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Abstract

The aim of this research is to develop a computer-aided detection system for prostate

cancer within the peripheral zone, based on single modality T2-W Magnetic Resonance

Imaging. As the most diagnosed and second leading cause of death from cancer in

men, prostate cancer is a significant health problem globally. In fact, considering

the deficiencies in current clinical screening methods, there is a need for a rapid

development of MRI technologies and computer algorithms to better detect prostate

cancer.

In this thesis, we developed one unsupervised, and two supervised computer algo-

rithms, using different texture descriptors involving different resolutions, filters, tech-

niques and orientations. For classification purposes, we investigated 11 machine learn-

ing algorithms to build predictive models. This thesis also investigated the effects of

window sizes for all performance metrics. In the proposed unsupervised method a

small number of texture descriptors were used to differentiate benign and malignant

regions. Subsequently, the fuzzy c-means clustering algorithm was employed to seg-

ment malignant regions. The resulting binary segmentations were then combined to

find overlapping regions with the highest probability of being malignant. In contrast,

the two supervised methods were based on 215 texture descriptors and textons. Both

methods used the same machine learning algorithms in the training and classification

phases. To evaluate the performance of the proposed methods, the unsupervised and

supervised methods were tested based on 37 (275 MRI images) and 45 (418 MRI

images) patients, respectively. The performance evaluations showed that the results

of all methods were comparable with the state-of-the-art in the literature in terms of

area under the curve, classification accuracy, sensitivity and specificity.

The contributions of this thesis are three-fold. First, we developed novel supervised

and unsupervised computer-aided detection systems for prostate cancer, which are

different from those produced hitherto, in the sense of our methods exploit differ-

ent combinations of texture descriptors and machine learning algorithms. In fact,

this thesis is the first study which has thoroughly investigated textons in prostate

cancer detection. Secondly, this thesis made an extensive investigation into the ef-

fects of window size, both on the methods and feature’s performance itself. Thirdly,

we provide an extensive quantitative comparison of the performances of 11 machine

learning algorithms and a thorough qualitative comparison between our results and

the state-of-the-art in the literature.
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NB Näıve Bayes

n-FV n-fold Cross-Validation

PCA Principal Component Analysis

PDF Probability Density Functions

PET Positron Emission Tomography

PSA Prostate-Specific Antigen

PV Prostate Volume

PZ Peripheral Zone

RBF Radial Basis Function

ROC Receiver Operating Characteristic

ROI Region Of Interest

RF Random Forests

Sen Sensitivity

SGLDM Spatial Gray-Level Dependence Matrix

Spe Specificity

SL Simple Logistic

SVM Support Vector Machine

T Tumour



Abbreviations xvii

T2-W T2- Weighted

TRUS Transrectal Ultrasound Guided Biopsy



Chapter 1

Introduction

The aim of this research is to develop Computer Aided Detection methods for prostate

cancer detection within the peripheral zone in T2-Weighted Magnetic Resonance Imag-

ing (MRI). This is done by developing a variety of computer algorithms employing

texture analysis to distinguish benign and malignant tissues. In this chapter prostate

cancer facts and figures will be presented covering the world, Europe and the United

Kingdom statistics which include incidence and mortality rates. The next section

of this chapter then reviews the main clinical diagnostic methods for prostate cancer

and their deficiencies. Subsequently, Magnetic Resonance Imaging technology will be

briefly reviewed in prostate imaging and its challenges in the field of medicine. This

includes brief explanations of how computers can be used in helping radiologists to

speed up medical image interpretation, hence assisting radiologists in diagnostic deci-

sion making. Finally, the scope and objectives of this thesis will be presented and an

outline of this thesis is provided in the final section of this chapter.

1.1 Prostate Cancer Facts and Figures

Prostate cancer is the most commonly diagnosed cancer amongst men, and remains

the second leading cause of deaths from cancer in men. The causes of prostate cancer

remain uncertain. However, studies [3, 4] suggested that prostate cancer is more

common among men over 50 years old, those with a family history of the disease, those

from particular ethnic/genetic groups, those with excess body weight, and those who

have low levels of physical activity. According to the latest world cancer statistics

published by the American Cancer Society [5] prostate cancer is the fourth most

1
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common cancer globally and is surpassed only by lung, female breast, and bowel

cancers. In 2013 the number of cases diagnosed in the UK and USA were around

40,000 and 237,000 respectively. The global figure is predicted to reach 1.7 million

cases by 2030 in comparison to the 1.1 million in 2012 [6–8]. Statistically, nine out of

ten men survive for at least five years if the cancer is diagnosed at its earliest stage [9].

However, early definitive diagnosis of prostate cancer remains problematic due to the

lack of a simple unambiguous test. The next section will briefly present the statistics

regarding the prostate cancer incidence and mortality per 100,000 men relative to the

World, Europe and the UK, data compiled by the International Agency for Research

on Cancer of the World Health Organisation (WHO) and Cancer Research UK in

2012 [10].

1.1.1 World Statistics

Prostate cancer is one of the most common cancers affecting men, and is a major

killer, with an estimated 1.1 million diagnoses and 307,000 deaths in 2012, the last

year for which comprehensive data are available from [10]. Figure 1.1 shows striking

features in the worldwide data for incidence and mortality. In the ‘more developed

regions’ the incidence per 100,000 men exceeds 60, peaking at more than 110 in

Australia/New Zealand, but is relatively low at around 35 in Eastern and Central

Europe. Northern America and western Europe came second and third with more

than 95 incidences. Most Asian countries show low incidence rates; generally below

Figure 1.1: Prostate cancer incidence and mortality statistics per 100,000 men
across the globe in 2012 [10].
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30. Much of the variability in apparent incidence seems certain to be due to varying

standards of diagnosis and detection. It also seems certain that the real incidence is

rather less variable than shown in Figure 1.1. In contrast with incidence, mortality

rates worldwide are much less variable. The data do suggest that Carribean and some

African nations have the highest mortality rates with more than 20 men dying of

prostate cancer per 100,000 men, whilst some Asian regions have the lowest mortality

rates. Although the incidence rates from more developed countries are at least triple

the incidence rates from less developed countries, both have very similar mortality

rates of around 20. This maybe caused by better screening and treatment methods

compared to those in less developed countries.

1.1.2 Europe Statistics

In Europe, there were around 400,000 cases reported in 2012 and the UK came 3rd

highest in terms of the number of incidence with around 45,000 cases and came 16th

based on the number of incidence rates per 100,000. Figure 1.2 shows the data with re-

spect to Europe with a similar pattern of greater variability in incidence than mortality

that was seen in the global data. Incidence is highest in Northern Europe in countries

such as Norway (193.2), Sweden (175.2), Iceland (168.7), Switzerland (158.6), Estonia

(145.4) and Finland (145.2), which also have the high mortality rates. The mortality

rates are relatively low in Italy (14.1), Spain (15.2) and Malta (13.6) and some coun-

tries of south eastern Europe such as Albania (13.4), Moldova (15.6), Ukraine (15.7),

Figure 1.2: Ten countries in Europe with the highest and lowest number of
prostate cancer incidence per 100,000 men [10].
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Bosnia Herzegovina (15.1), Greece (17.7), Bulgaria (17.1) and Romania (16.3), which

also have relatively low apparent incidences. The UK has slightly higher than average

incidence and mortality rates, at around 70 and 20, respectively.

1.1.3 The United Kingdom Statistics

Figure 1.3: Prostate cancer incidence and mortality statistics in the UK in 2012
[11].

In 2012, there were 41,736 incidence reported in the UK with 10,837 deaths. Prostate

cancer rates in the UK have at least tripled over the last 35 years causing prostate

cancer to be the most common cancer among British men. Chart pies in Figure 1.3

show the incidence and mortality in the UK with England having the highest incidence

with more than 35,000 cases. Scotland and Wales have similar numbers between 2,000

to 3,000 cases where Northern Ireland has the lowest incidence of around 1,000 cases.

In terms of mortality rates, England remains the highest with approximately 9,100

cases ahead of Scotland and Wales with 881 and 556 deaths, respectively. Northern

Ireland has the lowest mortality with 267 deaths. Taking account of population size

the incidences and mortalities in Wales are both higher than in Scotland and England.

1.2 Prostate Anatomy

The prostate gland is part of a man’s reproductive and urinary systems. The prostate

is oval shaped with a rounded tip and approximately 4cm wide and 3cm thick [15].

Figure 1.4 shows the location of the prostate within man’s reproductive and urinary
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Figure 1.4: The location of prostate gland in human body anatomy adapted from
[12–14].

systems which is just in front of the rectum, surrounding the base (or neck) of the

bladder; it has 2 lobes that surround the urethra [12, 15, 16]. A normal human

male prostate is usually slightly larger than a walnut and mostly contains glandular

tissues (smooth tissues) [17]. Figure 1.5 shows 3D and 2D schematic models of the

prostate adapted from [12–14]. The prostate gland is divided into three main zones

namely peripheral zone (PZ), central zone (CZ) and transition zone (TZ). There are

some other minor regions within the prostate such as fibromuscular zone, periurethral

gland region and transition zone. However, these regions are less effected by tumours.

Most prostate cancers start to develop within the PZ [18]. According to [12, 15, 16],

approximately 75% to 80% of prostate cancers arise within the PZ and prostate cancer

that arises within the this region is more aggressive than that which arises in the CZ.

Figure 1.5: Prostate anatomy adapted from [12–14]: (a) fibromuscular zone, (b)
transition zone, (c) periurethral gland region, (d) central zone and (e) peripheral

zone.
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1.3 Prostate Cancer Detection Methods

Over the last decade, several different methods have been introduced to detect prostate

cancer. However, only a small number of methods is currently available in many

hospitals. The two most common methods used for preliminary screening are the

prostate-specific antigen (PSA) test and digital rectal examination (DRE). Transrectal

ultrasound (TRUS) guided biopsy which is a more reliable method is often used for

further screening.

1.3.1 Prostate-Specific Antigen

In many hospitals, PSA is the first screening procedure for men who are aged over 50.

The PSA test is a blood test that measures the amount of antigen protein produced

in blood. It is normal for all men to have a small amount of PSA in their blood,

and this amount rises as men get older [19]. In general, if the patient’s PSA level

has risen to more than the normal level for his age, it could be a sign of prostate

cancer. For example, according to the guide given by Prostate Cancer UK a normal

PSA level for men aged 50-59 is 3ng/ml. Normal PSA levels for men aged 60-69 and

≥ 70 are 4ng/ml and 5ng/ml, respectively [19] (note that this guideline might be

different in some hospitals). However, an elevated PSA level does not always indicate

occurrence of prostate cancer because several factors can increase PSA level such as

a urine infection, vigorous exercise and ejaculation in the 48 hours before a PSA test

[19]. According to Schroder et al. [20], although the use of PSA reduces the rate

of death by 20%, the benefit was associated with a high risk of overdiagnosis and

overtreatment. In addition, the PSA test is not able to predict the aggressiveness

of cancer. As a result, slow-growing and non-aggressive prostate cancer is frequently

diagnosed in older patients [21].

