826 research outputs found

    A low-energy rate-adaptive bit-interleaved passive optical network

    Get PDF
    Energy consumption of customer premises equipment (CPE) has become a serious issue in the new generations of time-division multiplexing passive optical networks, which operate at 10 Gb/s or higher. It is becoming a major factor in global network energy consumption, and it poses problems during emergencies when CPE is battery-operated. In this paper, a low-energy passive optical network (PON) that uses a novel bit-interleaving downstream protocol is proposed. The details about the network architecture, protocol, and the key enabling implementation aspects, including dynamic traffic interleaving, rate-adaptive descrambling of decimated traffic, and the design and implementation of a downsampling clock and data recovery circuit, are described. The proposed concept is shown to reduce the energy consumption for protocol processing by a factor of 30. A detailed analysis of the energy consumption in the CPE shows that the interleaving protocol reduces the total energy consumption of the CPE significantly in comparison to the standard 10 Gb/s PON CPE. Experimental results obtained from measurements on the implemented CPE prototype confirm that the CPE consumes significantly less energy than the standard 10 Gb/s PON CPE

    Propagation of updates to replicas using error-correcting codes

    Get PDF
    With the increase in percentage of replicas of data in the Internet, reducing the amount of bandwidth needed for propagation of updates across the replicas has become a major issue. Objective of our investigation is to design an update propagation mechanism focused on reducing the amount of bandwidth needed to propagate the change across multiple distinct versions of the replicas in a distributed system. We obtain the estimated amount of bytes changed from the user and generate parity information needed to correct these bytes using Error Correcting Codes. Transferring the parity information propagates the update. The updated data can be constructed using the parity information and the outdated data. Our investigation proved that the approach would be bandwidth efficient but computation intensive. We conclude our investigation with an update propagation mechanism that we believe would be less computationally intensive and also reduced bandwidth requirements

    A high resolution data conversion and digital processing for high energy physics calorimeter detectors readout

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each user’s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    Design Techniques for High Performance Wireline Communication and Security Systems

    Full text link
    As the amount of data traffic grows exponentially on the internet, towards thousands of exabytes by 2020, high performance and high efficiency communication and security solutions are constantly in high demand, calling for innovative solutions. Within server communication dominates todays network data transfer, outweighing between-server and server-to-user data transfer by an order of magnitude. Solutions for within-server communication tend to be very wideband, i.e. on the order of tens of gigahertz, equalizers are widely deployed to provide extended bandwidth at reasonable cost. However, using equalizers typically costs the available signal-to-noise ratio (SNR) at the receiver side. What is worse is that the SNR available at the channel becomes worse as data rate increases, making it harder to meet the tight constraint on error rate, delay, and power consumption. In this thesis, two equalization solutions that address optimal equalizer implementations are discussed. One is a low-power high-speed maximum likelihood sequence detection (MLSD) that achieves record energy efficiency, below 10 pico-Joule per bit. The other one is a phase-shaping equalizer design that suppresses inter-symbol interference at almost zero cost of SNR. The growing amount of communication use also challenges the design of security subsystems, and the emerging need for post-quantum security adds to the difficulties. Most of currently deployed cryptographic primitives rely on the hardness of discrete logarithms that could potentially be solved efficiently with a powerful enough quantum computer. Efficient post-quantum encryption solutions have become of substantial value. In this thesis a fast and efficient lattice encryption application-specific integrated circuit is presented that surpasses the energy efficiency of embedded processors by 4 orders of magnitude.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146092/1/shisong_1.pd

