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Abstract: Hamiltonian constraints feature in the canonical formulation of general relativity.
Unlike typical constraints they cannot be associated with a reduction procedure leading to a
non-trivial reduced phase space and this means the physical interpretation of their quantum
analogues is ambiguous. In particular, can we assume that “quantisation commutes with
reduction” and treat the promotion of these constraints to operators annihilating the wave
function, according to a Dirac type procedure, as leading to a Hilbert space equivalent to that
reached by quantisation of the problematic reduced space? If not, how should we interpret
Hamiltonian constraints quantum mechanically? And on what basis do we assert that
quantisation and reduction commute anyway? These questions will be refined and explored
in the context of modern approaches to the quantisation of canonical general relativity.
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1. Introduction

Since their development in the late nineteen fifties the mathematical foundations of both the
constrained Hamiltonian theory of mechanics and the constraint quantisation programme [1,2] have been
substantially clarified. In particular, geometric insights into both mechanics [3–5] and quantisation [6,7]
have afforded a degree of precision and rigour in the canonical characterisation of gauge systems at both
classical and quantum levels which was hitherto unavailable. An important formal result that has been
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established is that for certain classes of constrained systems it can be proved [8–11] that the Dirac route
of first promoting the classical constraints to quantum operators and then imposing them as restrictions
on the physical wave functions should be considered equivalent to first reducing out their action and then
quantising the reduced phase space which results. On a conceptual level such proofs that “quantisation
commutes with reduction” secure a representative equivalence between the Hilbert space constructed via
the Dirac method and that associated with the reduced phase space in the sense that they guarantee that:
(i) the action of the same unphysical gauge group has been mitigated for; (ii) an identical reduced set of
physical degrees of freedom have been realised quantum mechanically. Furthermore they also establish
that the two observable operator algebras of can thought of as equivalent in terms of representing the
same ontology1.

Dirac’s major purpose in constructing both constrained Hamiltonian theory and constraint
quantisation was to find a methodology for quantising gravity. However, on both a technical and
conceptual level application of both aspects of his scheme have been found to be problematic. To a
large degree these problems derive their origin from the complex and perplexing role of the Hamiltonian
constraints within the canonical version of general relativity. These long standing issues are collectively
known as the problem of time in quantum gravity and were reviewed in detail almost twenty years
ago [12,13]. Since then some significant advances have been made [14], but on a conceptual level we
still want a satisfactory resolution to the most thorny problem of all—how should we interpret the action
of the Hamiltonian constraints on a quantum level. To this author’s knowledge, all existent approaches
follow the Dirac convention in treating quantum Hamiltonian constraints (or something equivalent to
them) as operators annihilating the wave function. However, if we are to assume that “quantisation
commutes with reduction”, then this is equivalent to endorsing the reduced phase space of the classical
theory as the fundamental dynamical arena. This is highly problematic since investing in such a space
would seem to do violence to the physical aspect of the transformations generated by the Hamiltonian
constraint and therefore render our dynamics trivial. The Hamiltonian constraints of canonical general
relativity undoubtedly have a different geometric origin to that of standard first class constraints2. What
is underappreciated is that this, together with the manifestly dynamical aspect to their phase space action,
indicates that the standard interpretational framework for first class constraints should be no longer be
thought automatically applicable. In fact, contra Dirac, these constraints, although first class, cannot be
taken as generating phase space transformations which do not change the physical state3 and therefore
the quotienting out of their action will lead to a reduced space without a legitimate physical basis.
Any approach to quantum gravity that makes use of a Hilbert space equivalent to that based upon the
quantisation of this reduced space is therefore built upon dubious physical foundations.

The complex structure of both the Hamiltonian constraints and the associated constraint algebra is
such that they lie outside the scope of existent commutation proofs. Thus, on a formal level we are
not justified in questioning current constraint quantisation techniques due to formal equivalence with
a trivialising reduction. However, on a conceptual level we may be able to establish that the Hilbert
space constructed by application of the modern variants of the Dirac constraint quantisation approach
is representatively equivalent to that based upon quantisation of the problematic reduced space. Such
an argument, if it can be constructed, would give us cause to question the interpretative basis of the
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Wheeler-De Witt equation and, moreover, any theory of quantum gravity that follows the Dirac line on
quantisation, in particular loop quantum gravity.

2. Reduction and Quantization

2.1. Symplectic Reduction and Geometric Quantization

In phase space terms, the existence of a gauge symmetry group corresponds to the pi’s and qi’s not all
being independent —there exists some functional relationship between them of the form ϕ(p, q) = 0. We
call such functions constraints4 and when a given constraint commutes with all the others we call it first
class. For our purposes it will be safe to assume that all constraints are first class. Geometrically, we can
understand the collection of all the (first class) constraints, ϕj j = 1, ...,m, as defining anm dimensional
sub-manifold, Σ = {(p, q) ∈ Γ |∀j : ϕj(p, q) = 0}, within the extended phase space, Γ , that we call the
constraint surface. The extended phase space itself has a symplectic geometry characterised by the pair
(Γ ,Ω) – where Ω is a closed and non-degenerate two form which we assume, for sake of simplicity, to
be constructed by taking the total differential of the Poincaré one-form θ = pidq

i. Points in this space
which do not lie on the constraint surface will not correspond to physically possible states since they
constitute solutions which violate the gauge symmetry. We therefore designate the constraint surface the
physical phase space. The geometry of the physical phase space is given by first restricting θ to Σ to get
a new characteristic one-form, θ̃ = θ|Σ . The total derivative of θ̃ will then give us a two-form ω = dθ̃,
which endows the constraint manifold with the geometry (Σ , ω). This new two form will be closed but
whether it is degenerate or not depends on the particular properties of the physical phase space itself.
For the typical case where ω is degenerate our physical phase space will have a presymplectic geometry.

Presymplectic geometries have a degenerate structure that does not allow us to associate a unique
vector field with every smooth function5. This means the conventional methodology for constructing
dynamics in terms of the integral curves of the vector field associated with the Hamiltonian function will
not lead to unique results. A form of indeterminism is present such that multiple mathematically distinct
yet dynamically equivalent solutions are defined at a given point irrespective of the path leading up to that
point. To relieve ourselves of the interpretation difficulties that this breakdown of the correspondence
between solutions and physical histories creates we can remove the degeneracy within our physical phase
space by following a symplectic reduction procedure leading to a reduce phase space.