In terms of accuracy, according to the study in [22] for every 100 men over 50 who

have the PSA test, 10 of them have elevated PSA level and 3 of these are found to

have prostate cancer. On the other hand, 88 men out of the other 90 men with a

normal PSA level did not have prostate cancer. These figures show that PSA tests

have low rates in specificity. The PSA test remains the most common preliminary

diagnosis test as it has been demonstrated that an early diagnosis is best achieved

using a combination of DRE and PSA [23].
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1.3.2 Digital Rectal Examination

DRE is the cheapest and easiest screening method to detect prostate cancer because

the doctor can examine the patient without the use of additional tools such as needles,

ultrasound, microscope and patients do not have to make any preparations before the

test. This test is usually performed after PSA test because DRE test itself can increase

PSA level [19]. During the examination, the doctor gently inserts a lubricated, gloved

finger into the patient’s rectum to feel any sign of abnormalities such as lumps, soft

or hard spots, etc. [24] (healthy prostate has smooth surface). If the size of patient’s

prostate is larger than normal, then a further investigation needs to be done. In

addition, a prostate with a hard bumpy area could also be a sign of abnormality.

DRE test is not very accurate as a screening method partly due to experience variabil-

ity among examiners. For example, a more experienced examiner can detect subtle

abnormalities in comparison to less experienced clinicians. Moreover, small tumours

are more difficult to detect than larger ones and if a tumour is located away from

the rectal wall, clinicians will not able to palpate it during the examination [25]. A

study conducted by Palmerola et al. [25] revealed that only 136 men were diagnosed

with prostate cancer out of 290 patients identified as having an abnormal prostate

gland. Another study of 6,630 men volunteering for DRE and PSA tests conducted

by Catolana et al. [26] found that 45% of the cancers that were detected were having

normal DRE. Palmerola et al. [25] concluded that an abnormal DRE had 0.44 sensi-

tivity and 0.68 specificity. Nevertheless, this method remains a standard procedure

for initial screening for prostate cancer as it is the easiest and quickest method.

1.3.3 Transrectal Ultrasound Guided Biopsy

The TRUS biopsy test is currently the most accurate method in comparison to PSA

and DRE tests [23]. This test involves using thin needles (also known as a biopsy

gun) to take around 10 to 12 sample tissues from the prostate gland [27]. The doctor

uses a lubricated (to ease discomfort) ultrasound probe and put it into the patient’s

rectum (via the back passage). The ultrasound will scan the prostate’s surface and

the doctor uses the ultrasound image as a guide to capture sample tissues using the

needles [28]. Subsequently, the sampled tissues will be analysed under the microscope

by a pathologist. The accuracy of the results depend on the tissue samples from the

patient’s prostate gland. The main disadvantage of this method is that the needle
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used to capture samples can miss cancerous tissues during the procedure, meaning

the TRUS biopsy test result will show a negative result.

A recent study by Lacetera et al. [26] found that only 32 patients had prostate can-

cer out of 66 suspect undergoing TRUS examination. Moreover, studies in [21, 27]

showed that systematic biopsies do not detect all clinically significant cancers and

nearly a quarter (23%) of detectable cancers were missed. Daneshgari et al. [28] who

used computerised biopsy simulations showed that the chance of missing a cancer by

sextant biopsy is estimated at approximately 25%. Moreover, Svetec et al. [29] per-

formed an ex vivo sextant biopsy on 90 prostates removed for biopsy-proven cancer,

found that 41 prostates (46%) were negatives using TRUS biopsy whereas Norberg

et al. [30] reported that the TRUS biopsy test could produce up to 35% false neg-

atives. Nevertheless, this method is the most reliable method at present despite its

shortcomings [23].

1.4 Magnetic Resonance Imaging (MRI)

In general, MRI is a non-invasive imaging technique that uses a strong magnetic field

and pulses of radio wave energy to create the structural images of the organ [31, 32].

MRI technology was first used in 1977 and has become successful and widely used in

many different applications. In radiology, MRI plays an important role for radiologists

to non-invasively investigate internal parts of human body.

1.4.1 MRI Modalities

There are many different types of MRIs [31], however the most popular MRI modal-

ities are: T1-Weighted (T1-W), T2-Weighted (T2-W), dynamic contrast-enhanced

(DCE), magnetic resonance spectroscopic (MRS) and diffusion MRI (DWI). T1-W

and T2-W MRIs are the most common modalities in radiology, DWI is one of the

latest modalities and DCE and MRS are popular due to their ability to provide addi-

tional information not available in conventional MRIs (e.g. T1-W and T2-W MRI).

T1-W MR images are produced when the machine is programmed to capture the

longitudinal movement of protons and is usually used to look at normal anatomical

details [33, 34]. On the other hand, T2-W images map the transverse movement of

protons and are usually used to find diseases because unhealthy tissues tend to have a
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higher water content than normal. T1-W and T2-W MRI are usually done in a 1.5T

(Tesla) and in some cases 3.0T magnetic field strength.

In comparison to the conventional MRIs (T1-W and T2-W), DCE can give informa-

tion about physiological tissue characteristics. In general, DCE uses T1-W scan for

a fundamental imaging and uses MRI contrast agent called Gadolinium (which is in-

jected into the patient’s body) to produce MR images with higher contrast [35, 36].

On the other hand, MRS differentiate the metabolites composition (e.g. Choline and

Creatine) of normal and abnormal tissues by analysing molecules such as hydrogen

ions or protons [37]. The frequency of these metabolites are plotted on a graph as

peaks of varying height and abnormality can be determined by analysing the graph.

DWI is a new imaging technology which maps the motion of the water molecules

within the organ tissues [38]. Note that there are other non-MRI scanning proce-

dures such as ultrasound, positron emission tomography (PET) and X-ray computed

tomography (X-ray CT).

Recently, the fusions of different modalities to analyse tissues abnormalities are be-

coming popular due to the ability to provide additional information (e.g. metabolic

changes and pharmacokinetics parameters such as (wash-in rate Ktrans and wash-out

rate Kep). In comparison, single modality is only able to provide limited information

about the anatomical structures of the organ. For example, by comparing correspond-

ing pixel values of T1-W and DCE images it is possible to identify permeable blood

vessels and tumor tissue [36] which is not possible in T1-W or T2-W alone. In brain

imaging, multiparametric MRI has been shown to improve the accuracy over single

modality [39]. For example in acute stroke patients, the map risk can be generated

by combining DWI and T2-W MRI on a voxel-wise basis to find the voxels with high

probability of being malignant. In addition, multiparametric MRI also allows volu-

metric and signal analysis by performing statistical tests [39]. In liver imaging, T1-W

MRI can provide a good intensity map to differentiate abnormal regions. However,

DCE is needed to increase intensity appearance of the arterial and portal venous and

T2-W is used to demonstrate the normal intrahepatic biliary structures [40].

On the other hand, in lung imaging [41] combining PET and conventional MRI

seems to be advantageous due to higher soft tissue contrast [42] in comparison to

MRI alone due to limitations such as low proton density in the lung (hence poor

MR images) and sensitivity of movement [43]. Although multiparametric MRI is

developing and holding promise in basic medical research, its development further

remains very challenging both from the engineering and clinical points of view. For



Chapter 1. Introduction 10

example the first commercial PET/MRI prototype for a human scale hybrid scanner

was not unveiled until 2007 [44]. However the, lack of standardised diagnostic criteria

make the interpretation of multiparametric data heavily dependent on radiologist’s

experience. Moreover, the huge amount of image data that must be analysed in each

case can be computationally expensive and time consuming [45].

1.4.2 Prostate Imaging in MRI

Since the reliability of clinical methods in screening and detecting prostate cancer

is still questionable, integrating MRI into clinical practices (e.g. MRI/Ultrasound

guided biopsy and multimodality image fusion) is becoming popular as it has shown

a significant improvement over PSA and TRUS alone [20, 46]. Unfortunately such

methods require substantial expertise from the radiologist, a significant amount of

human interaction which increases the potential of human errors, time consuming

and often suffer from observer variability [20, 46]. Therefore, in most hospitals, MRI

is used to identify the staging of prostate cancer and treatment planning rather than

to detect prostate cancer. In prostate MRI screening, a patient will lie on a table and

move slowly into the scanner. The scanning process takes between 30 to 45 minutes.

MRI has been successful in brain, breast, lung and bone imaging [31]. Nowadays,

MRI plays an important role in investigation of the anatomical human body as it is

non-invasive, faster and has fewer complications. In prostate imaging, CAD system

can help radiologists to identify abnormality by delineating regions with the highest

probability of being malignant. The outlined regions (segmentation results) are useful

as they provide a ‘second opinion’ for the radiologist in making decision whether a

cancer is truly present or not.

Figure 1.6 shows an example of prostate T2-W MRI and a zoomed prostate gland with

its ground truth delineated by an expert radiologist. Visually, we can see that the

appearance of the malignant region is darker (lower intensity) compared to the healthy

region within the PZ. Similarly, studies [12, 16, 47, 48] suggested that most cancer

regions in the PZ tend to have a dark appearance on a T2-W MRI image. In fact,

radiologists tend to use darker regions as the basis of their priori knowledge to identify

abnormality within the PZ [49]. Nevertheless, in some cases low intensity does not

always represent malignancy (resulting in false positive detection) due to inflammation

and post-biopsy scarring [50]. Certain conditions such as benign prostatitis and intra-

prostatic hemorrhage can cause similar appearances, therefore studies have reported



Chapter 1. Introduction 11

Figure 1.6: Left shows an example of Prostate T2-W MRI and upper right image
is zoomed prostate gland with ground truth (yellow:prostate gland, green: CZ and
red: tumour). The lower right shows samples of zoomed malignant and benign

images.

that T2-W MRI has a low specificity and sensitivity ranging between 54%-82% and

46%-92%, respectively in detecting prostate cancer [51–53].

As with the other parts of human body, the use of multiparametric MRI for the

prostate is becoming popular due to additional information which can be extracted

from different modalities to improve the accuracy of diagnosis. Engelbrecht et al. [54]

reviewed the use of multiparametric MRI and concluded that it can be used to assess

the whole gland including the challenging anterior part which is the CZ. The main

reason for using multiparametric MRI is due to insufficient information being provided

by an individual modality and the amount of noise particularly in T1-W and T2-W

MR images can significantly influence the image quality. For example although T2-

W MR images can provide better structural details of the tissues in comparison to

MRS and DCE they do not provide other information such as metabolic changes

and pharmacokinetics parameters which can be very useful to support radiologist’s

decision whether a tumour is truly present or not.

