACBER is a location-aided

and energy efficient routing algorithm and can work in areas with low GPS coverage. The

authors claim that this protocol has better location properties and lower energy and

bandwidth consumption than the LAR solution.

The Distance-Based Location-Aided Routing (DBLAR) (Wang, Wu, Weifeng, Pengrui, & Shen,

2008) protocol monitors the nodes positions (LI) and when location changes are detected

the process of route discovery is adjusted accordingly, thus lowering the number of network

floods. The results published suggest that this protocol performs better than LAR in packet

delivery ratio, average end-to-end delay and routing-load.

(Xue & Li, 2001) proposed the Location-aided Power-aware Routing Protocol in Mobile Ad

Hoc Networks (LAPAR). The practical and theoretical analysis made by the authors show that

36 Related work

this algorithm is power-efficient and enhances previous solutions but in some cases

inaccurate location information is produced.

2.1.4. ANT-COLONY-BASED ROUTING

The text below analyses the Ant-colony-based routing (ARA) proposal presented in (Günes,

Sorges, & Bouazizi, 2002).

FIGURE 2.2 TWO ROUTES FROM THE NEST TO THE FOOD PLACE

The ARA protocol attempts to reduce the communication overhead by simulating the food

searching behaviour of the ants, using swarm intelligence, more specifically, the ant colony

based meta heuristic. This algorithm is distributed, loop-free, has a demand-based operation

and allows that the nodes sleep for part of the time.

The ants start from their nest and walk to the food deploying pheromone to mark the

travelled path. If a path is used by many ants, it has a huge concentration of pheromone. In

Figure 2.2 an example of two routes to the food is shown: the first ant chooses randomly

which path to follow and on their way back, it uses the already known path. After some

time, the concentration of pheromone on the shorter path will be higher and then all the

ants will only use this path.

When the algorithm wants to find a route, it initiates the discovery phase with a forward ant

(FANT), which is an agent that establishes a track of pheromone to the source; and a

backward ant (BANT), which is an agent that establishes a track of pheromone to the

destination. First the source sends a FANT to the neighbours, and the neighbour that

receives for the first time a FANT, creates a record in the routing table with (destination

address, next hop, pheromone value), and then re-broadcasts the FANT to its neighbours.

Each FANT has a sequence number that is used to avoid cycles. When the FANT reaches the

Related work 37

destination, it is discarded and a BANT is created and sent back to the source with the same

behaviour as the FANT. When the source receives the BANT, the path is established and

communication can take place.

Once the path is acquired, the route has to be maintained, i.e. the pheromone values have

to be refreshed because they fade along the time. The data packets can update these values.

When a link fails, for instance, due to mobility, the algorithm recognizes the failure through a

missing acknowledgment. If a node receives a ROUTE_ERROR messages from a link, it

deactivates the link and sets the pheromone to zero, then searches for another path in the

routing table, otherwise, the node informs the neighbours that it cannot relay packets.

A list of ARA family algorithms (algorithms that use ARA basics) is presented next.

ARA Variants

The Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network is a

protocol proposed by (N. K. & Viswanatha, 2008) aiming at improving the performance of

the ARA algorithm. The main change seems to be the use of data packets for maintaining

information about the link behavior.

(Liu, Zhang, Ni, Zhou, & Zhu, 2008) proposed another Ant-Colony based routing algorithm for

mobile ad-hoc network called AMQRA. This protocol maintains a set of QoS parameters for

each link namely time delay, packet loss rate, effective bandwidth, queue buffer length, etc…

this information is used for improving packet delivery ratio and reduce the end-top-end

delay, according to the authors by, respectively 9%-22 and 14%-16%, when compared to

ARA.

The Position Based ANT Colony Routing Algorithm (PBANT) is a variant of the ARA algorithm

proposed by (Sujatha, V.P, Namboodiri, & Sathyanarayana, 2008). This algorithm is very

similar to ARA, but the position of nodes is known. This algorithm uses position information

to build a heuristic in order to reduce the time needed to establish a route to the destination

and the number of control messages. The authors claim that this approach is robust, scalable

and suitable for ad hoc networks with irregular transmission ranges.

38 Related work

2.2. CONTEXT ANALYSIS

2.2.1. THE NOTION OF CONTEXT

The notion of Context is any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant to the interaction

between the user and application, including the user and applications themselves (Soylu, De

Causmaecker, Desmet, & Leuven, 2009). To introduce the notion of context in routing

protocols, the nodes must have mechanisms to obtain information about their environment

(Madhavapeddy, Scott, & Sharp, 2003). This is important because the network is dynamic

and may have different behaviors over the time, so nodes may need to change some

operational parameters in order to adapt themselves to those changes (Ay, 2007). This kind

of behavior awareness, or context awareness, is known as adaptivity (Soylu, De

Causmaecker, Desmet, & Leuven, 2009). Therefore, nodes can gather information, infer

about if it is important to any type of context; additionally nodes can extract information

about other nodes from the contents of received messages. This information can also trigger

changes in the node behaviour.

The context is defined by a set of context dimensions; an example of a context dimension is

the location of entities, but others can be considered. Other ones such as, communication

power, location, node’s velocity, distance between nodes, link costs, processing or storage

capabilities, which can also be used. Besides context dimensions related with nodes,

messages can also have context information associated, namely source, destination, priority,

delivery deadline, behavior after a delivery failure, among others.

The context may be acquired by an explicit declaration, for example as user input, or by

implicit declaration, namely by monitoring user behaviour (Schmidt, Beigl, & Gellersen,

1999). This leads us to the need to infer and reason about information in order to create

information about context and also, a way to reason about a given context. With this kind of

reasoning, nodes can infer explicit and implicit information in order to change their

parameters.

In order to model this information, the approach of “ontologies” is a suitable choice. The

term ontology originates from philosophy and refers to the discipline that deals with the

Related work 39

existence of things (Ay, 2007). The use of this approach in network routing can improve and

enable interoperability between nodes.

Since that Ontology Web Language (OWL) (OWL, 2010) is more expressive, allows more

interoperability and also supports RDF,

In computer science knowledge/ontologies can be expressed in Resource Description

Framework (RDF) (RDF, 2010) or OWL, among others. The code above, presents an example

of the use of OWL to describe an ontology. RDF is a specification of a precise semantics, and

corresponding complete systems of inference rules, for RDF and RDFS and OWL, and is

designed for use by applications that need to process the content of information, instead of

just presenting information to humans. OWL facilitates greater machine interpretability of

web content than that supported by XML, RDF, and RDFS by providing additional vocabulary

along with formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite,

OWL DL, and OWL Full.

2.2.2. THE CONTEXT IN ROUTING

There are a few approaches of routing algorithms that use natively context information from

the network or from other layers. Many routing algorithms do not consider the context of

the network, but, the context influences the routing performance (Saeed, Abbod, & Al-

Raweshidy, 2008).

<owl:ObjectProperty rdf:ID="hasBankAccount">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Person"/>

 <owl:Class rdf:about="#Corporation"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

</owl:ObjectProperty>

40 Related work

A mechanism that uses the concept of context is presented in (Saeed, Abbod, & Al-

Raweshidy, 2008). This article describes a system that can adapt itself to changes in the

network context and select the relevant parameters for choosing the best routing algorithm

to handle the mentioned changes. In (Nickray, Dehyadgari, & Afzali-kush, 2009) the use of a

society of context-aware agents to take decisions about packet routing is presented. (Das,

Wu, Chandra, & Charlie Hu, 2008) describe a procedure (including context defined metrics)

for finding efficient routes in a self-organizing way. Finally, (Shah & Qian, 2009) present a

solution based on simple parameters like the velocity of nodes and the distance between

them to determine the route lifetime in the network. This last solution shows good results

when compared with another algorithms that do not use context information; this suggests

that context can be useful when defining a new routing algorithm.

2.3. NETWORK SIMULATORS ANALYSIS

As explained before, in this thesis the experimentation with routing algorithms will be

performed over a network simulator. In the following some network simulators are

presented.

2.3.1. NETWORK SIMULATORS

TOSSIM

TOSSIM is a discrete event simulator for TinyOS sensor networks (Levis, 2010). It allows users

to compile the applications in the simulator before testing them on the TinyOS environment.

With this, it is possible to debug and analyze the algorithms in a controlled environment.

This simulator does not consider aspects like radio propagation and power consumption.

OMNeT++

OMNeT++ is not a network simulator itself, but it can be described as a framework to build

network simulators. This construction is performed by combining modules available from

different origins (Community, OMNeT++ Community Site, 2010). It is composed by a

Related work 41

simulation kernel library (discrete-event environment simulator), a compiler, an IDE based

on Eclipse IDE, a GUI for the simulation execution, a command line, some utilities and

documentation. There are some models implemented namely:

 INET Framework, which contains models for IP, TCP UDP and other protocols;

 Mobility Framework that supports the simulations of wireless and mobile network;

 PAWIs which is a wireless sensor network simulator developed by the Institute of

Computer Technology, University of Technology, Vienna.

J-SIM

J-Sim (also known as JavaSim) is an open-source, component based network simulator,

written entirely in Java (J-Sim Official, 2010). This simulator is implemented on top of a

component software architecture called autonomous component architecture (ACA) (Sobeih,

et al., 2005). The Java implementation and ACA organization, makes J-Sim platform

independent, extensible and reusable. This simulator can be integrated with some languages

like Perl, TCL or Python, and the version 1.3 of the simulator has been integrated with a full

implementation of a TCL interpreter called Jacl. This simulator defines its classes in Java and

uses TCL/Java to assemble them together.

NS-2

The NS-2 is the most popular network simulator in academic and research environments.

This tool is a discrete-event network simulator that can be used for research and educational

purposes, because it supports the simulation of TCP, routing and multicast protocols in many

different settings, such as, sensor networks, 802.11 and satellite protocols (The Network

Simulator - ns-2, 2010). This simulator objects are written in C++ to guarantee efficiency and

oTCL scripting can be used for simulation definitions, like objects configuration and event

schedule.

NS-3

42 Related work

The NS-3 simulator (nsnam) is a discrete-event network simulator that can be used in

research and education, for the study of Internet protocols and large-scale systems (The ns-3

network simulator, 2010). It aims to be a replacement of the NS-2 simulator, but it is not

compatible with it; and the nsnam acronym represents the concatenation of ns (network

simulator) with nam (network animator).

FIGURE 2.3 NS-3 BASIC MODEL

The Figure 2.3 represents the basic model used in NS-3 simulator. It can be divided in three

key objects:

 Nodes: contain Applications, Protocol stacks and NetDevices, and can be seen as a

computer on which applications, stacks and NICs are added;

 Packets: each network packet contains:

o Byte buffer: representation of headers;

o Tags: user-provided structures like flow identifiers;

o Metadata: used to describe the header that have been serialized.

 Channels: are connected to net devices and are the abstraction of communication

channels, like WiFi or CSMA channels.

This modular simulator is written in C++, with some Python scripting, and tries to enhance

the NS-2 simulator in areas related to interoperability, memory management and debugging

facilities.

Related work 43

2.3.2. NETWORK SIMULATOR COMPARISON

As a conclusion of the network simulators analysis, and according to (Ruzzelli, 2008) and

(Weingärtner, Lehn, & Weh, 2009) and (Varga & Hornig, 2008), NS-2 and NS-3 allow an easy

development of custom simulators and have a well active community, that supplies good

quality documentation, online help and contributes with code. The only drawbacks are the

limited GUI and the complex debugging. The OMNeT++ is another well-known simulator that

has good support from the community, has a good GUI, but suffers from scalability problems

in large networks. J-SIM is extensible, platform independent and supports several protocols,

but has a smaller supporting community when compared with the previous ones. TOSSIM is

scalable to large networks and the code can be deployed in TinyOS based motes. This

simulator can be only simulate TinyOS-based devices and does not have models for battery

and variable CPU consumption. The following table presents a comparison between the

simulators presented; in the columns the criteria relevant for this thesis work are included:

 Mobility model: this criteria is necessary, because the algorithm should be tested in a

mobile environment as presented in section 1.2;

 AODV implementation: if the simulator already implements the AODV algorithm, is

desirable. Using that implementation as a correct implementation can help the

development and improvement of the proposed solution;

 Routing access: this is crucial, without the access to the routing layer, this work cannot

be done;

 Results: the simulator has to present results and should let debug and let define

output results;

 Documentation: a good documentation, online and offline is desirable. A network

simulator is a complex application and is hard to know all the details within the

proposed time.

TABLE 2.1 SIMULATORS COMPARISON

 Mobility model AODV
implementation

Routing
access

Results Documentation

TOSSIM • • Few
J-SIM • • • • Acceptable
OMNeT++ • (with model) • (with model) • • Good
NS-2 • • • • Good

44 Related work

NS-3 • • • • Good

Looking at this table is possible to conclude that J-SIM, NS-2 and NS-3 are the only possible

choices to this work. The availability of an AODV implementation is a vital element in the

decision. This consideration eliminated TOSSIM; OMNeT++ has an AODV component but its

use is complex. The J-Sim simulator was also abandoned due to the lack of good

documentation and the smaller community support. NS-2 apparently is being replaced by

NS-3.

The chosen network simulator was NS-3, because it satisfies all the requisites, it has good

documentation and has a record of large recent development efforts.

Proposed algorithm 45

3. PROPOSED ALGORITHM

This chapter presents a routing algorithm that is the focus of this work. In the following, the

proposed algorithm will be called by C-AODV, which stands for Context in AODV.

The C-AODV implements the same basic mechanisms as AODV. First, it populates the routing

table with the information about its neighbours, however, the major change is the fact that

the routing tables are different because some entries disappear and two other entries are

created, related to context information (CA, CB). After this, when the application wants to

lookup a route, it will ask the routing mechanism for a route and if the route for the

destination is unknown, the algorithm will start a new discovery phase (Figure 3.1).

FIGURE 3.1 LAYER COMMUNICATION SCHEME

3.1. ASSESSING REACTIVE ROUTING PROTOCOLS

In this section, the features of the reactive routing algorithms described in the previous

chapter are assessed against the requisites of a routing algorithm for the IoT presented in

section 1.2.

All the proposed goals can be accomplished.

 Issue 1 is achieved using the AODV algorithm or a variant (like AODV-PA), because it

only requires small amounts of information regarding the network in order to make

routing decisions. The AODV-PA is a good approach, since it shows better results than

AODV or DSR (Gwalani, Belding-Royer, & Perkins, 2003). According to (Bouhorma,

46 Proposed algorithm

Bentaouit, & Boudhir, 2009) AODV shows better results than DSR and “A combination

of the protocols can be used for good result”. This observation supports our decision

of implementing a routing algorithm that takes features from both AODV and DSR;

 Issue 2 is achieved with AODV-PA, and with some improvements are needed. The

algorithm only accumulates nodes’ references, while this work needs more

information in order to make more intelligent routing decisions;

 Issue 3 is directly achieved by MNH because it has self-repairing properties that will

allow energy and processing savings without extra message exchange;

 Issue 4 can be achieved by the routing algorithm proposed in this work. This algorithm

incorporates elements from AODV-PA, MNH; additionally it will incorporate the

notion of Context information from other layers, namely the application layer (for

example, message deadlines) and the physical layer (namely, power consumption).