Let us define the null tangent vector space Nx ⊂ TxΣ as the collection of vectors that satisfy the
equation ω(X, ·) = 0. This is equivalent to the null space or kernel, Ker(ω), of the presymplectic
form. An equivalence relation between two points x, y ∈ Σ can be defined based upon the condition
of being joined by a curve, γ̄ : R → Σ , with null tangent vectors. Sets of points for which this
equivalence relation holds are sub-manifolds called gauge orbits, [x], and we say that the action of our
presymplectic form is to partition phase space into these orbits. Equivalently, the orbits are defined by
the integral curves of the null vector field of ω. The non-uniqueness that we understood in terms of
the existence of gauge orbits is, therefore, also characterised by Ker(ω). Critically for our purposes,
the quotient ΠR = Σ/Ker(ω) will necessarily be, (i) a manifold and, (ii) have symplectic structure6.
We can now represent dynamics uniquely within the the reduced phase space ΠR since the projection
map π : Σ → ΠR defines a Hamiltonian system (ΠR, ωR, HR) where HR is taken to be a non-trivial
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Hamiltonian function on the reduced space and ωR is the two form whose pullback to Σ by π is ω
(i.e., ω = π∗ΩR where π∗ : ΠR → Σ ). An equation of the form ΩR(XHR

, ·) = dHR then gives us a
unique Hamiltonian vector field with which to define dynamical solutions in one-to-one correspondence
with physical histories. This unique representational capacity allows us to treat functions on the reduced
phase space, OR ∈ C∞(ΠR), as representing physical observables—since such functions will be both
uniquely and deterministically defined on any dynamical solution. We can also construct an analogous
restriction on functions on the original extended phase space, Γ , by use of the fact that the constraints
generate vector fields which are null on the constraint surface. This means that any function which
weakly commutes (i.e., has zero Poisson bracket on the constraint surface) with the constraint functions
must be constant along gauge orbits and therefore that such a function is uniquely and deterministically
defined on dynamical solutions. Thus, we have {O, ϕj}|Σ = 0 for O ∈ C∞(Γ ).

The objective of the geometric quantisation programme [6] is to find a correspondence between the
sets of pairs constituted by: symplectic manifolds (M,Ω) together with smooth real functions C∞(M),
on the one hand; and complex Hilbert spaces H together with self-adjoint operators A(H), on the
other. We define the full quantisation of a classical system (M,Ω) as a pair (HQ, A) under certain
conditions on HQ and the map, A, which takes us between classical and quantum observables7. We
can see this quantisation programme as consisting essentially of the construction of a Hilbert space HQ

on which the Lie algebra of classical observables can be represented irreducibly in terms of a set of
self-adjoint operators A(HQ)—the elements of this set are the quantum observables. When combined
with the symplectic reduction procedure outlined above, geometric quantization gives us a methodology
for quantising a system with first class constraints—i.e., first reduce then geometrically quantise the
reduced phase space making use of the symplectic structure that our reduction procedure guarantees.
Explicitly, what we do is consider the reduced phase space with geometry (ΠR,ΩR) and set of reduced
observable functions OR to be our classical pairing and find the corresponding Hilbert space HR and
self-adjoint operators ÔR(HR). If the symplectic reduction procedure runs through successfully we are
guaranteed to be able to construct the quantum equivalent.

2.2. Extended Phase Space Quantization and Quantum Constraint Reduction

The key move in Dirac’s constraint quantisation approach [1,2] is to quantise the extended phase
space Γ such that the physical phase space of a canonical gauge theory sits within. As we have seen
this space will have a symplectic structure. We can therefore promote smooth phase space functions,
f ∈ C∞(Γ ), into Hermitian operators, f̂ , and the Poisson bracket relation, {f, g} = Ω(Xf , Xg), into
commutation relations with the appropriate i~ factors. This essentially amounts to a partial application of
the geometric procedure above. The Hilbert space that results is called the auxiliary Hilbert space Haux

and we can define a class of auxiliary state vectors | ψaux〉. We then impose the (first class) constraint
functions as operators on Haux restricting the physical state vectors φ̂j | ψphys〉 = 0. The Hilbert space
that is constructed by taking the physical states is the physical Hilbert spaceHphys of the quantum theory.
We are provided with a set of quantum observables Ô by considering the set of self-adjoint operators
which commute with the constraints and map physical states to physical states.

Formally the quantisation procedure we have just sketched suffers from at least a number of
difficulties and ambiguities: (1) the quantisation of the classical constraint functions on phase space
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is not unique due to a factor ordering ambiguity; (2) extra input is needed to define a Hilbert space
structure on the physical states in particular an inner product; (3) solving the constraints at the quantum
level is non-trivial and may lead to inconsistent results8.

A number of modern strategies are available that allow us to formalise the Dirac quantisation scheme
such that these issues can be overcome or at least diminished. The two that we will briefly consider here
are the group averaging methodology (as used in refined algebraic quantisation) and the direct integral
approach (as applied in the Master Constraint Programme). These two techniques are particularly
significant for our purposes since a combination of them is utilised in the loop quantum gravity approach
to quantising general relativity [18].

Refined algebraic quantisation [19,20] (RAQ) is a methodology for addressing the ambiguities of
the Dirac quantisation scheme whilst still staying within the broad outline of “quantise first, constrain
second”. As per the original Dirac approach, we first construct a Hilbert space representation of
the operator algebra of functions on the extended phase space. The constraints are then taken to be
represented as Hermitian operators acting on this Haux. Crucially, we require that the the commutator
algebra of the quantum constraints form a Lie algebra (this will always be the case provided the classical
Poisson bracket constraint algebra closes with structure constants)—exponentiation of the constraint
operators will then yield a unitary representation U(g) of the corresponding Lie group G. Let us then
define some subspace Φ ⊂ Haux together with its algebraic dual Φ? (i.e., the space of complex valued
linear functions f on Φ). If the space Φ is chosen such that the constraint operators map it into itself
then a well defined dual action of these operators is also available9. Solutions of the constraints are then
elements f ∈ Φ? for which U(g)f = f ∀g ∈ G. Physical observables can then be defined as self adjoint
operators Ô(Haux) which include Φ in their domain, map Φ to itself and (crucially) commute with the
group action on Φ10.

The pivotal move is the definition of the rigging map which is an anti-linear map η from Φ into Φ?

such that: its image solves the constraints; it is real and positive; it commutes with the observables. The
RAQ scheme then provides us with a methodology for constructing the physical Hilbert space since an
inner product is provided to us by the rigging map: 〈η(φ1), η(φ2)〉phys = η(φ1)(φ2). This new inner
product is defined on Φ and it leads us to the physical Hilbert space Hphys via taking the quotient of
Φ by the sub-set of zero norm vectors it defines. The physical observables will then be automatically
defined as operators on Hphys and the correspondence between the RAQ definition of observables and
the original Dirac one given above, becomes explicit.

Clearly, the success of RAQ depends on our ability to find a suitably unique rigging map. This can be
done subject to the restriction that G is a locally compact Lie group with a Haar measure µH11. In these
circumstances (and for the case that the group is unimodular see [20] for the non-unimodular case) then
the the group averaging methodology defines the rigging map simply as:

η | φ〉 := 〈φ |
∫
dµHU(g) (1)

That this rigging map solves the constraints is guaranteed by the invariance of the Haar measure and that
it is real and commutes with the observables is guaranteed by the fact that it is invariant under g → g−1.