In assessing radiologist’s performance using mono and multiparametric MRI, Sciarra

et al. [55] conducted a study using DCE and MRS in prostate cancer detection and

found that combining these modalities resulted 87% sensitivity in comparison to 84%

(DCE alone) and 71% (MRS alone). Apparent diffusion coefficient (ADC) which

can be extracted from DWI was shown to improve the diagnostic performance by

at least 15% sensitivity in comparison to T2-W MRI alone [56]. The ADC is a

numerical map representation of magnitude of diffusion (of water molecules) within

tissues. Malignant prostate tissues tend to have significantly lower values compared
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to benign tissues [54]. The tissue metabolism in MRS shows that there is reduced

level of citrate and elevated choline levels, compared with healthy prostate tissue

[54]. Therefore, combining these data with other priori knowledge such as intensity

and shape information from T1-W and T2-W MRI can be useful to improve the

radiologist’s performance. Nevertheless, multiparametric MRIs such as MRS, DCE

and DWI are less available in hospitals than conventional modalities such as T1-W and

T2-W. According to Bittencourt et al. [57] T2-W imaging is currently the backbone

of prostate imaging. This is further confirmed by a recent study conducted by Leake

et al. [58] where T2-W MRI (together with T1-W MRI) is the most popular imaging

modality used as part of general hospitals protocol in current practice of prostate

MRI. Moreover, a study by Tempany and Franco [59] states that the T2-W MRI

modality is very well established and frequently used analysis compared to the other

modalities.

1.5 Computer Aided Detection

In the last 30 years, scientists have been investigating the prospect of integrating

computer technology in clinical practices. Although MRIs are very popular for in-

vestigation of the internal anatomical body structures, with large amount of images

produced every day, analysing each image manually is impractical. Computer Aided

Diagnosis/Detection (CAD) is a computerised procedure that can assist radiologists

in the interpretation of medical images [60] and has become one of the most popular

research subjects in medical imaging. CAD technology has been widely applied in

many parts of human body and recently has been successful in breast mammography,

colon, brain and lung imaging. The main role of CAD system in radiology practice is

assisting radiologists in diagnostic decision making.

Previously CAD systems based on single modality were seen to be a step forward in

medical image analysis research. The use of multimodality or multiparametric in CAD

systems is becoming popular as more information can be extracted to help radiologists

in image interpretation for diagnostic decision making. However, CAD systems using

multiparametric MRI produce larger number of images, lack of diagnostic standard

procedures, cumbersome for both patient and physician and costly [61]. As a result,

radiologists are no longer able to analyse all those images tenaciously and diagnostic

results will suffer from observers variability (e.g. results may vary depending on

radiologist’s expertise and experience). Therefore, the CAD system is needed not
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only to eliminate variability among radiologists, but to speed up the analysis of the

images and diagnosis decision making.

1.6 The Scope of this Thesis

This study was conducted only within the prostate PZ using a T2-W MRI dataset.

Although the development of CAD systems using multiparametric MRI is favored by

most researchers, as mentioned early multiparametric MRI is costly, time consum-

ing, and cumbersome for both patient and physician [61]. From a clinical point of

view, multiparametric prostate MRI does not have standardised diagnostic criteria.

Moreover, a larger number of images data must be analysed in each case and can be

computationally expensive and time consuming [45]. In fact, T2-W MRI (and T1-W

MRI) is the most popular current practice in prostate imaging [58]. We are aware the

fact that using T2-W alone is not sufficient, but that T2-W classification will form

a solid basis for a multimodality MRI based system. This study does not attempt

to improve the performance of CAD-PC based on multimodality MRI but aims to

investigate the performance of CAD-PC using a large number of texture descriptors

in T2-W MRI alone within the PZ towards inclusion of a more general multimodality

MRI classification platform.

On the other hand, this study was concentrated within the PZ because approximately

75% to 80% of prostate cancers arise within the PZ, and tumours that arise within

the this region are more aggressive than those arising in the CZ [12, 15, 16, 18].

Therefore, this project investigated a CAD for prostate cancer detection for the PZ

in T2-W MRI.

1.7 Thesis Aims and Objectives

The overall aim of this thesis is to develop CAD systems for prostate cancer detection

using single modality T2-W MRI within the PZ. For this purpose segmentation and

classification techniques based on texture analysis were thoroughly investigated. For

texture analysis, it is important to identify features which can discriminate the charac-

teristics of benign and malignant regions within the prostate’s PZ. On the other hand,

classification models are built to learn the statistical appearances for both regions in
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order to make sure that the developed CAD systems are able to make an accurate

prediction/classification. In order to achieve these, the project is divided into a set of

objectives:

• To develop a 2D model that can automatically estimate the boundary of the PZ

and CZ. Since segmenting the PZ manually is time consuming, it is necessary to

develop a method which can automatically segment the prostate PZ by modeling

a priori general knowledge of radiologists.

• To investigate the texture appearance of malignant and benign regions within

the PZ, both from clinical and statistical point of view.

• To identify robust texture descriptors to differentiate malignant and benign

regions within the prostate’s PZ. There are at least 42 CADs for prostate cancer

detection which have been developed in the last 15 years according to the recent

survey conducted by Lemâıtre et al. [62] in 2015. Nevertheless, none of those

studies have tried to identify the most discriminant texture features in T2-W

MRI.

• To investigate the appropriate window sizes (or kernel sizes) in CAD for prostate

cancer development. One of the important considerations in feature extraction

is selecting the most appropriate window sizes which can change the feature

value within a corresponding region. In this project 9 different window sizes

(3× 3 to 19× 19) were investigated to answer this question.

• To develop unsupervised and supervised CAD methods for prostate cancer de-

tection within the PZ in T2-W MRI. Many Studies [46, 63, 64] have reported

the limitation of CAD systems using single T2-weighted (T2-W) MRI includ-

ing weak texture descriptors and noise. In fact, Tiwari et al. [65] suggests that

T2-W MRI texture features alone might not be sufficient to identify prostate

malignancy. Therefore, the use of multiparametric MRI in developing CAD sys-

tems is favored by most researchers searching to improve the performances of

their methods. However, this thesis investigates CAD based on T2-W MRI due

to the issues of multiparametric MRI discussed before.

• To evaluate and compare the CAD methods developed in this study with the

existing methods in the literature. To qualitatively assess the reliability of the

proposed methods in this project. The results were compared with the existing

CADs based on mono and multiparametric MRI.
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1.8 Thesis Outline

The remaining chapters of this thesis are organised as follows:

• In Chapter 2, a literature review of texture analysis in biomedical imaging will

cover statistical, structural, signal processing and model based methods. In ad-

dition, a set of texture descriptors which are commonly used in texture analysis

will be reviewed.

• Chapter 3 summarises some of the existing CAD methods based on mono and

multiparametric MRI in the literature. This covers the overview of the work flow

for each of the components in CAD as well as texture features and classifiers

employed.

• In Chapter 4, an unsupervised CAD method using a small number of texture

features to segment malignant regions within the PZ is proposed and evaluated.

• Chapter 5 describes a supervised CAD method using 215 texture features. The

performance of each texture will be evaluated based different window sizes. From

the evaluation results, this chapter will reveal the most discriminant features and

the effects on the proposed method of using different window sizes and classifier

models.

• Chapter 6 investigates how textons can be used to model the statistical ap-

pearance of benign and malignant regions, and proposes a CAD method using

textons. This chapter demonstrates the variation of the results when using dif-

ferent window sizes, different number of textons used to represent benign and

malignant classes and different classifiers used to build predictive models.

• Chapter 7 will compare the performances of the proposed methods with the ex-

isting methods in the literature. This enables us to qualitatively assess whether

the proposed methods achieved similar results to the state-of-the-art or not.

• We summarise Chapter 1 until 7 covering discussions and study limitations in

Chapter 8.

• Conclusions and future work of this thesis will be covered in chapter 9 including

novel contributions and a list of publications arising from this thesis.
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1.9 Summary

In this chapter we have briefly presented the fact and figures of prostate cancer cov-

ering the world, Europe and the UK as well as the aim, objectives and scopes of this

thesis. From clinical point of view:

• The causes of prostate cancer remains uncertain.

• The number of prostate cancer cases is expected to increase globally.

• The incidence in more developed countries is higher than in less developed coun-

tries due to better diagnosis practices, hence early detection and better treat-

ment plans can be provided to the patients.

• TRUS guided prostate biopsy is currently the most accurate screening method

with accuracy range between 70% to 80% whereas DRE and PSA tests are

associated with low sensitivity and overdiagnosis, respectively.

• MR imaging is becoming popular and often being integrated with some of the

clinical practices. Nevertheless it is used to identify prostate cancer staging,

rather than to detect or diagnose the presence of malignancy.

On the other hand, from computer vision point of view:

• This thesis aims to develop CAD methods for prostate cancer detection using

image analysis and machine learning techniques.

• There is a need of CAD systems for prostate cancer detection or diagnosis to

assist radiologists or clinicians in making diagnostic decision.

• The development CAD in prostate cancer is an active research field and consis-

tently received attentions from the medical image analysis community.
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Texture Analysis

Texture analysis is one of the most important topics in computer vision due to its

wide range of applications, such as biomedical image analysis, industrial inspection,

satellite image analysis, etc. Due to the degree of complexity and diversity of textures,

it is impossible to provide a universal definition of textures [66]. Despite this lack

of a universally agreed definition, scientists agree that one of the key purposes of tex-

ture analysis is for pattern recognition. The first section of this chapter will briefly

review some definitions of texture from different perspectives. Subsequently, this chap-

ter elaborates four main problem domains in texture analysis and four texture analysis

techniques motivated from statistical, geometrical, signal processing, model-based and

physiological view points. The last section of this chapter will briefly review some

texture descriptors for texture representations.

2.1 Texture Definitions

Texture is one of the most popular properties to characterise objects or regions in an

image. Although it is difficult to give a universal definition, in the last 30 years many

authors have attempted to define textures from different perspectives. In general,

the texture refers to surface characteristics and appearance of an object in terms

of size, shape, density, arrangement and proportions of its elementary parts [67]. In

computer vision, Shapiro and Stockman [68] define a texture as a set of metrics which

contain information about the spatial arrangement of color or intensities in an image

or selected region of an image. This means, a texture usually has statistical properties,

similarity in structures and degree of randomness [68, 69]. From a geometrical point of

17
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Figure 2.1: Examples of three different textures: from left column to right column
homogenous, weakly-homogeneous and inhomogeneous, respectively.

view a texture is defined as a set of primitive texels in some regular or repeated pattern

[70], where in statistics a texture is the arrangement of intensities in a region which

can be quantitatively measured [71]. On the other hand, Taylor et al. [72] defined

texture as a self-similarity pattern which is represented by similar signal statistics,

whereas Cross and Jain [70] suggested that texture is a stochastic, possibly periodic

and two-dimensional image field. Finally according to Levine [73] texture can be

seen in terms of uniformity, density, roughness, regularity, linearity, frequency, phase,

directionality, coarseness, randomness, fineness, smoothness and granulation.