3.2. EXTENDING AODV

3.2.1. INCLUDING CONTEXT

An issue to be addressed is how to evaluate routes based on network and message context.

Due to possible multiple routing table entries for the same destination, the traditional

approach would be to choose the hop count field to choose the best route. Due to the

complexity of the network and its dynamicity, the notion of context must be introduced in

the routing algorithm (see 2.2.2), this allowing the consideration of a context information

like message priority.

Figure 3.2 gives an overview of the use of Context in routing decisions:

Proposed algorithm 47

FIGURE 3.2 ROUTING BEHAVIOUR

Based on Figure 3.2, it is possible to see more easily the two phases of the algorithm: the

first consists of route discovery process, followed by a process to populate the routing table.

The second is to choose the best route for a message, given its context.

In order to create a Context-aware routing algorithm one must associate context

information to each entry in the routing table. In the current version the context information

is stored as a pair of integer values - Context-A (CA) and Context-B (CB). An example of the

use would be:

 CA, represents the “physical” effort to a node communicates with another;

 CB, represents an application defined value for a deadline for delivery a message.

The number and type of context may be user defined or system defined as presented

previously in chapter 2.2 - Context analysis. Therefore, when the source node N1 wants to

discover a route to a destination, before sending the RREQ message to a neighbour N2, it

calculates CA and CB using a function (ƒ(N1, N2) → valueOfCA), where valueOfCA would be

an integer value, in which 0 represents a good quality link (like localhost) and larger values

represent lower quality links. The CB is calculated in a similar way using another function.

The integration of the context analysis in the routing algorithm is as follows:

Message without Context Message with Context

48 Proposed algorithm

As in AODV-PA, the control messages include information about each node belonging to the

path. In our algorithm besides the node references the context information calculated in

each node is also included.

3.2.2. INCLUDING AODV-PA AND MNH IDEAS

As explained in 3.1, with AODV as background, AODV-PA and MNH seem to complement

each other. AODV-PA allows the nodes to have a notion of the path followed by the

function RecvRREQ(RREQPacket rreqPacket) {

 if(rreqPacket.isDuplicated())

 return;

/* calculate new routes based on the path accumulation in packet */

 int numberOfContexts = rreqPacket.getNoContexts();

 Iterator it = rreqPacket.getPathAccumulation().iterator();

 while(it.hasNext()){

 Iterator<E> itCtx = rreqPacket.getPathAccumulation().iterator();

 Context ctx = new Context(numberOfContexts);

 while(itCtx.hasNext()){

 ctx.add(itCtx.next());

 }

 Path pa = it.next();

 this.routingTable.addEntry(pa.getNode(), pa.getPrevious(), pa.getSeqNo(), ctx);

 }

/* I am the destination for this packet */

 if(rreqPacket.getDestination() == this){

 SendRREP(rreqPacket);

 return;

 }

/* forward packet to neighbors */

 Iterator it = myNeighbors().iterator();

 while(it.hasNext()){

 Node neighbour = it.next();

 Context ctx = new Context(numberOfContexts);

 for(int i = 0; i < numberOfContexts; i++){

 ctx.add(ContextHelper.getValue(i, this, neighbour));

 }

 RREQPacket newRreqPacket = new RREQPacket (rreqPacket);

 newRreqPacket.addPathAccumulator(this, ctx);

 ForwardRREQ(newRreqPacket, neighbour);

 }

}

public function RecvRREP(RREPPacket rrepPacket) {

 if(rrepPacket.isDuplicated())

 return;

/* calculate new routes based on the path accumulation in packet */

 int numberOfContexts = rrepPacket.getNoContexts();

 Iterator it = rrepPacket.getPathAccumulation().iterator();

 while(it.hasNext()){

 Iterator<E> itCtx = rrepPacket.getPathAccumulation().iterator();

 Context ctx = new Context(numberOfContexts);

 while(itCtx.hasNext()){

 ctx.add(itCtx.next());

 }

 Path pa = it.next();

 this.routingTable.addEntry(pa.getNode(), pa.getPrevious(), pa.getSeqNo(), ctx);

 }

/* I am the destination for this packet */

 if(rrepPacket.getDestination() == this){

 SendRREQ(rrepPacket);

 return;

 }

/* forward packet to next hop, must exist */

 Node nextHop = this.routingTable.lookupRoute(rrepPacket.getDestination());

 Context ctx = new Context(numberOfContexts);

 for(int i = 0; i < numberOfContexts; i++){

 ctx.add(ContextHelper.getValue(i, this, nextHop));

 }

 RREPPacket newRrepPacket = new RREQPacket (rrepPacket);

 newRrepPacket.addPathAccumulator(this, ctx);

 ForwardRREP(newRrepPacket, nextHop);

}

Proposed algorithm 49

messages, while MNH creates new hops in the routing table entries. The proposed solution

is to merge these protocols and create a more robust algorithm with the properties of these

two. An improvement in the routing tables, concerning the MNH protocol, seems necessary

in order to consider the sequence numbers in the multiple hops, leading to more effective

routing.

The routing properties and periodical beaconing of AODV will still be used because it is a

requisite for a reactive protocol, to maintain its routing tables fresh and evaluate

environment changes. However, with the properties of AODV-PA, the overhead and

bandwidth consumption are reduced and the proposed algorithm will still be light and

require less storage capabilities from the nodes.

To integrate both algorithms, a modification of the AODV-PA must be done. AODV-PA

assumes that RREP messages are sent via unicast back to the source, but MNH assumes that

they are multicasted. This question is solved by the AODV-PA proposal.

So, when the RREQ and RREP messages are generated or forwarded, the solution acts like

nodes in AODV-PA, by appending their own address on those messages, before forwarding

them to the next node.

Every time that a node receives a RREQ or a RREP message, which contains all the nodes

traversed, including the source node, it will update the routing information about those

nodes. So, if a route to a node exists and if the base metric to any of the intermediate nodes

is less than the previous existing base metric the entry is updated. If the node is unknown, a

new entry is created, the sequence number is set to zero and the hop count is retrieved by

the message.

The route request procedure is the same for AODV, AODV-PA and MNH: the source sends

the RREQ message to its neighbours, and when one of the nodes knows the route to the

destination or it is the destination itself, it sends back a RREP message and discards the RREQ

message.

With this mechanism, each node can have more than one forward link and therefore when a

link fails, the AODV route maintenance procedure can be initiated (which can be inefficient).

If a link fails, the forwarding nodes can detect and invalidate the next hop of that failure in

50 Proposed algorithm

the routing table entry. In using this, the RERR messages can be avoided, leading to greater

network performance.

Taking an example of a source (S) to a destination (D) with the following routes:

 S → A → F → G → K → D

 S → B → E → I → J → D

 S → C → F → H → K → D

F has two next hops to D, G and H. If G fails, node F can choose immediately H as the next

hop and eliminate node G from the routing table entry. Next, if H fails, node F eliminates

node H from the routing table entry and informs the previous nodes (A and C), as they do

not have a route to D. They will also inform S, which will choose the other route. This will

avoid having to reinitiate the route discovery procedure.

Given the scenario presented in Figure 3.3, when S starts a route discovery these are the

path accumulations that arrive to D:

 S (0+8);(0+8)→ 1 (8+1);(8+8)→ 2 (9+2);(16+08)→ D (12);(24)

 S (0+8);(0+7)→ 3 (8+8);(8+6)→ 4 (16+8);(14+7)→ D (24);(21)

 S (0+8);(0+9)→ 5 (8+8);(8+5)→ 6 (16+8);(13+4)→ 7 (24+8);(17+7)→ D (32);(24)

 S (0+8);(0+8)→ 1 (8+7);(8+5)→ 3 (15+8);(13+6)→ 4 (23+8);(19+7)→ D (31);(26)

The CA/CB values are calculated right before the message propagation.

FIGURE 3.3 A POSSIBLE NETWORK

Proposed algorithm 51

When S receives all the RREP messages, its routing table to D is the following table (without

the rank entry given by the CA):

TABLE 3.1 EXAMPLE OF A PROPOSED ROUTING TABLE FOR NODE S

Node NextHop SeqNo CA CB rank

D 1 1256 12 24 #1

D 3 1256 24 21 #2

D 5 1256 32 24 #3

These messages can have duplicate information due to the path accumulation used in the

AODV-PA. This can be a problem due to extra data in the messages, but it brings more

information to S; this extra information can be used for example to unidirectional links issue.

An example of duplicated information in the context of Figure 3.3 is when S receives two

RREP from node 3, with different information; one of them corresponding to the route (D-4-

3) and the other (D-2-1-3).

When we choose to include in C-AODV the path accumulation typical of AODV-PA, we opted

by having more information in the messages and simplified routing tables in each node. This

was motivated by the consideration that the nodes can have limitation in storage and

processing capabilities.

An alternative solution would be to force the S node, to keep information about all the

pending RREQs. This way, when S sends a RREQ to a node, it stores that information based

on an RREQ ID in a structure like (RREQ_ID, NextNode, Destination, SequenceNo). With this

approach, when D receives a route request, it sends back the route reply, as usual, but also

with the information about the RREQ_ID and the NextNode (relatively to S). So, when S

receives a RREP, it can search in the RREQ waiting messages structure for a pair (RREQ_ID,

NextNode) and then retrieve the information and update the routing table information.

Due to the nature of the problem, the last approach seems to be a bad choice, because

there may be a high number of route discovery messages and that structure can become

52 Proposed algorithm

very large, and requiring lots of resources of the node, which must be avoided. So,

preferentially, a more complex message system is preferable.

C-AODV proof-of-concept 53

4. C-AODV PROOF-OF-CONCEPT

This chapter presents the choices made for the C-AODV proof-of-concept implementation.

First, the context dimensions chosen and their sources are presented. As explained before,

the C-AODV implementation will be built over the basic AODV algorithm implementation

included in NS-3 simulator. Before explaining how the extensions were performed, and an

explanation how to extend or create a routing algorithm in the NS-3 simulator is given.

4.1. CHOOSING CONTEXT TYPES

Picking upon the concept presented in Figure 1.1, the scenario that is proposed to be tested

is the following:

FIGURE 4.1 IMPLEMENTATION SCENARIO

The proof-of-concepts aims to prove the advantage of the use of knowledge from upper and

lower layers in order to improve the routing behavior. As explained before, the joint use of

upper layer context information (the context of the messages and its properties), and lower

layer context information (the physical status of the device or its links), allow better routing

decisions. In the implementation described:

 For lower layer context information (CoL), power consumption on sending the

message is considered;

 For upper layer context information (ToL), message delivery deadline is used.

54 C-AODV proof-of-concept

4.2. C-AODV IN NS-3

The proposed solution is implemented and was simulated in the nsnam (NS-3) simulator. The

Figure 4.2 presents an overview of NS-3 main components:

FIGURE 4.2 OVERVIEW OF NS-3 FEATURES

The definition of a routing algorithm is part of the Models feature of the NS-3 (Figure 4.2),

and after the configuration of the topology, it is possible to use it.

The routing information, as well as, the communication models such as WiFi or TCP schemes

are defined in Models. The Topology Definition is where the helper APIs and containers are

defined. The Configuration part is where the attributes and names are defined. The

Execution is the definition of the schedulers and emulation modes. And finally, the

Visualization and Output Analysis are responsible for the presentation of the simulation

results.

NS-3 includes an implementation of AODV that identifies the nodes using IPv4 addresses. Of

course the addresses are only used for guaranteeing an unique node identification, but the

traditional Internet routing protocols are not applicable.

4.2.1. INTRODUCING A NEW ROUTING ALGORITHM IN NS-3

Due to the difficulty of understanding all the internals of a network simulator like nsnam, the

solution passed by changing the previous implementation of the AODV algorithm that is

provided in the NS-3 package.

C-AODV proof-of-concept 55

The basic implementation of the AODV algorithm can be found in the directory ~/repos/ns-3-

allinone/ns-3-dev/src/routing/aodv.

The files waf and wscript are the files responsible for the compilation of the code in the

simulator. The files that were changed in order to implement the solution were the aodv-

packet.h and .c that handle the packets of the algorithm, like the RREQ and RREP packets;

the aodv-routing-protocol.h and aodv-routing-protocol.c is the main class for all the

algorithms and the aodv-rtable.h and aodv-rtable.c are responsible for the management of

the routing table. In order to implement and compile new classes to be used in the previous

implementation of the algorithm, some lines must be inserted in the wscript file in order to

indicate the building script to compile them too.

In order to use a new routing algorithm, the main class must extend the ipv4 “generic”

routing protocol existing in the simulator; the header to this class can be found in ipv4-

routing-protocol.h and the two main methods that must be extended are:

And the second:

(…)
/**
 * \brief Query routing cache for an existing route, for an outbound packet
 *
 * This lookup is used by transport protocols. It does not cause any
 * packet to be forwarded, and is synchronous. Can be used for
 * multicast or unicast. The Linux equivalent is ip_route_output()
 *
 * \param p packet to be routed. Note that this method may modify the packet.
 * Callers may also pass in a null pointer.
 * \param header input parameter (used to form key to search for the route)
 * \param oif Output interface Netdevice. May be zero, or may be bound via
 * socket options to a particular output interface.
 * \param sockerr Output parameter; socket errno
 *
 * \returns a code that indicates what happened in the lookup
 */

virtual Ptr<Ipv4Route> RouteOutput (Ptr<Packet> p, const Ipv4Header &header, Ptr<NetDevice> oif,
Socket::SocketErrno &sockerr) = 0;

(…)

56 C-AODV proof-of-concept

These methods are self-explanatory, and with them it is possible to define the handling of an

incoming packet including the decision about the routing.

As explained the packet headers come in the form of IPv4 headers, and are defined in the

file ipv4-header.h. To change this file, it is necessary to go down in the simulator kernel and

change many classes just to meet the “new” IPv4 packet. Facing this, the chosen strategy

was to use a field of the source identification for placing the context information. With this,

it is possible to change the lookup procedure in the aodv-rtable.cc and aodv-rtable.h files to

be aware of new parameters and to implement the new lookup behaviour.

