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Abstract. In this paper we propose a prostate cancer computer-aided

diagnosis (CAD) system and suggest a set of discriminant texture

descriptors extracted from T2-weighted MRI data which can be used

as a good basis for a multimodality system. For this purpose, 215

texture descriptors were extracted and eleven different classifiers were

employed to achieve the best possible results. The proposed method was

tested based on 418 T2-weighted MR images taken from 45 patients and

evaluated using 9-fold cross validation with five patients in each fold. The

results demonstrated comparable results to existing CAD systems using

multimodality MRI. We achieved an area under the receiver operating

curve (Az) values equal to 90.0% ± 7.6%, 89.5% ± 8.9%, 87.9% ± 9.3%

and 87.4% ± 9.2% for Bayesian Networks, ADTree, Random Forest and

Multilayer perceptron classifiers, respectively, while a Meta-voting classifier

using average probability as a combination rule achieved 92.7% ± 7.4%.

1. Introduction

According to the latest figures compiled by the American Cancer Society [1],

prostate cancer is the fourth most common cancer occurring globally and is

only surpased by lung, female breast and bowel cancers. In 2013, more than

237,000 and 40,000 incidences were reported in the United States (US) and

United Kingdom (UK), respectively and is estimated to reach 1.7 million

cases globally by 2030 in comparison to 1.1 million cases reported in 2012

[2–4]. Current clinical practices such as transrectal ultrasound biopsy (TRUS),

prostate specific antigen blood test (PSA) and digital rectal examination

(DRE) are among the most popular methods used in hospitals, and such

methods have shown the potential to reduce prostate cancer mortality by up



to 30% [5]. However, these methods are associated with several problems, for

example PSA testing and TRUS biopsies have relatively low specificity which

leads to overdiagnosis and overtreatement of patients [6]. In fact, TRUS biopsy

does not provide robust results due to limited length of the needle which could

potentially miss tumor regions within the prostate capsule [92].

In an effort to minimise these issues, integrating Magnetic Resonance

Imaging (MRI) with other clinical practices (e.g. MRI/Ultrasound guided

biopsy and multimodality image fusion) is becoming popular to diagnose

prostate cancer and has shown a significant improvement over PSA and TRUS

[5, 6]. Unfortunately such methods require substantial expertise from the

radiologist, a significant amount of human interaction (which increases the

potential of human errors), is time consuming and often suffers from observer

variability [5, 6]. Automated Computer Aided Diagnosis (CAD) systems can

be used to reduce these problems [84].

Over the last decade, CAD systems have been successfully used in

mammography [8, 9] and CT colonoscopy [10]. The development of CAD

systems for prostate cancer (CAD-PC) MRI is becoming an active field of

research [6, 7]. In 2015, Lemaitre et al. [7] conducted a review of CAD-PC

and reported that there are 42 studies (using mono and multi-parametric MRI)

in the literature from 2007 until 2014. Studies [6, 10–13] have reported the

limitation of CAD systems using single T2-weighted (T2-W) MRI including

weak texture descriptors and noise. In fact, Tiwari et al. [39,55] suggests that

T2-W MRI texture features alone might not be sufficient to identify prostate

malignancies. Therefore, the use of multimodality MRI in developing CAD

systems is a popular way to improve the performances of existing methods.

We are aware the fact that using T2-W alone is not sufficient, but that T2-

W classification will form a solid basis for a multimodality MRI based system.

None of the previous studies have toroughly investigated texture descriptors in

T2-W MRI in distinguishing malignant and normal (included benign) voxels.

This study does not attempt to improve the performance of CAD-PC

based on multimodality MRI but aims to investigate the performance of CAD-

PC using a large number of texture descriptors in T2-W MRI alone within

the PZ towards inclusion of a more general multimodality MRI classification

platform. As a result, this study will reveal some of the most discriminant

texture descriptors in T2-W MRI. Our main motivation of using T2-W MRI

is due to its availability in most general hospitals in comparison to the

other modalities, such as Dynamic Contrast Enhanced (DCE) and Diffusion

Weighted (DW) MRI which are not always available. On the other hand, our

study is currently focused within the PZ because 80% of prostate cancers

arise within this region and prostate cancer that arises within the PZ is
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more aggressive than that which arises in the transitional zone. The novel

contributions of our work are the following:

(i) The proposed method incorporates a large number (215) of different

texture descriptors from T2-W MRI. This means our study investigates a

number of novel feature options that have not previously been applied in

CAD-PC. To the authors’ knowledge the previously used largest number

of 2D texture descriptors in the literature using only T2-W MRI was in a

study conducted by Viswanath et al. [14] (110 texture descriptors) and 83

texture descriptors by Tiwari et al. [39]. Using multimodality MRI Niaf

et al. [12] extracted 140 texture descriptors from T2-W MRI, diffusion-

weighted imaging (DWI), and dynamic contrast enhanced (DCE).

(ii) We extensively compare 9 classifiers’ performances with two additional

combined classifiers (11 classifiers in total). Again, to our knowledge the

largest number of classifiers used in the literature in CAD-PC is in a study

conducted by Niaf et al. [12] (4 classifiers), and Litjens et al. [6] and Ozer

et al. [17] employed 3 classifiers.

(iii) Since this study involved a large number of texture descriptors, we

evaluated all features individually and combined them to improve

performances of the proposed method. By evaluating them, we are able

to determine which features individually give the best performances on

each classifier.

(iv) Finally we investigate the effect of different window sizes on the

performance of the proposed method as well as the performance of the

features individually. To our knowledge, none of the current CAD-PC

in the literature have reported quantitatively the effect of window size on

performance. Many studies [12,14,39,41,72] selected window size without

a qualitative justification.

These contributions are expected to be beneficial to the research

community as they provide state-of-the-art CAD-PC using single modality T2-

W MRI. Moreover, this study provides general guidelines on selecting window

size, classifier, as well as the set of features used in CAD-PC development.This

is the first study in CAD-PC has investigated the effects of window size on

the CAD’s and features’ performances, investigated the largest number of

texture features in T2-W MRI and largest number of classifiers with qualitative

comparisons. These can be used as a good foundation for the development of

CAD-PC based on multimodality data.
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2. Methodology

Figure 1 provides a general overview of our method. For every input image,

we estimate the area of the prostate’s PZ and extract 215 feature descriptors.

We normalise each of the selected features. Feature selection was performed to

eliminate irrelevant or redundant features and use them to train 11 classifiers.

Finally in the testing phase, for every unseen pixel within the PZ the trained

classifiers determined whether it belongs to the malignant or benign class.

Figure 1: A general overview of the proposed method.

2.1. Capturing the Peripheral Zone

Since segmenting the PZ manually is time consuming, we employed the 2D

model developed by Rampun et al. [18], which uses a quadratic equation

based on the central coordinates of the prostate gland, the left-most and right-

most coordinates of the prostate gland boundary. This allows us to model

a priori general knowledge of radiologists which is similar to the methods of

Makni et al. [19] and Liu et al. [20]. Figure 2 shows example MRI images

with the ground truth location of the prostate gland, central/transitional

zone (CZ) and tumor (T) represented in red, yellow and green respectively,

while the magenta line is the estimated boundary of the PZ based on the

method given in [18]. Our study is only within the segmented PZ which

is under the magenta line in Figure 2. Note that in this study we did not

perform prostate segmentation because all prostates were already delineated

by an expert radiologist. Nevertheless, we are aware that several prostate

segmentation methods have been developed in the last decade [84–86].

2.2. Pre-processing

A major challenge in MR image analysis is that intensities do not have a

fixed tissue specific numeric meaning even within the same MRI protocol, the

same body region, and the same scanner [21–23]. These problems are mainly

caused by [11, 21–23]: a) corruption by thermal noise due to receiver coils,

b) intensity variations due to different scanning protocols and c) poor radio
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Figure 2: Example images of prostate MRI with the ground truth delineated

by an expert radiologist and the estimated PZ region under the magenta line.

frequency coil uniformity. Intensity variations in MR data can significantly

affect performances of many image processing techniques, hence, they need to

be corrected [23]. Following the pre-processing procedure method described

in [11, 24, 28], each image is median filtered to preserve edge boundaries.

Subsequently, image intensities were normalised to zero mean unit variance and

anisotropic diffusion filtering [28] is applied to remove noise. This method is

chosen because it does not cause inter regional blurring [11,24,28]. However,

[11, 24] suggested that anisotropic diffusion filtering needs to be applied on

the median-filtered and normalised images for better results. This three-

step pre-processing approach has the following advantages [11, 24] a) while

suppressing the noise, it simultaneously preserves the edge boundaries b) it

standardise image intensities for all patients avoiding dissimilar intensity values

for the same tissue types c) it is a robust denoising method without blurring

the tumor edges. Other denoising techniques in the literature could also be

investigated [27].