Figure 2.1 shows examples of three different textures. Textures can be divided into

three categories according to their properties [72], namely homogenous, weakly ho-

mogeneous and inhomogeneous. Homogenous texture has visible repetitive structures

and weakly-homogeneous texture involves local spatial variation in textural elements

which leads to less repetitiveness. On the other hand, inhomogeneous texture has no

repetitive structures and self similarity is absent or random.

2.2 Problem Domains in Texture Analysis

According to Ojala et al. [74, 75], there are four main problem domains in texture

analysis: (a) texture classification, (b) texture segmentation, (c) texture synthesis and

(d) shape analysis.
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2.2.1 Texture Classification

Texture classification consists of two stages: learning phase and recognition phase. In

the learning phase, the aim is to build a model for the content of each texture class

present in the training data. The texture contents in the training data are a set of

texture descriptors extracted using a chosen feature extraction method. These texture

descriptors can characterise the textural properties of an image, such as similarity,

contrast, roughness, homogeneity, orientation, etc. Once the model of the texture

content for each texture class was built, in the recognition phase, the texture content

of the unknown sample is first described with the same texture analysis method in

the learning phase. Subsequently, the textural features of the unknown sample are

compared to those of the training images with a classification algorithm, and the

sample is assigned to the category with the best match [74, 75].

In biomedical image analysis, Sharma et al. [76] used texture-primitive features (e.g.

first- and second-order statistical features) for texture classification of different tissues

in brain, abdomen and liver. A model for each tissue type from each texture class

(e.g. bone/skull, abnormal and normal regions) was built before an Artificial Neural

Network (ANN) classifier was employed to classify the unknown sample. Similarly,

Wu et al. [77] used texture classification to differentiate ultrasonic liver images into the

three classes (normal, hepatoma, and cirrhosis) whereas [78, 79] performed texture

classification in benign and malignant regions within the prostate gland. On the other

hand, in a texture volumes classification Reyes Aldasoro and Bhalerao [80] proposed

a multiresolution volumetric texture segmentation (M-VTS) method applied on MRI

of human knees. The method extracts texture information from the Fourier domain

via subband filtering using an orientation pyramid. A novel Bhattacharyya space was

used to select the most discriminant features before there were used to build an oct

tree. The classification process was performed at a chosen level of a lower spatial

resolution. Subsequently, all labels of the classified voxels are then projected to lower

levels of the tree where a boundary refinement procedure is performed.

2.2.2 Texture Segmentation

The basic idea of texture segmentation is to group or cluster pixels based on their

properties such as contrast, homogeneity, etc. Pixels that represent the same texture
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Figure 2.2: Example of textures taken from Brodatz album [82] and their seg-
mentation results.

should be grouped together so that further analysis can be done on the various tex-

ture regions [81]. However, this is not always the case because there are many cases

where two or more different textures have very similar properties leading to incor-

rect segmentation results. Another challenge of texture segmentation is to identify

the boundaries between regions when the regions have similar textures. Texture seg-

mentation can also be quite difficult when there is noise affecting the differentiation

between textures. Figure 2.1 shows an example of texture segmentation taken from

the Brodatz album [82].

According to [83] there are six most commonly used segmentation techniques in CAD

systems:

1. Contour and shape based (e.g. Active Contour, Level Set, Graph Searching,

Atlas-based, Deformable models).

2. Machine learning based (e.g. Support Vector Machine (SVM), k-Nearest Neigh-

bors (k-NN), Fuzzy C-Mean (FCM), K-means).

3. Region based (e.g. Thresholding, Edge-based, watershed, split and merge).

4. Statistical based (e.g. Markov Random Field (MRF) and Gaussian Mixture

Model (GMM)) .

5. Multiresolution based analysis (e.g. Discrete Wavelet Transform (DWT)).

6. Hybrid and soft computing methods (e.g. Level Set + Artificial neural network

(ANN), Fuzzy C-means + DWT).

The most popular segmentation techniques in biomedical imaging fall under the su-

pervised and unsupervised machine learning based techniques, and contour and shape

based methods. The level set technique has been applied to several human organs (e.g.
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brain, cardiac, prostate, breast, etc). Dubey et al. [84] proposed a semi-automatic

segmentation method for MRI brain tumors. Firstly, the method generated a tumor

probability map by classifying each voxel into the tumor or background class using

intensity-based fuzzy c-means. Subsequently, the tumor probability map was used to

locally guide the propagation direction of the level set.

Recently, Yeo et al. [85], proposed a level-set segmentation method using active con-

tour modelling applied to synthetic and real images (e.g. brain and knee MRI and

carotid CT image). The proposed method consisted of an image attraction force,

which was used to propagate contours toward object boundaries, and a global shape

force, which deforms the model according to the shape distribution learned from a

training set. On the other hand, Sachdeva et al. [86] proposed a method which used in-

tensity and texture information (extracted from Gray-Level Co-occurrence Matrices)

present within the active contour to overcome weak or diffused edges in an image.

for Finally, graph searching techniques have been studied for the segmentation of

biomedical images of brains and knees [87, 88].

2.2.3 Texture Synthesis

In 1984, Lewis [89] introduced the idea of texture synthesis for digital painting. A

couple of years later, Gagalowicz and Ma [90] proposed a method to synthesise 3D

textures. Later, texture synthesis gained popularity amongst researchers and several

authors [91–93] have successfully developed robust texture synthesis algorithms. Ac-

cording to [91, 94] texture synthesis is an alternative way to create textures and

a process of computationally constructing a large digital image from a small digital

sample image by considering the properties of its structural content. The output of a

synthesised image aims to have the following criteria: the synthesised texture should

be as similar as possible to the sample, should not have visible artifacts and no struc-

ture repetition of the sample in the synthesised texture [94]. Potential applications

of a successful texture synthesis algorithm are broad, including occlusion fill-in, lossy

image and video compression and foreground removal [93]. Some popular texture

synthesis methods are pixel-based [91, 95] and patch-based [96].

In medical image analysis, a successful texture synthesis algorithm can provide a

better anatomical image quality as noise is absent in the synthetic image. Bochud

et al. [97] proposed a method to generate medical texture synthesis methods in mam-

mography derived from the lumpy background technique described by Rolland and
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Barrett [98]. In a similar application, Taylor [99] proposed a statistical-based model

to synthesise textures by modelling the texture of the sample parametrically using

k-means clustering algorithm. Subsequently, a seed image was formed and a sliding

window used to create synthetic texture based on the texture model built previously.

2.2.4 Shape Analysis

Shape is another important property to characterise textures. The main goal of shape

analysis is to learn the structures and contours of the texture content in an image.

Shape analysis has two main steps: shape correspondence (computes correspondent

locations between geometric shapes) and statistical analysis (measurements of struc-

tural change at correspondent locations) [100]. According to [101], shape analysis

considers the area, circularity, eccentricity, orientations and a set of algebraic moment

invariants of the texture. In addition, Mingqiang et al. [102] suggested that shape

analysis measures the following properties: rectangularity, solidity, symmetricity, pro-

files, hole area ratio and center of gravity. The representation of shapes which cover

the shape feature extraction techniques can be referred in [102].

In medical image analysis, shape analysis is used to study the geometrical properties

of structures obtained from different imaging modalities [100]. Shape analysis is able

to precisely locate morphological changes between different populations (e.g. female

vs male and young vs elderly). Shape analysis is used in many different studies such

as faces, brain structures and mammography calcification. In a study of facial feature

detection, Chen and Tiddeman [103] used the principal direction of the spatial shape

for the estimation of face direction. In brain structures, Martin et al. [104] used shape

features to analyse the shape deformation of structures in the human brain by mod-

elling the brain’s elastic properties using physical and experimental modes. Finally,

in mammography calcification, Shen et al. [105] developed a set of shape factors to

measure the roughness of contours of calcification to classify them as malignant or

benign.

2.3 Texture Analysis Techniques

In texture analysis, many different approaches have been developed and it is impossible

to review all of them thoroughly. Nevertheless, this section will briefly review some of
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the commonly used methods for extracting texture features. They will be divided into

four categories: statistical methods, structural methods, signal processing methods,

and model-based methods.

2.3.1 Statistical Methods

The spatial distribution and intensity of pixel values in an image are among the most

important characteristics in describing texture. Feature extraction based on statistical

analysis is one of the earliest methods developed to capture the content of the texture

in an image. According to Haralick [106], a texture contains two basic dimensions:

the first dimension describes the primitives (or texture elements, texels) out of which

the image texture is composed, and the second dimension is for the description of the

spatial interaction between the primitives of an image texture. This means, the first

dimension contains information about the local properties and the second dimension

contains the spatial information. Statistical methods try to characterise a texture

by utilising these properties such as intensity and spatial information. The first-

order statistical features are among the easiest properties that can be extracted from

textures; for examples mean, median, variance, skewness, kurtosis, etc. These features

can be directly computed from an image by taking the intensity or grey level values

within a defined window size and provide information related to the intensity or grey

level distribution of the image.

However, the first-order statistical features do not provide information about the spa-

tial information among the grey levels, such as whether all low-value grey levels are

positioned together or are interchanged with the high-value grey levels [107]. The

second-order statistical features take the spatial information into account. Haral-

ick et al. [108] developed grey level co-occurrence matrix (GLCM) to describe two-

dimensional spatial relationship of grey levels within a given distance and orientation

[109]. The GLCM is defined as the joint probability of occurrence of two grey level

values at a given offset both in terms of distance and orientation [110, 111]. This

means, each value of the co-occurrence matrix element presents relative frequency

with two adjacent grey levels. From this matrix, a set of texture descriptors can be

extracted such as homogeneity, contrast, energy, correlation, etc. In addition, Haralick

et al. [108] formulated other features such as inverse difference and inverse difference

moment normalized. Conners et al. [112] recommended two additional features in

GLCM namely cluster shade and cluster prominence.
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There are a few variations of GLCM such as grey level difference matrix (GLDM),

grey level run length matrix (GLRLM) and spatial gray-level dependence matrix

(SGLDM). GLDM is based on the occurrence of pixel pairs given an absolute dif-

ference in gray level and separated by a specific distance [113, 114]. Five textural

features are measured using GLDM: contrast, angular second moment, entropy, mean,

and inverse difference moment. On the other hand, the GLRLM [115] is based on

computing the number of gray-level runs of several lengths. A grey level run is a set of

linearly adjacent pixel points having the same grey level value. The length of the run

is the number of pixel points in the run. A set of textural features are measured from

the matrix, such as short-run emphasis, long-runs emphasis, gray-level nonuniformity,

run-length nonuniformity, and run percentage [115]. Finally the SGLDM [113, 114]

is based on an estimation of the second-order joint conditional probability density

functions (PDF) for a given orientation. The PDF function is the probability that

two pixels located with a given distance and direction, have corresponding gray levels.

