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Abstract

This study aims to investigate the effects of window size on the performance of prostate cancer CAD and to identify discriminant

texture descriptors in prostate T2-W MRI. For this purpose we extracted 215 texture features from 418 T2-W MRI images and

extracted them using 9 different window sizes (3 × 3 to 19 × 19). The Bayesian Network and Random Forest classifiers were

employed to perform the classification. Experimental results suggest that using window size of 9 × 9 and 11 × 11 produced

Az > 89%. Also, this study suggests a set of best texture features based on our experimental results.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Organizing Committee of MIUA 2016.
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1. Introduction

The ultimate goal of this study is to investigate the relationship between window size and image texture features

for classification purpose in prostate T2-Weighted Magnetic Resonance Imaging (T2-W MRI). In the development

of prostate cancer Computer Aided Diagnosis (CAD) systems, textures are among the most important elements in

characterising different regions of the prostate. Most texture descriptors require a window to extract features. Un-

fortunately, none of the previous prostate cancer CAD studies have investigated the performance of their proposed

methods when the same features are extracted using different window sizes (ws) as this process is time consuming

and computationally expensive. Many studies selected ws based on the previous studies although the studies did not

perform a quantitative evaluation on the selections of ws. As a result, the selection of ws in prostate cancer CAD in

the literature vary significantly. For example, in the study of Niaf et al. 1 and Chan et al.2 they used 9 × 9. On the

other hand, Rampun et al. 3 suggested 9 × 9 and 11 × 11. The study of Viswanath et al. 4 used 5 × 5 and 7 × 7

depending on the types of features extracted whereas Ampeliotis et al. 5 and Ikonen et al. 6 used 3 × 3.

Another issue in the development of prostate cancer CAD is the selection of texture descriptors in T2-W MRI. It is

common that features were selected based on their performance in general texture classification and popularity. For
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instance, first and second order statistical features are among the most popular texture descriptors used to characterise

regions in the prostate. On the other hand, filter-based (e.g. Gabor and Gaussian filters) and histogram-based (Local

Binary Pattern and Textons) features can provide rich information about the texture. Since, there have been a limited

number of studies that have attempted to identify the most discriminant features and the effects of the ws selection, in

this study we conducted the following experiments:

• We evaluated the effect of ws on the CAD and feature performance. In this study we selected 3× 3, 5× 5, 7× 7,

9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17 and 19 × 19.

• We extracted a set of 215 image features and identify the top 10 most discriminant features across different ws.

• We evaluated the CAD performance using the top 10 features extracted using different ws.

Based on the above experiments, the contributions of this study are two-fold: (a) This study gives a general guide-

line on ws selection in the development of prostate cancer CAD and (b) The identified top 10 features can be used as

a starting point on the selection of texture descriptors in the prostate.

2. Overview of the CAD System

Fig. 1: A general overview of the CAD system

Following the study of Rampun et al. 3 , Figure 1 shows an overview of the CAD system used in this study. Firstly

215 image features were extracted from benign and malignant regions in the prostate T2-W MRI. To avoid absolute

values playing a role in the feature selection stage each of the feature vectors was linearly scaled to the range [0,1] and

the same was applied for the test data. Feature selection was performed to avoid over-fitting when building a classifier

model as less data means less chance of making decisions based on noise. We employed the CfsSubsetEval 7 attribute

evaluator and the GreedyStepwise search method in WEKA 8. Firstly, the dataset was separated into training and

testing sets (using 9-fold cross validation (9-FCV)) and we performed feature selection based on the training set only.

Subsequently, we use the same selected features in the testing set.

In the training and testing stage, we employed the Bayesian Network (BNet) and Random Forest (RF) classifiers in

WEKA 8 (note that all parameters were left on default settings in WEKA 8). All pixels within the radiologists tumor

annotation were extracted as prostate cancer samples. This area was truncated by the tumor mask, to ensure no pixels

outside the tumor region were included into the malignant samples. On the other hand, every pixel outside the tumor

region was considered as benign samples. Similarly, this region is truncated by the tumor and prostate gland masks to

ensure no pixels within the tumor region and outside the prostate gland were included as benign samples. Only cancer

regions within the prostate peripheral zone were considered. A stratified nine runs 9-fold cross validation scheme was

employed. The evaluation was based at a patient level to ensure no samples from the same patient were used in the

training and testing phases. Each classifier was trained and in the testing phase, each unseen instance/pixel from the

testing data (taken from 5 randomly selected patients) was classified as malignant or non-malignant.

