5,293 research outputs found

    Quantisation, Representation and Reduction; How Should We Interpret the Quantum Hamiltonian Constraints of Canonical Gravity?

    Get PDF
    Hamiltonian constraints feature in the canonical formulation of general relativity. Unlike typical constraints they cannot be associated with a reduction procedure leading to a non-trivial reduced phase space and this means the physical interpretation of their quantum analogues is ambiguous. In particular, can we assume that `quantisation commutes with reduction' and treat the promotion of these constraints to operators annihilating the wave function, according to a Dirac type procedure, as leading to a Hilbert space equivalent to that reached by quantisation of the problematic reduced space? If not, how should we interpret Hamiltonian constraints quantum mechanically? And on what basis do we assert that quantisation and reduction commute anyway? These questions will be refined and explored in the context of modern approaches to the quantisation of canonical general relativity.Comment: 18 Page

    Symplectic reduction and the problem of time in nonrelativistic mechanics

    Get PDF
    The deep connection between the interpretation of theories invariant under local symmetry transformations (i.e. gauge theories) and the philosophy of space and time can be illustrated nonrelativistically via the investigation of reparameterisation invariant reformulations of Newtonian mechanics, such as Jacobi's theory. Like general relativity, the canonical formulation of such theories feature Hamiltonian constraints; and like general relativity, the interpretation of these constraints along conventional Dirac lines is highly problematic in that it leads to a nonrelativistic variant of the infamous problem of time. I argue that, nonrelativistically at least, the source of the problem can be found precisely within the symplectic reduction that goes along with strict adherence to the Dirac view. Avoiding reduction, two viable alternative strategies for dealing with Hamiltonian constraints are available. Each is found to lead us to a novel and interesting re-conception of time and change within nonrelativistic mechanics. Both these strategies and the failure of reduction have important implications for the debate concerning the relational or absolute status of time within physical theory

    Geometrization of metric boundary data for Einstein's equations

    Get PDF
    The principle part of Einstein equations in the harmonic gauge consists of a constrained system of 10 curved space wave equations for the components of the space-time metric. A well-posed initial boundary value problem based upon a new formulation of constraint-preserving boundary conditions of the Sommerfeld type has recently been established for such systems. In this paper these boundary conditions are recast in a geometric form. This serves as a first step toward their application to other metric formulations of Einstein's equations.Comment: Article to appear in Gen. Rel. Grav. volume in memory of Juergen Ehler

    Comment on "Control landscapes are almost always trap free: a geometric assessment"

    Full text link
    We analyze a recent claim that almost all closed, finite dimensional quantum systems have trap-free (i.e., free from local optima) landscapes (B. Russell et.al. J. Phys. A: Math. Theor. 50, 205302 (2017)). We point out several errors in the proof which compromise the authors' conclusion. Interested readers are highly encouraged to take a look at the "rebuttal" (see Ref. [1]) of this comment published by the authors of the criticized work. This "rebuttal" is a showcase of the way the erroneous and misleading statements under discussion will be wrapped up and injected in their future works, such as R. L. Kosut et.al, arXiv:1810.04362 [quant-ph] (2018).Comment: 6 pages, 1 figur
    • …
    corecore