The Master Constraint Programme[18,21,22] (MCP) for the quantisation of constrained systems
constitutes more of a departure from the Dirac scheme than RAQ since it leads us to a different
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representation of the constraint functions even at a classical level. It is still of the Dirac quantisation
genus, however, since these reformulated constraints are again only imposed after quantisation. A
particular strength of the the MCP approach is that it remains well defined even for systems where
the Poisson bracket algebra of the constraints closes only with structure functions. This is particularly
important feature for our purposes since the Hamiltonian constraints of canonical general relativity are
associated with an algebra of exactly this type.

The essential idea is to re-write the classical constraint functions, ϕj(p, q) = 0, in terms of a single
equation which will be satisfied under the same conditions. This new single constraint is then the Master
Constraint. A simple example is given by taking a positive quadratic two form Kij and constructing
the Equation:

M : = Kijϕiϕj = 0 (2)

This Equation is satisfied if and only if all the individual constraint functions are vanishing and thus
defines the same physical phase space Σ that we had before. We can recover our observable condition
for the extended phase space by considering the class of functions such that:

{{M,O},O}|M=0 = 0 (3)

i.e., those functions which have a vanishing double Poisson bracket with the Master Constraint on the
constraint surface. The geometric interpretation of this condition on classical observables is subtly,
yet importantly, different to the standard one given above. Strictly, it is a restriction that implies that
the observable functions generate finite symplectomorphisms which preserve Σ , rather than the usual
condition that the observables are constant along the null directions generated by the constraints on Σ .
However, it can be straightforwardly demonstrated that the two conditions are equivalent [21]. Thus the
intuitive connection between these observables and the OR of §2.1 is retained. We may therefore think
about the O as corresponding to functions projected up from the reduced phase space.

Moving on to quantisation, we look for a representation of the Poisson algebra of functions on the
extended phase space, f , in terms of commutator algebra of operators, f̂ , on a (separable) auxiliary
Hilbert space Haux. We then require that the Master Constraint M is represented as a positive,
self-adjoint operator M̂. This is possible even if the classical constraints cannot themselves be
represented in such a way—i.e., when they fail to form a Lie algebra under the Poisson bracket operation.
Following Thiemann [18,21], sinceHaux is by assumption a separable Hilbert space it can be represented
as a direct integral of separable Hilbert spacesH⊕aux(λ), λ ∈ R, subordinate to M̂ according to:

Haux =

∫ ⊕
R
dν(λ)H⊕aux(λ) (4)

where although the measure ν and Hilbert spacesH⊕aux(λ) are not uniquely determined, different choices
will give rise to unitarily equivalent Hilbert spaces. Crucially, we can show that, for such a direct integral
decomposition, we will have that M̂ acts on H⊕aux(λ) by multiplication by λ. We can then define a
physical Hilbert spaceHphys := H⊕aux(0) which automatically comes equipped with a well-defined inner
product and upon which we can consider, if the uniform limit exists, a prospective class of observables
in terms of the ergodic mean of the f̂ :

[f̂ ] = lim
T→∞

1

2T

∫ T

−T
dteitM̂f̂ e−itM̂ (5)
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The existence of this object is guaranteed by the Birkhoff ergodic theorem since the unitary evolution
operator, U(t) = eitM̂, is a one-parameter measure preserving transformation on the Hilbert space
(see [23] §1.6). From this definition we have that the [f̂ ] will both persevere the physical Hilbert space
and induce a self-adjoint operator on that space. Furthermore, provided the spectral projections of the
bounded operator [f̂ ] commute with those of M̂ (which we may expect) the ergodic mean can be seen
to constitute a member of the class of strong observables, Ôs. These observables are defined to be
functions such that relevant commutator with the master constraint vanishes identically: [Ôs, M̂] ≡ 0.
Strong observables form a sub-set of the weak observables Ô defined via the quantum equivalent of the
condition given by Equation (3).

It is important to note that despite the impressive improvements in formalising the Dirac quantisation
programme that the RAQ and MCP approaches enable, these advances have come at the cost of removing
our quantum formalism far from physical intuition. The most obvious way to ensure we have constructed
more than just a mathematical edifice would be to demonstrate that both schemes have the appropriate
classical limit. In particular, a proof that the quantum observables reproduce their classical analogues
in the appropriate limit would be highly desirable. Alternatively, one might seek to anchor these
“quantise first, reduce second” techniques by a formal, or at least conceptual, correspondence with the
less intuitively opaque “reduce first, quantise second” alternatives. It is to this task that we now turn.

2.3. Does Quantisation Commute with Reduction?

Provided we assume that the Poisson bracket algebra of the classical constraints closes with structure
constants (and several further restrictions are imposed), we can often prove formally that a Dirac
type procedure of quantising and then imposing the constraints at the quantum level is equivalent
to first symplectically reducing and then geometrically quantising12. The crucial results established
in such commutation proofs is that: (i) the physical Hilbert space constructed through a Dirac type
approach, Hphys, can be shown to be unitarily isomorphic to that (i.e., HR) achieved by quantising the
symplectic manifold constructed by a classical reduction of the action of the constraints; and (ii) the two
quantization procedures result in an equivalent set of observables to the extent that the isomorphism
in (i) also entwines the representations of the two sets of quantum observables (both of which can
be connected back to the same set of gauge invariant classical observables). We can thus assert, in
certain circumstances, that quantisation does commute with reduction and assert physical equivalence in
a strict sense.

Unfortunately the constraints of canonical general relativity are of such formidable complexity that
the theory lies well outside any of the existent commutation proofs. Our purpose here will not be to
examine exactly why this is the case nor to present work towards a solution of this very important
problem. Rather, we will introduce a conceptual notion of commutativity which can be established in
cases where formal arguments are not available. Such a weaker notion of commutativity will allow us to
tackle the important task of exploring the somewhat unclear conceptual foundations of quantum theories
constructed via a Dirac type methodology. In particular, it will give us a basis in which to examine
the extent to which mathematical structures which they present us with are in correspondence with a
reasonable physical ontology.
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To establish a conceptual notion of commutativity we do not need to look for the existence of a suitable
observable entwining isomorphism existing between Hphys and HR but rather establish correspondence
between both the Hilbert spaces and the observables on a representative level. We can flesh this idea out
in terms of how the two approaches treat the relevant symmetries, observables and degrees of freedom
of a given theory. What interests us is the extent to which the imposition of the constraints at a quantum
level should be understood as implementing the same reduction from an otiose to a unique representative
structure that we enact via classical reduction. The key features of the classical symplectic reduction
procedure that we must require to be replicated at a quantum level are: (1) quotienting by the same gauge
group; (2) reduction by the same number of degrees of freedom; (3) the quantum observables defined
via the two routes are equivalent to the extent that we are justified in thinking of them as representing
the same underlying ontology. If we are satisfied as to equivalence in these three senses then we are
justified in asserting that the two quantisation procedures produce representatively equivalent structures
and that representative commutation between quantisation and reduction holds. Clearly, this notion
of commutativity in terms of representative equivalence should be implied by that defined in terms of
unitary isomorphism but not visa versa. However, its potential significance is not purely interpretive
since, given a case where we believe the classical reduction to lead to physically unrealistic reduced
phase space, establishing representative commutation will then provide us with grounds to doubt the
physical basis of the theory quantised along the Dirac lines. Thus, what we have constructed is a heuristic
tool as well as an interpretative criterion of equivalence.