This means, SGLDM aims to construct co-occurrence matrices to reflect the spatial

distribution of gray levels in the region of interest.

2.3.2 Structural Methods

Structural based methods (also known as geometrical methods) attempt to analyse

the structural properties of the primitives in order to characterise the texture [106].

In structural methods, texture is viewed as a set of many textels, or also known

as textural elements, arranged according to some placement (e.g. orientations and

distance) rules [116]. In texture analysis, many structural based methods are under

the problem domain of shape analysis because these methods tend to use structural

properties such as area, perimeter, eccentricity, orientation, elongation, magnitude,

compactness, etc [117, 118].

Goyal et al. [119] proposed a robust method to calculate compactness by improving

perimeter feature to be invariant to shift and rotation. By making the perimeter

invariant to shift and rotation, it helps compactness invariant to translation, rotation

and scaling. Ahuja [120] proposed a model for defining the neighbourhood of a

point called Voronoi tessellation. The region enclosed by a point’s Voronoi polygon

was assumed to possess intuitively appealing characteristics and was regarded as the

neighbourhood of the point [109]. On the basis of that, Tuceryan and Jain [121]

developed a texture segmentation algorithm based on Voronoi tessellation (consists of
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many Voronoi polygons) to model the texture. Subsequently, the method computes

shape features from Voronoi polygons and used these features to identify the interior

and the border regions of the textures.

In another study, Matsuyama et al. [122] detect texture periodicity by finding the

peaks from the Fourier spectrum of a textured image. Similarly, Liu et al. [123]

detect the peaks but from the output of autocorrelation functions of a texture. The

structural methods of Serra [124] and Lu and Fu [125] developed a tree grammar

syntactic approach for a texture representation. Firstly, a texture is divided into a

small 9 × 9 square windows and windows belonging to the same texture pattern are

then characterized by a tree grammar. The constructed tree grammar was used for

synthesis as well as discrimination. The advantage of the structural approach is that

it provides a good symbolic description of the image; however, this feature is more

useful for synthesis than analysis tasks [126].

2.3.3 Signal Processing Methods

According to a psychological study conducted by Bruce et al. [127], there is a strong re-

lationship between visual perception and spatial frequency in human brain. Stromeyer

and Klein [128] suggested that the human visual system is sensitive to textures due to

the existence of channels which are selectively sensitive to different ranges of spatial

frequencies. Based on this proposition, many authors have developed signal process-

ing methods for texture analysis. Many of these methods utilise filters to capture

frequency information of the texture to extract its properties. Since the appearance

of textures can be very complex, frequency content of the image also can be very

complex too, therefore designing robust filters to be able to capture these complex

frequencies can be very difficult.

Laws [129] designed a set of 2D masks derived from three simple 1D filters for flats,

edges and spots detection. Each of these 1D masks will be convolved to provide a

set of symmetric and anti-symmetric centre-weighted masks with all but the level

filters being zero sum. The developed filters are very successful in flats, edges, spots,

and ripple detection. Furthermore, Law [129] introduced another class of spatial

filters called moments, which correspond to filtering the image with a set of spatial

masks used to extract texture features. Moment-based features were successfully

applied in texture segmentation by Tuceryan [130]. Another way to capture frequency

information is via linear transformation of the local neighborhood vector proposed by
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Unser and Eden [131]. For this method, a bank of local convolution masks are stacked

to form a transformation matrix, then each row of the transformed matrix represents

a mask that will be used to filter the input texture [131]. In contrast, Rosenfeld and

Thurston [132] introduced masks for edge detection based on edge density on the

basis that fine textures tend to have a higher density of edges than coarse textures

[117].

Other filters based on signal processing methods are Fourier [133], Gabor [134, 134]

and wavelet transforms [135, 136]. These methods represent an image in a coordi-

nate system space which has an interpretation similarity with the characteristics of

a texture. The Fourier transform captures the global frequency content of an image

without any references to localisation in the spatial domain where Gabor filters pro-

vides references for spatial localisation but one of the limitations is that the filters

could not localise a spatial structure in natural textures [74, 75, 117]. In multiresolu-

tion analysis, wavelet transforms solved this issue using a window function where the

window size changes as the frequency changes [137] which is similar to difference-of-

Gaussians [138], 2D Gabor filters [134, 134] and filter banks [139]. These methods

filter an input image with a bank of filters and each filter has a specific frequency and

orientation. The resulting filtered images are the texture features representing differ-

ent frequencies and orientations of the texture. As the number of filters increases, the

dimensionality of the data is also increasing; in some texture segmentation methods

dimensionality can be reduced using Principal Component Analysis (PCA), feature

selection and only considering filtered images which have high energy.

2.3.4 Model Based Methods

Model based texture analysis methods try to build a model that can represent the tex-

ture of an image via several techniques such as generative image model and stochastic

model [140]. Several authors mentioned that one of the problems with most stochas-

tic models is estimating their parameters, which could be computationally expensive

[141, 142]. One of the most popular model based methods is Markov random fields

(MRF) [143]. The MRF model assumes that each pixel’s intensity within a region

of interest in the image is highly dependent on the intensity values of its local neigh-

bourhood [109]. This means the MRF model represents a set of connected nodes

(or pixels) in a graph. Mandelbrot [144] proposed a method to model textures of an

image with fractals using fractal dimension function. The function can characterise
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Figure 2.3: Example of 5× 5 window used to calculate the features.

self-similarity and roughness of image texture [145]. In contrast to MRF models,

fractals have high power in low frequencies and fractal dimension is scale invariant.

Finally Jojic et al. [146] proposed a novel appearance and shape models called epit-

omes. The epitome is a smaller image containing a miniature and condensed version

of the original image such as texture and shape properties [109].

2.4 Texture Descriptors for Texture Representa-

tion

Texture based features are powerful for texture representations and have shown to be

effective for texture classification and segmentation. By analysing an image texture,

we can capture its appearance, orientations, scales, distributions, etc. This section

will review some of the most popular texture features mainly used in CAD for prostate

cancer studies.

2.4.1 First-Order Statistical Features

Generally, first order-statistical features compute local features by analysing the dis-

tribution of gray values at each point in the image. Features under this category are

the basic texture descriptors used in texture analysis and estimate properties (e.g.

average and variance) of an individual pixel by replacing the value of the central pixel

with the result of its neighbouring values within a given window size. All features

under this category do not capture the spatial information between grey levels. As a

result, textures with similar grey level distributions but different spatial arrangements

could not be distinguished. Figure 2.3 shows an example of 5 × 5 window used to
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compute each of the features described below. Let A(i,j) denotes each element (or

pixel) within a m × n sliding window (W ), where m and n are row and column, re-

spectively. Each element within the sliding window has (i, j) position. W contains

m× n number of elements (N). The resulting value will be replaced into the central

pixel. The following equations are the list of first-order statistical features used in

this study.

• Mean is calculated by adding up all the grey level values within the W and

dividing that sum by the total number of grey levels.

(µ) =
1

N

N∑
i=1,j=1

A(i,j) (2.1)

• Median is the middle value in a list of ascending order grey level values (X)

within the W .

med is the (
N + 1

2
)th element of X (2.2)

• Variance indicates how widely the grey level values within the W vary.

var =
1

N − 1

N∑
i=1,j=1

A(i,j) − µ2 (2.3)

• Standard Deviation is the square root of the variance.

std =

√√√√ 1

N − 1

N∑
i=1,j=1

A(i,j) − µ2 (2.4)

• Skewness is a measure of the asymmetry of the probability distribution of the

grey level values about its mean within a given window size.

sk =

N∑
i=1,j=1

(
A(i,j) − µ

)3

(N − 1)σ3
(2.5)

• Kurtosis measures whether the data are peaked or flat relative to a normal

distribution.

kur =

N∑
i=1,j=1

(A(i,j) − µ)4

(N − 1)σ4
(2.6)
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Figure 2.4: Pair column correlation in a 5× 5 window.

• Mean absolute deviation calculates the average difference between each grey

level value and the mean within the W .

mad =
1

N

N∑
i=1,j=1

A(i,j) − µ (2.7)

• Median absolute deviation is the middle value in Y . Note that Y is in an

ascending order.

mead is the (
N + 1

2
)th element of Y (2.8)

Y = A(i,j) −med (2.9)

• Average of rank correlations can be calculated by computing the correlation for

each pair of columns then summing up the total correlations before dividing it

by the number of paired columns.

avgCorr =
1

Npc

×

N∑
i=1

(Xi − X̄)(Yi − Ȳ )√√√√ N∑
i=1

(Xi − X̄)2

N∑
i=1

(Yi − Ȳ )2

(2.10)

where Npc is the number of pairs of columns which is 10 based on the example

in Figure 2.4 and X and Y are the first and second columns, respectively in a

of pair column.



Chapter 2. Texture Analysis 30

• Local contrast represents the difference between the highest and lowest grey

level values within the W .

lc = max(W )−min(W ) (2.11)

• Local probability computes the probability of occurrence for each grey level

within the W .

lp =
#(A(i, j) = k)

m× n
(2.12)

where #(A(i, j) = k) is the number of pixels at the kth grey level in a m × n
image.

• Percentile 25 indicates the grey level distribution within W under a given thresh-

old (e.g. 25%)

p25 =

the idxth element of X, if idx is a whole number

the round(idx)th element of X, otherwise
(2.13)

idx = N × 0.25 (2.14)

• Percentile 75 indicates the grey level distribution within W under a given thresh-

old (e.g. 75%)

p75 =

the idxth element of X, if idx is a whole number

the round(idx)th element of X, otherwise
(2.15)

idx = N × 0.75 (2.16)

2.4.2 Second-Order Statistical Features

One of the most popular second-order statistical features is a set of features introduced

by Haralick et al. [108]. In comparison to the previous ones, these features consider the

spatial relationship between grey levels within a given distance (d) and orientation (θ).

By definition, GLCM is a tabulation of how often different combinations of grey levels
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Figure 2.5: An illustration of orientation (θ) and distance (d).

occur in an image. This means, each value in the GLCM represents the probability

occurrence of a pair of grey level values at a given distance (d) and orientation (θ). In

many texture analysis methods, combining first and second-order statistical features

are popular because they describe the grey level distribution and spatial relationship.