3. Materials and Dataset

Our dataset consists of 418 T2-W MR images (227 malignant and 191 normal slices resulting in 74,208 malignant

pixels and 97,310 normal pixels) taken from 45 patients aged 54 to 74. Each patient has between 6 to 13 slices covering

the top to the bottom of the prostate gland. The prostate gland, malignant regions and transitional zone were delineated

by an expert radiologist with more than 10 years experience in prostate MRI. All sequences with prostate cancer cases

were confirmed malignancies based on TRUS biopsy reports and malignant regions annotated cases were clinically

significant cancer (Gleason score grade 7 and above). All patients underwent T2-W MR imaging at the Department

of Radiology at the Norfolk and Norwich University Hospital, Norwich, UK. MR acquisitions were performed prior
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to radical prostatectomy. All images were obtained on a 1.5 Tesla magnet (Sigma, GE Medical Systems, Milwaukee,

USA) using a phased array pelvic coil, with a 24 × 24 cm field of view, 512 × 512 matrix, 3mm slice thickness, and

3.5mm inter-slice gap.

4. Experimental Design

Fig. 2: A general overview of the experimental design

Figure 2 represents the overview of the experimental design used to assess the effects of ws on a CAD performance

and to identify discriminant features among the 215 features extracted in this study. Note that the CAD system used

in this study was summarised in Section 2 and details can be found in Rampun et al. 3. Firstly, the system extracted

features using different ws and fed them into the CAD system. In the CAD system, the CfsSubsetEval 7 attribute

evaluator selects relevant features for training and testing. The process is repeated by feeding the CAD system with

features extracted using ws = 3 × 3 to 19 × 19. All selected features in every iteration were recorded (e.g. selected

features using 3 × 3, 5 × 5, etc.). Subsequently, we identified the top 10 common features (for simplicity) across

different ws. Using these top 10 features (extracted using different ws), we train and test the BNet and RF classifiers

to evaluate the effects on the systems performance. The classification contains two classes which are malignant

(regions annotated by a radiologist based on the TRUS biopsy report) and non-malignant.

4.1. Summary of Texture Features

The extracted image features were mainly motivated by statistical and image and signal processing points of view.

These features were selected based on the visual characteristics of malignant regions as indicated by expert pathol-

ogists and radiologists as well as their efficiency at discriminating malignant and benign regions 9,13. The first and

second order statistical features, filter bank features, Tamura texture features and grey-level percentile based fea-

tures estimated for each pixel for a local n × m window where n and m are rows and columns, respectively. Table 1

summarises the list of features used in this study which are divided into six categories.

Table 1: Summary of features used in this study.

Category Features Total
F1: Mean, median, standard deviation, mean and median of absolute deviation, skewness, kurtosis, mean of

correlation coefficients, local contrast, variance and local probability

11

F2: GLCM features of Haralick et al. 11, Soh and Tsatsoulis 12 and Clausi and Deng 14 by taking 4 orientations

and mean, variance and standard deviation of 4 orientations

154

F3: Grey-level percentile 25% and percentile 75% 2

F4: Tamura’s textures features namely coarseness, contrast and directionality 3

F5: Image numerical gradient (0◦ and 90◦ orientations), image magnitude, using Sobel operator image gradient

(0◦, 90◦ and diagonal orientations) and image magnitude.

7

F6: Filter bank of Varma and Zisserman 13 which contains an edge and a bar filter, at 6 orientations and 3 scales,

a Gaussian and Laplacian of Gaussian filters

38
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4.2. Feature Selection

Since the CAD system employed 9-fold cross validation (dataset was separated into training and testing sets), the

feature selection process was repeated 81 times (each fold has 9 runs). The entire process resulting a feature has a

maximum of 81 selections (ns) (in each ws). The higher the ns the more frequently the feature has been selected by

CfsSubsetEval 7. By ranking the features based on their ns, the most discriminant feature is the one with the highest

ns value. The entire process has a maximum ns of 729 (81× 9 ws) that can be achieved by each feature. Furthermore,

we identify the top 10 most common features (Fc f ) by calculating the total ns for each feature across different ws.

5. Experimental Results

In this section we will present the most discriminant features from each ws, the common features across different

ws, Area Under the Curve (Az) which indicates the trade-off between the true positive against the false positive rate

and finally classification accuracy (CA) which represents the number of pixels classified correctly.

5.1. Selected Features From Each ws

Table 2: Summary of selected features with the high ns.