Let us consider the case of a theory where: (i) the constraints are associated with a Poisson bracket
algebra with structure constants such that we can represent their action quantum mechanically via a set
of unitary operators on an auxiliary Hilbert space; (ii) classically we can construct a reduced phase space
with a symplectic geometry and a non-trivial Hamiltonian operator. In these circumstances, we can apply
RAQ to produce a quantum theory via the Dirac type approach or alternatively proceed with a geometric
quantisation of the reduced space. The key to evaluating our notion of representative commutativity
is to examine the degree of correspondence between the quantum and classical reduction procedures.
Immediately, we can see a prima facie correspondence between the classical gauge orbits defined by
the constraints on the physical phase space and the quantum orbits defined by the U(g) on the auxiliary
Hilbert space. Further to this, we can also see an intuitive correspondence between (a) the quotienting
of the orbits in the classical theory to enable passage to the reduced space and (b) the group averaging
over the quantum orbits that is used to construct the rigging map which projects into the physical Hilbert
space. However as pointed out by Corichi [24] we must be wary of taking these resemblances too
seriously. Unlike in the classical case, the orbits are not generically equivalence classes of physical
states—this is to be expected since in the quantum case we do not make any restriction to a physical
yet degenerate sub-space of the auxiliary Hilbert space which would be analogous to the physical
phase space. Furthermore, the rigging map defined by group averaging will—unlike the map to the
reduced phase space—in general take us to a state which is not part of the quantum orbit. Thus, the two
quotienting procedures are clearly different in an important sense.

Nevertheless, despite these differences the two procedures are equivalent in terms of quotienting out
of the same gauge group. Since the constraints form a Lie algebra they are associated with a Lie group,
G, at a classical level. It is the action of this group that we are removing from the physical phase
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space via symplectic reduction. This is the same group that we represent in RAQ in terms of unitary
operators on Haux and that we quotient out via the rigging map defined by group averaging in order to
constructHphys.

To see the correspondence in terms of degrees of freedom reduction we have to consider the nature
of the group averaging procedure a little more carefully. Clearly, if all we were doing in RAQ was the
quantum equivalent of classical reduction on an unconstrained space then we would have a mismatch
in terms of number of degrees of freedom removed—in the classical procedure half the excess degrees
are removed by restriction to the physical phase space and half by the reduction itself. Rather, we must
be able to understand the group averaging procedure as achieving both steps at once. We have, in fact,
already considered the essence of the answer—the rigging map does not just reduce out equivalence
classes it projects onto physical states. If we start out with an unphysical state then it will take us
to a physical state. If we start out with a solution to the constraints then, because the orbit is trivial,
group averaging will keep us at the same point. Thus, as well as quotienting out of the same gauge
group we also have the quantum equivalent of restriction to the physical phase space and the desired
correspondence in terms of degrees of freedom reduction is guaranteed.

Since the quantum observables of the RAQ scheme are defined such that they commute with the
group action on the relevant sub-space of Haux, there is also a clear intuitive relationship between them
and the classical observables on the physical phase space O: Both are in a sense “constant along the
gauge orbits”—although of course as we have seen the quantum gauge orbits are of a very different
character to the classical ones. A stronger relationship can be established between the observables on
the reduced phase space OR and the quantum observables of RAQ since both are well defined with
respect to a non-degenerate and physical representative structure (i.e., ΠR and Hphys). In this context,
we can then consider the associated quantum observables ÔR defined on HR and (from an intuitive
perspective) assert equivalence between them and the observables of RAQ such that we would be justified
in thinking of them as representing the same underlying ontology. It should be noted that crucial to the
establishment of this equivalence is the correspondence between the way states are represented in ΠR and
Hphys respectively: It is because points in the respective spaces can be given analogous representative
roles that we can establish a relationship between the observables defined via functions/operators on
the spaces.

It would therefore seem clear for the class of theories within which RAQ and symplectic reduction
are applicable, representative commutativity of reduction and quantisation will hold. The important
question of whether our condition also holds for theories within which RAQ is not applicable, and the
Master Constraint Programme for quantisation has been applied, will be considered in the context of the
Hamiltonian constraints of canonical general relativity in §3.4.
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3. Canonical General Relativity; Reduction and Quantization

3.1. The ADM Formalism and the Constraint Algebra

For the class of globally hyperbolic solutions we can re-cast the original Lagrangian formulation of
general relativity in vacuo into a constrained Hamiltonian formalism [25]:

S =
1

κ

∫
R
dt

∫
σ

d3x{q̇abP ab − [NaHa + |N |H]} (6)

Where κ is the gravitational coupling constant, σ is a three dimensional manifold of arbitrary
topology, qab and P ab are tensor fields defined on σ and N and Na are arbitrary multipliers called the
lapse and shift. Ha and H are constraint functions of the form:

Ha : = −2qacDbP
bc (7)

H : = − sκ√
det(q)

[qacqbd −
1

2
qabqcd]P

abP cd −
√
det(q)

R

κ
(8)

withR the 3-scalar curvature and s is the signature of the four metric in the Lagrangian theory we started
off with (i.e., −1 for Lorentzian and +1 for Euclidean). The constraints are called the momentum and
Hamiltonian constraints respectively. The physical phase space Σ is a sub-manifold within the extended
phase space Γ defined by the constraints:

Σ = {(qab, P ab) = x ∈ Γ |Ha(x) = 0;H(x) = 0} (9)

Like in a typical gauge theory it has a presymplectic geometry (Σ , ω).
The need for the imposition of these constraints is easily understood on an intuitive basis since

we know that the physical modes of the classical gravitational field should correspond to a canonical
representation with 4×∞3 degrees of freedom and these constraints serve to cut the 12×∞3 variables
of the extended phase space down to 8 × ∞3 on the physical phase space. This still leaves another
4×∞3 unphysical degrees of freedom which we would normally seek to eliminate (classically) through
symplectic reduction. Alternatively, we could seek to put off reducing out all of the excess degrees
of freedom until after quantisation—this would be to follow the Dirac route of §2.2. The key issue is
whether enacting the classical reduction for the case of the Hamiltonian constraints of canonical general
relativity makes sense, and then whether the corresponding quantum reduction should be understood as
having the same consequences. But before we bring our focus upon these questions in the context of the
momentum and Hamiltonian constraints in turn it is crucial for us first to consider the structure of the
constraint algebra.