2.3. Feature Extraction

In this study, we extracted a set of 215 image features and their selection

was mainly motivated by statistical, psychological and image and signal

processing points of view. This means each pixel is represented in a 215

dimensional feature space. These features were selected based on the visual

characteristics of malignant regions as indicated by expert pathologists as well

as their efficiency at discriminating between malignant and benign regions

[14–16]. In this study, for first and second order statistical features, Tamura

texture features and grey-level percentile based features estimated for each

pixel for a local n × m window [12] where n and m are rows and columns,

respectively. The features extracted in this study can be divided into the

following categories:

First order statistical features (F1). These features mainly rely on

image intensity as used in many pattern recognition algorithms. Studies in

CAD-PC [12, 14, 17, 30, 41] have used intensity-based features extensively in
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the last decade. From a clinical point of view, most malignant regions in

the PZ tend to have a dark appearance (low intensity) [31, 36] (we are aware

that in some cases low intensity does not represent malignancy (resulting in

false positive detection) due to inflammation and post-biopsy scarring [42],

therefore other texture descriptors such as a filter bank were used in this

study) and radiologists tend to use darker regions as the basis of their a

priori knowledge to identify abnormality within the PZ [35]. Moreover, several

studies have suggested that prostate cancer tissue tends to appear darker on a

T2-W MRI image [32–34]. Therefore the selection of intensity-based features

is appropriate in this study. Niaf et al. [12] used mean, median and standard

deviation in their study. On top of that, we extracted mean and median

absolute deviation, skewness, kurtosis, the mean of correlation coefficients,

local contrast [18], variance and local probability [18] (11 features in total).

A study in [37] indicated that many malignant regions are more likely to have

low contrast value. On the other hand, a study of Rampun et al. [54] used

probability images to quantify the likelihood of every pixel/voxel belonging to

specific tissues (e.g. the tumor region).

Second order statistical features (F2). The main motivation for

using Haralick’s features (Grey Level Co-occurrence Matrix (GLCM)) [38] is

that these texture features characterized homogeneity, grey-level transitions,

and anatomical structures in the image [7] as well as its simplicity, large

range of potential features and its popularity (second after intensity-based

features in MRI [7]). Julesz [40] states that first order statistics alone are not

sufficient for humans to discriminate between two textures. Hence, in order

for a CAD system to be able to discriminate textures Madabhushi et al. [41]

consider both first-order and second-order statistical features. The GLCM is

defined as the joint probability of occurrence of two grey level values at a

given offset both in terms of distance and orientations [43]. We extracted

all features originally suggested by Haralick et al. [38] and all features which

were further suggested by Soh and Tsatsoulis [44] and Clausi [45]. To maximise

the texture information captured from the co-occurrence matrix we considered

four orientations (θ = 0◦, 45◦, 90◦ and 135◦ ) with distance d limited to 1 (a

larger distance increases the potential of losing more information as reported in

[47]). In addition, we calculated the mean, variance and standard deviation

of four orientations for each of the features (154 features in total). From

a clinical point of view, according to [48] malignant regions have a higher

degree of uniformity in T2-W MRI. In fact, studies in [49, 50] suggested that

the distribution of malignant foci detected by biopsies in the peripheral zone

of the prostate is homogeneous. To capture these characteristics in features

we use GLCM as we can calculate uniformity (also known as energy) and
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homogeneity.

Percentile based features (F3) [51] namely lower and higher quartile

to quantify the symmetry of the image (or a region of interest) intensity

distribution [69] (2 features in total). Vos et al. [52] and Niaf et al. [12]

extracted similar features and found that many malignant regions have smaller

values in the upper quartile (2 features in total). In our case we compute these

features by replacing the central pixel with lower and upper quartile value

of the grey levels within a n × m sliding window. These features represent

the distribution of signal intensity within a specified window (e.g. 7 × 7 or

9 × 9). A smaller value of higher quartile indicates the central pixel within a

specified window is surrounded by pixels with low intensities which increases

the probability of being malignant (most tumors display low signal intensity

within the PZ in T2-W MRI [42]). To calculate these features: (a) sort grey

level values (X) within a n×m sliding window in an acending order, (b) the

value for lower quartile is the middle value between the smallest grey level

and the median of X and (c) the upper quartile is the middle value between

the median and the highest grey level value in X. For example, let q be the

quartile position in X and lower and upper quartiles are the qth and (3 × q)th

grey levels in X (sorted in an ascending order), respectively.

Tamura texture features (F4). In [16] six texture features

corresponding to human visual perception were proposed: coarseness, contrast,

directionality, line-likeness, regularity, and roughness. However, from

experiments testing the significance of these features with respect to human

perception, it was concluded that only the first three features are very

important [16]. Therefore we only use the first three features in this study

which are coarseness, contrast and directionality (3 features in total). Note

that in this study we extracted the original (or standard) Tamura texture

features. Since many malignant regions are more likely to have low contrast

values [37], our initial hypothesis is that Tamura’s contrast feature is

more effective than the one extracted from the GLCM because Tamura

contrast captures the variation of grey-level range and the polarisation of the

distribution of black and white whereas GLCM contrast only captures the

intensity variations within a n×m window [78].

Gradient features (F5). There are many operators (e.g. Sobel filter,

Kirsch filter, etc.) that could be used to extract these features. In this study

we only selected the most discriminating ones according to the results by

Niaf et al. [12], namely image numerical gradient at 0◦ and 90◦ orientations

and image magnitude. Secondly, using Sobel operators we extracted image

gradient at 0◦, 90◦ and diagonal orientations and image magnitude (7 features

in total). According to [53], gradient operators perform well in characterising
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micro-textures as well as providing more consistent behavior as a descriptor of

pathologies than co-occurrence matrices. In previous work [54], we used image

magnitude as one of our texture descriptors to segment malignant regions.

Filter bank features (F6). From a clinical point of view, most

malignant regions show textural distortions in T2-W MRI [14, 55]. Litjens

et al. [6] captured these characteristics in features using a Gaussian texture

bank. However the conventional Gaussian texture bank is a) more sensitive

to rotation (hence, rotated versions of malignant textures would be classified

as non-malignant unless those rotated versions were included in the training

set) and b) it does not incorporate spots/bars and edges. Therefore, we

employed a filter bank as proposed by Varma and Zisserman [15] which is

rotationally invariant and takes edges and spots/bars into account (38 features

in total). The filter bank consist of an edge and a bar filter, at 6 orientations

(θ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦) and 3 scales ((σx, σy) = (1, 3), (2, 6), (4, 12)),

Gaussian and Laplacian of Gaussian filters both with σ =10 pixels (in total

38 responses). Viswanath et al. [14] extracted texture features using a

bank of Gabor filters but the results from their study showed that Haralick’s

features were more discriminant in capturing malignant regions within the PZ

and features extracted from Gabor filters work better in detecting malignant

regions within the CZ.

Figure 3: Laplacian of Gaussian (1), GLCM- energy (2), local contrast (3),

gradient of Sobel operator (4), probability image (5), GLCM- correlation (6),

image magnitude of Sobel operator (7) and upper quartile (8).

Figure 3 shows image responses of some of the features used in this study

and Table 1 summarises the list of features used in this study which are divided

into six categories.
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Table 1: Summary of features used in this study.

Category Features Total

F1: Mean, median, standard deviation, mean and median of absolute

deviation, skewness, kurtosis, mean of correlation coefficients,

local contrast, variance and local probability

11

F2: GLCM features of Haralick et al. [38], Soh and Tsatsoulis [44]

and Clausi [45] by taking 4 orientations and mean, variance and

standard deviation of 4 orientations

154

F3: Grey-level lower and upper quartile 2

F4: Tamura’s textures features namely coarseness, contrast and

directionality

3

F5: Image numerical gradient (0◦ and 90◦ orientations), image

magnitude, using Sobel operator image gradient (0◦, 90◦ and

diagonal orientations) and image magnitude.

7

F6: Filter bank of Varma and Zisserman [15] which contains an edge

and a bar filter, at 6 orientations and 3 scales, a Gaussian and

Laplacian of Gaussian filters

38

2.4. Feature Scaling and Feature Selection

Since we have 215 texture descriptors, feature selection is necessary to a)

reduce over-fitting when building a classifier model as less data means less

chance of making decisions based on noise, b) possibly improve accuracy

because only the most relevant attributes are selected to build a classifier model

(a study conducted by Niaf et al. [12] demonstrated that feature selection

significantly improves the discrimination performance between malignant and

benign regions) and c) reduce training time because fewer features are used

in making decisions. Many feature selection methods have been developed in

the literature [87]. However, the main focus of this paper is not to select the

best feature selection method but to show the prospect of CAD using a single

modality of T2-W MRI for prostate cancer diagnosis. Before feature selection

is performed, we normalised each selected feature to avoid that absolute values

play a role [56]. Following the suggestion in [56], each of the features was

linearly scaled to the range [0,1] and the same was applied for the test data.