This new routing algorithm can be mapped in the simulator stack in the Routing Module as

shown in the following figure:

FIGURE 4.3 NS-3 MODULES

(…)
/**
 * \brief Route an input packet (to be forwarded or locally delivered)
 *
 * This lookup is used in the forwarding process. The packet is
 * handed over to the Ipv4RoutingProtocol, and will get forwarded onward
 * by one of the callbacks. The Linux equivalent is ip_route_input().
 * There are four valid outcomes, and a matching callbacks to handle each.
 *
 * \param p received packet
 * \param header input parameter used to form a search key for a route
 * \param idev Pointer to ingress network device
 * \param ucb Callback for the case in which the packet is to be forwarded
 * as unicast
 * \param mcb Callback for the case in which the packet is to be forwarded
 * as multicast
 * \param lcb Callback for the case in which the packet is to be locally
 * delivered
 * \param ecb Callback to call if there is an error in forwarding
 * \returns true if the Ipv4RoutingProtocol takes responsibility for
 * forwarding or delivering the packet, false otherwise
 */
 virtual bool RouteInput (Ptr<const Packet> p, const Ipv4Header &header, Ptr<const NetDevice> idev,
 UnicastForwardCallback ucb, MulticastForwardCallback mcb,
 LocalDeliverCallback lcb, ErrorCallback ecb) = 0;
(…)

C-AODV proof-of-concept 57

4.2.2. CHANGING NS-3 AODV IMPLEMENTATION

Here the changes corresponding to MNH part of C-AODV are explained; a known destination

may have different entries in the routing table if there are different next hops (gateway). In

order to deal with the Context, it has to include more attributes, and the changes made to

accommodate this issue, were to reformulate all the data structure of the routing table. The

routing table was changed to:

TABLE 4.1 THE ROUTING TABLE

The CoL and ToL values represent the Cost of Link and Time of Link, which represent the

communication effort and the propagation time between hops. With this information, it is

possible to have different next hops to the same destination and a routing table entry that

can store information about the total cost of a link (power consumption corresponding to

58 C-AODV proof-of-concept

CoL) and the time spent on the use of the link (time that must subtracted from the deadline

indicated in ToL), as introduced in section 4.1.

Finally, and in order to implement the path accumulation with the notion of Context, the

AODV RREQ and RREP packets must be changed. The files responsible for the structure and

behavior of the packets are the aodv-packet.cc and the aodv-packet.h. A datastructure was

created in each RREQ and RREP packet for the representation of the path accumulation. This

data structure is std::list<PathAccumulation>, and the class PathAccumulation is defined in

the file PathAccumulation.cc and PathAccumulation.h. These two files represent a pair of

CoL/ToL to be inserted in the path accumulation of a packet.

When a node wants to forward a packet to another destination the code used is in aodv-

routing-protocol.cc; the changes to this file correspond to: instead of incrementing the

hopCount of the packet, the cost and the time of the link are updated; a new entry in the

path accumulation that includes CoL and ToL is added.

The class ContexHelper is defined in the files contextHelper.cc and contextHelper.h. It only

simulates how to obtain the values of cost and time between links with the methods int

getCostOfLink(Ipv4Address alice, Ipv4Address bob) and int getTimeOfLink(Ipv4Address alice,

Ipv4Address bob).

When a packet is transmitted between nodes, it must be serialized for transmission and

deserialized on reception. For a correct behaviour the nodes must know the size the

serialized versions of RREQ and RREP packets; the size of a packet can be obtained by

invoking the RreqHeader::GetSerializedSize () method:

 (…)

 hop = m_ContextHelper.getCostOfLink(src, receiver);

 rreqHeader.SetHopCount (rreqHeader.GetHopCount () + hop);

 time += m_ContextHelper.getTimeOfLink(src, receiver);

 rreqHeader.SetTimeCount (rreqHeader.GetTimeCount () + time);

 rreqHeader.AddToPA(receiver, hop, time);

 (…)

C-AODV proof-of-concept 59

After all these changes, the file wscript must be changed in order to guide the waf procedure

to compile the new classes and all the changes made. The wscript file is the following:

To compile the changes, it is only necessary to build the nsnam as shown before, or run a

test script.

-*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*-

 def build(bld):

 module = bld.create_ns3_module('aodv', ['internet-stack', 'contrib'])

 module.includes = '.'

 module.source = [

 'aodv-id-cache.cc',

 'aodv-dpd.cc',

 'aodv-rtable.cc',

 'aodv-rqueue.cc',

 'aodv-packet.cc',

 'aodv-neighbor.cc',

 'aodv-routing-protocol.cc',

 'aodv-test-suite.cc',

 'test/aodv-regression.cc',

 'test/bug-772.cc',

 'test/loopback.cc',

 'pathAccumulation.cc',

 'contextHelper.cc',

]

 headers = bld.new_task_gen('ns3header')

 headers.module = 'aodv'

 headers.source = [

 'aodv-id-cache.h',

 'aodv-dpd.h',

 'aodv-rtable.h',

 'aodv-rqueue.h',

 'aodv-packet.h',

 'aodv-neighbor.h',

 'aodv-routing-protocol.h',

 'pathAccumulation.h',

 'contextHelper.h',

 'linkedListPA.h',

 'linkedListRTable.h',

]

 (…)

 uint32_t

 RreqHeader::GetSerializedSize () const

 {

 int sizelist = 0;

 std::list<PathAccumulation> ll = m_pa;

 uint32_t sizeOfLinkedList = ll.size();

 for(uint32_t idx = 0; idx < sizeOfLinkedList; idx++)

 {

 sizelist += 12;

 }

 return (43 + sizelist);

 }

 (…)

Tests and Validation 61

5. TESTS AND VALIDATION

The goal of performing tests and validating their results is to verify if the proposal solution

satisfies the objectives previously defined. Testing is the process of searching for errors in an

implementation, by running experiments in a controlled environment. These tests are used

to gain maturity and confidence in the implementation, in order to use it in a real

environment. Tests can prove the existence of errors in the implementation, but the

inexistence of any error cannot prove that the experiment does not have errors (Tretmans,

2001). In order to perform the validation of the implementation, it is necessary to define a

methodology of tests and a set of tests to be performed as a proof of concept.

Each individual test performed is presented in a separate section with the following

information:

 Setup and configuration;

 Results obtained;

 Test Conclusions;

We chose the tests enumerated below, trying to define a separated goal to each one. The

performed tests were:

 Brief communication test: to prove the simple communication capability of the

algorithm;

 Test in a controlled network: the goal is to compare the performance of C-AODV with

the base AODV, in a fixed setting;

 Mobility test: to prove the correctness of the algorithm when the network topology

changes or is segmented;

 Test for extensibility: aims to analyse the behaviour of the algorithm against AODV

when the network has a random behaviour (nodes can change position and links can

fail).

The metrics used for evaluation were:

1- Message delivery time: the traditional ping command can be used;

2- Number of lost messages: the ping command also supplies this information;

62 Tests and Validation

3- Cost in power to deliver a message: in a fixed network configuration, the results of the

ping command can be used to calculate this metric; in situations when the route

between the nodes can change, the ping command must be extended for supplying

this information; this modification was not possible;

4- Number of messages that could not be delivered in time: post processing of the ping

results allows the calculation of these values.

As explained above, all the tests were made running the ping (V4Ping) application existent in

the NS-3 simulator. According to the official NS-3 documentation, it is “an application which

sends one ICMP ECHO request, waits for a REPLYs and reports the calculated RTT.”. Its

inheritance diagram is the following:

FIGURE 5.1 INHERITANCE DIAGRAM OF V4PING

Each test corresponds to the running of C++ program (“script” in NS-3 terminology) that

invokes methods for:

 Creating the required number of nodes and defining its characteristics;

 Establishing the topology needed; this includes the location of the node, its behaviour

(fixed or mobile); if a node is mobile initial and final positions as well as speed must

be defined;

 Creating and instance of ping command (implemented in the V4PingHelper class) in

the source node, in the invocation the number ICMP ECHO requests sent and the

waiting time between them is defined.

Tests and Validation 63

5.1. BRIEF COMMUNICATION TEST

This test presents a basic communication test between nodes; the goal is to show that using

the C-AODV the nodes can communicate.

5.1.1. SETUP AND CONFIGURATION

In this test, the configuration used can be found in the example file, located in aodv.cc.

Figure 5.2 presents a flat topology where the nodes are distributed in a 1-dimensional grid

and the first node tries to communicate with the last node with the ping application; in the

beginning Node 1 does not know the route to Node 6.

FIGURE 5.2 BRIEF COMMUNICATION TOPOLOGY

The script for performing the test was built according to the steps described before. The

script defined the distance between the nodes and the total time of the test.

5.1.2. RESULTS OBTAINED

The results obtained were the following:

In the end of the test, the routing table of Node 2 was:

/* AODV */
Creating 6 nodes 150 m apart.
Starting simulation for 20 s ...
PING 11.1.1.6 56(84) bytes of data.
64 bytes from 11.1.1.6: icmp_seq=0 ttl=60 time=15 ms
64 bytes from 11.1.1.6: icmp_seq=1 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=2 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=3 ttl=60 time=4 ms
64 bytes from 11.1.1.6: icmp_seq=4 ttl=60 time=4 ms
64 bytes from 11.1.1.6: icmp_seq=5 ttl=60 time=4 ms
64 bytes from 11.1.1.6: icmp_seq=6 ttl=60 time=4 ms
--- 11.1.1.6 ping statistics ---
20 packets transmitted, 7 received, 65% packet loss, time
19999ms
rtt min/avg/max/mdev = 4/5.857/15/4.059 ms

/* C-AODV */
Creating 6 nodes 150 m apart.
Starting simulation for 20 s ...
PING 11.1.1.6 56(84) bytes of data.
64 bytes from 11.1.1.6: icmp_seq=0 ttl=60 time=16 ms
64 bytes from 11.1.1.6: icmp_seq=1 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=2 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=3 ttl=60 time=4 ms
64 bytes from 11.1.1.6: icmp_seq=4 ttl=60 time=6 ms
64 bytes from 11.1.1.6: icmp_seq=5 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=6 ttl=60 time=5 ms
--- 11.1.1.6 ping statistics ---
20 packets transmitted, 7 received, 65% packet loss, time
19999ms
rtt min/avg/max/mdev = 4/6.571/16/4.198 ms

64 Tests and Validation

For comparison purposes, the routing table for the same node using the AODV algorithm is

also presented:

5.1.3. TEST CONCLUSIONS

Analyzing the results obtained by the output of the application, we can conclude:

 C-AODV works correctly;

 C-AODV shows slightly worst values than plain AODV. This may occur because the

complexity of processing the algorithm and the structures used; while in AODV the

routing table lookup is direct, the C-AODV has to navigate through a data structure

and retrieve the value, and it has to do the same to insert new values existing in the

path accumulation of messages.

The output of the routing tables of node 11.1.0.2 was chosen because it is an intermediate

node and so, it was crossed by many control messages. The routing table of the AODV

algorithm was as expected and very similar to the one for C-AODV. Despite some erroneous

entries, like 0.0.0.61, which will only contribute for to the increase of the routing table, it is

possible to see that its routing table is bigger than the equivalent for AODV. The path

accumulation component of the algorithm worked as expected.

/* AODV
 Routing table of 11.0.1.2
*/
AODV Routing table:
Destination Gateway Interface Flag Expire Hops
11.1.1.1 11.1.1.1 11.1.1.2 UP 6.0085 1
11.1.1.3 11.1.1.3 11.1.1.2 UP 6.99954 1
11.1.1.6 11.1.1.3 11.1.1.2 DOWN 3.0085 4
11.1.1.255 11.1.1.255 11.1.1.2 UP 9.22337e+09 1
127.0.0.1 127.0.0.1 127.0.0.1 UP 9.22337e+09 1

/* C-AODV
 Routing table of 11.0.1.2
*/
AODV Routing table:
Destination Gateway Interface Flag Expire Cost Time
0.0.0.61 11.1.1.3 11.1.1.2 UP 0.8 60 570
11.1.1.1 11.1.1.1 11.1.1.2 UP 5.59446 0 0
11.1.1.3 11.1.1.3 11.1.1.2 UP 0.8 60 570
11.1.1.4 11.1.1.3 11.1.1.2 UP 0.8 60 570
11.1.1.5 11.1.1.3 11.1.1.2 UP 0.8 60 570
11.1.1.255 11.1.1.255 11.1.1.2 UP 9.22337e+09 1 1
127.0.0.1 127.0.0.1 127.0.0.1 UP 9.22337e+09 1 1

Tests and Validation 65

5.2. TEST IN A CONTROLLED NETWORK

This test uses a fixed configuration with the goal of comparing C-AODV and AODV

performance.

5.2.1. SETUP AND CONFIGURATION

The network topology used in this test is the following:

FIGURE 5.3 SIMPLE TEST CONFIGURATION

The values of Time and Power are the ones used in C-AODV for context information. These

values were previously defined in the file contextHelper.cc.

 A

 B

 C

 D E

 F

 Time = 10 Time = 100

 Power = 100 Power = 100

 Time = 10

 Power = 10

 Time = 20 Time = 20 Time = 20

 Power = 1000 Power = 100 Power = 1000

66 Tests and Validation

In order to create this topology, the following script was implemented:

 (…)

 // creation of node containers for the point-to-point (p2p) pairs

 NodeContainer nodesFN;

 nodesFN.Create (2);

 NodeContainer nodesNA;

 nodesNA.Create (2);

 NodeContainer nodesAB;

 nodesAB.Add (nodesNA.Get (1));

 nodesAB.Create (1);

 (…)

 // creation of a p2p connection

 PointToPointHelper pointToPoint;

 pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

 pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

 // install p2p in node containers

 NetDeviceContainer devicesFN;

 devicesFN = pointToPoint.Install (nodesFN);

 NetDeviceContainer devicesNA;

 devicesNA = pointToPoint.Install (nodesNA);

 NetDeviceContainer devicesAB;

 devicesAB = pointToPoint.Install (nodesAB);

 (…)

 // install stack

 AodvHelper aodv;

 InternetStackHelper stack;

 stack.SetRoutingHelper (aodv);

 stack.Install (nodesNA.Get (0));

 stack.Install (nodesNA.Get (1));

 (…)

 // assign ip addresses

 Ipv4AddressHelper addressFN;

 addressFN.SetBase ("11.1.123.0", "255.255.255.0");

 Ipv4InterfaceContainer interfacesFN = addressFN.Assign (devicesFN);

 Ipv4AddressHelper addressNA;

 addressNA.SetBase ("11.1.1.0", "255.255.255.0");

 Ipv4InterfaceContainer interfacesNA = addressNA.Assign (devicesNA);

 Ipv4AddressHelper addressAB;

 addressAB.SetBase ("11.1.2.0", "255.255.255.0");

 Ipv4InterfaceContainer interfacesAB = addressAB.Assign (devicesAB);

 (…)

 // install and run Ping application

 V4PingHelper ping1 (interfacesFN.GetAddress (0));

 ping1.SetAttribute ("Verbose", BooleanValue (true));

 ApplicationContainer p1 = ping1.Install (nodesNA.Get (1));

 p1.Start (Seconds (0));

 p1.Stop (Seconds (20) - Seconds(0.001));

 V4PingHelper ping2 (interfacesBC.GetAddress (0));

 ping2.SetAttribute ("Verbose", BooleanValue (true));

 ApplicationContainer p2 = ping2.Install (nodesFN.Get (0));

 p2.Start (Seconds (40));

 p2.Stop (Seconds (60) - Seconds(0.001));

 Simulator::Run ();

 Simulator::Destroy ();

 return 0;

 }

Tests and Validation 67

The node containers are necessary because the Point-to-Point connections in nsnam must

have two nodes in each container. This assertion can be found in the file point-to-point-

helper.cc and stands for the assertion to that size when installing a point-to-point connection

at a container:

Therefore, the devices need to have more than one interface to communicate with other

devices, which is similar to the situation were a desktop computer has multiple network

cards. So, Node A will have two interfaces (11.1.1.2 and 11.1.2.1), Node B will have three

interfaces (11.1.2.2, 11.1.3.1 and 11.1.5.1, Figure 5.4), node C will have two interfaces

(11.1.3.2 and 11.1.4.1), and so on, as presented in the script and in Figure 5.3. Finally, two

instances of the ping application were created: the first where Node A pings Node F, and a

second where Node F pings Node B. The expected result is that Node F can re-use the

information of the path accumulation that travelled the first ping, and so, it is not necessary

to send a RREQ message to discover the Node B.