This algebra is know as the Dirac-Bergman algebra, D, (see [18] §1.4 and references therein) and has
an interesting and important structure. Explicit calculation of the relevant Poisson brackets gives:

{ ~H( ~N), ~H( ~N ′)} = −κ ~H(LNaN
′
a) (10)

{ ~H( ~N), H(N)} = −κH(LNaN) (11)

{H(N), H(N ′)} = sκ ~H(F (N,N ′, q)) (12)

where H(N) and ~H( ~N) are smeared versions of the constraints (e.g., ~H( ~N) :=
∫
σ
d3xNaHa) and

F (N,N ′, q) = qab(NN ′,b − N ′N,b). Since it is phase space dependant F (N,N ′, q) is a structure
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function and its presence on the right hand side of (9) indicates that the transformations associated
with the algebra do not form a Lie group. Since the symmetries of the Lagrangian theory do constitute
a Lie group (that of four dimensional diffeomorphisms) we have an immediate worry that the canonical
formalism may not have implemented some crucial structure of general relativity. However, under the
condition that the equations of motion hold a correspondence can be established between the Lagrangian
and Hamiltonian symmetries meaning that physically the two formulations of general relativity are
indistinguishable. For our purposes this on shell restriction as to the association of the constraints with
diffeomorphism symmetries will prove crucial—it indicates that, unlike in a “typical” gauge theory (e.g.,
electromagnetism or Yang-Mills) the canonical generator of local symmetry transformations should
be thought of as acting on entire solutions and not on individual phase space points [15]. Proper
appreciation of this non-standard facet of canonical general relativity is key to correctly interpreting the
classical Hamiltonian constraints, and this classical interpretational question is in turn key to ensuring
our quantisation procedures are conceptually coherent.

3.2. Reduction and Quantisation of the Momentum Constraints

Let us now focus on the momentum constraints in particular. The Equation (7) above closes with
structure constants and this means that the action of the momentum constraints can be associated with
a Lie group. Moreover, this group can be understood explicitly in terms of the implementation of a Lie
algebra of diffeomorphisms of the space-like hypersurface σ [26]. This solid geometrical interpretation
of the action of the constraints is further illustrated by considering the explicit form of the Poisson
brackets between the constraints and arbitrary canonical variables on the extended phase space.

{ ~H( ~N), qab} = κ(L ~Nqab) (13)

{ ~H( ~N), P ab} = κ(L ~NP
ab) (14)

The appearance of the Lie derivative on the right hand side of each Equation indicates that these
constraints can be understood as purely generating infinitesimal diffeomorphisms. We would then seem
fully justified classically in seeking to: (i) quotient the action of these constraints via the application of
symplectic reduction; (ii) construct a partially reduced phase space where each point will correspond to
canonical variables defined upon a spatially diffeomorphic invariant three geometry. Such a space is the
cotangent bundle associated with Wheeler’s superspace [27] and as such we shall call it the super-phase
space, T ?S. Formally, its structure is little explored and it is unlikely to be without singularities and other
topological complications13. However, from a conceptual viewpoint its representational role is clear and
we will therefore make the (highly non-trivial) assumption that it has the characteristics of a typical
reduced phase space with the associated symplectic geometry. As such, the application of geometric
quantisation would be available and a corresponding Hilbert spaceHSPS could be constructed.

For our purposes what is most significant is what representational relationship such a Hilbert space
would have to that constructed via a Dirac type “quantise first, reduce second” route. Since the
momentum constraints are associated with an algebra which closes with structure constants, it would
seem appropriate to think of the associated Lie group as being representable quantum mechanically in
terms of the action of a set of unitary operators on an auxiliary Hilbert space. Unfortunately, there is
complication here since within modern approaches (i.e., LQG) it is found that we are in fact only able
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to construct quantum operators generating the finite component of the spatial diffeomorphism group.
Although some variant of the group averaging methodology of the RAQ scheme can then be applied14,
this will lead us ultimately to to a non-separable physical Hilbert spaceHmom.

The relationship between Hmom and HSPS (which we would assume to be separable) is not going
to be simple. Formally, the two spaces are certainly not going to be unitarily isomorphic and even
representationally we do not have an exact correspondence since the groups involved in the classical
and quantum quotienting procedures are, strictly speaking, different. However, in terms of the putative
ontology represented by these two Hilbert spaces, these details are not crucial. The classical and
quantum quotients are equivalent in that both lead us to the representation of objects invariant under
spatial diffeomorphisms (albeit in slightly different sense since in the former but not in the latter case the
diffeomorphisms are smooth). Furthermore, in terms of degrees of freedom we will have equivalence
since in both cases we are cutting down by 6×∞3. On the level of observables too we can argue towards
equivalence since a representation of an algebra of spatially diffeomorphism invariant observables is
well defined on Hmom. Clearly, it is reasonable to think of such an algebra as representing the same
fundamental objects as the ÔR which we would define onHSPS .

Thus, although we can not strictly assert representational commutation between reduction and
quantisation for the momentum constraints—because of the problems in constructing a quantum operator
which generates infinitesimal spatial diffeomorphisms—we can assert commutation to hold for all intents
and purposes since one may at least represent the same spatially diffeomorphism invariant ontology via
both Dirac and reduced quantisation routes.

3.3. Classical Hamiltonian Constraints, Reduction and the Problem of Time

As mentioned above the Poisson bracket between Hamiltonian constraints closes only with structure
functions. This means their interpretation resists a simple group theoretic basis. Connectedly we
also have that the transformations generated by all the constraints together can only be understood as
implementing a canonical representation of the fundamental local symmetry group of the Lagrangian
theory when a solution to the equation of motion has already been defined. This peculiar feature of the
theory is directly related to the structure of the Hamiltonian constraint as is illustrated by the investigation
of its action on an embedded canonical momenta variable. Such a variable is so called because it is the
canonical conjugate of an metric variable qµν which is a tensor field (the first fundamental form) defined
on the embedded hypersurface Σt. This new metric variable can be expressed purely in terms of spatial
vector fields on Σt and the usual metric variable on σ, qab (see [18] (1.1.16)) and the new momenta
variable can be written in terms of it together with it and another spatial tensor field on Σt (the second
fundamental form). An elegant calculation by Thiemann ([18] pp. 54–56) yields the explicit expression:

{H(N), P µν} =
qµνNH

2
−N

√
‖q‖[qµρqνσ − qµνqρσ]R4

ρσ + LNnP
µν (15)

with R4
µν the Ricci 4-tensor. The first term on the right hand side is zero on the physical phase space and

is therefore unimportant. The second is zero for solutions to the equations of motion and thus by the third
meaning term we have that the Hamiltonian generates infinitesimal diffeomorphisms on shell. However,
this interpretation only holds in the context of spatial hypersurface embedded in a dynamical solution—it
does not give us an unambiguous understanding of the action of H(N) on the three dimensional
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canonical variables that parameterise the physical phase space. In particular, the transformations between
the three geometries σ which collectively constitute the solutions are themselves also generated by
the phase space action of the Hamiltonian constraint. This implies that the Hamiltonian constraints
of canonical gravity are of an unusual dynamical type such that the transformations they effect on
the physical phase space cannot be understood purely as gauge. Furthermore, it also indicates that
sticking with such a pure gauge interpretation will involve forgoing the constraints role in the generation
of dynamics15.