We employed the CfsSubsetEval [26] attribute evaluator and the

GreedyStepwise search method in WEKA [25]. The CfsSubsetEval [26]

method measures the value of a subset of features by considering each feature’s

predictive ability with the degree of redundancy between the other features

within the subset, while the GreedyStepwise search method performs a greedy

forward or backward search through the feature space [26]. Firstly, the dataset

was seperated into training and testing sets (using 9-fold cross validation) and

we performed feature selection based on the training set only. Subsequently, we
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use the same selected features in the testing set. This process was repeated 81

times (9 runs in each fold) until the whole 9-fold cross validation is completed.

Recently, Chen et al. [9] used the same feature selection method in classifying

microcalcification clusters in mammograms.

2.5. Data Clasification

Table 2: List of classifiers used in our study. For more details please refer the

default parameter settings in WEKA [25].

Classifiers Summary of default parameters in WEKA

Support Vector Machines (SVM) [57] SMO procedure with polynomial kernel

Simple Logistic (SL) [58] Number of boosting iterations=0

Random Forest (RF) [59] Number of trees=100

Multilayer Perceptron (MLP) [60] Validation threshold=20, momentum=0.2

Näıve Bayes (NB) [62] Without kernel estimator

Bayesian Networks (BNet) [62] Hill climbing search algorithm

k -Nearest Neighbor (k-NN) [63] k=1, Euclidean distance

C4.5 (also known as J48) [64] Confidence factor=0.25

Alternating decision tree (ADTree) [65] Number of boosting iterations=10

Meta-Vote (best 2) [66] Combination rule=average probability

Meta-Vote (best 3) [66] Combination rule=average probability

In this study we employed 11 different classifiers to achieve the best

possible results using the WEKA data mining suite [25]. These classifiers

were selected due to their robustness and popularity in CAD-PC [7]. Since

our study evaluates a large number of classifiers, tuning parameters for each of

the classifiers are time consuming and computationally expensive. Therefore,

all parameters were left on default settings. The classifiers used in this study

are presented in Table 2.5 (which includes their abbreviation). For the meta-

voting classifiers we combined two or three prediction models which have the

best 2 and 3 area under the curve (AUC) values based on the results produced

after the training phase from any of the first nine classifiers in Table and use

average probability as a combination rule.

3. Experimental Settings

3.1. Materials and Dataset

Our dataset consists of 418 T2-W MR images taken from 45 patients aged

54 to 74 (all patients had biopsy-proven prostate cancer). Each patient has

between 6 to 13 slices covering the top to the bottom of the prostate gland.
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The prostate gland, malignant and transitional zone were delineated by an

expert radiologist with more than 10 years experience in prostate MRI. All

sequences with prostate cancer cases were confirmed malignancies based on

TRUS biopsy reports. All malignant regions annotated cases were clinically

significant cancer (Gleason score grade 7 and above). All patients underwent

T2-W MR imaging at the Department of Radiology at the Norfolk and Norwich

University Hospital, Norwich, UK. MR acquisitions were performed prior to

radical prostatectomy. All images were obtained on a 1.5 Tesla magnet (Sigma,

GE Medical Systems, Milwaukee, USA) using a phased array pelvic coil, with

a 24× 24 cm field of view, 512× 512 matrix, 3mm slice thickness, and 0.5mm

inter-slice gap.

3.2. Training and Testing

All pixels within the radiologist’s tumor annotation were extracted as prostate

cancer samples (e.g. within the red outlined region in Figure 2). This area was

truncated by the tumor mask, to ensure no pixels outside the tumor region

were included into the malignant samples. On the other hand, every pixel

outside the tumor region and within the PZ (under the magenta line in Figure

2) was considered as benign samples. Similarly, this region is truncated by

the tumor and prostate gland masks to ensure no pixels within the tumor

region and outside the prostate gland were included as benign samples. A

stratified nine runs 9-fold cross validation (9-FCV) scheme was employed [91].

The evaluation was based at a patient level to ensure no samples from the

same patient were used in the training and testing phases. We chose 9 folds

instead of 10 folds to ensure each fold has the same number of patients (45

patients in our case, hence each fold contains 5 patients). Each classifier was

trained and in the testing phase, each unseen instance/pixel from the testing

data (taken from 5 randomly selected patients) was classified as malignant or

non-malignant.

4. Experimental Results

In this study the experimental results are divided into four categories:

performance based on classifiers, performance using different window sizes,

performance evaluation before and after feature selection and feature

evaluation (top 20 features).
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4.1. Overall performance

This section presents the overall performance of the proposed method using

different classifiers. The performance were measured using the most popular

metrics in the literature: Area Under the Curve (Az, also known as AUC),

Classification Accuracy (CA), Sensitivity (Sen) and time taken for training

and testing (t). Az indicates the trade-off between the true positive rate against

the false positive rate, where CA represents the number of pixel classified

correctly. On the other hand, Sen measures the proportion of actual positives

which are correctly identified (in this case the percentage of malignant pixels

which are correctly identified). Sensitivity and accuracy can be calculated as

Sen = TP
TP+FN

and CA = TP+TN
TN+TP+FP+FN

, respectively. TP and FP denote

the number of true positives and false positives, respectively. Similarly, TN

and FN indicate the numbers of true negatives and false negatives. The time

taken by each classifier is measured in minutes to complete both training and

testing in 9-FCV. On the other hand, p values indicate the significant difference

for all metrics (Az, CA and Sen) between the Meta-Vote classifier (best 2) in

comparison to the other 10 classifiers.

Table 3: Overall performances using different classifiers using a 11 × 11

sliding window.

Classifiers Az (%) CA (%) Sen (%) t

Meta-Vote (best 2) 92.7 ± 7.4 85.5 ± 7.2 93.3 ± 9.1 21.7

Meta-Vote (best 3) 92.3 ± 7.6 85.3 ± 7.6 92.7 ± 9.5 24.3

BNet 90.0 ± 7.6 83.5 ± 7.6 90.8 ± 9.5 3.83

ADTree 89.5 ± 8.9 83.7 ± 8.5 88.9 ± 11.6 53.48

RF 87.6 ± 9.3 84.7 ± 7.2 91.8 ± 7.1 19.22

MLP 87.4 ± 9.2 81.0 ± 9.9 86.5 ± 12.2 294.17

NB 86.9 ± 10.5 80.5 ± 8.7 90.9 ± 10 1.23

SL 85.6 ± 9.8 78.6 ± 9.5 80.1 ± 16.8 444.37

C4.5 79.3 ± 9.8 82.4 ± 6.8 86.7 ± 7.6 21.60

SVM 77.3 ± 9.9 78.5 ± 10.4 78.6 ± 17.2 154.98

k -NN 68.8 ± 10.1 72.0 ± 11.9 81.9 ± 9.2 116.78

Table 3 shows that overall performances for each of the classifiers employed

in this study and Table 4 contains the p values for the three main metrics

between the Meta-vote (best 2) classifier against the other 10 classifiers. The

Meta-vote (best 2) classifier outperformed all classifiers in all metrics and

statistically significant in terms of Az with all individual classifiers (at least

p < 0.05). The performance of meta-vote (best 2) classifier also significantly

improved for CA and Sen in comparison to most of the results produced
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Table 4: The p values for Az, CA and Sen between the Meta-Vote classifier

(best 2) against the other 10 classifiers from results in Table 3.

Classifiers Az CA Sen

Meta-Vote (best 2) - - -

Meta-Vote (best 3) 0.4013 0.5517 0.3783

BNet 0.0436 0.1003 0.1020

ADTree 0.0322 0.1401 0.0228

RF 0.0040 0.2981 0.1922

MLP 0.0026 0.0135 0.0026

NB 0.0024 0.0023 0.1170

SL <0.0001 <0.0001 <0.0001

C4.5 <0.0001 <0.0001 <0.0001

SVM <0.0001 <0.0001 <0.0001

k -NN <0.0001 <0.0001 <0.0001

by single classifiers. However, there is no significant difference to Meta-

vote (best 3) classifier for Az, CA and Sen. These results are similar in

terms of CA for BNet, ADTree and RF. The results indicate that using

several classifiers in making decision often produces better results due to their

ability to handle complex data representation (or high dimensional data). For

example, when the feature space dimension is large many possible hypotheses

could be created by a single classifier to build a prediction model (in our case

the number of training instances are round 150,000 instances). This increases

the probability that the classifier cannot guarantee finding the best hypothesis

and approximation boundary of the target classes [77]. Hence, there is a risk

of selecting a hypothesis or class boundary with a low accuracy on unseen

data [77]. However, using several classifiers in making a decision increases the

chance of selecting the best hypothesis by combining and averaging decisions

or class boundaries for a final decision [77].

Individually, the BNet classifier performed best with an Az=90% followed

by the ADTree, RF and MLP classifiers with an Az=89.5%, 87.6% and 87.4%,

respectively. BNet is expected to perform better than NB due to its ability of

mapping the relationships among variables (or features) to build a predictive

model without being restricted by the independence condition, whereas NB

builds a predicitive model based on a certain condition between two variables.