Figure 2.5 illustrates the spatial relationships of pixels that are defined by this array

of orientations and the distance from the pixel of interest (the central pixel). Note

that, d can be calculated by counting the number of pixels adjacent (excluding the

central pixel) from the central pixel. For example, d = 1 means there is one adjacent

pixel and d = 2 involves two adjacent pixels. Second-order statistical features involves

two stages: the first is to construct the GLCM and the second is to compute features

from the constructed GLCM. To create the GLCM, the following steps are required:

• Create a framework matrix based on the grey level values in the input image

• Choose d and θ (e.g. d = 1 and θ = 0◦)

• Count the occurrences and fill in the framework matrix to create the first co-

occurrences matrix (M)

• Create a transpose matrix (M t)

• Add the corresponding values inM andM t to create a symmetrical co-occurrences

matrix (M s)

• Normalize the M s to turn it into probabilities. This can be done by dividing

each element in the M s by the number of total occurrences in M s. Here the

GLCM (G) is constructed.

Figure 2.6 shows an example of how to construct M from an input image using d = 1

and θ = 0◦. The frequency value of M at the position (1, 1) is 2, hence M(1,1) = 2
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Figure 2.6: An example to construct M from I.

because the grey level pair (1, 1) occur twice in I. Similarly, M(5,2) = 2 because the

grey level pair (5, 2) occur twice in the input image. On the other hand, M(1,2) = 1

because the grey level pair (1, 2) occur only once in I. Once M is created, M t can be

created by doing the same process in Figure 2.6 but considering grey level pairs from

the opposite direction. For example, M is created by pairing grey levels from left to

right and M t can be created by pairing grey levels from right to the left.

Figure 2.7 shows an example of creating M t. Once M and M t are created, a symmet-

rical co-occurrences matrix (M s) can be constructed by adding up the corresponding

values in both matrix as shown in 2.8. Subsequently, the co-occurrence probability

for each value in M s is calculated to create G. This can be done by dividing each

value in M s by the sum of values in M s, which means each value in the G represents

the co-occurrence probability of a pair of grey levels based on the parameters d and

θ. Using the G, Haralick et al. [108] proposed the following features for describing

texture in an image.

Figure 2.7: An example to construct M t from an input image (I).
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Figure 2.8: An example to construct M s from an M and M t.

The following notations are used.

• Ng is the number of distinct grey levels in G.

• x and y are the coordinates of the row and column, respectively.

• p(i,j) is the probability value in G at position (i, j).

• avg is the mean of p(i,j).

• µx,µy,σx,σy are the means and standard deviations of px and py. The value of

px(i) can be obtained by summing up all the values at the ith row. Similarly, the

value of py(j) can be calculated by adding up all the values at the jth columns.

Therefore:

px(i) =

Ng−1∑
i=0

p(i,j) (2.17)

py(j) =

Ng−1∑
j=0

p(i,j) (2.18)

µx =

Ng−1∑
i=0

i× px(i) (2.19)

µy =

Ng−1∑
j=0

j × py(j) (2.20)

σx = sqrt

Ng−1∑
i=0

(px(i)− µx(i)) (2.21)

σy = sqrt

Ng−1∑
j=0

(py(j)− µy(j)) (2.22)
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px+y(k) =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j) (2.23)

where i+ j = k and k = 0, 1, 2..2(Ng − 1)

px−y(k) =

Ng−1∑
i=0

Ng−1∑
j=0

p(i, j) (2.24)

where i− j = k and k = 0, 1, 2..Ng − 1

Based on these notations, the following features can be extracted from G.

Contrast (con) =

Ng−1∑
n=0

n2

{Ng−1∑
i=0

Ng−1∑
j=0

p(i,j)

}
, i− j = n (2.25)

Correlation (cor) =

∑Ng−1
i=0

∑Ng−1
j=0 {i× j} × p(i,j) − {µx × µy}

σx × σy
(2.26)

Entropy (ent) = −
Ng−1∑
i=0

Ng−1∑
j=0

p(i,j) × log(p(i,j)) (2.27)

Inverse different moment (homogeneity) (idm) =

Ng−1∑
i=0

Ng−1∑
j=0

1

1 + (i− j)2
× p(i,j)

(2.28)

Energy (eng) =

Ng−1∑
i=0

Ng−1∑
j=0

(p(i,j))
2 (2.29)

Sums of squares: variance (svar) =

Ng−1∑
i=0

Ng−1∑
j=0

p(i,j)(i− avg)2 (2.30)

Sum average (savg) =

2Ng−1∑
i=0

i× px+y(i) (2.31)



Chapter 2. Texture Analysis 35

Sum entropy (sent) = −
2Ng−1∑
i=0

px+y(i)× log(px+y(i)) (2.32)

Sum variance (svar) =

2Ng−1∑
i=0

(i− savg)2 × px+y(i) (2.33)

Difference entropy (dent) = −
Ng−1∑
i=0

px−y(i)× log(px−y(i)) (2.34)

Information measure of correlation 1 (imc1) =
HXY −HXY1

max{HX,HY }
(2.35)

Information measure of correlation 2 (imc2) =
√

1− exp[−2(HXY 2−HXY )]

(2.36)

where HX and HY are entropies of px and py and

HXY = −
Ng−1∑
i=0

Ng−1∑
j=0

p(i,j)log(p(i,j)) (2.37)

HXY 1 = −
Ng−1∑
i=0

Ng−1∑
j=0

p(i,j)log(px(i)py(j)) (2.38)

HXY 2 = −
Ng−1∑
i=0

Ng−1∑
j=0

px(i)py(j)log(px(i)px(j))

In addition, Haralick [108] further introduced the following features:

Autocorrelation (acor) =

Ng−1∑
i=0

Ng−1∑
j=0

(i× j)× p(i,j) (2.40)

Maximum probability (mprob) = MAX p(i,j) within G (2.41)
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Dissimilarity (diss) =

Ng−1∑
i=0

Ng−1∑
j=0

i− j × p(i,j) (2.42)

On the other hand, Conners et al. [112] suggested cluster shade (csha) and cluster

prominence (cprom) which measure the skewness of the matrix using the following

equations.

csha =

Ng−1∑
i=0

Ng−1∑
j=0

(i+ j − µx − µy)3 × p(i,j) (2.43)

cprom =

Ng−1∑
i=0

Ng−1∑
j=0

(i+ j − µx − µy)4 × p(i,j) (2.44)

2.4.3 Local Binary Pattern

Local binary pattern (LBP) is another popular texture descriptor in texture analysis,

originally introduced by Ojala et al. [74]. In comparison to the first and second-

order statistical features, the LBP is invariant to monotonic grey level changes, low

computational complexity and convenient multi-scale extension [147]. By definition,

the LBP operator is an operator which describes the surrounding of the central pixel

by generating a bit-code between the central pixel with its neighbouring pixels [148].

On the other hand, the LBP value is a decimal number which represents the LBP

code (binary code) constructed by the LBP operator. The LBP code can be computed

based on the following condition

neigh(i,j)

1, cpxl ≥ neigh(i,j)

0, cpxl < neigh(i,j)

(2.45)

where neigh(i,j) is the neighbouring value of the central pixel (cpxl) at position (i, j)

in I. The LBP code can be constructed by comparing the central pixel with each of

its neighbouring pixels. Those values more than the central pixel’s value will be set

to 1 and 0 to those values less than the central pixel. Figure 2.9 shows an overview

of LBP and it summarises the following steps:

• Step 1: Divide an input image (I) into cells (e.g. 20× 20)
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Figure 2.9: An overview of extracting LBP features of an image.

• Step 2: Using a 3 × 3 sliding window (W ), compare the cpxl with each of its

surrounding pixels (or neighbouring pixels) based on the condition in 2.45 to

create its LBP code.

• Step 3: Calculate the LBP value based on clockwise rotation

• Step 4: Repeat step 2 and step 3 until the whole cell is covered (also the whole

image). Now the input image is represented in a form of LBP value.

• Step 5: For each cell, compute its histogram by counting the frequency of each

distinct LBP code. This means, the histogram of each cell represents the number

of occurrences of each LBP value.

• Step 6: Normalise each histogram to sum equal to 1 and concatenate all his-

tograms.

• Step 7: The concatenated histogram will be treated as a feature vector for

classification.

Over the last 20 years, LBP has been used in many different applications such as in

medical imaging [149], face recognition [150], fingerprint identification [150], texture

classification [149], etc. As a result, LBP has been extended to different variations

to overcome some of the limitations of the original LBP. For example, although LBP

allows a rotation invariant descriptor, it is less sensitive in capturing information about

anisotropic structures (e.g. eyes, mouths) in face recognition applications [151]. To

capture the anisotropic structures, Liao and Chung [151] proposed elongated local

binary pattern (ELBP) which used elongated neighborhood distribution, in contrast

to the conventional LBP which uses circular neighborhood. Tan and Triggs [152]
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proposed local ternary patterns (LTP) to solve the problem of the sensitivity to noise

in uniform textures. Instead of using two threshold values (e.g. 1 and 0), LTP code

is constructed based on three threshold values (e.g. 1, 0 and -1). Subsequently,

central pixel will be compared to its neighbouring values by including a user-specified

threshold. Further, the authors demonstrated more features can be extracted from

the LTP code by dividing it into positive and negative parts.

In another study [153], a new technique called median binary patterns (MBP) was

proposed for obtaining a noise resistant texture descriptor. In this approach, the

median value within a neighborhood is calculated first and compared with the neigh-

bouring pixels including the central pixel to create the MBP code. A similar idea

was proposed in [154] and [155]. The conventional LBP was improved to reduce the

effect of noise by comparing the neighborhood pixels’ intensity values against the local

mean pixel intensity, instead of the intensity of the central pixel [149]. On the other

hand, Heikkilä at al. [156] proposed a reduced dimension LBP called center-symmetric

LBP (CSLBP). In this technique, the authors compared only center-symmetric pairs

of pixels. Therefore, instead of 28 different binary patterns (considering 8 neighbors),

this method produces only 24 binary patterns (this resulting a shorter histogram).

Finally Raja and Gong [157] proposed multiscale LBP to capture multiscale based

features which compares the central pixel with its neighbouring values at the number

of different scales defined by the user.

2.4.4 Filter Banks

Filter banks are arrangements of low pass, bandpass, and highpass filters used for the

spectral decomposition and composition of signals [158]. In texture analysis a filter

bank consists of filters with various scales and rotations which aim to capture texture

properties at different resolutions and orientations. This means, each filter is designed

to capture specific properties of the texture. Subsequently, all information captured

by each filter is combined and aims to be a set of robust texture descriptors. In this

section, the following bank filters will be discussed: Gabor filters, Leung-Malik filter

bank (LM) [159], Schmind filter bank (S) [160] and maximum response filter bank

(MRS) [139, 161].

The 1D Gabor filter was introduced by Denis Gabor in 1946 for signal processing

[162]. In 1984, Daugman introduced 2D Gabor filters to model the receptive-field
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Figure 2.10: Feature extraction using filter bank.

profiles of simple cells in the striate cortex [134]. Frequency and orientation repre-

sentations of the 2D Gabor filters are similar to those of the human visual system

which was found to be useful in texture representation. The Gabor filter bank con-

sist of different kernels of different scales (σ), orientations (θ) and wave length (λ).