This should be of no surprise since similar constraints which arise in the canonical formulation of
both parameterised particle dynamics and Jacobi’s theory can also be shown to have such a dynamical
character [29]. As I have argued elsewhere for those simpler cases [30], the presence of constraints
with such a dynamical aspect implies that the application of symplectic reduction will have a trivialising
effect such that any reduced phase space will not have the capacity for the representation of dynamics.
We can see this explicitly for the case of general relativity in particular: (I) As mentioned above the
physical phase space of the theory will have a presymplectic geometry (Σ , ω) and like in a typical gauge
theory this structure contains characteristic “null directions” the ‘integral curves’ of which we usually
identify as gauge orbits; (II) Since general relativity is a field theory the geometric structure we are
dealing with is a little more complex than that introduce in §2.1: Motions are now four-dimensional
surfaces with a quadritangent X (made up of the tensor product of four independent tangents) defined
at each point. Thus, the part of “null direction” is now played by the a specific quadritangent and
that of “integral curve” by an integral surface; (III) More significantly, and in stark contrast to the
typical case, if we define the gauge orbits of canonical general relativity explicitly in terms of the
four dimensional surfaces γ̄ in Σ such that the quadritangent to the orbit X is in the kernel of ω (i.e.,
ω(X) = 0) then we can identify the γ̄ with the set of (globally hyperbolic) solutions of the Einstein field
equations [31]; (IV) Since these orbits are precisely those which we would normally classify as gauge
equivalence classes a symplectic reduction procedure would (in principle) lead to a reduced phase space
within which, prima facie, dynamics has been gauged out; (V) Furthermore, since this reduced space is
only equipped with a trivial Hamiltonian function there is no hope of recovering dynamical evolution in
terms of transformations between points in the reduced space.

In light of these arguments, one might then attempt to re-interpret the reduced space as a space of
histories with each point taken to represent a solution invariant under the class of four-dimensional
diffeomorphisms [32]. This could be justified on the basis that there exists a single canonical
isomorphism from our reduced phase space points to the space of gauge invariant solutions in a
Lagrangian formalism. However, the existence of an isomorphism does not automatically confer
representational equivalence and if we read the reduced space in such a manner then it may have
problematic consequences for how we view the unreduced phase space. In fact, since such an
interpretation would lead us towards treating the gauge orbits on the physical phase space as equivalence
classes of diffeomorphically related four geometries, it is inconsistent with the very basis of the ADM
decomposition of space-time into three geometries. Rather, since the representational role of points in the
ADM phase space is clearly predicated upon a three dimensional ontology, points within the symplectic
reduction of this space are required to perform an analogous role. Thus, the absence of a non-zero
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Hamiltonian function means that reduced phase space is inherently trivial as a structure for representing
dynamics—the only ontology it can be associated with is that of static three geometries.

The vital realisation is that we can only view the constraints of canonical general relativity as
collectively producing four dimensional diffeomorphisms once a dynamical solution generated by the
Hamiltonian constraint has already be defined. Thus the Hamiltonian constraint’s action on the phase
space is essentially dual and passing to the reduced phase space of canonical gravity (where the action of
the Hamiltonian constraint is treated as pure gauge) will inevitably involve throwing the dynamical baby
out with the diffeomorphism symmetry bathwater. The important lesson that we should learn is not that
considering general relativity in terms of a canonical formalism leads inevitably to a frozen picture of the
world represented in terms of a dynamically trivial reduced space—this way of portraying the problem of
time is misguided. Rather, the fundamental point is that blind application of the standard interpretation of
first class constraints, and the symplectic reduction that goes along with it, to the Hamiltonian constraints
leads to a physically unreasonable formalism.

3.4. How Should We Interpret the Quantum Hamiltonian Constraints?

The preceding discussion leads us directly to the essential dilemma—should we understand the
implementation of the Hamiltonian constraints in terms of operators annihilating the wave function
according to the Dirac quantisation prescription as equivalent to the conceptually problematic classical
reduction? Or more precisely, is it appropriate to think of reduction and quantisation as commutative
procedures when considered with regard to the Hamiltonian constraints? On a formal level, it is not
yet possible to answer this question since the Hamiltonian constraints lie outside the scope of existent
commutation proofs. Furthermore, we cannot at the moment even make use of our weaker representative
notion of commutativity since we have only established its viability for cases in which the constraints
close with structure constants and the RAQ refinement of Dirac quantisation is available. We can at
least argue towards some degree of representative equivalence between the naive quantisation of the
Hamiltonian constraint via the original Dirac quantisation methodology (leading to the Wheeler-De
Witt equation) and a quantisation of the putative and problematic reduced phase space since there is
an equivalence in terms of reduction of degrees of freedom by 2×∞3. However, since the original Dirac
does not guarantee us either a well defined physical Hilbert space nor a set of observables and there is
no group theoretic basis for interpreting the relevant symmetries, we are still well short of securing even
our weak notion of representative equivalence.

Rather, quantisation of the Hamiltonian constraints16 is the context within which the master constraint
programme comes into its own. Dittrich and Thiemann [18,22] have produced encouraging results with
regard to the applicability of this scheme to the Hamiltonian constraints (although the significant problem
establishing the correct classical limit, among others, still remains) and it would therefore seem, in the
first instance, reasonable to assume that if we can establish in general the viability of representational
commutation for theories in which MCP has been applied, then we have a good basis for representational
commutation in the case of the Hamiltonian constraints.

Recall from above that in the MCP we seek classically to construct a single Master Constraint the
satisfaction of which is equivalent to the satisfaction of all the individual constraints. We then promote
this single constraint to a self-adjoint operator on an auxiliary Hilbert space and then use the direct
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integral methodology to construct a well defined physical Hilbert space. To establish representational
commutativity we first look to find a correspondence between the classical and quantum reductions
in terms of reduction by the same number of degrees of freedom. We can do this be considering the
quantum Master Constraint equation M̂ψ = 0 which we implicitly solve when constructing the physical
Hilbert space via the direct integral method. Following Thiemann [18] we can consider the simple case
that M̂ = Kiϕ̂i

†ϕ̂i where Ki > 0 are constants with the required convergence properties17. Next we
have that M̂ψ = 0 implies that ϕ̂iψ = 0 since by definition 〈ψ | M̂ψ〉 = Ki‖ϕ̂iψ‖2 = 0. We can then
fall back on the correspondence [2] in terms reduction of degrees of freedom between the Dirac quantum
constraint conditions ϕ̂iψ = 0 and the classical symplectic reduction of a system with physical phase
space Σ = {(p, q) ∈ Γ |∀i : ϕi(p, q) = 0}.