Unfortunately, the independence condition is not always met and this leads to

a less accurate model. MLP produced good results as it shares similar property

with BNet (models the relationships among the input layer (which contains

features), the hidden layer (the neuron) and the output layer (the actual class

prediction)). On the other hand, RF and ADTree produced promising results
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due to their ability to perform like an ensemble classifier (consider various

decisions and use averaging to improve predictive accuracy). In fact, ADTree

employs boosting to improve the conventional decision tree algorithm (e.g.

C4.5). Therefore ADTree produced better results in all three metrics compared

to C4.5. In addition, RF and BNet contain efficient approaches for avoiding

data over fitting. On the other hand, k-NN performed poorly in our study

(Az =67.5%). This may be caused by the number of neighbourhoods (k=1)

as this restricts the algorithm to make decision based on a nearest single

neighbourhood instead of based on several neighbours. Similarly, the low

performance of SVM (Az=76%) is expected to have been caused by default

parameter settings. It is known that the performance of SVM is heavily

affected by its parameters such as the choice of kernel, the kernel’s parameters,

and soft margin parameter C.

In terms of accuracy, there is still space for improvement (despite all

predicitive models produced CA > 70%) as it can be seen that none of the

predictive models managed to achieve CA > 90%. The highest accuracy

presented in Table tab:overallResults is achieved by the predictive models

built by meta-classifiers via a voting approach resulted in just above 85%.

From a sensitivity point of view all predictive models achieved more than 80%

except the model built by SVM. Both meta classifiers achieved more than 90%

with acceptable time taken for training and testing below 25 minutes for 9-

FCV. Individually, the predictive models built by BNet, RF and NB classifiers

achieved more than 90% sensitivity in comparison to MLP (86.5%) and ADTree

(88.9%), where other predictive models achieved reasonable sensitivities. On

the other hand, the NB classifier is the fastest predictive model taking less

than 2 minutes to complete 9-FCV followed by the BNet classifier, which took

less than 4 minutes. The slowest predictive models are the ones built by

SL, MLP and SVM classifiers which took 444.37, 294.17 and 154.98 minutes,

respectively.

The performances among the classifiers vary greatly due to:

(i) Classifier variation. Each classifier has its own ‘decision rules’ to build

a predictive model of the training set. This makes each classifier only

suitable for specific tasks as discussed in [88]. Amancio et al. [89]

compared 9 classifiers using real and artificial data and found that the

accuracies among classifiers vary between 7%-20%. In a study of CAD-

PC, Chan et al. [72] showed that the variations of the Az values on

three different classifiers are up to 0.24 (e.g. Linear Discriminant 0.84,

SVM 0.76 and a single channel maximum-likelihood classifier 0.60). In

another study, Litjens et al. [6] also showed a variation of up to 10%

difference between the Random Forest (0.89) and Linear Discriminant
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(0.79) classifiers.

(ii) Parameter settings. Some classifiers are highly dependent on their

parameters. For example the SVM classifier is very sensitive to its

parameters such as the C (complexity) value and the type of kernel

(e.g. RBF/polynomial/linear). Similarly, the performance of the k-NN

classifier is dependent on the number of neighbours. On the other hand,

Random Forest and Bayesian Network classifiers are more robust and less

dependent on their parameters.

(iii) The number of selected features. Amancio et al. [89] showed in their

study that some classifiers produced better results with a smaller number

of features and some classifiers worked better with a larger number of

features. This is similar in our study as sometimes the feature selection

method selected 25 features and sometimes it selected only 10 features.

4.2. Performance using different window sizes

The selection of window size (ws) is one of the major issues in image processing.

Many studies (such as [12, 14, 39, 41, 72]) in CAD-PC did not report how

window sizes affect the overall performance of their methods. In this study, we

investigated the effects of ws on performance quantitatively. For this purpose

we conducted nine experiments using the following ws: 3×3, 5×5, 7×7, 9×9,

11× 11, 13× 13, 15× 15, 17× 17 and 19× 19. The results presented in Tables

5 and 6 show that ws affects the performance of the proposed method both

in terms of Az and CA values. In general using smaller ws such as 3 × 3 and

5× 5 produced lower results compared to 9× 9 and 11× 11 due to insufficient

information such as limited spatial information, limited intensities and grey

level variations, the statistical values calculated from the neighbourhood are

affected by noise, etc.

A study [80] suggests that large windows contain more information then

small ones (hence, provides better texture characterisation). Moreover, several

studies suggest that an appropriate guideline for window sizes are 7 × 7 and

9 × 9 [81, 82], where medium window sizes do not increase classification

accuracy significantly [83] (in our case most CA and Az values at 9 × 9 and

11× 11 are very similar in Tables 5 and 6). Nevertheless, an absolute optimal

size window is difficult to determine due to the complexity of the problem

domain. As shown in Tables 5 and 6 the Az values for all classifiers decreased

after ws = 11 × 11. A large ws causes the computed feature values within

neighboring pixels over-represented the actual characteristic of the region. This

can be be clearly seen in Tables 5 and 6 in both Az and CA. The results change

between 5%-10% at ws = 3 × 3 and 19 × 19. The proposed method achieved
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lower results at ws = 3 × 3 due to insufficient information to characterise

tumour regions. Similarly, at ws = 19 × 19 the proposed method produced

lowest results. According to Wolters et al. [79], the typical size ranges of

malignant regions in prostate MRI are 5 − 20mm (on average 12.5mm, using

medium sizes ws (e.g. 9× 9) are appropriate in our case since it is the average

tumor size and ws = 3 × 3 would be too small). For most classifiers there are

small improvement (less than 2%) for both metrics using 9 × 9 and 11 × 11.
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Table 5: The Az values using different window sizes.

Classifiers 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

Meta-Vote (best 2) 89.3 ± 7.1 89.6 ± 7.3 90.6 ± 6.8 91.7 ± 6.8 92.7 ± 7.4 87.6 ± 6.9 86.3 ± 7.3 84.3 ± 6.9 83.3 ± 8.5
Meta-Vote (best 3) 88.9 ± 7.5 89.2 ± 7.6 90.3 ± 7.3 91.5 ± 6.9 92.3 ± 7.6 87.2 ± 6.7 84.5 ± 7.1 83.9 ± 7.1 81.3 ± 9.1
BNet 85.7 ± 9.2 87.1 ± 9.8 88.1 ± 8.5 89.9 ± 9.9 90.0 ± 7.6 82.7 ± 9.9 83.1 ±11.6 83.1 ± 13.3 82.3 ± 14.9
ADTree 82.4 ± 9.5 84.4 ± 9.8 85.8 ± 10.3 86.5 ± 10 89.5 ± 8.9 83.5 ± 11 82.4 ± 11.6 82.5 ± 12.5 78.6 ± 17
RF 83.2 ± 8.1 85.1 ± 8.6 85.7 ± 9.0 87.8 ± 9.2 87.9 ± 9.3 82.2 ± 9.8 82.2 ± 11.9 81.3 ± 12.7 76.8 ± 15.4
MLP 81.2 ± 9.3 83.4 ± 9.7 85.8 ± 8.6 88.4 ± 7.7 87.4 ± 9.2 76.2 ±11.4 78.2 ± 13.1 83.2 ± 12.7 78.4 ± 14.3
NB 74.7 ± 10.3 77.1 ± 10.9 83.3 ± 10.5 87.3 ± 9.6 86.9 ± 10.5 77.9 ± 13.7 78.9 ± 13.4 75.3 ± 10.7 74.8 ± 11.4
SL 79.9 ± 8.3 80.7 ± 8.8 83.2 ± 8.9 86.2 ± 7.1 85.6 ± 9.8 80.2 ± 9.7 80.3 ± 11.9 78.3 ± 11.4 75.9 ± 11.9
C4.5 72.6 ± 9.2 74.1 ± 8.9 74.7 ± 9.5 77.5 ± 10 79.3 ± 9.8 78.3 ± 10.4 76.7 ± 12.5 72.3 ± 12.4 72.3 ± 14.4
SVM 69.3 ± 7.8 71.5 ± 7.6 74.6 ± 8.7 76.2 ± 7.9 77.3 ± 9.9 79.8 ± 10.3 79.8 ± 11.9 75.3 ± 11.7 74.3 ± 12.9
k -NN 67.7 ± 7.7 68.5 ± 7.3 66.0 ± 8.2 67.5 ± 8.6 68.8 ± 10 70.7 ± 15.2 67.8 ± 17.7 71.9 ± 12.9 68.8 ± 11

Table 6: The CA values using different window sizes.

