619 research outputs found

    A Quantatiitive Study of Texture Features across Different Window Sizes in Prostate T2-weighted MRI

    Get PDF
    AbstractThis study aims to investigate the effects of window size on the performance of prostate cancer CAD and to identify discriminant texture descriptors in prostate T2-W MRI. For this purpose we extracted 215 texture features from 418 T2-W MRI images and extracted them using 9 different window sizes (3 × 3 to 19 × 19). The Bayesian Network and Random Forest classifiers were employed to perform the classification. Experimental results suggest that using window size of 9 × 9 and 11 × 11 produced Az > 89%. Also, this study suggests a set of best texture features based on our experimental results

    Voxel-based supervised machine learning of peripheral zone prostate cancer using noncontrast multiparametric MRI

    Get PDF
    Purpose: The aim of this study was to develop and assess the performance of supervised machine learning technique to classify magnetic resonance imaging (MRI) voxels as cancerous or noncancerous using noncontrast multiparametric MRI (mp-MRI), comprised of T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and advanced diffusion tensor imaging (DTI) parameters. Materials and methods: In this work, 191 radiomic features were extracted from mp-MRI from prostate cancer patients. A comprehensive set of support vector machine (SVM) models for T2WI and mp-MRI (T2WI + DWI, T2WI + DTI, and T2WI + DWI + DTI) were developed based on novel Bayesian parameters optimization method and validated using leave-one-patient-out approach to eliminate any possible overfitting. The diagnostic performance of each model was evaluated using the area under the receiver operating characteristic curve (AUROC). The average sensitivity, specificity, and accuracy of the models were evaluated using the test data set and the corresponding binary maps generated. Finally, the SVM plus sigmoid function of the models with the highest performance were used to produce cancer probability maps. Results: The T2WI + DWI + DTI models using the optimal feature subset achieved the best performance in prostate cancer detection, with the average AUROC, sensitivity, specificity, and accuracy of 0.93 ± 0.03, 0.85 ± 0.05, 0.82 ± 0.07, and 0.83 ± 0.04, respectively. The average diagnostic performance of T2WI + DTI models was slightly higher than T2WI + DWI models (+3.52%) using the optimal radiomic features. Conclusions: Combination of noncontrast mp-MRI (T2WI, DWI, and DTI) features with the framework of a supervised classification technique and Bayesian optimization method are able to differentiate cancer from noncancer voxels with high accuracy and without administration of contrast agent. The addition of cancer probability maps provides additional functionality for image interpretation, lesion heterogeneity evaluation, and treatment management.</p

    Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization

    Get PDF
    Purpose To develop and validate a classifier system for prediction of prostate cancer (PCa) Gleason score (GS) using radiomics and texture features of T2-weighted imaging (T2w), diffusion weighted imaging (DWI) acquired using high b values, and T2-mapping (T2). Methods T2w, DWI (12 b values, 0–2000 s/mm2), and T2 data sets of 62 patients with histologically confirmed PCa were acquired at 3T using surface array coils. The DWI data sets were post-processed using monoexponential and kurtosis models, while T2w was standardized to a common scale. Local statistics and 8 different radiomics/texture descriptors were utilized at different configurations to extract a total of 7105 unique per-tumor features. Regularized logistic regression with implicit feature selection and leave pair out cross validation was used to discriminate tumors with 3+3 vs >3+3 GS. Results In total, 100 PCa lesions were analysed, of those 20 and 80 had GS of 3+3 and >3+3, respectively. The best model performance was obtained by selecting the top 1% features of T2w, ADCm and K with ROC AUC of 0.88 (95% CI of 0.82–0.95). Features from T2 mapping provided little added value. The most useful texture features were based on the gray-level co-occurrence matrix, Gabor transform, and Zernike moments. Conclusion Texture feature analysis of DWI, post-processed using monoexponential and kurtosis models, and T2w demonstrated good classification performance for GS of PCa. In multisequence setting, the optimal radiomics based texture extraction methods and parameters differed between different image types. </div

    Computer-Assisted Characterization of Prostate Cancer on Magnetic Resonance Imaging