FIGURE 5.4 NODE B IN CONTROLLED NETWORK

Finally, and in order to implement awareness in context information, the routing mechanism

must acquire information from a message in order to infer the best route to forward it. To

do this, another method was created in the rtable.cc and rtable.h. With this additional

method, C-AODV can separate the lookup in the message discovery and maintenance

phases, from the message forwarding. The corresponding code is presented below:

 (…)

 NetDeviceContainer

 PointToPointHelper::Install (NodeContainer c)

 {

 NS_ASSERT (c.GetN () == 2);

 return Install (c.Get (0), c.Get (1));

 }

 (…)

68 Tests and Validation

Because changing a packet in the core of the simulator can introduce many dependency

problems, it was decided to use the integer value that represents the packet source in the

header to define the message’s priority. The messages originated by the ping command can

be:

 “normal” (without deadline specification): in this case the routing algorithm only uses

the traditional cost considerations. In this case AODV and C-AODV should give similar

results;

 “special” (with deadline specification): here the C-AODV uses the context information.

In this type of test C-AODV should get a better rate of delivered messages in time.

For performing these tests we had to modify aodv-routing-protocol.cc in order to modify the

lookup methods for a message; the methods RoutingTable::LookupValidRouteForMessage

and RoutingTable::LookupRouteForMessage perform the routing table management.

bool

RoutingTable::LookupRouteForMessage (Ipv4Address id, RoutingTableEntry & rt,

const Ipv4Header & header){

(…)

 unsigned int b = header.GetSource().Get();

 int d = (int)b;

 int mod = d;

 if(mod > 4){

 (…)

 for (; j != listOfRoutingTableEntriesFound.end (); j++)

 {

 if((*j).GetTimes() < bestTime)

 {

 bestTime = (*j).GetTimes();

 rt = (*j);

 }

 }

 (…)

 }

 (…)

 for (; j != listOfRoutingTableEntriesFound.end (); j++)

 {

 if((*j).GetHop() < bestCost)

 {

 bestCost = (*j).GetHop();

 rt = (*j);

 }

 }

 return true;

 }

(…)

bool

RoutingTable::LookupValidRouteForMessage (Ipv4Address id, RoutingTableEntry &

rt, const Ipv4Header & header){

 if (! LookupRouteForMessage (id, rt, header)){

 return false;

 }

 return (rt.GetFlag () == VALID);

}

Tests and Validation 69

5.2.2. RESULTS OBTAINED

The application ping was also used in this test, not only in order to guarantee a simple

connectivity test, but because it shows some values that can be used for later processing.

The routing tables for both algorithm were as follows:

The ping results were:

/* NS3 AODV
Routing table of Node F after the first discovery phase

*/
AODV Routing table
Destination Gateway Interface Flag Expire Hops
11.1.2.1 11.1.4.1 11.1.4.2 UP 2.00772 3
11.1.4.1 11.1.4.1 11.1.4.2 UP 2.99741 1
11.1.4.255 11.1.4.255 11.1.4.2 UP 9.22337e+09 1
11.1.7.1 11.1.7.1 11.1.7.2 UP 2.00051 1
11.1.7.255 11.1.7.255 11.1.7.2 UP 9.22337e+09 1
11.1.123.2 11.1.123.2 11.1.123.1 UP 3 1
11.1.123.255 11.1.123.255 11.1.123.1 UP 9.22337e+09 1
127.0.0.1 127.0.0.1 127.0.0.1 UP 9.22337e+09 1

/* C-AODV
 Routing table of Node F after the discovery phase
*/
AODV Routing table:
Destination Gateway Interface Flag Expire Cost Time
11.1.2.1 11.1.4.1 11.1.4.2 UP -10.4024 210 30
11.1.3.1 11.1.4.1 11.1.4.2 UP -10.4022 200 110
11.1.3.1 11.1.7.1 11.1.7.2 UP -162.4 2100 50
11.1.3.2 11.1.4.1 11.1.4.2 UP -2.40236 100 10
11.1.4.1 11.1.4.1 11.1.4.2 UP -2.4022 100 100
11.1.4.255 11.1.4.255 11.1.4.2 UP 9.22337e+09 1 1
11.1.5.2 11.1.7.1 11.1.7.2 UP -154.4 2000 40
11.1.6.2 11.1.7.1 11.1.7.2 UP -2.40018 100 20
11.1.7.1 11.1.7.1 11.1.7.2 UP -74.4 1000 20
11.1.7.255 11.1.7.255 11.1.7.2 UP 9.22337e+09 1 1
11.1.123.2 11.1.123.2 11.1.123.1 UP 2.99831 0 0
11.1.123.255 11.1.123.255 11.1.123.1 UP 9.22337e+09 1 1
127.0.0.1 127.0.0.1 127.0.0.1 UP 9.22337e+09 1 1

70 Tests and Validation

5.2.3. TEST CONCLUSIONS

With this test proved that the C-AODV can use context information. The following table

compares the context information in Node F in the end of simulation with the expected ones

(the erroneous values (red) are shown against the correct ones (green)):

TABLE 5.1 CONTROLED TEST CONCLUSIONS

Node F Cost Time Cost (expected) Time (expected)

11.1.2.1 210 30 210 70

11.1.3.1 (from Node C) 200 110 200 110

11.1.3.1 (from Node E) 2100 50 2100 60

11.1.3.2 100 10 100 100

11.1.4.1 100 100 100 100

11.1.5.2 2000 40 1100 40

11.1.7.1 1000 20 100 20

/* NS3 AODV
First ping
*/
PING 11.1.123.1 56(84) bytes of data.
64 bytes from 11.1.123.1: icmp_seq=0 ttl=62 time=25 ms
64 bytes from 11.1.123.1: icmp_seq=1 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=2 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=3 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=4 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=5 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=6 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=7 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=8 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=9 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=10 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=11 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=12 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=13 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=14 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=15 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=16 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=17 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=18 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=19 ttl=62 time=12 ms
--- 11.1.123.1 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time
19999ms
rtt min/avg/max/mdev = 12/12.65/25/2.907 ms

/* C-AODV
First ping
*/
PING 11.1.123.1 56(84) bytes of data.
64 bytes from 11.1.123.1: icmp_seq=0 ttl=62 time=25 ms
64 bytes from 11.1.123.1: icmp_seq=1 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=2 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=3 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=4 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=5 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=6 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=7 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=8 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=9 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=10 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=11 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=12 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=13 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=14 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=15 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=16 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=17 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=18 ttl=62 time=12 ms
64 bytes from 11.1.123.1: icmp_seq=19 ttl=62 time=12 ms
--- 11.1.123.1 ping statistics ---
20 packets transmitted, 20 received, 0% packet loss, time
19999ms
rtt min/avg/max/mdev = 12/12.65/25/2.907 ms

Tests and Validation 71

As mentioned before, the context values were defined previously; in order to set the desired

values for cost and time; as the algorithm is not responsible for its calculations, it only has to

retrieve them from the context mechanism and apply them in the routing tables. All the

values were well inserted, however some values are wrong despite the correct differences

between paths, which could still lead to the correct solution.

The paths “seen” by the algorithm for the Node B were two with the respective <CoL, ToL>

pairs: <2100, 60> and <200, 100>, and as the message was flagged with priority, the

algorithm choose the path that starts from Node E aside from Node C, as expected. The

behavior of AODV base, was the expected because it does not take consider the context

information; it also does not use multiple hops to a same destination.

This test was also useful for presenting the importance of the path accumulation existent in

the algorithm. When trying to find node B, C-AODV did not use the flooding procedure while

AODV did it; the AODV algorithm in Node F had to calculate the route to Node B, performing

another discovery phase which generated the following routing table:

This proves that AODV does not take in consideration the multiple hops to a given

destination nor the context information. Routing the packets through Node C would have

less power consumption, but would also waste more time in communication, which is not

desirable to the proposed message priority. AODV cannot adapt itself to context

information, while the C-AODV can.

Another important feature shown is that this protocol does not introduce load in the

network, because the outputs from both AODV and C-AODV are exactly the same.

The following table makes an overview of the advantages of C-AODV over AODV:

/* NS3 AODV
Routing table of Node F after the second discovery phase

*/
AODV Routing table
Destination Gateway Interface Flag Expire Hops
11.1.3.1 11.1.4.1 11.1.4.2 UP 2.01139 2
11.1.4.1 11.1.4.1 11.1.4.2 UP 2.97865 1
11.1.4.255 11.1.4.255 11.1.4.2 UP 9.22337e+09 1
11.1.7.1 11.1.7.1 11.1.7.2 UP 9.99744 1
11.1.7.255 11.1.7.255 11.1.7.2 UP 9.22337e+09 1
11.1.123.2 11.1.123.2 11.1.123.1 UP 3 1
11.1.123.255 11.1.123.255 11.1.123.1 UP 9.22337e+09 1
127.0.0.1 127.0.0.1 127.0.0.1 UP 9.22337e+09 1

72 Tests and Validation

TABLE 5.2 COMPARISON IN CONTROLLED NETWORK

 Multiple routes Path accumulation Save network flooding Context aware Ad hoc Light performance

AODV • •

C-AODV • • • • • •

5.3. MOBILITY TEST

In this test, one or more nodes can change their location; this change can destroy and create

connections with neighbours. This is very important in order to evaluate the conformance of

the algorithm facing a network that can change its topology.

5.3.1. SETUP AND CONFIGURATION

The first procedure was to create the usual script that deploy a certain number of nodes

according to a known topology, and then change a certain node in order to evaluate the

behavior of the algorithm.

The script created is very similar to the script in the Brief communication test, however it

was necessary to schedule a task to change the node’s position:

Tests and Validation 73

With this configuration, after five seconds, the last node changes its position from (750, 0, 0)

to (2000, 0, 0) and the first node from (0, 0, 0) to (2030, 0, 0). This configuration was chosen

because the last node and the first node can change their position and communicate

without the influence of the other nodes. A more schematic presentation is presented next:

FIGURE 5.5 MOBILITY TEST CHANGES

5.3.2. RESULTS OBTAINED

The ping results were the following:

(…)

static void

 CallChanges(TestMobility *model)

 {

 model->ChangePos();

 }

int main (int argc, char **argv)

 {

(…)

 Simulator::Schedule(Seconds(5.0), &CallChanges, &testMob);

(…)

 }

(…)

 void

 AodvExample::ChangePos()

 {

 Ptr<Node> node = nodes.Get(size - 1);

 Ptr<MobilityModel> mob = node->GetObject<MobilityModel>();

 Vector pos = mob->GetPosition();

 Vector newPos = Vector(2000.0,0.0,0.0);

 mob->SetPosition(newPos);

 node = nodes.Get(0);

 mob = node->GetObject<MobilityModel>();

 pos = mob->GetPosition();

 newPos = Vector(2030.0,0.0,0.0);

 mob->SetPosition(newPos);

 }

(…)

74 Tests and Validation

And the corresponding routing tables:

5.3.3. TEST CONCLUSIONS

With this test, it was possible to conclude that the proposed algorithm could adapt itself

with the same behaviour as the basic AODV. This is desirable due to the simple configuration

/* AODV
*/
AODV Routing table:
Destination Gateway Interface Flag Expire Hops
11.1.1.2 11.1.1.2 11.1.1.1 DOWN 0.930417 1
11.1.1.6 11.1.1.6 11.1.1.1 UP 2.92068 1
11.1.1.255 11.1.1.255 11.1.1.1 UP 9.22337e+09 1
127.0.0.1 127.0.0.1 127.0.0.1 UP 9.22337e+09 1

/* C-AODV
*/
AODV Routing table:
Destination Gateway Interface Flag Expire Cost Time
0.0.0.61 11.1.1.2 11.1.1.1 UP -18.1926 60 570
11.1.1.2 11.1.1.2 11.1.1.1 UP -11 0 0
11.1.1.3 11.1.1.2 11.1.1.1 UP -18.1926 60 570
11.1.1.4 11.1.1.2 11.1.1.1 UP -18.1926 60 570
11.1.1.5 11.1.1.2 11.1.1.1 UP -18.1926 60 570
11.1.1.6 11.1.1.6 11.1.1.1 UP 2.08074 0 0
11.1.1.255 11.1.1.255 11.1.1.1 UP 9.22337e+09 1 1
127.0.0.1 127.0.0.1 127.0.0.1 UP 9.22337e+09 1 1

/* AODV
*/

Creating 6 nodes 150 m apart.
Starting simulation for 30 s ...
PING 11.1.1.6 56(84) bytes of data.
64 bytes from 11.1.1.6: icmp_seq=0 ttl=60 time=15 ms
64 bytes from 11.1.1.6: icmp_seq=1 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=2 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=3 ttl=60 time=4 ms
64 bytes from 11.1.1.6: icmp_seq=4 ttl=60 time=4 ms

(changing nodes position)
64 bytes from 11.1.1.6: icmp_seq=6 ttl=60 time=1 ms
64 bytes from 11.1.1.6: icmp_seq=7 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=8 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=9 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=10 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=11 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=12 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=13 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=14 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=15 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=16 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=17 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=18 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=19 ttl=60 time=0 ms

--- 11.1.1.6 ping statistics ---
20 packets transmitted, 19 received, 5% packet loss, time
19999ms
rtt min/avg/max/mdev = 0/1.789/15/3.706 ms

/* C-AODV
*/

Creating 6 nodes 150 m apart.
Starting simulation for 30 s ...
PING 11.1.1.6 56(84) bytes of data.
64 bytes from 11.1.1.6: icmp_seq=0 ttl=60 time=16 ms
64 bytes from 11.1.1.6: icmp_seq=1 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=2 ttl=60 time=5 ms
64 bytes from 11.1.1.6: icmp_seq=3 ttl=60 time=4 ms
64 bytes from 11.1.1.6: icmp_seq=4 ttl=60 time=6 ms

(changing nodes position)
64 bytes from 11.1.1.6: icmp_seq=6 ttl=60 time=1 ms
64 bytes from 11.1.1.6: icmp_seq=7 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=8 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=9 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=10 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=11 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=12 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=13 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=14 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=15 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=16 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=17 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=18 ttl=60 time=0 ms
64 bytes from 11.1.1.6: icmp_seq=19 ttl=60 time=0 ms

--- 11.1.1.6 ping statistics ---
20 packets transmitted, 19 received, 5% packet loss, time
19999ms
rtt min/avg/max/mdev = 0/1.947/16/3.993 ms

Tests and Validation 75

of the network and the mobility model. The issue that not all entries in the routing tables of

the changing nodes in C-AODV were correct is still present, however, the test was successful

and it was possible to prove that the algorithm can work under changes in the network

topology.