Classifiers 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

Meta-Vote (best 2) 79.5 ± 7.3 80.1 ± 6.8 82.8 ± 7.1 83.6 ± 7.5 85.5 ± 7.2 85.1 ± 8.7 84.7 ± 8.1 80.7 ± 8.4 78.5 ± 10.5
Meta-Vote (best 3) 78.9 ± 7.5 79.3 ± 7.3 82.5 ± 6.7 83.0 ± 8.1 85.3 ± 7.6 84.3 ± 8.3 84.1 ± 8.5 80.1 ± 8.1 77.3 ± 11.3
BNet 80.3 ± 6.1 81.4 ± 6.4 82.2 ± 6.6 82.6 ± 8.3 83.5 ± 7.6 88.1 ± 9.8 87.3 ± 11.5 82.3 ± 11.7 81.3 ± 15.2
ADTree 78.3 ± 6.1 79.4 ± 6.2 82.6 ± 6.3 82.7 ± 6.0 83.7 ± 8.5 86.7 ± 11.6 85.7 ± 13.7 83.1 ± 14.6 77.1 ± 18
RF 81.3 ± 5.9 82.3 ± 5.6 82.7 ± 6.0 85.2 ± 5.3 84.7 ± 7.2 83.1 ± 12.9 81.2 ± 15.4 84.3 ± 15.4 79.6 ± 18.7
MLP 77.5 ± 6.5 78.8 ± 6.3 79.4 ± 7.1 83.2 ± 6.3 81.0 ± 9.9 83.2 ± 11.5 84.1 ± 13.9 83.6 ± 14.7 80.7 ± 16.8
NB 65.7 ± 19.3 67.2 ± 20.4 67.7 ± 20.8 71.3 ± 19 80.5 ± 8.7 84.1 ± 11.9 85.9 ± 11.6 80.1 ± 12.7 73.8 ± 19.1
SL 70.1 ± 8.3 72.8 ± 8.2 76.4 ± 8.2 77.5 ± 9.1 78.6 ± 9.5 86.9 ± 10.4 86.7 ± 13.5 77.8 ± 15.8 77.9 ± 19
C4.5 77.2 ± 5.6 78.9 ± 5.4 79.4 ± 6.2 81.8 ± 6.1 82.4 ± 6.8 72.4 ± 13.7 72.2 ± 15.5 75.1 ± 17 73.5 ± 23.6
SVM 72.0 ± 8.5 72.2 ± 8.8 75.7 ± 9.2 77.6 ± 9.1 78.5 ± 10.4 77.9 ± 11.6 78.2 ± 12.5 75.1 ± 14 74.1 ± 16.5
k -NN 69.9 ± 5.3 72.5 ± 5.7 70.5 ± 8.5 70.3 ± 12.4 72.0 ± 11.9 67.1 ± 13.7 66.4 ± 13.9 73.8 ± 14.6 67.3 ± 15.5

Nevertheless, using different ws showed a significant difference for most classifiers in terms of Az and CA. For the Meta-vote

(best 2), increasing ws = 3 × 3 to 11 × 11 increases CA value from 79.5 ± 7.3 to 85.5 ± 7.2 (p < 0.0001). However, some

classifiers produced lower results when using a larger ws. For example the SVM classifier produced Az=77.5% using 5× 5 but

17



produced 3% and 1% lower at 7 × 7 and 11 × 11, respectively. Similar for

k -NN in terms of accuracy we can see that its best performance is using

5 × 5 with CA =72.5%. Interestingly, some classifiers produced the best CA

at ws = 13 × 13 such as BNet and ADTree. Nevertheless, most classifiers

produced poorer CA at ws ≥ 15× 15. Therefore, based on these results using

ws = 9 × 9 or 11 × 11 is an appropriate guideline when selecting window size

in our study.

Figure 4: Segmentation results using different machine learning algorithms.

Figure 4 shows segmentation results using different machine learning

algorithms employed in this study. There are two malignant regions within the

PZ which both are detected and segmented. In this case, the Bayesian Network

classifier outperformed the other individual classifiers. However, the Meta-

Vote (best 2) combining the Bayesian Network and MLP classifiers produced

the best Az and CA. All classifiers managed to segment the first malignant

region (left annotation in red) but a poor segmentation produced by the k -

NN classifier. On the other hand, all classifiers produced false positives in

detecting the second malignant region (right annotation in red) and the Meta-

vote (best 2) classifier produced the highest sensitivity followed by the Bayesian

Network. Overall, in this example the top three classifiers are the Bayesian

Network, Näıve Bayes and MLP, accordingly.

4.3. Performances before and after feature selection

In a study by Niaf et al. [12], they showed that feature selection can deliver a

significant improvement in a classification model’s performance. Therefore, in

this study we investigated the effects (both for Az and CA) of feature selection
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using an 11× 11 window size. In the first experiment no feature was excluded

and in the next experiment only features selected using CfsSubsetEval [26]

were included in training and testing.

Figure 5: Performance comparisons among classifiers before and after feature

selection using 11 × 11 window size

Figure 5 shows that there is a significant improvement in both Az and

CA (p < 0.05) for most classifiers after feature selection is performed due

to different levels of data complexity. For example it is easier to build a

predictive model in a lower dimensional dataset (e.g. 20 features per instance)

than in a higher dimensional dataset (e.g. 215 features per instance). The

difficulty to build a predictive model in a higher dimensional dataset increases

the error rate (hence reduces predictive accuracy). However, the improvement

for most classfiers is less than 3%, except BNet, MLP, SL and NB classifiers

improvement of approximately 5% to 10% in both Az and CA. For example,

the significant difference for Az values before and after feature selection are

p < 0.0001, p = 0.0292 and p = 0.0072 for BNet, MLP and NB classifiers,

respectively at 11 × 11. This may have been caused by two reasons:

(i) BNet, MLP and NB classifiers share similar concepts of building a

predictive model by mapping the relationships among features. Increasing

the number of features means building a more complex predictive model as

a larger number of relationships can be created. The complexity increases

error rates and decreases the accuracy of the model in making a prediction

in unseen cases.

(ii) BNet, MLP and NB classifiers do not have an approach to avoid data over

fitting which means even weak and uncorrelated features will be considered

in building a classification model.
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Therefore performing feature selection is expected to be benefical for BNet,

MLP and NB classifiers as it decreases the level of complexity of the model.

In comparison, for tree-based classifiers only strong features will be considered

in building the predictive model even without performing feature selection

(the classifier selects the most correlated features in building a classification

model). This suggests that the performance of the RF and ADTree classifiers

are less affected by feature selection. From the results shown in Figure 5,

differences for RF and ADTree classifiers before and after feature selection

are less than 2% for both Az and CA. In addition, ADTree employs boosting

procedures (uses many weak hyphotheses to build a strong hypothesis) which

often produce better results. Similarly, C4.5 is also a tree-based classifier which

was not affected significantly by the feature selection (no significant difference

p = 0.4207 for Az at 11 × 11). On the other hand, the results produced by

the Meta classifiers are mainly effected by the performance of the top three

individual classifiers. In this study, either BNet, MLP, RF, NB and ADTree

are among the top 3 classifiers combined in the Meta-Vote (based on the 3

best Az values in the training phase).

4.4. Features evaluation

We also investigated feature performance individually. For this purpose we

conducted experiments by ranking the top 20 features based on the number

of selection (ns) over the number of runs in 9-FCV (81 runs in total in this

study) at nine different ws. The maximum value of ns is 81. The higher the

ns the more frequent the feature has been selected by CfsSubsetEval [26].

Table 7 (top left) shows the list of top 20 most discriminant features based

on the ns value for ws = 3×3. There were 65 features selected with minimum

ns=1 using ws = 3×3. Features such as Gaussian filter, Laplacian of Gaussian

filter and image magnitude were always selected by CfsSubsetEval [26] in 9-

FCV of 81 runs. F2 and F6 features (see Table 1) dominate the list at the

smallest window where none of Tamura’s features were selected. F1 features

such as mean, median, local probability and local contrast are also among the

most popular features at ws = 3 × 3. On the other hand, 64 features were

selected at least once at ws = 5×5. Results in top right show that all features

selected at least 80 times in 9-FCV come from F1, F2, F5 and F6, followed by

local probability and local contrast with ns =79. Other features in the top

20 are a bank of bar/spot filters (also from F6) covering different scales and

orientations. Most of the features selected at ws = 5 × 5 are filter bank of

Varma and Zisserman [15]. Increasing ws to 7 × 7 decreased the number of

features selected to 59.

The results in the bottom left of Table 7 show that features from category
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F5 and F6 remain in favour. Variance along with image magnitude of Sobel

operator remain among the most discriminant features. Interestingly, the

ns value for GLCM: sum of squares variance (θ = 135◦) dropped to 68,

placing it 16th in the ranking. However, it can been seen that new features

appear to be listed in the top 20 such as variance of cluster prominences (θ =

0◦, 45◦, 90◦, 135◦), Tamura contrast and kurtosis. Moving up to ws = 9 × 9,

Tamura’s contrast reached its best performance (ns=81) as it can be seen in

bottom right of the table. Similarly for image gradient of the Sobel operator,

Gaussian filter and Laplacian of Gaussian filter remain among the top features

with maximum ns value. The number of bar/spot filters has decreased and

only one GLCM feature was selected in the top 20. New features such as upper

quartile and edge filters appeared into the list while variance dropped its ns

value from 81 to 75.