Category Features Total
3 × 3 Gaussian filter, Laplacian of Gaussian filter and image magnitude (ns = 81),Standard deviation, GLCM: sum of

squares variance (θ = 135◦), GLCM: variance of homogeneity (θ = 0◦, 45◦, 90◦, 135◦) (ns=78), local probability,

local contrast, median (ns=76)

65

5 × 5 GLCM: sum of squares variance (θ = 135◦), Gaussian filter, Laplacian of Gaussian filter, bar/spot filter ((σx, σy) =

(1, 3), θ = 30◦ ), bar/spot filter ((σx, σy) = (1, 3), θ = 0◦), edge filter ((σx, σy) = (1, 3), θ = 90◦), image magnitude,

image magnitude of Sobel operator, variance (ns = 81), image gradient θ = 90◦, image gradient θ = 0◦ (ns = 80),

local probability, local contrast (ns = 79)

64

7 × 7 Gaussian filter, Laplacian of Gaussian filter, bar/spot filter ((σx, σy) = (1, 3), θ = 0◦ ), bar/spot filter ((σx, σy) =

(1, 3), θ = 90◦ ), image magnitude of Sobel operator, image magnitude, variance (ns = 81), bar/spot filter ((σx, σy) =

(1, 3), θ = 30◦ ) (ns = 77), bar/spot filter ((σx, σy) = (1, 3), θ = 150◦ ) (ns = 74)

59

9 × 9 Gaussian filter, Laplacian of Gaussian filter, bar/spot filter ((σx, σy) = (4, 12), θ = 0◦ ), image magnitude of Sobel

operator, image gradient of Sobel operator (θ = 45◦), image magnitude, image gradient (θ = 90◦), Tamura contrast

(ns = 81), Image gradient of Sobel operator (θ = 90◦), local probability (ns = 80), local contrast (ns = 79)

62

11 × 11 Gaussian filter, Laplacian of Gaussian filter, image magnitude of Sobel operator, Tamura contrast, image magnitude

, variance (ns = 81), bar/spot filter ((σx, σy) = (2, 6), = 0◦), local probability (ns = 70), bar/spot filter ((σx, σy) =

(1, 3), = 90◦) (ns = 63), image gradient of Sobel operator (θ = 45◦) (ns = 54)

63

13 × 13 GLCM: sum of squares variance (θ = 135◦ ), bar/spot filter ((σx, σy) = (1, 3), θ = 60◦), image gradient of Sobel

operator (θ = 45◦), image magnitude, image gradient (θ = 90◦), Tamura contrast, variance and local contrast

(ws = 13 × 13), image magnitude of Sobel operator and local probability (ns = 78)

60

15 × 15 Image gradient of Sobel operator (θ = 45◦), image magnitude, image gradient (θ = 90◦), Tamura contrast, variance

(ns = 80), image magnitude of Sobel operator and local probability (ns = 75)

58

17 × 17 Variance, Tamura contrast, image gradient (θ = 0◦) (ns = 81), image magnitude of Sobel operator and image

magnitude (ns = 77)

55

19 × 19 Image gradient (θ = 0◦ ), image magnitude and Tamuras contrast (ns = 80), edge filter ((x , y ) = (1, 3), = 60 ),

variance (ns = 70)

54

Table 2 summarises the results of the most discriminant texture features and the total number of features selected

(TF) out of 215 features in each ws. In our analysis the second order statistical features (F2) did not work well at

most window sizes and were discriminant only when extracted using 3 × 3 or 5 × 5. On the other hand, the first order

statistical features (F1, F3 and F4) worked well when extracted using ws = 9 × 9 or 11 × 11. The gradient-based

features and the filter bank are consistent in most ws. On the other hand, Table 3 and 4 summarise the performance of

the CAD in both metrics. It should be noted that these results are based on the selected features by the CfsSubsetEval
7 method out of 215 image features. The results in Table 3 show that both classifiers achieved the best Az equal to 90%

and 87.9% at ws = 11 × 11 with only 0.1% difference at ws = 9 × 9. The Az values for both classifiers are gradually
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decreasing towards the largest and smallest ws. The trend is slightly different in Table 4 as the best CA = 88.1% was

achieved at 13 × 13 of the BNet classifier. However, the RF classifier achieved the best CA at 9 × 9.

Table 3: Az (%) values using different window sizes based on the selected features by CfsSubsetEval 7.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

BNet 85.7 ± 9.2 87.1 ± 9.8 88.1 ± 8.5 89.9 ± 9.9 90.0 ± 7.6 82.7 ± 9.9 83.1 ± 11.6 83.1 ± 13.3 82.3 ± 14.9

RF 83.2 ± 8.1 85.1 ± 8.6 85.7 ± 9.0 87.8 ± 9.2 87.9 ± 9.3 82.2 ± 9.8 82.2 ± 11.9 81.3 ± 12.7 76.8 ± 15.4

Table 4: CA (%) using different window sizes based on the selected features by CfsSubsetEval 7.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

BNet 80.3 ± 6.1 81.4 ± 6.4 82.2 ± 6.6 82.6 ± 8.3 83.5 ± 7.6 88.1 ± 9.8 87.3 ± 11.5 82.3 ± 11.7 81.3 ± 15.2