5.4. TEST FOR EXTENSIBILITY

This test aims to present the behaviour of the algorithm in a dynamic network, with n nodes

that may change their locations during time in a random way. In order to create this

environment, a different script was created. Its explanation is giving the following.

5.4.1. SETUP AND CONFIGURATION

The NS-3 simulator implements some models in order to simulate mobility. The simulation

consists in deploying a number of nodes in a confined area and allowing these nodes to

“move” to a random position, with random velocity. This model is called

ns3::RandomWalk2dMobilityModel and, as shown in the documentation of the simulator,

“each instance moves with a speed and direction chosen at random with the user-provided

random variables until either a fixed distance has been walked or until a fixed amount of

time. If we hit one of the boundaries (specified by a rectangle), of the model, we rebound on

the boundary with a reflexive angle and speed. This model is often identified as a brownian

motion model.” This Brownian model is a process inspired in random movement of small

particles suspended in a fluid, studied by Robert Brown in 1827 (Chang, 1999). This

“random” process was tested and has always has the same behaviour, which allows the

reproduction of tests.

76 Tests and Validation

FIGURE 5.6 BROWNIAN MOVEMENT IN TWO PATHS (COHEN, 1986)

The script for this test consists in the definition of a given number of wireless devices; this

value was changed in order to present different test results and after this, they were

deployed in a grid were can move around. According to the official documentation of NS-3,

the grid has the following parameters:

 GridWidth: The number of objects layed out on a line;

 MinX: The x coordinate where the grid starts;

 MinY: The y coordinate where the grid starts;

 DeltaX: The x space between objects;

 DeltaY: The y space between objects;

 LayoutType: The type of layout. Row-oriented or column-oriented.

In preliminary tests the influence of these parameters in the behaviour of network was

tested. The conclusion was that the variation of the GridWidth parameter implied more

changes in the behaviour of the network. According to this, GridWidth was chosen as a

parameter in the tests, along with the number of nodes and ping running time, since the

ping application was used again.

A part of the implemented script is presented next:

Tests and Validation 77

 (…)

 int nWifi = 5;

 bool verbose = true;

 int totalTime = 10;

 int gridWidth = 3;

 (…)

 NodeContainer wifiStaNodes;

 wifiStaNodes.Create (nWifi);

 NodeContainer wifiApNode;

 wifiApNode.Create(1);

 YansWifiChannelHelper channel = YansWifiChannelHelper::Default ();

 YansWifiPhyHelper phy = YansWifiPhyHelper::Default ();

 phy.SetChannel (channel.Create ());

 WifiHelper wifi = WifiHelper::Default ();

 wifi.SetRemoteStationManager ("ns3::AarfWifiManager");

 NqosWifiMacHelper mac = NqosWifiMacHelper::Default ();

 Ssid ssid = Ssid ("ns-3-ssid");

 mac.SetType ("ns3::NqstaWifiMac",

 "Ssid", SsidValue (ssid),

 "ActiveProbing", BooleanValue (false));

 NetDeviceContainer staDevices;

 staDevices = wifi.Install (phy, mac, wifiStaNodes);

 (…)

 MobilityHelper mobility;

 mobility.SetPositionAllocator ("ns3::GridPositionAllocator",

 "MinX", DoubleValue (0.0),

 "MinY", DoubleValue (0.0),

 "DeltaX", DoubleValue (5.0),

 "DeltaY", DoubleValue (10.0),

 "GridWidth", UintegerValue (gridWidth),

 "LayoutType", StringValue ("RowFirst"));

 mobility.SetMobilityModel ("ns3::RandomWalk2dMobilityModel",

 "Bounds", RectangleValue (Rectangle (-5000, 5000, -5000, 5000)));

 mobility.Install (wifiStaNodes);

 mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

 mobility.Install (wifiApNode);

 AodvHelper aodv;

 InternetStackHelper stack;

 stack.SetRoutingHelper (aodv);

 stack.Install (wifiApNode);

 stack.Install (wifiStaNodes);

 Ipv4AddressHelper address;

 address.SetBase ("11.1.0.0", "255.255.0.0");

 Ipv4InterfaceContainer wifiInterfaces;

 wifiInterfaces = address.Assign (staDevices);

 address.Assign (apDevices);

 V4PingHelper ping1 (wifiInterfaces.GetAddress (0));

 ping1.SetAttribute ("Verbose", BooleanValue (true));

 ApplicationContainer p1 = ping1.Install (wifiStaNodes.Get (nWifi - 1));

 p1.Start (Seconds (0));

 p1.Stop (Seconds (totalTime) - Seconds(0.001));

 (…)

78 Tests and Validation

In order to simulate some context information, the ContextHelper class was changed to

create different values for different communication costs for a given pair of nodes. To do this

in an uncontrolled network, the integer values of both identifiers were added and then the

module operator of 2 was applied, as shown below:

The same behaviour was used for the ContextHelper::getTimeOfLink (Ipv4Address alice,

Ipv4Address bob) method, but the values used were 10 and 100, respectively. The changes

introduced in this way were not very. A good option would be to use the Euclidean distance

between two nodes, but the methods to retrieve a node location are only accessible at a

high level layer and the simulator does not allow them to be used in the routing layer.

In this test, it is difficult to evaluate the joint effect of changes in context information,

number of hops and path accumulation. Therefore, a set of test were made, in order to

create some tables and draw some conclusions. These are the tests with their respective

parameters:

 int ContextHelper::getCostOfLink (Ipv4Address alice, Ipv4Address bob)

 {

 if ((alice.Get() + bob.Get()) % 2 == 0){

 return 10;

 }

 return 1000;

 }

Tests and Validation 79

TABLE 5.3 PARAMETERS FOR THE TEST

#test No of nodes Time Gridwidth #test No of nodes Time Gridwidth

01 10 20 3 13 10 20 10

02 20 20 3 14 20 20 10

03 50 20 3 15 50 20 10

04 60 20 3 16 60 20 10

05 10 50 3 17 10 50 10

06 20 50 3 18 20 50 10

07 50 50 3 19 50 50 10

08 60 50 3 20 60 50 10

09 10 100 3 21 10 100 10

10 20 100 3 22 20 100 10

11 50 100 3 23 50 100 10

12 60 100 3 24 60 100 10

To perform all these tests, a shell script was created due to the high number of tests and

their durations. This script is called MobilityTestScript.sh and a part of the script is as follows:

#!/bin/bash

echo "start 1"

START=$(date +%s)

./waf --run 'aodvtest --nWifi=10 --totalTime=20 --gridWidth=3' > res/aodv10-

20-3.out

END=$(date +%s)

DIFF=$(($END - $START))

echo "it took $DIFF seconds"

(…)

echo "start 24"

START=(date +%s)

./waf --run 'aodvtest --nWifi=60 --totalTime=100 --gridWidth=10' >

res/aodv60-100-10.out

(…)

80 Tests and Validation

Finally, for the given script, the node accessed by the method wifiInterfaces.GetAddress (0)

is at the coordinates (0,0) and the last, for the configuration “--nWifi=10 --totalTime=20 --

gridWidth=3” is at the coordinates (5,60). This configuration could be tested by inserting the

following code in the script:

5.4.2. RESULTS OBTAINED

The set of all tests for both algorithms originated the following table:

 Ptr<Node> node = wifiStaNodes.Get (nWifi - 1);

 Ptr<MobilityModel> mob = node->GetObject<MobilityModel> ();

 Vector pos = mob->GetPosition ();

 std::cout << pos.x << ", " << pos.y << "\n";

 node = wifiStaNodes.Get (0);

 mob = node->GetObject<MobilityModel> ();

 pos = mob->GetPosition ();

 std::cout << pos.x << ", " << pos.y << "\n";

Tests and Validation 81

TABLE 5.4 EXTENSIBILITY RESULTS

Parameters % loss

Nodes No Ping time gridWidth AODV C-AODV

10 20 3 0 0

10 20 10 0 0

10 50 3 0 0

10 50 10 0 0

10 100 3 0 0

10 100 10 0 0

20 20 3 0 0

20 20 10 0 0

20 50 3 0 0

20 50 10 0 0

20 100 3 0 0

20 100 10 0 0

50 20 3 0 0

50 20 10 0 0

50 50 3 0 0

50 50 10 0 0

50 100 3 1 0

50 100 10 0 0

60 20 3 100 100

60 20 10 0 0

60 50 3 100 100

60 50 10 0 0

60 100 3 100 100

60 100 10 0 0

5.4.3. TEST CONCLUSIONS

This test accessed the basic functionally of the proposed solution in a dynamic network

where nodes can change their location, thus introducing mobility and size concerns.

Changing some parameters of the simulation it was possible to obtain some conclusions and

compare them to the implementation of the AODV algorithm in NS3. The C-AODV shows the

same results in packet delivery rate as AODV for the same changes in the parameters, which

allow us to conclude that C-AODV does not introduce significant overhead in the network

with the tested properties. The context information could only tested in a simple way, and

unfortunately, it was not very accurate to reach reliable conclusions, but following the

82 Tests and Validation

previous tests, the C-AODV will always search for the best route for a priority message.

Tests and Validation 83

5.5. VERDICT AND SOLUTION CONFORMANCE

The results obtained in all tests show that the proposed algorithm can operate in an ad-hoc

network, like the AODV algorithm. Despite some erroneous values explained by the initial

phase of the algorithm, it was possible to prove that this is a distance vector algorithm for ad

hoc networks, that can meet all the issues presented in chapter 1.2.

All the tests were performed and compared to the results obtained by the AODV basic

algorithm, however with the Test for extensibility, it was more difficult to evaluate the C-

AODV because AODV base does not use any context information nor multiple routes to the

same destination.

Tests 5.2 and 5.3 were the most important because they prove the true nature of the C-

AODV, its reactive nature based on AODV, its network topology awareness, with AODV-PA

and MNH and finally, the concept of Context introduced in the routing mechanism, that

enables a more intelligent routing behaviour in order to provide a better quality of service in

the network.

This initial propose of the solution meets the expectations because it is only a primary

approach to the algorithm and not a final solution for education or industrial usage.

84 Tests and Validation

Conclusions and future work 85

6. CONCLUSIONS AND FUTURE WORK

With this dissertation, it was possible to obtain a better understanding of routing algorithms,

more specifically, the reactive routing algorithms and the variants of the AODV algorithm,

such as AODV-PA and MNH.

After the study above it was possible to propose C-AODV, a new routing algorithm based on

AODV-PA and MNH. The main novelty was the introduction of the concept of Context, which

can bring environmental information to the routing decisions. C-AODV was tested using the

NS-3 simulator. Although, the lack of time prevented us from conducting extensive tests, the

data obtained in the simulations suggest that C-AODV can perform well in dynamic

situations, without significant performance overheads.

With the limitations associated to the lack of more extensive tests we can claim that AODV

has the characteristics that were required in the analysis of requirements made in chapter 1.

The future development around this work includes three different dimensions:

 Better implementation of C-AODV: one of the already planned changes is the

modification of the mechanism that controls duplicate RREQ and RREP messages in

the algorithm. After this, for example, in test 5.2, it will be possible after the first

route discovery, for the request node to know all the multiple routes to the

destination. Another suggestion regards in the lookup procedure for getting context

information; if the message does not have priority, the algorithm could search for the

best cost and in the case of a tie, the best time;

 More extensive experimentation using NS-3, or other simulator: tests using NS-3 take a

long time and different simulations can help the location of the weak and strong

characteristics of C-AODV. Experiments could also identify the situations where C-

AODV works well and also the ones where its use should be regarded with caution;

 Tests in real environments using a test-bed; this could be done in the context of

CuteLoop.

86

7. BIBLIOGRAPHY

30. The Internet Of Things - TIME's Best Inventions of 2008 - TIME. (2010). Retrieved

February 2010, 3, from 30. The Internet Of Things - TIME's Best Inventions of 2008 -

TIME:

http://www.time.com/time/specials/packages/article/0,28804,1852747_1854195_1

854158,00.html

CuteLoop - Customer in the Loop. (2010). Retrieved January 24, 2010, from www.cuteloop.eu

J-Sim Official. (2010). Retrieved June 23, 2010, from

http://sites.google.com/site/jsimofficial/

The Network Simulator - ns-2. (2010). Retrieved June 23, 2010, from

http://www.isi.edu/nsnam/ns/

The ns-3 network simulator. (2010). Retrieved June 23, 2010, from http://www.nsnam.org/

Abolhasan, M. (2003). A review of routing protocols for mobile ad hoc networks.

Aggelou, G., & Tafazolli, R. (1999). RDMAR: a bandwidth-efficient routing protocol for mobile

ad hoc networks. ACM International Workshop on Wireless Mobile Multimedia

(WoWMoM), 26–33.

Ay, F. (2007). Context Modeling and Reasoning using Ontologies.

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks.

Barabási, A.-L., & Bonabeau, E. (2003). ScaleFree Networks. Scientific American.

Basagni, S., Chlamtac, I., Syrotivk, V., & Woodward, B. (1998). A distance effect algorithm for

mobility (DREAM).

Bibliography 87

Bellur, B., Ogier, R., & Templin, F. (2003). Topology broadcast based on reverse-path

forwarding routing protocol (tbrpf). Internet Draft, draft-ietf-manet-tbrpf-06.txt.

Bouhorma, M., Bentaouit, H., & Boudhir, A. (2009). Performance comparison of ad-hoc

routing protocols AODV and DSR. International Conference on Multimedia Computing

and System.

Chang, J. (1999). Stochastic Processes.

Chen, T.-W., & Gerla, M. (1998). Global state routing: a new routing scheme for ad-hoc

wireless networks. Proceedings of the IEEE ICC.

Chiang, C.-C. (1997). Routing in clustered multihop mobile wireless networks with fading

channel. Proceedings of IEEE SICON, 197–211.

Cohen, R. (1986). Self Similarity in Brownian Motion and Other Ergodic Phenomena. Journal

of Chemical Education 63, 933–934.

Community, O. (2010). OMNeT++ Community Site. Retrieved June 23, 2010, from

http://www.omnetpp.org/

Community, O. (2010). OMNeT++ Community Site. Retrieved June 23, 2010, from

http://www.omnetpp.org/

Corson, M., & Ephremides, A. (1995). A distributed routing algorithm for mobile wireless

networks. ACM/Baltzer Wireless Networks, 61–81.

Corson, S., & Macker, J. (1999, January). Mobile Ad hoc Networking (MANET): Routing

Protocol Performance Issues and Evaluation Considerations. IETF RFC 2501.

Das, S., Perkins, C., & Royer, E. (2002). Ad hoc on demand distance vector (AODV) routing.

Internet Draft, draft-ietf-manetaodv-11.txt.

Das, S., Wu, Y., Chandra, R., & Charlie Hu, Y. (2008). Context-based Routing: Techniques,

Applications and Experience. USENIX Symposium on Networked Systems Design and

Implementation (NSDI '08). San Frascisco.