Table 8 (top left) shows the results using ws = 11 × 11. The results

reveal a similar pattern for Gaussian filter, Laplacian of Gaussian filter, image

magnitude of Sobel operator, Tamura contrast, image magnitude and variance.

Although some ns values for some of the features (such as local probability,

image gradient of Sobel operator and local contrast) dropped by at least 10,

they remain in favour among the top 20 most discriminant features out of 215

features extracted in this study. Edge filters which were selected at ws = 9×9

are not listed at ws = 11×11, instead 3 GLCM features based on the feature’s

variance of four orientations (θ = 0◦, 45◦, 90◦, 135◦) were selected. Results in

the top right and bottom left of the Table 8 show that ns values for Gaussian

and Laplacian of Gaussian have dropped to 76 and 70, respectively. These

features are becoming even less discriminant in larger ws as shown in Table 9.

Other features such as Tamura’s contrast, image gradient, image

magnitude and some edge filters remain consistent within the top 10. From

these experimental results, it can be seen that the ws parameter affects the

performance of the features. For example GLCM: sum of squares variance

(θ = 135◦) appear to be in the top 20 list using smaller ws but did not perform

well using larger ws (e.g 9 × 9 and 11 × 11). Similarly, Tamura’s contrast was

listed among the most discriminant feature using medium ws but performed

poorly using smaller ws (5×5). In addition, some features performed well only

using certain values of ws. For example Kurtosis appeared to be in the list

only at ws = 7×7, 13×13 and 15×15. This is similar to edge filters on specific

scales and orientations. However, there are some features consistent without

being affected by ws parameter. For example the Gaussian filter, Laplacian

of Gaussian filter, image magnitude of the Sobel operator, image magnitude,

local contrast, local probability and variance are always in the top 20.
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Table 7: Top 20 most selected features using ws = 3 × 3 up to 9 × 9.

ws = 3 × 3 ws = 5 × 5
Features ns Features ns
Gaussian filter, Laplacian of Gaussian filter, image magnitude 81 GLCM: sum of squares variance (θ = 135◦), Gaussian filter, Laplacian of

Gaussian filter, bar/spot filter ((σx, σy) = (1, 3), θ = 30◦), bar/spot filter
((σx, σy) = (1, 3), θ = 0◦), edge filter ((σx, σy) = (1, 3), θ = 90◦), image
magnitude, image magnitude of Sobel operator, variance

81

Standard deviation, GLCM: sum of squares variance (θ = 135◦), GLCM:
variance of homogeneities (θ = 0◦, 45◦, 90◦, 135◦)

78 Image gradient (θ = 90◦), image gradient (θ = 0◦) 80

Local probability, local contrast, median 76 Local probability, local contrast 79
Variance, GLCM: Dissimilarity (θ = 45◦) 74 Bar/spot filter ((σx, σy) = (1, 3), θ = 150◦), bar/spot filter ((σx, σy) =

(4, 12), θ = 90◦)
77

GLCM: variance (θ = 45◦), bar/spot filter ((σx, σy) = (4, 12), θ = 150◦) 73 Bar/spot filter ((σx, σy) = (2, 6), θ = 90◦), bar/spot filter ((σx, σy) = (2, 6),
θ = 60◦), bar/spot filter ((σx, σy) = (4, 12), θ = 150◦)

76

Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦) 72 Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦) 75
Bar/spot filter ((σx, σy) = (4, 12), θ = 90◦),bar/spot filter ((σx, σy) = (1, 3),
θ = 0◦), edge filter ((σx, σy) = (1, 3), θ = 90◦)

70
Bar/spot filter ((σx, σy) = (2, 6), θ = 30◦) 74

Image magnitude of Sobel operator, mean 69
GLCM: Entropy (θ = 45◦), GLCM: Energy (θ = 90◦) 67

ws = 7 × 7 ws = 9 × 9
Features ns Features ns
Gaussian filter, Laplacian of Gaussian filter, bar/spot filter ((σx, σy) = (1, 3),
θ = 0◦), bar/spot filter ((σx, σy) = (1, 3), θ = 90◦), image magnitude of Sobel
operator, image magnitude , variance

81 Gaussian filter, Laplacian of Gaussian filter, bar/spot filter ((σx, σy) =
(4, 12), θ = 0◦), image magnitude of Sobel operator, image gradient of Sobel
operator (θ = 45◦), image magnitude , image gradient (θ = 90◦), Tamura
contrast

81

Local contrast 80 Image gradient of Sobel operator (θ = 90◦), local probability 80
Bar/spot filter ((σx, σy) = (1, 3), θ = 30◦) 77 Local contrast 79
Bar/spot filter ((σx, σy) = (1, 3), θ = 150◦) 74 Bar/spot filter ((σx, σy) = (1, 3), θ = 0◦) 78
Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦), local probability 73 Image gradient of Sobel operator (θ = 0◦) 76
GLCM: sum of squares variance (θ = 135◦) 68 Variance 75
GLCM: variance of cluster prominences (θ = 0◦, 45◦, 90◦, 135◦) 67 Upper quartile 74
Bar/spot filter ((σx, σy) = (1, 3), θ = 90◦) 60 Bar/spot filter ((σx, σy) = (4, 12), θ = 45◦) 59
Tamura contrast 59 Image gradient (θ = 0◦) 42
Image gradient (θ = 0◦) 55 An edge filter ((σx, σy) = (2, 6), θ = 30◦) 36
Bar/spot filter ((σx, σy) = (2, 6), θ = 60◦) 54 An edge filter ((σx, σy) = (2, 6), θ = 0◦) 29
Kurtosis 52 GLCM: standard deviation of sum of variances (θ = 0◦, 45◦, 90◦, 135◦) 24
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Table 8: Top 20 most selected features using different ws = 11 × 11 up to 17 × 17.

ws = 11 × 11 ws = 13 × 13
Features ns Features ns
Gaussian filter, Laplacian of Gaussian filter, image magnitude of Sobel
operator, Tamura contrast, image magnitude , variance

81 GLCM: sum of squares variance (θ = 135◦), bar/spot filter ((σx, σy) = (1, 3),
θ = 60◦), image gradient of Sobel operator (θ = 45◦), image magnitude,
image gradient (θ = 90◦), Tamura contrast, variance and local contrast

81

Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦), local probability 70 Image magnitude of Sobel operator and local probability 78
Bar/spot filter ((σx, σy) = (1, 3), θ = 30◦) 63 Gaussian filter, Laplacian of Gaussian filter and image gradient (θ = 0◦) 76
Image gradient of Sobel operator (θ = 45◦) 54 GLCM: variance of cluster prominences (θ = 0◦, 45◦, 90◦, 135◦) and upper

quartile
59

Bar/spot filter ((σx, σy) = (1, 3), θ = 150◦) 52 An edge filter ((σx, σy) = (1, 3), θ = 0◦) and an edge filter ((σx, σy) = (1, 3),
θ = 90◦)

46

Bar/spot filter ((σx, σy) = (1, 3), θ = 90◦) 51 An edge filter ((σx, σy) = (1, 3), θ = 150◦) and kurtosis 41
Local contrast 50

An edge filter ((σx, σy) = (1, 3), θ = 30◦) and an edge filter ((σx, σy) = (2, 6),
θ = 90◦)

37

GLCM: variance of autocorrelations (θ = 0◦, 45◦, 90◦, 135◦) 48
GLCM: variance of sum of variances (θ = 0◦, 45◦, 90◦, 135◦) 44
Upper quartile 43
GLCM: sum of variance (θ = 45◦) 41
An edge filter ((σx, σy) = (1, 3), θ = 90◦) 36
GLCM: variance of cluster shades (θ = 0◦, 45◦, 90◦, 135◦) 33
Image gradient (θ = 0◦) 30

ws = 15 × 15 ws = 17 × 17
Features ns Features ns
Image gradient of Sobel operator (θ = 45◦), image magnitude, image gradient
(θ = 90◦), Tamura contrast, variance

80 GLCM: variance of sum of variances (θ = 0◦, 45◦, 90◦, 135◦), variance,
Tamura contrast, image gradient (θ = 0◦)

81

Image magnitude of Sobel operator, GLCM: variance of sum of variance
(θ = 0◦, 45◦, 90◦, 135◦) and local probability

75 Image magnitude of Sobel operator and image magnitude 77

Gaussian filter, Laplacian of Gaussian filter, GLCM: variance of cluster
prominences (θ = 0◦, 45◦, 90◦, 135◦) and image gradient (θ = 0◦)

70 GLCM: variance of sum of square variances (θ = 0◦, 45◦, 90◦, 135◦), local
contrast

74

An edge filter ((σx, σy) = (1, 3), θ = 0◦) 65 An edge filter ((σx, σy) = (1, 3), θ = 60◦), image gradient of Sobel operator
(θ = 90◦) and local probability

73

GLCM: sum of variance (θ = 0◦) and kurtosis 33 Gaussian filter, Laplacian of Gaussian and An edge filter ((σx, σy) = (2, 6),
θ = 120◦)