    Semiconductor-based all-optical switching for optical time-division multiplexed networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references.All-optical switching will likely be required for future optical networks operating at data rates which exceed electronic processing speeds. Switches utilizing nonlinearities in semiconductor optical amplifiers (SOA) are particularly attractive due to their compact size, low required switching energies, and high potential for integration. In this dissertation we investigate the practical application of such semiconductor-based all-optical switches in next-generation optical networks. We present both theoretical and experimental studies of SOA-based interferometric switches. A detailed numerical model for the dynamic response of an SOA to an intensity-modulated optical signal is described. The model is validated using novel pump-probe techniques to measure the time-domain response of an SOA subject to various levels of saturation. The model is then used to evaluate the performance of three common SOA-based interferometric all-optical switches. The use of SOAs in optical transmission systems has been limited due to the deleterious effects of pattern-dependent gain saturation. We develop a statistical model to study the system impact of variations of the SOA optical gain in response to a random intensity-modulated optical signal. We propose the use of pulse-position modulation (PPM) as a means for mitigating gain saturation effects in SOA-based optical processors. We present techniques for modulation and detection of optical PPM signals at data rates in excess of 100 Gbit/s. We demonstrate demultiplexing, wavelength conversion, and format conversion of optical PPM signals at data rates as high as 80 Gbit/s. Finally, we report on experimental demonstrations of an optical interface for slotted OTDM networks.(cont.) We implement head-end and transmitter nodes capable of producing fully loaded optical slots at an aggregate network data rate of 112.5 Gbit/s. We demonstrate a fully functional receiver node which utilizes semiconductor-based all-optical logic for synchronization, address processing, and rate conversion.by Bryan S. Robinson.Ph.D

    Implementation of WiMAX physical layer baseband processing blocks in FPGA

    Get PDF
    This project thesis elaborates on designing a baseband processing blocks for Worldwide Interoperability for Microwave Access (WiMAX) physical layer using an FPGA. WiMAX provides broadband wireless access and uses OFDM as the essential modulation technique. The channel performance is badly affected due to synchronization mismatches between the transmitter and receiver ends so the transmitted signal received is not reliable as the OFDM deals with high data rate. This thesis includes the theory and concepts behind OFDM, WiMAX IEEE 802.16d standard and other blocks algorithms, its architectures used for designing as well as a presentation of how they are implemented. Here Altera’s FPGA has been used for targeting to the EP4SGX70HF35C2 device of the Stratix IV family. WiMAX use sophisticated digital signal processing techniques, which typically require a large number of mathematical computations. Here Stratix IV devices are ideally suited for these kinds of complex tasks because the DSP blocks have a combination of dedicated elements that perform multiplication, addition, subtraction, accumulation, summation, and dynamic shift operations. The WiMAX physical layer baseband processing architecture consists of various major modules which were simulated block wise in order to check its giving the correct output as required. The coding style used here is VHDL. The sub-blocks have been synthesized using Altera Quartus II v11. 0 and simulated using ModelSim Altera Edition 6.6d

    Asymptotic Analysis of Plausible Tree Hash Modes for SHA-3

    Get PDF
    Discussions about the choice of a tree hash mode of operation for a standardization have recently been undertaken. It appears that a single tree mode cannot address adequately all possible uses and specifications of a system. In this paper, we review the tree modes which have been proposed, we discuss their problems and propose remedies. We make the reasonable assumption that communicating systems have different specifications and that software applications are of different types (securing stored content or live-streamed content). Finally, we propose new modes of operation that address the resource usage problem for the three most representative categories of devices and we analyse their asymptotic behavior

    Reliable Hardware Architectures of CORDIC Algorithm with Fixed Angle of Rotations

    Get PDF
    Fixed-angle rotation operation of vectors is widely used in signal processing, graphics, and robotics. Various optimized coordinate rotation digital computer (CORDIC) designs have been proposed for uniform rotation of vectors through known and specified angles. Nevertheless, in the presence of faults, such hardware architectures are potentially vulnerable. In this thesis, we propose efficient error detection schemes for two fixed-angle rotation designs, i.e., the Interleaved Scaling and Cascaded Single-rotation CORDIC. To the best of our knowledge, this work is the first in providing reliable architectures for these variants of CORDIC. The former is suitable for low-area applications and, hence, we propose recomputing with encoded operands schemes which add negligible area overhead to the designs. Moreover, the proposed error detection schemes for the latter variant are optimized for efficient applications which hamper the performance of the architectures negligibly. We present three variants of recomputing with encoded operands to detect both transient and permanent faults, coupled with signature-based schemes. The overheads of the proposed designs are assessed through Xilinx FPGA implementations and their effectiveness is benchmarked through error simulations. The results give confidence for the proposed efficient architectures which can be tailored based on the reliability requirements and the overhead to be tolerated
    corecore