Deb, D., Roy, S. B., & Chaki, N. (2009). LACBER: A new location aided routing protocol for GPS

scarce MANET. International Journal of Wireless & Mobile Networks (IJWMN).

88 Bibliography

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische

Mathematlk 1, 269–271.

Dube, R., Rais, C., Wang, K., & Tripathi, S. (1997). Signal stability based adaptive routing (ssa)

for ad hoc mobile networks. IEEE Personal Communication, 36–45.

El-Ansary, S., & Haridi, S. (2005). An Overview of Structured Overlay Networks. Theoretical

and Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks.

European Commission. (2010). Vision and Challenges for Realising the Internet of Things.

CERP-IoT: Cluster of European Research Projects on the Internet of Things.

European Parliament, t. C. (2008). Future networks and the internet.

FIA. (2009, May 6). Position Paper - RwiWiki. Retrieved February 2, 2010, from Position

Paper - RwiWiki: http://rwi.future-internet.eu/index.php/Position_Paper

Garcia-Luna-Aceves, J., & Spohn, C. (1999). Source-tree routing in wireless networks.

Proceedings of the Seventh Annual International Conference on Network Protocols,

273.

Garcia-Luna-Aceves, S. M. (1995). A routing protocol for packet radio networks. Proceedings

of the First Annual ACM International Conference on Mobile Computing and

Networking, 86–95.

Gerla, M. (2002). Fisheye state routing protocol (FSR) for ad hoc networks. Internet Draft,

draft-ietf-manet-aodv-03.txt.

Gowrishankar, S., Sarkar, S., & Basavaraju, T. (2009). Performance analysis of AODV,

AODVUU, AOMDV and RAODV over IEEE 802.15.4 in wireless sensor networks. 2nd

IEEE International Conference on Computer Science and Information Technology.

Günes, M., Sorges, U., & Bouazizi, I. (2002). Ara– The ant-colony based routing algorithm for

manets. ICPP workshop on Ad Hoc Networks (IWAHN 2002), 79–85.

Günes, M., Sorges, U., & Bouazizi, I. (2002). Ara––the ant-colony based routing algorithm for

manets. ICPP workshop on Ad Hoc Networks (IWAHN 2002), 79–85.

Bibliography 89

Gwalani, S., Belding-Royer, E., & Perkins, C. (2003). AODV-PA: AODV with path accumulation.

IEEE International Conference on Communications.

Hashim, R., Nasir, Q., & Harous, S. (2006). Adaptive Multi-path QoS Aware Dynamic Source

Routing Protocol for Mobile Ad-Hoc Network. Innovations in Information Technology

IIT2006, 1-5.

Hass, Z., & Pearlman, R. (1999). Zone routing protocol for ad-hoc networks. Internet Draft,

draft-ietf-manet-zrp-02.txt.

Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot, L. (2001).

Optimized link state routing protocol for ad hoc networks. IEEE INMIC.

Jiang, M., & Jan, R. (2001). An Efficient Multiple Paths Routing Protocol for Ad-hoc Networks.

Proc. of the 15th International Conference on Information Networking, 544-549.

Jiang, M., Ji, J., & Tay, Y. (1999). Cluster based routing protocol. Internet Draft, draft-ietf-

manet-cbrp-spec-01.txt.

Joa-Ng, M., & Lu, I.-T. (1999). A peer-to-peer zone-based two-level link state routing for

mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 1415–

1425.

Johnson, D., Maltz, D., & Hu, Y.-C. (2004). The dynamic source routing protocol for mobile ad

hoc networks. Internet Draft, draft-ietf-manet-dsr-10.txt.

Johnson, D., Maltz, D., & Jetcheva, J. (2002). The dynamic source routing protocol for mobile

ad hoc networks. Internet Draft, draft-ietf-manet-dsr-07.txt.

Kasera, K., & Ramanathan, R. (1997). A location management protocol for hierarchically

organised multihop mobile wireless networks. 158–162.

Ko, Y.-B., & Vaidya, N. (1998). Location-aided routing (LAR) in mobile ad hoc networks.

Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile

Computing and Networking (Mobicom_98).

Ko, Y.-B., & Vaidya, N. (1998). Location-aided routing (LAR) in mobile ad hoc networks.

Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile

Computing and Networking (Mobicom 98).

90 Bibliography

Levis, P. (2010). Simulating TinyOS Networks. Retrieved June 23, 2010, from

http://www.cs.berkeley.edu/~pal/research/tossim.html

Lin, Y., Rad, A., Wong, V., & Song, J. (2005). Experimental Comparisons between SAODV and

AODV Routing Protocols. Proceedings of the 1st ACM workshop on Wireless

Multimedia Networking and Performance Modeling, 113-122.

Liu, Y., Zhang, H., Ni, Q., Zhou, Z., & Zhu, G. (2008). An Effective Ant-Colony Based Routing

Algorithm for Mobile Ad-hoc Network. 4th IEEE International Conference on Circuits

and Systems for Communications.

Madhavapeddy, A., Scott, D., & Sharp, R. (2003). Context-Aware Computing with Sound. The

Fifth International Conference on Ubiquitous Computing (UbiComp 2003).

N. K., C., & Viswanatha, K. (2008). Enhanced Ant Colony Based Algorithm for Routing in

Mobile Ad Hoc Network. World Academy of Science, Engineering and Technology 46.

Nickray, M., Dehyadgari, M., & Afzali-kush, A. (2009). Adaptive Routing Using Context-Aware

Agents for Networks on Chips. 4th International Design and Test Workshop (IDT).

Nikaein, N., Laboid, H., & Bonnet, C. (2000). Distributed dynamic routing algorithm (ddr) for

mobile ad hoc networks. Proceedings of the MobiHOC 2000: First Annual Workshop

on Mobile Ad Hoc Networking and Computing.

OWL, W. (2010). OWL Web Ontology Language Overview. Retrieved April 21, 2010, from

OWL Web Ontology Language Overview: http://www.w3.org/TR/owl-features/

Park, V., & Corson, M. (1997). A highly adaptive distributed routing algorithm for mobile

wireless networks. Proceedings of INFOCOM.

Pei, G., Gerla, M., Hong, X., & Chiang, C. (1999). A wireless hierarchical routing protocol with

group mobility. Proceedings of Wireless Communications and Networking.

Perkins, C., & Watson, T. (1994). Highly dynamic destination sequenced distance vector

routing (DSDV) for mobile computers. ACM SIGCOMM 94 Conference on

Communications Architectures.

Perkins, C., Belding-Royer, E., & Das, S. (2003, July). Ad hoc On-demand Distance Vector

(AODV) routing. IETF RFC 3561.

Bibliography 91

Porekar, J. (2003). Random Networks.

Radhakrishnan, S., Rao, N., Racherla, G., Sekharan, C., & Batsell, S. (1999). DST–A routing

protocol for ad hoc networks using distributed spanning trees. IEEE Wireless

Communications and Networking Conference.

Raju, J., & Garcia-Luna-Aceves, J. (1999). A new approach to ondemand loop-free multipath

routing. Proceedings of the 8th Annual IEEE International Conference on Computer

Communications and Networks (ICCCN), 522–527.

Rao, V. P., & Marandin, D. (2006). Adaptive Channel Mechanism for Zigbee (IEEE 802.15.4).

Journal of Communications Software and Systems (JCOMSS), 283-293.

RDF, W. (2010). RDF - Semantic Web Standards. Retrieved April 21, 2010, from RDF -

Semantic Web Standards: http://www.w3.org/RDF/

Ruzzelli, A. (2008). What to expect when programming a WSN. SenZation’08 - WSN Summer

School. Ljubljana.

Saeed, N., Abbod, M., & Al-Raweshidy, H. (2008). Intelligent MANET Routing System. 22nd

International Conference on Advanced Information Networking and Applications -

Workshops.

Sato, T., & Mase, K. (2002). A scatternet operation protocol for Bluetooth ad hoc networks.

The 5th International Symposium on Wireless Personal Multimedia Communications.

Schafersman, S. D. (1994, January). Scientific Thinking and the Scientific Method. Retrieved

September 10, 2008, from An Introduction to Science:

http://www.freeinquiry.com/intro-to-sci.html

Schmidt, A., Beigl, M., & Gellersen, H.-W. (1999). There is more to Context than Location.

Computers & Graphics Journal, 893-902.

Shah, N., & Qian, D. (2009). Context-aware routing for peer-to-peer network on MANETs.

IEEE International Conference on Networking, Architecture, and Storage. Beijing.

Shqeerat, K. A. (2008). Adaptive algorithm for increasing the efficiency ofDSR algorithm in Ad

Hoc network. 5th International Multi-Conference on Systems, Signals and Devices.

92 Bibliography

Sobeih, A., Chen, W.-P., Hou, J., Kung, L.-C., Li, N., Lim, H., et al. (2005). J-Sim: A Simulation

and Emulation Environment for Wireless Sensor Networks. IEEE Wireless

Communications magazine.

Soylu, A., De Causmaecker, P., Desmet, P., & Leuven, K. (2009). Context and Adaptivity in

Pervasive Computing Environments: Links with Software Engineering and Ontological

Engineering. Interdisciplinary Research on Technology Education and Communication

(iTec), 992-1013.

Su, W., & Gerla, M. (1999). Ipv6 flow handoff in ad-hoc wireless networks using mobility

prediction. IEEE Global Communications Conference, 271–275.

Sujatha, B., V.P, H., Namboodiri, D., & Sathyanarayana, D. (2008). Performance Analysis of

PBANT (PBANT: Position Based ANT Colony Routing Algorithm for MANETs).

Proceedings of the 16th International Conference on Networks, ICON 2008.

Tanenbaum, A. (1996). Computer Networks - 3th Edition. Prentice-Hall.

Toh, C. (1996). A novel distributed routing protocol to support ad-hoc mobile computing.

IEEE 15th Annual International, 480–486.

Tretmans, J. (2001, January 25). An Overview of OSI Conformance Testing. University of

Twente.

Varga, A., & Hornig, R. (2008). An overview of the OMNeT++ simulation environment.

Proceedings of the 1st international conference on Simulation tools and techniques

for communications, networks and systems & workshops. Marseille: ICST.

Wang, K., Wu, M., Weifeng, L., Pengrui, X., & Shen, S. (2008). A Novel Location-Aided Routing

Algorithm for MANETs. Fifth International Conference on Information Technology:

New Generations.

Weingärtner, E., Lehn, H., & Weh, K. (2009). A performance comparison of recent network

simulators. Proceedings of the IEEE International Conference on Communications

2009 (ICC 2009). Dresden: IEEE.

Woo, S.-C., & Singh, S. (2001). Scalable routing protocol for ad hoc networks. Wireless

Networks, 513–529.

Bibliography 93

Xue, Y., & Li, B. (2001). A Location-aided Power-aware Routing Protocol in Mobile Ad Hoc

Networks. IEEE Globecom, 2837--2841.

Zahary, A., & Ayesh, A. (2007). Analytical study to detect threshold number of efficient

routes in multipath AODV extensions. International Conference on Computer

Engineering & Systems, 2007. ICCES '07.

Zarei, M., Faez, K., & Nya, J. (2008). Modified Reverse AODV routing algorithm using route

stability in mobile ad hoc networks. Multitopic Conference, 2008. INMIC 2008. IEEE

International.

Zhao, F., Zhan, X., Yao, Y., & Yi, B. (2005). An Enhanced Reactive Dynamic Source Routing

Algorithm Applied to Mobile Ad Hoc Networks. Proceedings. 2005 International

Conference on Wireless Communications, Networking and Mobile Computing, 771 -

775.

Network topologies 95

ANNEX A. NETWORK TOPOLOGIES

Networks can be either physical or overlay: physical means that networks work in the sense

of their physical connections without taking any measures regarding efficiency; overlay

means that the network has sensing abilities regarding its nodes, their roles and connections

awareness. This research work will only focus on physical networks due to their low level

application.

Networks can further be divided in two groups: structured and non-structured.

Structured overlay networks are stable networks that offer deterministic routing: for

example O(log N) for N nodes. Nodes are established by some rules and possibly identified

by a universal identifier; node’s neighbours have sense awareness for fault tolerance; these

networks are typically flat and sometimes referred as DHT. The main disadvantage of these

networks is the fact that the id of a node does not have geographic awareness, which can

lead to latency problems. Some examples of main DHT systems are presented here

according to (El-Ansary & Haridi, 2005).

A.1. STRUCTURED NETWORKS

A Chord network assumes an overlay graph as a ring (Figure A.1: with an id space N = 16 and

each node has 4 edges = log2(16)) with an identifier space of size N (N = number of nodes)

(El-Ansary & Haridi, 2005). Each node has an identifier u, an identifier to the following node

(Succ(u)), an identifier to the previous node (Pred(u)) and a list of fingers with M = log2(N),

this list is Fu = {(u, Succ(u + 2i-1))}, 1 ≤ i ≤ M, where the arithmetic is modulo N.

FIGURE A.1 CHORD (EL-ANSARY & HARIDI, 2005)

96 Network topologies

The lookup process is part of how the id space is organized; insertion and querying depends

on how successful it is to find the successor of an id. In normal situations a lookup needs

O(log2(N)) hops.

There is a stabilization algorithm to organize the network. To enter the network, a node

performs a lookup for its id and inserts itself between its successor s and the predecessor of

s. To initialize its routing table it asks for s’s routing table and copies it, or, let s lookup each

required edge of n. Finally it just needs to ask for the items with id less or equal to n. Nodes

leave the network by transferring all items to the successor and informing both the

predecessor and successor. The node failure has two major problems: loss of stored items

and ring disconnection. Facing this problem, each node has a list of nodes that are next to it

on the network. If a node detects one failure in a successor, it replaces it with the next entry

in the successor list. To tackle this problem, each node stores their items at some node in its

successor list, so, if they lose an item by a node failure, log2(N) + 1 nodes have to fail at the

same time.

The Pastry tries to fix the issue of locality in DHTs (El-Ansary & Haridi, 2005). By hashing

node’s IP Numbers / Public Keys, nodes in the same region may need to communicate

through another node that is in another region, which brings greater inefficiency because

hashing does not take care of physical settings.

Like the Chord, Pastry assumes a circular space where each node has a list of L/2 successors,

a list of L/2 predecessors (leaf set) and M close nodes (neighbour set) given by a metric like

network delay, used only for maintaining locality properties. The routing table contains

⌈ ⌉ rows and 2b – 1 columns. L, M and b are network parameters.

To locate the closest node to an id x, a given node n checks if x is in the range of node ids in

the leaf set. If so, it is forwarded to that node, otherwise, the lookup is forwarded to the

node in the interval where x belongs to. The replication and fault tolerance is tackled by

replicating items to k closest nodes in the leaf set. These copies can be used as cache to

other lookups.

Network topologies 97

In Kademlia the identifier space is equal to the one used in Pastry, but the nodes are

represented in a binary tree, where each node divides that tree in sub-trees and keeps at

least one contact to each of those sub-trees (El-Ansary & Haridi, 2005). Kademlia does not

have a predecessor nor a leaf set, it keeps, at most, k contacts for each sub-tree and for each

k contacts in a sub-tree as a k-bucket.