43

GLCM: sum of square variance (θ = 135◦) 29 GLCM: autocorrelation (135◦) 33
An edge filter ((σx, σy) = (2, 6), θ = 120◦) 26 GLCM: variance of cluster prominences (θ = 0◦, 45◦, 90◦, 135◦) 23
GLCM: variance of sum of square variances (θ = 0◦, 45◦, 90◦, 135◦), image
gradient (θ = 90◦) and local contrast

24 GLCM: variance of dissimilarities (θ = 0◦, 45◦, 90◦, 135◦), Variance of
autocorrelations (θ = 0◦, 45◦, 90◦, 135◦), image gradient (θ = 90◦)

10

Upper quartile 14
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Table 9: Top 20 most selected features using different ws = 19 × 19 and top 20 common features across different ws.

ws = 19 × 19 Common features across different ws
Features ns Features total ns
Image gradient (0◦), image magnitude and Tamura contrast 80 Image magnitude 723
GLCM: variance of sum of square variances (θ = 0◦, 45◦, 90◦, 135◦), An edge
filter ((σx, σy) = (1, 3), θ = 60◦), variance and GLCM: variance of sum of
variances (θ = 0◦, 45◦, 90◦, 135◦)

70 Image magnitude of Sobel operator 687

Image gradient of Sobel operator (θ = 90◦) and image magnitude of Sobel
operator

64 Local probability 668

Local probability 58 Variance 623
Local contrast 49 Gaussian filter and Laplacian of Gaussian 616
Image gradient of Sobel operator (θ = 0◦) 39 Local contrast 601
GLCM: variance of contrasts (θ = 0◦, 45◦, 90◦, 135◦), Gaussian and Laplacian
of Gaussian filters

22 Tamura contrast 543

GLCM: variance of dissimilarities (θ = 0◦, 45◦, 90◦, 135◦) 17 Image gradient (θ = 0◦) 469
GLCM: variance of cluster prominences (θ = 0◦, 45◦, 90◦, 135◦) 10 Image gradient (θ = 90◦) 403

GLCM: variance of autocorrelations (θ = 0◦, 45◦, 90◦, 135◦) and An edge
filter ((σx, σy) = (2, 6), θ = 120◦)

9

Bar/spot filter ((σx, σy) = (1, 3), θ = 0◦) 310
GLCM: sum of square variance θ = 135◦) 308
Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦) 290
Image gradient of Sobel operator (θ = 45◦) 242
Edge filter ((σx, σy) = (1, 3), θ = 90◦) 233
GLCM: variance of sum of variances (θ = 0◦, 45◦, 90◦, 135◦) 226
Bar/spot filter ((σx, σy) = (1, 3), θ = 60◦) 224
Bar/spot filter ((σx, σy) = (1, 3), θ = 30◦) 221
Image gradient of Sobel operator (θ = 90◦) 217
Bar/spot filter ((σx, σy) = (1, 3), θ = 150◦) 203

Our experimental results support an earlier study conducted by Kovalev et al. [53] who claimed that image magnitude and

gradient have a more consistent behavior as a descriptor compared to GLCM features. Tamura contrast, local probability,

variance and upper quartile are among the most promising features but they need to be used using particular window sizes (e.g.

9 × 9 and 11 × 11). This is simialar to the other features such as Gaussian and Laplacian of Gaussian (best at ws ≤ 13 × 13).

Table 9 (right side) presents all the common features across different ws based on the total ns. The image magnitude has the

highest ns = 723 (maximum ns = 729) followed by the image magnitude of Sobel operator (ns = 687). This indicate that

these features are fairly consistent regardless to the ws (similar to the study claimed by Kovalev et al. [53]).
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Other features such as local probability, local contrast, Tamura contrast,

Gaussian and Laplacian of Gaussian filters also consistent and less dependent

to the ws. On the other hand, the GLCM features are among the texture

descriptors which are heavily dependent on the ws together with the bar/spot

filters.

Figure 6: Pairwise scatterplots for four pairs of features. (1) Gradient of the

Sobel operator θ = 0◦) versus magnitude, (2) local contrast versus upper

quartile, (3) Gaussian versus Tamura contrast feature and (4) magnitude

versus Laplacian of Gaussian (each graph represents 152, 445 instances taken

using 9 × 9 sliding window).

Figure 6 shows the distribution of features in 2D feature space. Most

malignant and benign data are quite separated in Gaussian versus Tamura

contrast feature spaces. For image 2, although there are fairly large amount

of data overlapping in local contrast versus upper quartile the number of data

separated are still quite noticeable.

5. DISCUSSION

A successful CAD system can improve clinical dignostic decision making by

acting as a ‘second opinion’ reducing the possibility of expert/non-expert

missing cancerous regions. There are many factors which influence the

radiologist’s performance such as fatigue due to the large amount of MRI

images needing to be analysed, the appearances of some malignant regions are

obscure due to noise or unwanted artifacts and different levels of experience

[7,11,12,31]. CAD can overcome these problems by speeding up the process of

decision making regardless of the number of images and delineating cancerous

regions which could not be detected via human visual perception or less

experienced radiologists. Although the proposed method achieved Az = 93%,

we would like to emphasise that this does not indicate that our method is better

in comparison to CAD-PC based on multiparametric MRI. We are aware that

studies [6, 13, 71] based on multiparametric MRI have shown that combining

different features from different modalities can increase the CADs performance.

In fact, the number of patients covered in this study does not allow us to draw
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a conclusion whether the results are consistent or not when tested with a larger

dataset.

However, our study suggests a set of discriminant texture descriptors

extracted from T2-W modality which can be used in the development of CAD-

PC. These descriptors can be combined with other features from the other

modalities such as DWI, MRS and DCE. On the other hand, the results of

our study indicate the possibility of developing a multi-scale classifier which

might be better performing overall. In our study using ws = 9×9 and 11×11

produced the best results.

5.1. Qualitative Comparisons

We would like to emphasis that a full quantitative comparison is impossible

due to:

(i) Differences in datasets (different modalities such as T2-weighted (T2-W)

MRI, diffusion-weighted (DWI) MRI, dynamic contrast enhanced (DCE)

MRI, Magnetic resonance spectroscopy (MRS), etc) and frameworks used

in the other studies.

(ii) Absence of public datasets also makes a quantitative comparison of

methodologies in the literature difficult. Each team of researchers has

their own datasets which cause a huge range of variability in terms of

noise and image quality.

(iii) Studies were conducted within different regions of the prostate. For

example, some studies were conducted within the prostate PZ only and

some took the whole prostate gland into account.

(iv) Evaluation has been at volume, slice, regions or voxel level.

Table 10 shows a qualitative comparisons with the state-of-the-art in the

literature. The methods proposed by Vos et al. [75] and Lv et al. [68] achieved

the highest accuracy of Az = 97%. Vos et al. [75] proposed a method using

features extracted from quantitative pharmacokinetic (PK) maps and T2-W

MRI before training a SVM to calculate the malignancy likelihood of each

lesion. However, the method was tested on a small dataset of 87 region of

interests (ROI) taken from 29 patients. In an earlier study, using similar

features Vos et al. [75] reported an Az =92% based on 90 ROI taken from 34

patients. Later Vos et al. [90], reported a lower Az =83% based on a larger

number of ROI (6227) extracted from 200 patients. On the other hand, Lv et

al. [68] used analysis of histogram fractal dimension (HFD) and texture fractal

dimension (TFD) information on a single modality of T2-W MRI. Although

the study covered 55 patients, the actual evaluation was based on selected 130
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Table 10: Qualitative comparisons with existing methods. Dynamic Contrast

Enhanced (DCE), Diffusion Weighted (DW) and Magnetic Resonance

Spectroscopy (MRS).

Authors Patients Studied Zones Modality (MRI) Az (%)

Vos et al. (2010) [75] 29 PZ only T2-W + DCE 97

Lv et al. (2009) [68] 55 PZ only T2-W 97

Peng et al. (2013) [69] 48 PZ and CZ T2-W + DCE + DW 95

Our method 45 PZ only T2-W 93

Lopes et al. (2011) [70] 17 PZ only T2-W 93

Vos et al. (2008) [52] 34 PZ only T2-W + DCE 92

Tiwari et al. (2012) [39] 36 PZ and CZ T2-W + MRS 90

Niaf et al. (2012) [12] 30 PZ only T2-W+ DW + DCE 89

Tiwari et al. (2013) [71] 29 PZ and CZ T2-W + MRS 89

Litjens et al. (2014) [6] 347 PZ and CZ T2-W + DCE + DW 89

Viswanath et al. (2012) [14] 22 PZ and CZ T2-W 86

Chan et al. (2003) [72] 15 PZ only T2-W + DW 84

Vos et al. (2012) [90] 200 PZ and CZ T2-W + DW 83

Puech et al. (2009) [74] 100 PZ and CZ DCE 77

Langer et al. (2009) [73] 25 PZ only T2-W + DCE + DW 71

ROI of 12 × 12 pixels (which means only a small part of the PZ region was

covered). In fact, Lv et al. [68] did not perform cross validation to further

evaluate their method. In our study, we performed 9-FCV as well as tested the

proposed method on 418 PZ regions. In fact, since the proposed is based on

pixel-based classification it means the number of instances are around 152,000

(in comparison the number of instances used in [75] and [68] are 90 and 130,

respectively).