To extract features using Gabor filter bank, an input image is filtered using various

kernels via convolution. Each pixel in the filtered image is the response of each filter.

Therefore each corresponding pixel of filtered images can be treated as a feature vec-

tor dimensioned by the number of filters [163]. Alternatively, a further step can be

added by computing statistical features such as mean, energy and standard deviation

for each of the filtered images [164]. Subsequently, feature images will be used for

texture classification or segmentation. Since this method depends heavily on σ, θ

and λ, it can be difficult to find the optimal parameters. Nevertheless, several pa-

rameter optimisation approaches of Gabor filter have been proposed in the literature

[165–167].

Figure 2.10 shows a typical flow of feature extraction using filter bank. In contrast,

the parameters of LM, S and MRS filter banks are already defined by the authors. In

terms of feature extraction, these methods share a similar fundamental concept (an

input image is filtered by various kernels and the resulting filtered images are treated

as image features). The original LM has 48 filters (each has different orientations

and scales) consisting of first and second derivatives of Gaussians at 6 orientations

and 3 scales (total 36 filters), 8 Laplacian of Gaussian (LoG) filters and 4 Gaussians

[159]. On the other hand, Schmid (S) proposed a set of rotationally invariant filter

banks which has 13 isotropic ‘Gabor-like’ filters [160]. The MRS filter banks [168]
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Figure 2.11: Filter bank of Varma and Zisserman [1, 168] consists of 38 filters.

consisting of an edge and a bar filter, at 6 orientations (θ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦)

and 3 scales ((σx, σy) = (1, 3), (2, 6), (4, 12)), Gaussian and LoG filters both with

σ =10 pixels (in total 38 responses). To achieve rotational invariance, Varma and

Zisserman [1, 168] derive the Maximum Response 8 (MR8) filter bank by taking only

the maximum filter response across all orientations together with LoG and Gaussian

filters. Therefore, this reduces the number of responses from 38 to 8 (3 scales for 2

filters, plus 2 isotropic). Furthermore, the dimensionality of the filter response space

can be reduced by taking the response with the maximum scale and orientation from

the maximum responses of edge and bar filter.

Figure 2.11 shows 38 filters of Varma and Zisserman [1, 168] consists of an edge and a

bar filters (both at three scales and six orientations), Gaussian and LoG filters. MR8

filter bank can be obtained by taking the maximum response across all orientations

for edge and bar filters together with Gaussian and LoG filters.

2.4.5 Textons

Textons refer to fundamental micro-structures in natural images and are considered

as the atoms of pre-attentive human visual perception [169]. Unfortunately, ‘tex-

ton’ remains a vague concept in the literature for lack of a good mathematical model
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Figure 2.12: An overview of generating textons and histogram model for each
class.

[170]. In a simple definition, a texton is the cluster centroid generated by the em-

ployed clustering algorithm (e.g. k -means). Although the term ‘texton’ was firstly

introduced in the 80’s, it did not get much attention until a study of texture classifica-

tion by Leung and Malik [159] in 2001. Similar studies showing promising results in

texture classification conducted by Varma and Zisserman [1, 168] in 2005 and 2009,

respectively. On the other hand, in medical image analysis textons have been used

in retinal vessel segmentation [171] and lung cancer detection [172]. In many appli-

cations, textons are used to model textures in histograms (e.g. different textures can

be represented different histograms). Textons can be generated either by clustering

the filtered image or by clustering the raw pixels directly from the the original image.

In texture classification, results from a study by Varma and Zisserman [161] showed

that textons generated from the row pixels of an image produced better results then

the ones generated from filtered images. Figure 2.12 summarises the steps to generate

textons and histogram models for each class. Note that in this example raw pixels

are directly clustered without using filter bank.

• Step 1: Textures in the same class are filtered using filter banks such as Gabor

filter bank, LM filter bank, MR filter bank, etc.

• Step 2: All filtered images are aggregated and clustered using k-means clustering

algorithm, resulting in a texton dictionary.

• Step 3: Generate a texton map for each of the textures in a class. Resulting a

texton map for each texture.



Chapter 2. Texture Analysis 42

• Step 4: Construct a frequency histogram for each texture from the texton map.

Hence, each texture has a histogram which represents the textons distribution

within the texture.

• Step 5: The histogram is treated as a feature vector. For example if there are

10 textures in a class, there will be 10 histograms to represent the class.

• Step 6: A classifier is employed to build a predictive model learning the models

of each class.

• Step 7: The predictive model is used to test unknown cases.

Alternatively, a study in [1] did not use a classifier to learn the histogram models for

each class but employed k-Nearest Neighbor (k-NN) to find the most similar histogram

model with the test model in the Euclidean space. Many studies have shown textons

[1, 168, 171, 172] are very robust in texture classification. However, one of the main

disadvantages of this approach is finding the optimal number of textons which can

represent the characteristic of the texture and an optimal patch size needs to be

employed.

2.4.6 Gradient Based Features

There are many operators which can be used to extract these features such as Sobel

filter, Kirsch filter, etc. These features are popular because they perform well in char-

acterising micro-textures as well as providing more consistent behavior as a descriptor

compared to co-occurrence matrices [173]. Figure 2.13 illustrates the components in I

Figure 2.13: Components in I based on the calculation of numerical image gra-
dient.
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based on the calculation numerical image gradient. To calculate the numerical image

gradient for vertical direction (θ = 90), the following equations can be applied

G1
y(i, 1) = I(i, 2)− I(i, 1) (2.46)

GN
y (i, N) = I(i, N)− I(i, N − 1) (2.47)

GINT
y (i, j) = 0.5× I(i, j + 1)− I(i, j − 1), j starts at 2 (2.48)

where GINT
x is the interior section of the numerical image gradient (blue in Figure 2.13)

and G1
x and GN

x are the first and last columns (yellow and red in Figure 2.13) of the

image, respectively. A similar procedure can be applied to compute numerical image

gradient for horizontal direction (θ = 0). Therefore, the numerical image magnitude

(Nmag) is computed using the following equation

Nmag
(i,j) =

√
(I(i,j))2 + (I(i,j))2 (2.49)

Other than that, a gradient feature for each of the pixel can also be computed using

operators (e.g. Sobel, Kirsch, Roberts Cross, etc.) by applying a 3 × 3 convolution

kernels over the entire image. Figure 2.14 shows an overview of feature extraction

using 3× 3 convolution kernels (horizontal, vertical and diagonal directions) of Sobel

operators. To extract gradient at different orientations, each input image is convolved

Figure 2.14: An overview of feature extraction using a 3 × 3 convolution kernel
of Sobel operators.
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separately with different kernels. For example horizontal kernel to detect gradient at

θ = 0◦, vertical kernel to detect gradient at θ = 90◦ and diagonal kernel to detect

gradient at θ = 45◦. Therefore, the magnitude in each pixel can be computed using

the following equation

Imag(i,j) =
√

(Iθ=0◦
(i,j) )2 + (Iθ=90◦

(i,j) )2 (2.50)

where Iθ=0◦

(i,j) and Iθ=90◦

(i,j) are the pixel values at position (i, j) in image magnitude θ = 0◦

and θ = 90◦, respectively. The resulting image will be the image features.

2.4.7 Tamura’s Features

Tamura et al. [174] developed a set of texture features which correspond to human

visual perception. They defined six textural features namely contrast, directionality,

coarseness, line-likeness, regularity and roughness. Their experimental results sug-

gested that only the first three have significant effects in psychological measurements

for human subjects (contrast, directionality and coarseness). Therefore, many studies

have used only the first three features. Tamura contrast measures the variation of grey

levels within an image (or a region) and to what extent their distribution is biased to

black or white [175]. Tamura contrast can be computed using the following equation.

T cont =
σ

(kur)n
(2.51)

where σ2 is the variance and Tamura suggested n = 0.25. On the other hand, Tamura

directionality (T dir) is computed using the following steps [176].

• Step 1: Convolve (using 3× 3) an input image (I) with horizontal and vertical

Sobel edge operator. Each pixel has outputs 5H(i,j) and 5V(i,j).

• Step 2: Calculate the gradient vector for each pixel using the following equation

5G(i,j) =
5H(i,j) +5V(i,j)

2
(2.52)

• Step 3: Calculate the orientation vector for each pixel using the following equa-

tion

θ = tan−15V(i,j)

5H(i,j)

(2.53)



Chapter 2. Texture Analysis 45

• Step 4: Construct a histogram (HD) frequency versus θ, where freq is the

number of pixels with θ orientation (e.g. 5 pixels with θ = 45◦).

• Step 6: Identify peaks and valleys from HD. Let Np be the number of peaks

identified (hence p is a peak). For each p, let wp be a set of bins from its previous

valley to its next valley, and øp is the angular position of the peak. In addition,

hø is the height of the bin at angular position ø.

• Step 7: The directionality of an image is calculated as follow

Np∑
p

∑
ø∈wp

(ø− øp)
2HD(ø) (2.54)

Tamura coarseness (T crs) is computed by applying the following steps [176].

• Step 1: For each pixel I(i,j) compute six averages of the neighbouring values at

six different window sizes.

• Step 2: For each window (W ) calculate the absolute difference (AD) between

the pixels at the corners (diagonal directions). It can be done by subtracting

pixels on the opposite side. Each scale has two AD values.

• Step 3: Select the W which has the largest AD.

• Step 4: The T crs for each pixel in an image is the average of the neighbouring

values which has the maximum AD. It can be computed using the following

equation
1

m× n

n∑
i

m∑
j

Wmax(i, j) (2.55)

2.4.8 Fractal Features

Many textures have a statistical quality of roughness and self-similarity at different

scales. Fractal based features show strong correlation with human visual perception

at different resolutions, hence are suitable to characterise textures which appear at

different scales [126, 141]. However fractal features are unable to differentiate similar

textures at different orientations making them less suitable for describing textures

with different orientations [152]. Although there are many ways to calculate fractal

dimension (FD) features [126, 173, 177], all of those methods share a fundamental
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principal to measure the roughness of the texture. The FD of an image can be

measured by calculating the relationship between the different squared sizes and the

overall area measured (the number of pixels). To further clarify, the FD of an image

can be calculated using the following steps:

• Step 1: The input image is converted to a binary image.

• Step 2: The binary image is divided into a grid of squares (boxes) k × k.

• Step 3: Count the number of boxes (nb) containing at least one pixel which is

the ‘1’ since it is a binary image.

• Step 4: Vary the size of the box to get different nb.

• Step 5: Plot a graph of log(nb) versus log(k)−1.

• Step 6: The curve is then approximated by a straight line using a line fitting

method.