RF 81.3 ± 5.9 82.3 ± 5.6 82.7 ± 6.0 85.2 ± 5.3 84.7 ± 7.2 83.1 ± 12.9 81.2 ± 15.4 84.3 ± 15.4 79.6 ± 18.7

5.2. Top 10 Common Features Across Different ws

In our analysis we found the following features are the most common across different ws together with their ns:

Image magnitude (723), Image magnitude of Sobel operator (687), Local probability (668), Variance (623), Gaussian

filter and Laplacian of Gaussian (616), Local contrast (601), Tamura contrast (543), Image gradient (θ = 0◦) (469)

and Image gradient (θ = 90◦) (403). Following on from these findings, we re-ran the CAD system by feeding it using

these top 10 common features (extracted using different ws) to evaluate the performance of the system. Table 5 and

6 summarise the performance of the CAD in both metrics when using the top 10 common features extracted using

different ws. The results in Table 5 and 6 suggest that the BNet classifier still produced Az > 89% at 9× 9 and 11× 11

even after reducing the data dimension to 10. Using the top 10 common features across different ws still give the

BNet classifier Az > 80% which is similar to the RF classifier (except the largest ws). In terms of CA, both classifiers

achieved the highest accuracy at 9 × 9 which are 84.3% and 83.8% for the BNet and RF classifier, respectively.

Table 5: Az (%) values using different window sizes based on the top 10 selected features.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

BNet 83.5 ± 8.2 84.3 ± 8.3 85.8 ± 8.7 89.8 ± 7.7 89.1 ± 7.6 85.0 ± 12.7 83.8 ± 15.1 82.7 ± 14.1 81.2 ± 15.2

RF 80.4 ± 9.3 81.1 ± 7.5 83.6 ± 9.5 86.1 ± 9.5 86.4 ± 8.7 82.5 ± 11.5 83.4 ± 13.5 81.1 ± 13.7 78.1 ± 14.2

Table 6: CA (%) using different window sizes based on the top 10 selected features.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

BNet 79.3 ± 6.3 80.1 ± 7.4 82.2 ± 6.8 84.3 ± 6.6 84.0 ± 8.5 81.5 ± 11.2 82.3 ± 9.2 80.5 ± 10.6 80.3 ± 14.2

RF 78.2 ± 6.5 79.5 ± 6.7 80.0 ± 6.5 83.8 ± 5.2 82.9 ± 7.4 80.4 ± 9.2 81.3 ± 11.1 80.3 ± 14.7 79.8 ± 17.9

6. Discussions and Conclusions

The goal of this study is to investigate the effects of ws on the feature itself and the CAD performance as well

as to identify a set of good texture descriptors in prostate T2-W MRI. Our experimental results suggest that the top

10 common features across ws can be used as a starting point in selecting texture features to distinguish malignant

and normal regions in the development of CAD systems. This can be seen in Table 5 where the Az value is always
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consistently above 80% across different ws using the same features. On the other hand, our experimental results

suggest that the best ws is either 9× 9 or 11× 11. Our explanation for this are three-fold: firstly using a small ws such

as 3×3 does not provide sufficient information about the regions (such as limited intensities and grey level variations).

Secondly, using a medium ws (e.g. 9 × 9) features tend to be more reliable because noisy pixels are shrunk by the

domination of reliable pixels (e.g. malignant pixels). Finally, when using a large ws (e.g. 19 × 19), the performance

tends to decrease because the chance of mixing up pixels from benign and malignant class is higher, hence altering

the actual features representation of a particular class.

However, we are aware that the selection for the best ws and texture features might vary depending on various

factors such as the image’s pixel size, the level of noise and the types of feature selection used. For instance, although

9 × 9 and 11 × 11 produced the best results, these may be different if an image with a larger or smaller pixel size was

used. In our dataset the pixel size is 0.47mm (ws = 3 × 3 is equivalent to 1.41mm × 1.41mm). Moreover, the selection

of ws has a significant effect on both metrics particularly when using a very small and large ws (e.g. 3×3 and 19×19).

As presented in Table 3,4,5 and 6 the difference between the results using average ws and the smallest and largest ws
is vary between 3% to 8%.

In conclusion, we have conducted and presented our experimental results in this paper which suggest that a medium

ws (e.g. 9 × 9 and 11 × 11) is a fair selection for an initial investigation in feature extraction and the top 10 common

features could be used as a set of good descriptors in capturing texture characteristics in the prostate. Nevertheless,

these findings might be inconsistent depending on the architecture of the CAD system and the types of texture features

which could be investigated in our future work.
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