    Get PDF
    Prostate cancer (PCa) is one of the most prevalent cancers among men. Early diagnosis can improve survival and reduce treatment costs. Current inter-radiologist variability for detection of PCa is high. The use of multi-parametric magnetic resonance imaging (mpMRI) with machine learning algorithms has been investigated both for improving PCa detection and for PCa diagnosis. Widespread clinical implementation of computer-assisted PCa lesion characterization remains elusive; critically needed is a model that is validated against a histologic reference standard that is densely sampled in an unbiased fashion. We address this using our technique for highly accurate fusion of mpMRI with whole-mount digitized histology of the surgical specimen. In this thesis, we present models for characterization of malignant, benign and confounding tissue and aggressiveness of PCa. Further validation on a larger dataset could enable improved characterization performance, improving survival rates and enabling a more personalized treatment plan

    Data analysis with limited data availability: prostate cancer prediction and characterization as a case study

    Get PDF
    Research studies conducted on limited datasets (i.e., data from tens to maximum hundreds of observations) may be the only practical option for many research areas, as data collection might be costly, complex, or both. Data analysis on these datasets is challenging as it can lead to inaccurate results. In this thesis, we addressed this challenge in the context of prostate cancer research by empirically assessing the predictive and characterization capabilities of attributes with the following objectives: to evaluate the predictive power of features extracted from prostate magnetic resonance imaging (MRI) using cross-validation techniques, to develop and evaluate a cross-validation method for small sample sizes that allow receiver operating characteristic (ROC) analysis, and to identify and compare relevant predictors among MRI features, clinical variables, gene expressions, and kallikreins for prostate cancer detection and stratification. To achieve these objectives, we used data from approved studies and registered clinical trials at Turku University Hospital, involving a strong collaboration between university departments and hospitals. This collaboration enabled the collection of diverse, high-quality features to enhance prostate cancer diagnosis and prognosis research. The results of this thesis can be summarized as follows. First, when evaluating radiomic features from various MRI modalities, our findings demonstrate the potential that these features have in stratifying prostate tumors into low- and highrisk. Second, in terms of model evaluation using ROC analysis and cross-validation, our research highlights a significant negative bias in the area under the ROC curve when estimated by leave-one-out (LOOCV) and introduces a novel cross-validation method called tournament leave-pair-out (TLPOCV) as a more reliable method for ROC analysis than LOOCV. Finally, our results provide empirical evidence of the predictive potential that quantitative and qualitative features from MRI, clinical variables, gene expressions, and kallikreins—individually and in combination—have in detecting and stratifying prostate cancer. The findings in this research are of interest not only to medical professionals and healthcare providers engaged in prostate cancer research but also to those involved in analyzing and learning from size-constrained datasets while achieving clinically meaningful evaluation outcomes

    Texture Analysis Platform for Imaging Biomarker Research

    Get PDF
    abstract: The rate of progress in improving survival of patients with solid tumors is slow due to late stage diagnosis and poor tumor characterization processes that fail to effectively reflect the nature of tumor before treatment or the subsequent change in its dynamics because of treatment. Further advancement of targeted therapies relies on advancements in biomarker research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the main source of biomarkers used in the treatment and monitoring of cancer, even though biopsy samples are susceptible to sampling error and more importantly, are local and offer a narrow temporal scope. Because of its established role in cancer care and its non-invasive nature imaging offers the potential to complement the findings of cancer biology. Over the past decade, a compelling body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis, prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging practice known as Radiomics: the extraction and analysis of large numbers of quantitative features from medical images to improve disease characterization and prediction of outcome. It has been suggested that radiomics can contribute to biomarker discovery by detecting imaging traits that are complementary or interchangeable with other markers. This thesis seeks further advancement of imaging biomarker discovery. This research unfolds over two aims: I) developing a comprehensive methodological pipeline for converting diagnostic imaging data into mineable sources of information, and II) investigating the utility of imaging data in clinical diagnostic applications. Four validation studies were conducted using the radiomics pipeline developed in aim I. These studies had the following goals: (1 distinguishing between benign and malignant head and neck lesions (2) differentiating benign and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head and neck cancers, and (4) predicting neuropsychological performances as they relate to Alzheimer’s disease progression. The long-term objective of this thesis is to improve patient outcome and survival by facilitating incorporation of routine care imaging data into decision making processes.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201
    corecore