Peng et al. [69] reported Az =95% using three modalities of T2-W, DCE,

and DW-MRI and extracted 10th percentile ADC, average ADC, and T2-W

skewness. Subsequently, individual image features were combined using linear

discriminant analysis (LDA) to perform leave-one-patient-out cross validation.

From an evaluation point of view, their study is similar to the studies in

[68, 75]. Although Peng et al. [69] reported that their study covered 48

patients, the actual evaluation was based on 104 ROI (61 malignant ROIs, 43

normal ROIs). In a smaller study of 17 patients, Lopes et al. [70] concluded

that classical texture features (such as Haralick, wavelet, and Gabor filters)

are less discriminant in classifying malignant and benign regions in comparison

to fractal and multifractal features. In their study, they combined fractal

and multifractal features and employed SVM and AdaBoost classifiers to

get Az =93% in comparison to the combination of classical texture features

(Az =88%).
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Niaf et al. [12] extracted 140 texture features from 180 ROIs (30 patients)

and achieved Az =89% which is similar to the methods in [6, 12, 73]. Niaf et

al. [12] compared the performance of four different classifiers (SVM, LDA,

k -NN and NB) based on four different feature selection methods. Further,

their results showed that employing feature selection significantly improved the

performance of their method and gradient features showed a high discriminant

capability in their study. In contrast, the methods in [6, 12, 73] attempted to

cover the whole prostate gland. Recently, Litjens et al. [6] conducted a study

which covered 347 patients and reported Az =89%. Their method consisted of

two stages: in the first stage the prostate gland was segmented using a multi-

atlas-based segmentation method and features based on intensity, anatomical,

pharmacokinetic, texture and blobness were calculated. Subsequently, each

voxel is classified using GentleBoost and RF classifiers to generate a likelihood

map. On each likelihood map local maxima detection was performed to

capture ROIs with the highest probability of being malignant. A method

by Tiwari et al. [71] which is based on Multi-kernel graph embedding in T2-

W and MRS produced Az=89% covering 29 patients. The method [71] was

also based on a two-stage classification approach: in the first stage, a voxel

based classification was performed by employing a random forest classifier in

conjunction with the SeSMiK-GE based data representation and a probabilistic

pairwise Markov Random Field (MRF) algorithm to identify malignant ROIs.

Subsequently, each of the segmented malignant ROIs was classified as either

high or low Gleason grade. Subsequently, Tiwari et al. [39] proposed a

data integration framework for T2-W and MRS for prostate cancer detection.

Texture descriptors such as Gabor, gradient, first and second order statistical

features were extracted from T2-W and wavelet features were extracted from

MRS images. Both sets of features were fused (via dimensionality reduction)

using their proposed framework before employing a probabilistic boosting

tree (PBT), SVM and RF classifiers. They reported an improvement of at

least Az=5% in comparison to the results without using the proposed data

integration framework.

A study by Viswanath et al. [14] attempted to differentiate the textural

characteristics of malignant regions within the CZ and PZ. They extracted 110

texture descriptors and reported that Haralick’s features (e.g sum entropy and

difference average) achieved Az=73% in differentiating cancer regions within

the PZ, whereas Gabor features performed better within the CZ (Az=73%).

In contrast to the study conducted by Chan et al. [72], who introduced

a multichannel statistical classifier and applied it in prostate malignancy

detection. The proposed method achieved a reasonable Az=84% considering

their texture features are only based on image intensity obtained from T2-W
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and DW MRI. The proposed methods of Puech et al. [74] and Langer et al.

[73] achieved Az <80% covering 100 and 25 patients, respectively. Puech et

al. [74] used a scoring algorithm approach as part of their CAD system. The

scoring algorithm was firstly developed based on median and maximum wash-

in and wash-out slope values and they used it to assign a malignancy likelihood

score for each of the ROIs. Langer et al. [73] combined three MRI modalities

via several image fusion techniques and achieved a reasonable Az=71% based

on 25 patients.

5.2. Qualitative Comparison With Human Performance

Niaf et al. [12] reported preliminary results for radiologists performances for

two and 15 years experience with Az=80% and 86%, respectively. Litjens et al.

[6] reported the performances of 10 radiologists was between Az=81% to 83%.

From these studies, we have a general idea of what typical human performance

is in comparison with CAD-PC. In our case, the proposed method achieved

Az=93% which is significantly better (p <0.001) than human performance and

some CAD systems based on multimodality MRI [12,39,52,73].

5.3. Study Limitations

The limitations of our study are: firstly, we are unable to compare our

results quantitatively with existing methods in the literature mainly due to the

absence of public datasets. Every group of researchers has their own datasets

which are not publicly available. This is currently one of the major issues

in CAD-PC causing most studies in the literature to make only qualitative

comparisons. This issue also limits the interpretation and meaning of the

results with respect to clinical utility. However, a recent study based on 347

patients conducted by Litjens et al. [6] indicated the feasibility of developing

CAD systems which are able to discriminate between malignant and normal

regions. Secondly, we are unable to compare our results quantitatively with

the actual prospective clinical performance due to absence of radiologist

performance for our dataset. Nevertheless, the studies in [6,12] suggest that a

radiologist performance typically ranges between Az=80% to 86%. Although

these values are based on their datasets, this roughly indicates that CAD-

PC have the potential to assist radiologists as a second or first reader setting

[6]. Thirdly, since our study employed 11 different classifiers to get the best

possible results, performing parameter optimisation for each of the classifiers

is time consuming and computationally expensive (therefore all parameters in

this study were left on the default settings in WEKA). Feature performance

results are based on only one feature selection method (CfsSubsetEval [26]).
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Therefore the results may be different using different feature selection methods

which could be investigated in future work. However, from our experimental

results we achieved several similarities with studies in [12,53] in terms of feature

consistency and performance particularly for F5 features. Finally, only voxels

within the malignant regions which are visible in T2-W MRI were considered

as cancerous voxels. This means voxels within the cancerous regions which did

not appear in T2-W were considered normal. This issue could be addressed

by such obscure cancer regions in DWI Apparent Diffusion Coefficient (ADC)

imaging which was not performed in our study. However this part of our future

research work (see below).

5.4. Future work

This study will be extended to cover the whole prostate gland using additional

modalities such as DWI and DCE. Differentiating malignant regions within the

CZ is more challenging due to the intensities being very similar between the

CZ and the malignant regions [76]. Although the study of Viswanath et al.

[14] reported significant differences between malignant regions within the CZ

and PZ, there are limited studies which have been conducted to differentiate

textural characteristics between malignant and benign regions within the CZ.

Secondly, although many existing methods [6, 12, 39, 52, 68, 71, 73] did not

perform parameter optimisation for the classifiers they have used, parameter

selection is one of the most important steps in CAD-PC development.

Therefore, performing parameter optimisation for each of the classifiers used

in this study could be investigated as future work.

6. CONCLUSIONS

The challenges of developing CAD-PC remain open due to its complexity and

limitations both in single and multimodality imaging. Whether using a single

modality, image fusion or using clinical features, none of these methods provide

superior results. Therefore developing CAD-PC detection and localisation

remains a challenge and there is still space for improvement both in Az and

CA. In conclusion, we have presented a novel method for prostate cancer

detection or localisation within the PZ using the single modality of T2-W

MRI. Performance evaluation shows that despite the limitations of T2-W

MRI, the proposed method achieved similar results with existing methods

in the literature, although the comparison was made qualitatively mainly

due to different evaluation datasets. We are aware that T2-W MRI alone is

insufficient in developing a more robust CAD-PC system as multimodality MRI

can provide more informative data (e.g. physiological tissue characteristics
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and metabolites composition) which are not available in a conventional MRI.

Nevertheless, this study identifies a set of discriminant texture descriptors

which can be combined with features from the other modalities, hence provide

a solid basis for a CAD-PC based on multimodality. In this study we have

shown that:

(i) CAD-PC systems based on single modality T2-W MRI could achieve

similar results to those based on multimodality MRI. However, we

would like to emphasise to the reader that studies [6, 13, 71] based on

multiparametric MRI have shown that combining different features from

different modalities can increase the CADs performance. As such, it is

expected that our T2-W approach would form a good starting point for a

modality MRI based system.

(ii) Combining different classifiers produces better results in Az, especially

when dealing with high dimensional data.

(iii) In this study feature selection improved the performance of the developed

CAD-PC system. This further supports an earlier study conducted by

Niaf et al. [12].

(iv) This study suggests a set of discriminant texture descriptors in the

development of CAD-PC.

Therefore, although there is still space for improvement in the

development of CAD-PC, this study further supports the potential of CAD-PC

systems to be an invaluable tool to assist radiologists as mentioned in existing

studies [6, 12,71,84].
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