Moving on to the condition regarding observables: We have from above that the MCP allows us
to define the strong observables Ôs which are such that [Ôs, M̂] ≡ 0. What kind of relationship is
there between such observables and the ÔR that we construct based upon the reduced phase space?
We can address this question by first considering the weak classical observables which were defined by
the double commutator {{M,O},O}|M=0 = 0. We have that {{M,O},O}|M=0 = 0 is equivalent
to {ϕi,O}|M=0 = 0. This means that, as noted above, we can think of a geometrical correspondence
betweenO andOR since the first are constant along the gauge orbits which are quotiented out in order to
construct the space in which the latter are defined. Since the classical strong observables (which can be
constructed by considering an ergodic mean analogous to (5)) are a subset of the weak observables such
a correspondence will hold for them also, and it seems correct to think of Ôs as being representatively
equivalent to a sub-set of the ÔR. Classically, we can in fact give a formal criterion to define this subset
since they will be such that the pull-back of the map which projects down to the reduced space (i.e.,
π? : ΠR → Σ ) will take them to the Os. We have not yet considered the representation of the physical
state space over which these observables are defined and, as was pointed out above, this relationship is
in fact ket to establishing representative correspondence between the observables. We will return to this
issue at the end of this section.

More problematic is our condition concerning “quotienting by the same gauge group”—since MCP is
still well defined for cases (such as that of the Hamiltonian constraints) where there is no group theoretic
basis to the quotient taken in symplectic reduction, the condition clearly must be adapted to remain
relevant. Instead, we should look for the same set of local transformations being removed without
any restriction on the nature of these transformations (i.e., they may not form a group). Let us return
our focus to the Hamiltonian constraints of canonical general relativity. The crucial question is then
whether we should understand the MCP as enacting a quantum equivalent of the dynamically trivialising
classical reduction discussed in §3.3. In particular, are we doing something equivalent to erroneously
treating the (at least) partially dynamical action of the constraints purely as a gauge transformation on the
physical phase space? Let us consider the explicit form of the Master Constraint for canonical general
relativity [18,21,22]:

M =
1

2

∫
σ

d3x
H(x)2√
det(q)(x)

(16)

This constraint has a number of formal virtues. In particular it is such that its satisfaction implies
that H(N) = 0 for all N meaning that encodes the same constraint surface as the Hamiltonian
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constraints. Furthermore, it is also such that { ~H( ~N),M} = 0 meaning that it is invariant under spatial
diffeomorphisms and will lead us to a constraint algebra with a much simpler form, the Master Constraint
algebra M:

{Ha(Na), Ha(N
′
a)} = −κHa(LNaN

′
a) (17)

{Ha(Na),M} = 0 (18)

{M,M} = 0 (19)

We no longer have to deal with the presence of structure functions in our constraint algebra since
the highly complex expression (12) in the Dirac algebra is replaced by the trivial self-commutation
expression (19). In substituting a single Master Constraint for the infinite set of Hamiltonian constraints
we avoid having to explicitly confront the difficulties of the Poisson bracket algebra with which the latter
are associated. Furthermore, since the master constraint algebra is a proper Lie algebra it can of course
be associated with a Lie group of transformations. This means that the task of fully quantising canonical
general relativity (i.e., dealing with both sets of constraints) will be made far more tractable. Returning
to the point in hand, clearly M 6= D since one is a Lie algebra and one is not. So there is a clear sense
in which symplectic reduction (which removes the action of the transformations associated with D) is
not going to have a straightforward representational relationship to application of the MCP. Yet, we were
able to establish a degree of correspondence in terms of the treatment observables so we should still
expect some correspondence in terms of which transformations the two reductions treat as unphysical.
We might hope to get a definite formal grip on this relationship by calculating the action of M on a
phase space variable. However, since such a calculation will only yield an expression which is vanishing
for M = 0 it is clear that the action constructed in this way will be trivial on the physical phase space.
The key realisation is that since the Hamilton vector field associated with the Master Constraint, Xa

M, is
by definition vanishing on the physical phase space the Poisson bracket between it and any phase space
function will always be zero for M = 0. Thus, there are no interpretational difficulties in treating the
orbit associated with the integral curves of Xa

M as gauge since it is a trivial move.
To make more definite progress we must consider the quantum theory. Recall from above that we look

to represent the Master Constraint as a positive, self-adjoint operator M̂ on an auxiliary Hilbert space
Haux. We then use the direct integral methodology to construct a physical Hilbert space, Hphys. Setting
aside some important technical complications not least the non-separability of Haux (see [18] §10.6.3
on this point), the essential elements of this scheme are readily applicable to our Master Constraint
formulation of the Hamiltonian constraints of classical general relativity. What is important for our
purpose is whether in constructing Hphys we have carried out a move analogous to treating the classical
action of the Hamiltonian constraints on phase space as pure gauge. At first sight, it appears that we have
not since the quantum quotient that we take in order to constructHphys is with respect to the kernel of M̂.

Considering things more carefully, the direct integral methodology represents M̂ onH⊕aux(λ) such that

M̂(ψaux(λ))λ∈R = (λψ(λ))λ∈R (20)

and then definesHphys in terms of the ψaux(λ) inH⊕aux(λ) which are such that λ equals zero. This of
course means that only states which solve the Master Constraint will be part of the physical Hilbert space.
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Furthermore it also means that (following Corichi [24]) we should think of the quantum equivalent to the
Hamilton vector field of the Master Constraint as vanishing18. In fact, since the Master Constraint can be
represented in terms of a positive self-adjoint operator on Haux, M̂ is associated with a one parameter
family of unitary operators, Û(t) = eitM̂. It is therefore appropriate to think of the construction of
Hphys in terms of the quotienting of a quantum gauge orbit associated with Û(t) in the same sense as we
discussed for the case of RAQ. This would seem to indicate that our intuition from the classical theory
has proved correct—quantisation according to the MCP should not, when applied to the Hamiltonian
constraints, be consider as involving a quantum quotienting analogous to that achieved be reducing out
the constraints at a classical level.