The notion of distance is given by the bitwise exclusive or (XOR) of two identifiers. The

lookup is performed in a concurrent and iterative manner. If an id belongs to a sub-tree, the

query is forwarded to one of the nodes in the k-bucket. The lookup process is resolved in

O(log(N)) hops. To maintain routing tables, Kademlia uses the lookup traffic. The reception

of a message for a sub-tree is used to update the k-bucket of that sub-tree. Kademlia also

updates the latency of nodes in k-buckets, with these maintenances this network has sense

to delay and locality. For fault tolerance, Kademlia just depends on the number of k

connections of the sub-trees.

Koorde is a DHT based on the DeBrujin graph (El-Ansary & Haridi, 2005). Koorde can resolve

a query in at most log2(N). To do this, when a node n wants to find an item x represented in

binary as d1d2..dlog2(N), it takes the first bit and forwards the query to En ◦ d. To manage

nodes joining and leaving the network, Koorde, like Chord, has a mechanism for

maintenance.

For fault tolerance, Koorde has to maintain an out-degree less than log(N) nodes, otherwise,

a node will lose its contacts. This is an advantage over usual logarithmic DHTs.

The Viceroy is a DHT system based on the Butterfly network (El-Ansary & Haridi, 2005). Like

Chord, it organizes the nodes in a circular identifier space, but also in levels from 1 to

log2(N), where nodes also have Butterfly pointers, up and down (one up, instead of the upper

level nodes and two down pointers) and pointers to successors and predecessors at the

same level (Figure A.2).

98 Network topologies

FIGURE A.2 DOWN POINTERS IN VICEROY (EL-ANSARY & HARIDI, 2005)

When a node wants to find an item, the query is forwarded by the nodes using the pointers,

by using up and down pointers all levels can be reached in 2 * log(N) hops. To join the

network, a node just needs to find its successor in the ring, then select a level based on the

number of nodes, and then it can estimate its pointers. When a node disconnects, it informs

the nodes pointed by its pointers, and its items are transferred to the successor.

The CAN protocol has its own identifier space and is based on a d-dimensional coordinate

space (El-Ansary & Haridi, 2005). The hashing function of the identifiers are performed d

times to get d coordinates and the coordinate space is dynamically portioned by all nodes.

To get an item, the Cartesian straight line path is used, from source to destination. When a

node wants to join the network, it sends a JOIN message and a zone is created by splitting an

existing zone; this has a cost of O(d). When leaving, a node informs its neighbours and merge

zones to valid zones. If there are no valid zones, its items are transferred to the neighbour

with the smallest zone.

When a node detects a neighbour failure, it takes over its zone. A node can also detect other

node failures by not receiving the periodical maintenance message. If two or more nodes

want to take over a zone, they send each other their zone size and the node with the

smallest zone wins the zone.

A Scatternet is a kind of network that deserves attention because it’s a structured network

created in the scope of Bluetooth (Figure A.3). This is a network topology, which is

composed by two or more piconets (Sato & Mase, 2002).

Network topologies 99

FIGURE A.3 BLUETOOTH SCATTERNET (SOURCE ACM)

A piconet is a group of two or more nodes synchronized where one node is the master and

the others are slaves. In each piconet there can be up to seven active slaves at the same

time. The master is responsible for selecting the correct frequency hopping to be used on

the communications in the piconet, while it also communicates with the slaves through Time

Division Multiplex. Another property is that if a node belongs to more than one piconet, it is

called a gateway; there can only be a master node in a piconet.

A.2. NON-STRUCTURED NETWORKS

Non-structured networks are typically found on Wide Area Networks (WAN) (Tanenbaum,

1996), where the network connections are created in a random/irregular form; they are easy

to establish, have a light organization and are fault tolerant, but, have some disadvantages in

terms of routing and latency.

Some of these networks fit in a feature called Small World Property. This property tells us

that a large network can have a small diameter or a small average path length. This property

can be observed in society and nature (Barabási & Bonabeau, ScaleFree Networks, 2003)

(Porekar, 2003), this is similar to what happens in chemicals where inside a living cell are at

average three reactions away from each other; in network of scientific papers connected by

citations; in the connections between Hollywood actors; in the cellular metabolic networks;

in the protein-interaction network of cells; even in Internet and WWW can be found the

small world property (!)…; despite these and other examples of social and natural

100 Network topologies

inadvertent organization, this is not meant to be a universal principle, but can be an

opportunity to study.

According to (Porekar, 2003), Random Networks were presented by Erdõs and Reyni and

represent the most simple network model that fits in the Small World Property because the

average distance between two points are ln(N) and nodes follow a Poisson distribution to

their degree (Porekar, 2003). These networks assume that all nodes are equal and with the

same properties.

The Scalefree Networks (Barabási & Bonabeau, ScaleFree Networks, 2003) are networks

that also fit the small world model and where the degree distribution follows the power-law

(the probability that a node is connected to k other nodes is proportional to). These

networks do not assume that nodes may have different roles and different properties, so, in

Scalefree networks there is the existence of hubs, which are nodes that tend, over time, to

have more connections than others. This helps to explain the popularity of some nodes in

certain networks, like routers in Internet or URLs in WWW (Figure A.4).

FIGURE A.4 A SCALEFREE NETWORK

Barabási and Albert proposed a model (BA Model) for creating and maintaining a Scalefree

network that is called Growth and Preferential Attachment (Barabási & Albert, Emergence of

scaling in random networks, 1999) (Figure A.5 source (Barabási & Bonabeau, ScaleFree

Networks, 2003)). The Growth is defined by a network with a “small number (m0) of vertices,

at every time step, we add a new vertex with m(<m0) edges that link the new vertex to m

different vertices already present in the system” and Preferential Attachment is that node

Network topologies 101

connects to an existing node i with probability ∏, depends on the degree ki of that node i,

such as: . After some steps t the network has N = t + m0 nodes, mt edges and

each node has k edges with a probability following the power law with exponent 3, this value

is independent of m, the unique parameter of the model.

FIGURE A.5 GROWTH AND PREFERENTIAL ATTACHMENT

These networks are reliable in the presence of arbitrary failures; like in the Internet,

although many routers continue malfunctioning, the network rarely suffers disruptions. This

situation was simulated, and even when 80% of random routers fail, the others form small

clusters which still makes it possible to communicate between two nodes. The problem of

these networks is located in the hubs: by removing some major hubs the network can be

divided in isolated clusters, or like in proteins, the deletion of some hubs can kill the

organism, which does not happen with other nodes.

These networks may be used in Medicine on vaccine campaigns or in identifying hub

molecules in some diseases, which can lead to new discoveries; in Business to understand

the connections between companies and industries, avoiding cascading financial failures or

in the propagation of a product in the society; and in Computer Science by creating networks

resilient against failures or against virus attacks.

102 Routing algorithm classes and comparisons

ANNEX B. ROUTING ALGORITHM CLASSES AND COMPARISONS

Nowadays are used two classes of routing algorithms are used: link state and distance vector

algorithms (Abolhasan, 2003). In link state each node periodically floods the network to have

a view of the network; in distance vectors each node i maintains a set of distances to a

destination x and j ranges over the neighbours of node i. To select the shortest path to a

destination, the node i selects a neighbour k to be the next hop for x in . The

maintenance of these values is periodically updated to the network. Traditionally these

algorithms do not scale to large networks because periodically route updates that cause

network delays, power and bandwidth consumption. These algorithms can be separated in

three major classes: global/proactive routing protocols; on-demand/reactive routing

protocols; and hybrid routing protocols.

B.1. GLOBAL / PROACTIVE ROUTING PROTOCOLS

In these protocols the route to the destination is calculated in the start-up and then

maintained by a periodic process. Following some algorithms of reference within this class of

routing approach are presented:

The Destination-Sequenced Distance-Vector (DSDV) is a loop free routing algorithm and

gives one shortest path to the destiny (Perkins & Watson, 1994). It uses two kinds of

messages to routing table update in order to reduce the network overhead: the full dump

and the incremental. The full dump is a message that contains all the routing information

and the incremental is just the latest changes since the last full dump. This algorithm

introduces too much overhead in the network in order O(N2) for N nodes, and so, it does not

scale to large networks.

The Wireless routing protocol (WRP) is also a loop free routing algorithm (Garcia-Luna-

Aceves S. M., 1995). It is not suitable for devices with limited capacity of processing, because

each node requires handling four routing tables and requires hello messages; this consumes

a lot of bandwidth and if a node needs to sleep the algorithm will not work.

Routing algorithm classes and comparisons 103

The Global state routing (GSR) is a protocol based on the Link State algorithm (Chen & Gerla,

1998) but it reduces the number of update messages only between intermediate nodes. To

update routing tables each node periodically exchange messages with the neighbours, this

reduces the number of control messages needed in the network, but if the network grows,

the update messages will be larger and a large amount of bandwidth will be required.

The Fisheye state routing (FSR) is an improvement to GSR (Gerla, 2002). It reduces the

message number by using the concept of fish eye area; it sends more update information to

the nodes inside that area rather than the nodes outside. With the mobility of the nodes,

node discovery will become less accurate, and so, is not suitable to handle scalability.

The Source-tree adaptive routing (STAR) is also an algorithm based in Link State algorithm

(Garcia-Luna-Aceves & Spohn, 1999). Each node maintains a set of links containing the paths

to destinations. This protocol reduces the overhead in the network when compared with the

original link state, by using the LORA (or ORA) approach to exchange messages, and so,

eliminating the periodic updating procedure. Due to its reduced overhead, this algorithm will

scale to large networks, but to scale to large and mobile networks, this protocol will have a

high overhead because each node must maintain a part of the network topology.

The Distance routing effect algorithm for mobility (DREAM) is an algorithm based on

geographical coordinates through GPS stored in its routing table, known as location table

(Basagni, Chlamtac, Syrotivk, & Woodward, 1998). This has an advantage because consumes

less bandwidth, and so, is more scalable. Routing message update overhead is reduced by

sending updating messages based on the mobility and distance of nodes.

The Multimedia support in mobile wireless networks (MMWN) is a routing protocol based

on clustering hierarchy and the information stored in a dynamic distributed database (Kasera

& Ramanathan, 1997). Each cluster has three kinds of nodes: switches, endpoints and a

location manager (LM) which is responsible for the location management in the cluster. Only

the LM perform location and updates, reducing dramatically the overhead of the network,

but, due to its hierarchical structure, this location finding and updates are very complex,

also, if there is any change in the LMs, this will also affect the management tree and

introduce consistency problems.

104 Routing algorithm classes and comparisons

The Cluster-head gateway switch routing (CGSR) is another hierarchical algorithm where

nodes are clustered (Chiang, 1997). It is very similar to MMWN, but in CGSR there is no need

to maintain the cluster hierarchy. To do this, there is an elected mobile node, called cluster

head, responsible to manage the other nodes; it also controls the communication medium

and inter-cluster communications. This is good because each node only needs to maintain

the route to its cluster head, but, there are great overheads in maintaining the cluster

membership because each node periodically broadcasts its cluster member table and the

updates are made based in these broadcasts.

The Hierarchical state routing (HSR) is a protocol based on the Link State algorithm (Pei,

Gerla, Hong, & Chiang, 1999), but, unlike others, it maintains a hierarchical addressing and a

topological map. Similarly to MMWN, this protocol has also three kinds of nodes, but with

other roles: cluster-head are the nodes responsibility for the local coordination, gateways

are the nodes that lie in two clusters and, internal nodes that are the nodes inside each

cluster. Each node can be identified by a unique ID based on its MAC address and a

hierarchical ID (HID) which is a sequence of the MAC addresses from the top of the hierarchy

to the source node. This protocol has the advantage because of separating the mobility

management from the physical management. This protocol has less overhead compared to

GSR and FSR, but introduces more overhead in the cluster formation and maintenance.

The Optimised link state routing (OLSR) is an algorithm based on the link state algorithm

(Jacquet, Muhlethaler, Clausen, Laouiti, Qayyum, & Viennot, 2001). This algorithm reduces

the size of each control message and the number of rebroadcasting nodes during the route

update using multipoint relaying (MPR). In each topology update, each node selects a group

of neighbours, called multipoint relays, to send the update information; the other nodes can

read the packets but are not allowed to retransmit them. The routes to a destination are

stored in the routing table and when a node wants to send a message to a destination, that

route is available.

According to (Bellur, Ogier, & Templin, 2003), Topology broadcast reverse path forwarding

(TBRPF) is another link-state algorithm that uses reverse-path forwarding (RPF) to change

update packets in the reverse direction of the spanning tree. With this approach, it is

possible to get a path to all destinations, applying a modified version of the Dijkstra’s

algorithm (Dijkstra, 1959). To minimize the overhead, each node sends only a part of its

Routing algorithm classes and comparisons 105

source tree to the neighbours. To report changes in the network, each node send a periodic

and differential hello messages; these messages only report the changes in the status of the

neighbour nodes, and as result, the hello messages are smaller.

According to (Abolhasan, 2003), this kind of protocols does not scale well in large networks.

The best ones are OLSR (because it chooses the neighbours to send the packets); and

DREAM (because can change physical information rather than link state information). The

common disadvantage in all of this protocols are in the behaviour presence of node mobility,

that introduces unnecessary overhead to the network, and in the context of this work, this is

a great issue to take care.

B.2. ON-DEMAND / REACTIVE ROUTING PROTOCOLS

These protocols calculate their routes only when required by the source, this process is

usually called the on-demand route discovery. Some algorithms of this class are presented in

the following paragraphs.

The Dynamic source routing (DSR) protocol requires the addresses of all nodes, from the

source to the destination (Johnson, Maltz, & Jetcheva, 2002), so, is not a good choice to

large and dynamic networks. This protocol is good for network with low mobility or a small

number of nodes.

The Ad hoc on-demand distance vector (AODV) is a routing algorithm based on DSDV and

DSR (Das, Perkins, & Royer, 2002); it uses periodic message exchange to maintain the

connections and sequence numbering to avoid loops, like DSDV, and the route discovery is

similar to DSR. The differences between AODV and DSR is that AODV only carries the address

of the destination, while DSR carries all the routing information, leading to less overhead;

another difference is in the replies, where DSR carries all the nodes of the route, while AODV

only needs the destination address and the sequence number. This algorithm is very suitable

to highly dynamic networks, but has some disadvantages in route discovery and link failure,

because these events can bring extra bandwidth consume to the network.

106 Routing algorithm classes and comparisons

The Routing on-demand acyclic multi-path (ROAM) is a protocol that uses internodal

coordination and diffusing computation, which are directed acyclic sub graphs (Raju &

Garcia-Luna-Aceves, 1999). This protocol eliminates the count-to-infinity problem stopping

the flood when the search reaches the destination. There are router nodes which maintain

entries to destinations and the packets flow thought them, reducing the storage and

bandwidth needed; another advantage is the fact that when the distance between a router

and the destination changes more than a threshold, it broadcasts update messages to its

neighbours.