We have, however, neglected to consider the Dirac observables—it is only in virtue of them that the
Master Constraint can be said to encode the same classical structure as the individual constraints. In
fact, according to Thiemann [21], the requirement that both the observables and the individual constraint
operators be represented as self-adjoint operators onHphys, can be shown (in solvable models) to fix the
inner product such that the solution space must be reduced to the simultaneous one of all constraints.
This implies that states in the auxiliary Hilbert space which fail to be solutions of the individual
constraints will be excluded in the passage to the physical Hilbert space. If this were to hold for the
Hamiltonian constraints of canonical general relativity then we would have a restriction on physical
states such that they: (i) individually solve Wheeler-De Witt type equations of the form Ĥψphys = 0;
(ii) collectively solve the Master Constraint equation M̂ψphys = 019. Under these circumstances, we can
then argue that the representation of physical states arrived at via this “quantise first, reduce second”
methodology will coincide with that based upon quantisation of the dynamically trivial classically
reduced space. This is because if the physical Hilbert space is such that only states which are zero
eigenvectors of the Hamiltonian constraint operators are permitted, then no two distinct classical states
which lie along the null direction which the classical constraint function defines can be represented at
the quantum level. This means that fundamentally the same set of objects have been excluded from
our ontology as in the case of a reduced and then quantised theory. We would therefore be justified in
asserting that the quotienting criteria of representational equivalence will hold since we have recovered
its fundamental aspect.

Furthermore, this conceptual connection between the physical states also ensures that there is full
representative correspondence between the reduced and physical observables at a quantum level and
therefore that our criteria concerning observables holds. Thus, for both the general case and the specific
case of general relativity the physical Hilbert space constructed via the MCP is representationally
equivalent to that based upon quantisation of a reduced phase space—i.e., representational commutation
between quantisation and reduction holds. This gives us strong conceptual grounds for doubting the
validity of applying this quantisation procedure to the Hamiltonian constraints of general relativity on the
grounds of the trivialisation argument of §3.3. Since classically it is incoherent to treat the Hamiltonian
constraints as purely generating unphysical phase space transformations, any approach that is equivalent
to the implementation of this interpretation at a quantum level will be similarly afflicted.
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4. Conclusions

The establishment of representative commutativity between reduction and quantisation for the case
of the Hamiltonian constraints of general relativity provides us with a significant conceptual insight into
the canonical quantisation of general relativity. Since reduction as applied to the classical action of
the Hamiltonian constraints is manifestly trivialising, any approach to quantum gravity that arrives at a
physical Hilbert space that is representatively equivalent to the quantisation of this reduced space rests on
unsolid ground. Quantisation of the constraints according to the Master Constraint Programme (which
is at the moment the only viable methodology) seems in principle to be such that the representation of
the world it provides will coincide with that based upon the problematic classical reduction. If accepted,
these arguments necessitate a re-evaluation of the foundations upon which current approaches to the
canonical quantisation of gravity are built.
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Notes

1If such a “commutation” proof is available then the observables will be connected by a far stronger relationship of being
unitarily equivalent—however for our purposes a weaker representational notion will prove more useful.

2In particular their phase space action cannot be unambiguously connected to the cotangent bundle projection of a
symmetry group acting on the tangent bundle see [15] and references therein.

3This crucial point has been consistently made by both Kuchař [16] and Barbour [17]. The extent to which the action of
the constraints can be interpreted as gauge within a different context will be discussed in §3.2.

4These particular constraints are primary constraints since they arise directly from the definition of the canonical momenta.
It is also possible that there exist secondary constraints but for the purposes of this paper this distinction will be unimportant.

5Symplectic geometries on the other hand equip us with a Poisson bracket structure such that Ω(Xf , ·) = {f, ·} = df

gives a unique Xf for every f ∈ C∞(Γ ).
6The first is assured since the quotient we are taking is of a manifold by a sectional foliation see [5] p. 42 and pp. 82–83.

It is a sectional foliation because the orbits which partition Σ constitute manifolds which are suitably transverse. The second
is assured because the quotient is of a presymplectic manifold with respect to the kernel of its own presymplectic form and it
can be shown that this implies that the resulting quotient manifold will be endowed with a closed two form with a kernel of
zero dimension—i.e., it will have a symplectic geometry see [5] theorem 9.10.

7Explicitly we require that: (1) HQ is a separable complex Hilbert space. The elements | ψ〉 ∈ HQ are the quantum
wave functions and the elements | ψ〉C ∈ PHQ are the quantum states where PHQ is the projective Hilbert space;
(2) A is a one to one map taking the classical observables f ∈ Ω0(M) to the self adjoint operators Af on HQ such that:
(i) Af+g = Af +Ag; (ii) Aλf = λAf ∀λ ∈ C; (iii) A1 = IdHQ

; (3) [Af , Ag] = i~A{f,g} (i.e., A is a Lie algebra morphism
up to a factor); (4) For a complete set of classical observables {fj},HQ is irreducible under the action of the set {Afj}.

8There is also the additional problem that if the constraints depend non-polynomially on the field variables then it may
prove impossible to find a rigorously defined representation of them on the Haux. This issue is particularly pressing for the
constraints of canonical general relativity and leads, in that case, to the introduction of Ashtekar variables. However, neither
this formal issue, nor the structure of the new variables, have any particular bearing on the our more conceptual concerns
regarding the nature of quantum Hamiltonian constraints. Their discussion can, therefore, be reasonably neglected for the
purposes of this non-explicit treatment.
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9 i.e., we have that U(g)f [φ] = f(Ug−1φ), ∀φ ∈ Φ.
10ÔU(g) | φ〉 = U(g)Ô | φ〉, ∀g ∈ G, φ ∈ Φ.
11A right (left) Haar measure is a positive measure on a group invariant under right (left) translations. For the uni-modular

case which we are restricting ourselves to, the left and right Haar measures agree.
12This is a specific case of what is commonly referred to as the Guillemin-Sternberg conjecture [8]. See

(for example) [9–11] for proofs of various degrees of generality.
13See [28] for detailed discussion of the metric and topological structure of S.
14See [18] §9 for extensive details of such a methodology for the Dirac type quantisation of the momentum constraints in

the context of Ashtekar variables.
15This highly significant, and yet ill-appreciated, point is at the heart of the Kuchař-Barbour critique [16,17] of the standard

Dirac dogma (that all first class constraints are gauge generating) as applied to the Hamiltonian constraints of canonical
general relativity.

16We should here, more properly, be speaking of the Hamiltonian constraints as reformulated in Ashtekar variables rather
than those expressed in normal ADM variables. However, since the reformulated Hamiltonian constraints close with the
same Poisson bracket structure (as they must), this difference is immaterial to our current purpose—although it will become
important within a more explicit treatment.

17Here the ϕ̂i are a countable and closeable set of operators which need not be self-adjoint nor form a Lie algebra but are
such that {0} lies only in their common point spectrum.

18Our ability to apply these classical geometrical terms in the quantum context derives from the symplectic structure
encoded in the space of rays associated with any Hilbert space. See [24] and references therein for more details.

19Whether this proves to be the case in practice can only be established by a full treatment, with the quantum Hamiltonian
constraints reformulated in terms of loop variables and the Dirac observables explicitly constructed (presumably using the
partial observables Ansatz [18,31,33,34]).
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