According to (Corson & Ephremides, 1995), Light-weight mobile routing (LMR) is a protocol

that uses flood techniques to determine routes. This algorithm only maintains routing

information about its neighbours and may have multiple routes to the destinations creating

more reliability, but, when there is a route failure, it can introduce extra delays by

determining the correct route.

The Temporally ordered routing algorithm (TORA) is an algorithm based on LMR (Park &

Corson, 1997). This protocol has the advantage of a reduced number of control messages to

the neighbours when the network changes; another vantage is that it supports multicasting.

Similarly to LMR, TORA can produce invalid routes.

The Associativity-based routing (ABR) is another reactive algorithm based on route selection

based on stability (Toh, 1996). Each node has an associativity tick to their neighbour, which is

used to select the preferred route to the neighbour with lower tick. This cannot guaranty the

shortest path, but there is no need to reconstruct routes and there will be more bandwidth

available for communications. The disadvantages of this protocol are that is necessary a

periodic maintenance of the ticks and so, nodes have to be always active conducting to extra

power consumption. Another disadvantage is the fact that it does not maintain multiple

routes or route cache.

The Signal stability adaptive (SSA) protocol is an improvement to the ABR protocol, but it

uses signal strength and location stability instead of association tick (Dube, Rais, Wang, &

Tripathi, 1997). Comparing to AODV and DSR, SSA intermediate nodes cannot reply to route

requests send to a destination, and this can lead to a long time to route discovery. Another

disadvantage is the fact that when a link fails there is no attempt to repair a route, instead a

reconstruction of the entire route since the source is made.

Routing algorithm classes and comparisons 107

According to (Aggelou & Tafazolli, 1999), Relative distance micro-discovery ad hoc routing

(RDMAR) limits the route request packets to a certain number of hops. This technique can

conserve a significant amount of bandwidth and battery power. A disadvantage of this

protocol is if there is no previous communication between a source and a destination, route

discovery will be performed by flooding.

The Location-aided routing (LAR) is a routing protocol based on flooding techniques with the

notion of GPS coordinates (Ko & Vaidya, 1998). There are two schemes proposed to LAR, the

first, calculates a boundary where the requests can reach; the second, stores the destination

coordinates in the route request. These methods can control overhead and conserve

bandwidth and determine the shortest path. The disadvantage is that each node requires

GPS capabilities. In highly dynamic networks, this protocol behaves very similar to DSR and

AODV.

According to (Günes, Sorges, & Bouazizi, 2002), Ant-colony-based routing algorithm (ARA)

attempts to reduce the overhead in the network by simulating the food searching behaviour

of the ants. When ants want to find food, they start at their nest leaving a trail of

pheromones. With the pheromones, the other ants can follow the same path until it

disappears. This algorithm is based on two phases, the first sends a Forward Ant (FANT) to

the network, leaving pheromones in the nodes, as soon as once the ant gets in the

destination a Backward Ant (BANT) is created and returns to the nest; this is the route

discovery phase. The route maintenance phase is made when a packet flows through a node:

it increments the pheromone value, otherwise, the pheromone value is decreasing until it

expires. If a route fails, the nodes inform their neighbours of an alternate route; if they have

a route, they will inform their neighbours by backtracking. If any node founds the route and

the source node is reached a new route discovery is initiated. The FANT and BANT messages

are a good approach because their small size introduces low bandwidth consumption, but

the flooding procedure can bring problems when the network grows.

The Flow oriented routing protocol (FORP) is an algorithm that tries to predict a node failure

due to mobility, by choosing an alternate path in this situations (Su & Gerla, 1999). When a

node wants to communicate with other node and the route is not available, it broadcasts a

Flow_REQ message; when a node receives the Flow_REQ, it calculates the Link Expiration

Time (LET) with the previous hop given by GPS and then appends to the Flow_REQ and

108 Routing algorithm classes and comparisons

rebroadcasts the value. When the Flow_REQ reaches the destination, that node takes the

minimum LET in the Flow_REQ and sends a Flow_SETUP to the source. In the transmission

each node appends their LET allowing the destination to predict when a node could fail or

not. This protocol uses pure flooding techniques, which have problems in large scale

networks; so is not suitable to this work.

The Cluster-based routing protocol (CBRP) is a hierarchical protocol where nodes are

organized in clusters (Jiang, Ji, & Tay, 1999). These clusters have a cluster-head that controls

communications. This protocol is good because has a small number of control messages but

the cluster formation and maintenance creates overhead; sometimes routing loops can

exist, due to inconsistent topology.

According to (Abolhasan, 2003), this class of routing algorithms have the same cost in the

worst scenario due to the similar route discovery and maintenance procedures. This

happens when a node does not have a route to a destination, what usually happens in the

initial stage because there is any route available. The DSR, for instance, when a route

expires, it floods the network searching for another route, in other case, the LAR or RDMR

keep a route history to limit the search zone. The ABR or the SSR have another method to

minimize the data transfer in the network, by select routes based on the stability, however,

the ABR shows better results compared to SSR, and both perform better path selections

than DSR.

This class is suitable for medium size protocols and can handle moderate mobility.

B.3. HYBRID ROUTING PROTOCOLS

This is a “special” kind of routing protocols because they combine proactive and reactive

protocols. They can have a flat or hierarchical routing structure and use the other two

approaches.

The Zone routing protocol (ZRP) is a protocol that defines two zones (Hass & Pearlman,

1999). The first zone is defined by a boundary, defined by a number of hops. Within this

zone, the routes to a destination are immediately available; outside the zone, the algorithm

Routing algorithm classes and comparisons 109

behaves like a reactive routing protocol. This algorithm can reduce the overhead and delays

compared with reactive protocols. For large values of the boundary, this protocol behaves

like a proactive algorithm, while for small, behaves like a reactive.

According to (Joa-Ng & Lu, 1999), Zone-based hierarchical link state (ZHLS) is a hierarchical

protocol that defines two levels: node level topology and zone level topology. It uses the

cluster-head and the location manager to coordinate the communications, what leaves them

with no processing overhead and avoid bottlenecks and single points of failure; another

advantage is that it reduces the communication overhead comparing with reactive

protocols. When a route is required, the source broadcasts a zone-level location request;

this reduces the overhead comparing with flooding techniques. While the destination node

does not migrate, no location search is necessary. The disadvantage is that all nodes have to

be prepared with the zone map in order to operate; this is bad when the network is highly

dynamic.

The Scalable location update routing protocol (SLURP) is a routing protocol similar to ZHLS

(Abolhasan, 2003), because it organizes nodes in zones (Woo & Singh, 2001). This algorithm

reduces the overhead in routing information, eliminating the global discovery, so, each node

has a home zone which is determined by a static mapping function (ƒ(NodeMACAddress) →

regionID). With this approach, any node can find the home zone; of a given node. Each node

also maintains its home zone by unicasting a location update message to the home zone,

when this message arrives, it is broadcasted to all the nodes in the zone, and then all nodes

can unicast a location_discovery packet to the same zone nodes. When the location of the

destination is found, the source can start sending information based on the most forward

with fixed radius (MFR) geographical forwarding algorithm; when the information reaches

the home zone of the destination it is sent by source routing. The home zones are the main

disadvantage of this protocol.

In Distributed spanning trees based routing protocol (DST) a tree like network is used to

group the nodes (Radhakrishnan, Rao, Racherla, Sekharan, & Batsell, 1999). These nodes can

be internal nodes or router nodes; the router nodes are responsible for the tree structure

and internal nodes are the regular nodes. They can be in three kinds of state: router, merge

and configure, depending on their roles. To find a route, this protocol proposes two

approaches: the hybrid tree-flooding (HTF) and distributed spanning tree shuttling (DST). In

110 Routing algorithm classes and comparisons

HTF the messages are passed by flooding the tree, and each node holds the packets for a

period of time; this can be useful because network connectivity increases along the time.

The DST sends the packets along the source to the leafs; when it reaches the leaf, it is sent

up until a level called shuttling level and then send down to the tree or to the adjoining

bridges. There are two main problems in this algorithm: the fact of using a tree approach

leads to a single point of failure in the root node, and in HTF the holding time can bring

delays to the network.

According to (Nikaein, Laboid, & Bonnet, 2000), Distributed dynamic routing (DDR) is an

algorithm that is tree based, but that does not requires a root node; this can be done by

beaconing neighbour nodes, and this will form is what is called a forest. The DDR consists of

six phases: preferred neighbour election (the neighbour with more neighbours), forest

construction (connection to the preferred neighbour), intra-tree clustering (creation of the

intra-zone routing table), inter-tree clustering (creation of the routing table to the

neighbouring zones), zone naming (zone ID assignation) and zone partitioning (non-

overlapping zones); all these phases are performed based on the beaconing messages. The

routing is made up in the DDR by a hybrid routing protocols, this protocol does not require

static zone maps, but the choice of preferred neighbours can lead to bottlenecks and

network delays; in large networks this can lead to packet drops.

As said in (Abolhasan, 2003), this class of algorithms have the potential to scale better than

the reactive or proactive classes, because they attempt to reduce the message overheads by

organizing nodes in order to organize the routing procedures. Like ZHLS, only the nodes

more suitable can be used for route discovery, and then, creating collaboration between

nodes, or in SLURP, the nodes work together in order to maintain the information of the

zone. These procedures can potentially eliminate or reduce the number of flooding

messages and they also attempt to eliminate bottlenecks or single points of failure in the

network.

Routing algorithm classes and comparisons 111

B.4. ROUTING ALGORITHMS CLASSES COMPARISON

As said in (Abolhasan, 2003), in global routing the flat addressing is easy to implement but is

not suitable to large networks because it introduces overhead. To avoid this problem LBS

(Location based services) can be used, like in DREAM or by using conditional updates besides

periodical updates, like in STAR; the use of hierarchical schemes may create overhead due to

location management. The flood based algorithms like DSR and AODV have stability

problems in large networks due uncontrolled route discovery and route maintenance; again,

the use of LBS systems can bring advantages like in the LAR protocol. The hybrid routing

protocols have advantages in large networks when compared with hierarchical routing

protocols because the location management is simplified. For example the ZRP protocol was

designed to increase the scalability of mobile ad-hoc networks by maintaining the network

connectivity for the routing zone and using an approach better than flooding outside that

zone; it also can use other protocols for routing inside the routing zone, like LAR. In Table B.1

a schematic comparison between the three classes of protocols is presented.

112 Routing algorithm classes and comparisons

Table B.1 Comparison between routing protocols

Routing class Proactive Reactive Hybrid

Routing structure Both flat and hierarchical Mostly flat, except CBRP Mostly hierarchical

Availability of route Always available Determined when needed Depends on the location of

the destination

Control traffic volume Usually high, attempt at

reduction is made. E.g., OLSR,

TBRPF

Lower than Global routing and

further improved using GPS.

E.g., LAR

Mostly, lower than proactive

and reactive

Periodic updates Yes, However some may use

conditional. E.g., STAR

Not required. However some

nodes may require periodic

beacons. E.g., ABR

Usually used inside each zone,

or between gateways

Handling effects of mobility Usually updates occur at fixed

intervals. DREAM alters

periodic updates based on

mobility

ABR introduced LBQ. ROAM

employs threshold updates.

AODV uses local route

discovery

Usually more than one path

may be available. Single point

of failures are reduced by

working as a group

Storage requirements High Depends on the number of

routes kept or required.

Usually lower than proactive

Usually depends on the size of

each cluster or zone may

become as large as proactive

protocols if clusters are big

Delay level Small routes are

predetermined

Higher than proactive For local destinations small.

Interzone may be as large as

reactive protocols

Scalability level Usually up to 100 nodes.

OLSRand TBRPF may scale

higher

Source routing protocols up to

few hundred nodes. Point-to-

point may scale higher. Also

depends on the level of traffic

and the levels of multihopping

Designed for up to 1000 or

more nodes

RWI Network Architecture – RTD Roadmap 113

ANNEX C. RWI NETWORK ARCHITECTURE – RTD ROADMAP

FIGURE C.1 RWI NETWORK ARCHITECTURE – RTD ROADMAP

114 Hardware and software considerations

ANNEX D. HARDWARE AND SOFTWARE CONSIDERATIONS

D.1. HARDWARE AND SOFTWARE USED

The proposed solution was implemented and tested in an Intel® Pentium® 4 2.40GHz with

494.6 MiB of memory and 18GiB of disk space. It was used the Linux distribution Ubuntu

9.10 (karmic) with the kernel 2.6.31-21-generic and GNOME 2.28.1, without Internet

connection.

Although the pre-requisites needed for the execution and configuration of the network

simulator are presented in the next chapter and the IDE used was the Anjuta IDE 2.28.0.0 for

the implementation of the solution.

D.2. INSTALLATION AND CONFIGURATION OF THE NSNAM

In order to install and configure the nsnam in this Ubuntu release, a set of pre-requisites

must be resolved first ($> represents the prompt):

 Minimal requirements for C++:

$> sudo apt-get install gcc g++ python

 Minimal requirements for Python:

$> sudo apt-get install gcc g++ python python-dev

 Mercurial:

$> sudo apt-get install mercurial

 Running python bindings from the ns-3 development tree:

$> sudo apt-get install bzr

 A GTK-based configuration system:

$> sudo apt-get install libgtk2.0-0 libgtk2.0-dev

Hardware and software considerations 115

 Debugging:

$> sudo apt-get install gdb valgrind

 Doxygen and related inline documentation:

$> sudo apt-get install doxygen graphviz imagemagick

$> sudo apt-get install texlive texlive-pdf texlive-latex-extra texlive-generic-extra texlive-

generic-recommended

 Texinfo for ns-3 manual and tutorials:

$> sudo apt-get install texinfo dia texlive texlive-pdf texlive-latex-extra texlive-extra-utils

texlive-generic-recommended texi2html

 The flex lexial analyser and bison parser generator for the Network Simulation Cradle

(nsc):

$> sudo apt-get install flex bison

 Basic mobility visualization tests require goocanvas:

$> sudo apt-get install libgoocanvas-dev

 gcc-3.4 is needed for some Network Simulation Cradle (nsc) stacks:

$> sudo apt-get install g++-3.4 gcc-3.4

 To read pcap packet traces:

$> sudo apt-get install tcpdump

 Database support for statistics framework:

$> sudo apt-get install sqlite sqlite3 libsqlite3-dev

 Xml-based version of the config store:

$> sudo apt-get install libxml2 libxml2-dev

 Support for Gustavo's ns-3-pyviz visualizer:

116 Hardware and software considerations

$> sudo apt-get install python-pygraphviz python-kiwi python-pygoocanvas

 Support for utils/check-style.py style check program:

$> sudo apt-get install uncrustify

After this is possible to download the simulator using Mercurial:

$> cd

$> mkdir repos

$> cd repos

$> hg clone http://code.nsnam.org/ns-3-allinone

And then is possible to download the most common options with:

$> ./download.py -n ns-3-dev -r ns-3-dev-ref-traces

And the ~/repos/ns-3-allinone/ns-3-dev directory must have the building script for the

simulator. To build it, just type:

$> ./build.py

And a confirmation message must be shown. In order to validate the installation a set of

tests can be made, just by typing:

$> ./test.py