• Step 7: The FD of an image can be calculated by computing the slope of the

line.

Alternatively, studies in [165, 166] extracted more FD features from an image by

applying several different threshold values on the binary image. Subsequently, each

thresholded binary image is processed by applying step 2 until step 7.

2.5 Summary

In summary, we have briefly discussed some of the fundamental concepts in computer

vision, particularly image analysis, which will be the fundamental components in this

thesis. From this chapter we are able to conclude that:

• Texture analysis is a powerful approach in pattern recognition which is consis-

tently used in biomedical image analysis.

• Texture for the inhomogeneous category (texture with a random pattern) is

among the most challenging tasks in texture analysis.

• Texture contains properties which can be computed statistically.
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• Texture can be represented in many different ways such as histograms, shapes,

vectors, curve lines, etc.



Chapter 3

Computer Aided Detection

Systems

In prostate cancer imaging, CAD systems can help radiologists to identify abnormali-

ties, by delineating those regions with the highest probability of being malignant. The

MRI technologies have been integrated into the clinical practices and became part of

the standard procedures in most hospitals around the world. This chapter aims to pro-

vide a brief review of the state-of-the-art of CAD systems for prostate cancer detection

over the recent decades, focusing on the different stages within the CAD framework.

These stages include all the vital steps such as pre-processing, multimodality image

registration, prostate segmentation, feature extraction and selection and classification.

The limitations of the current CAD systems in prostate cancer are then discussed as

well as challenges.

3.1 CAD Status

MRI technologies have become crucial in the investigation of the human body anatomy.

In the last 30 years, physicists have been focusing on improving imaging techniques

assisting radiologists to improve cancer detection and diagnosis. However, a large

number of MRI data need to be analysed affects the radiologist’s performance and

the ability of human visual diagnosis suffers variability causing inconsistent results.

Another limitation is the lack of visibility due to the complexity of the clinical data

such as overlapping structures in benign and malignant tissues making it impossi-

ble for human to analyse the image [178, 179]. Furthermore, unbalanced number

48
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of cases between benign and malignant cases make human perception tends to fol-

low the dominant structures resulting false positives and negatives [62, 178, 179]. In

fact, substantial expertise from the radiologist is required to interpret multiparametric

MRIs and such expertise is not widely available [46]. CAD systems can provide assis-

tance with these problems either as a ‘second opinion’ to assist radiologists in making

diagnosis decisions or as a ‘first opinion’ to automatically detect abnormal regions

with minimal radiologists intervention. Computer algorithms allow the combination

of large amounts of MRI data into fewer images with a compact information content,

which can be manipulated to provide morphological and functional information about

the organ [180].

To date, MRI prostate imaging is used to non-invasively diagnose tumor staging and

improve treatment planning [181] rather than being used as a primary screening proce-

dure to diagnose or detect prostate cancer. CAD systems for prostate cancer detection

(CAD-PC) are relatively new in comparison to the other fields such as mammography

[182] and CT colonography [183] due to the only recent development of endorectal

coils which are improving image resolution. The use of different modalities in MRI

such as T2-W, DCE, MRS and DWI were only developed after the mid 90’s which

makes these technologies relatively new. Interpreting prostate MRI requires a sub-

stantial amount of experience, is time consuming and often suffers from interobserver

variation [184–186]. CAD-PC can speed up the reading time, minimise radiologist

intervention and offer more consistent diagnosis results. In fact, the use of CAD-PC

can enhance the diagnosis performance of radiologist significantly [187, 188]. For

example, less experienced radiologists can achieve similar diagnosis performances to

more experienced radiologists when assisted with CAD. Therefore, the development

of CAD-PC is an active research topic taking MRI to the forefront of prostate cancer

screening used in conjunction with the established clinical methods.

3.2 CAD-PC Framework

According to the most recent CAD-PC review conducted by Lemâıtre et al. [62] in

2015, 42 CAD-PC methods have been developed between 2007 and 2015. Although

these methods used different approaches, there are some common components in a

typical CAD-PC such as noise removal, feature extraction and classification (training

and testing).
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Figure 3.1: A general workflow of a typical CAD-PC.
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Figure 3.1 shows a general workflow of a typical CAD-PC. For CAD-PC based on

single modality consists of a pre-processing step, prostate and zonal segmentation

(e.g. PZ or CZ), feature extraction and classification. Some CAD-PCs involve a ‘can-

didates generation’ step which means only certain regions of interest (ROI) will be

further analysed in the next phase. On the other hand, CAD-PC based on multipara-

metric MRI generally contains an image fusion step called ‘image registration’. In

this step, MRI images from different modalities are combined into one single image

to give a better picture of the anatomical structures of the prostate. However, some

multiparametric CAD-PCs did not perform image registration but extract features

from each MRI modality separately and combine all features into a single feature

vector. Finally, different validation models were used in CAD-PC studies which will

be discussed later.

3.2.1 Pre-processing

The major problem in MR images is that intensities do not have a fixed tissue specific

numeric meaning even within the same MRI protocol, the same body region, and

the same scanner [189–191]. These problems are mainly caused by [189–192]: a)

corruption by thermal noise due to receiver coils, b) intensity variations due to different

scanning protocols and c) poor radio frequency coil uniformity. Intensity variations in

MR data can significantly affect performances of many image processing techniques,

hence, they need to be corrected [191]. In the pre-processing step, each MRI image

is either normalised, noise is removed or both.

In image normalisation the image is transformed to an image where all the pixel

values are standardised across acquisitions. The main reasons for this are to make

sure similar tissues have a common interpretation across locations and preserve the

rank of intensities, hence the representation of the structure anatomy is less influenced

by noise [193]. Indeed, one of the main challenges is the intensity variation between

patients due to different acquisition settings. In one of the most popular normalisation

techniques, image is normalised to zero mean unit variance. A study in [194] divides

the original intensity by median + 2 × (inter-quartile range). Similarly, normalisation

can be done by dividing each pixel intensity with ‘standard z-score’ of the PZ [195–

198]. Shah et al. [199], performed normalisation by using the average fat signal near

the prostate. Lv et al. [200] employed a method proposed in [201] which is based on
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the assumption that MRI images from the same sequence share the same probability

density function (PDF).

Another pre-processing step in CAD-PC is noise removal (or noise reduction). This

step is crucial as signal intensity can be corrupted with noise or artifacts during the

acquisition process. Many denoising methods have been developed in biomedical im-

age analysis which can be found in [202, 203]. The simplest noise filtering method is

median filter, but it does not work well on its own [62]. Studies in [192, 204, 205],

suggested that performing anisotropic diffusion [205] on a median filtered image

showed a significant improvement of the signal-to-noise ratio (SNR). Another de-

noising method is based on wavelet-based filtering using thresholding techniques as

employed in [206, 207]. Lopes et al. [208] employed the filtering technique proposed

in [209] which is based on joint detection and estimation theory.

Finally, the pre-processing step also involves a bias correction step known as bias

field (intensity inhomogeneity). A bias field is where an artifact resulting in a very

high intensity signal causes a layer of smooth intensity variation on the image. It

often happened in brain MRI, but rarely in prostate imaging. Nevertheless, a couple

of studies have performed bias correction: (a) Viswanath et al. [200] employed an

inbuilt function in the Insight Segmentation and Registration Toolkit (ITK) library

based on parametric Legendre polynomial model [210] and (b) Lv et al. [211] corrected

the intensity inhomogeneity by iteratively detecting the smooth intensity layer (or

foreground) using generalised scale. Subsequently, the bias field function is estimated

based on the second-order polynomial function [62].

3.2.2 Image Registration

Image registration is popular in CAD-PC based on multiparametric MRI. Image reg-

istration is a process of overlaying two or more images of the same scene taken at

different times, from different viewpoints, and/or by different sensors via a geometric

transformation in an iterative procedure approach [62, 212]. In CAD-PC, image reg-

istration can be seen as a procedure of aligning different MRI image modalities into

a template image [62]. Details of image registration methods can be referred in a

survey reviewed by Zitová and Flusser [212]. Majority of the image registration meth-

ods developed in the literature consist the following steps: feature detection, feature

matching, transform model estimation and image resampling and transformation.



Chapter 3. Computer Aided Detection Systems 53

For all the CAD-PCs reviewed by Lemâıtre et al. [62], the majority of the systems

based on multiparametric MRI used parametric transformation models based on affine

and elastic transformations. The affine transformation procedures offer the flexibil-

ity managing rotations and translation whereas elastic transformation is robust in

handling local distortions [62]. In image registration, similarity measure is vital to

make sure the detected features in reference and sensed images can be matched [212].

In this application, the most popular similarity measure method is estimating the

Mutual Information (MI) [213] between detected features. MI assumes homogenous

region in the first modality should appear as homogenous although they have different

intensity values [62]. Another important step in multimodality image registration is

optimising the geometric transformation model. Iterative estimation methods such

as L-BFGS-B quasi-Newton method [214] and gradient descent [215] are among the

common ones. Interpolation methods are used to approximate the pixel value in every

single point in the transformed image.

Several CAD-PC have performed image registration such as in [200, 216–218]. Gian-

nini et al. [217] and Vos et al. [21] used similar registration frameworks, by first finding

an affine transformation using MI and then employed an elastic registration to build

the geometric transformation model using the same similarity measure. However, Gi-

annini et al. [217] used gradient descent approach [215] to optimise the transformation

model whereas Vos et al. [21] employed L-BFGS-B quasi-Newton method [214] for

the same purpose. Similar studies by Viswanath et al. [200, 219] to correct the mis-

alignment between T2-W and DCE images used an affine registration together with

MI similarity measure.

3.2.3 Image Segmentation

Image segmentation is usually performed after image registration. In studies of CAD-

PC, segmentation is used to delineate the prostate gland where studies within the PZ

aimed to separate the CZ and PZ regions. Prostate segmentation is an important

task from both engineering and clinical perspectives. From an engineering point of

view, an accurate prostate segmentation ensures all prostate tissues are covered in

the later stage of CAD-PC including an accurate prostate volume (PV) estimation.

Recently, PSA levels have been modified to derive the PSA density by incorporating

PV calculations to help guide clinical decisions [220]. However, the accuracy of this

method relies on the accuracy of the PV estimate. Therefore, from a clinical point
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of view, an accurate prostate segmentation helps the accuracy of the PSA density

and clinical diagnosis decisions. Prostate segmentation is a challenging task as the

prostate gland boundary with its surrounding tissues can be ambiguous due to noise,

artifacts and intensity inhomogeneity, hence it can be difficult to locate. In fact,

different protocols of MRI scans employed at different medical centers or institutes

make different tissue appearances on MR images (e.g. some scans use endorectal coils

and some do not use coil) [221]. Even among experienced radiologists, the variability

in accuracy for manual segmentation can be quite large.

Despite being a difficult task, there are many prostate segmentation methods have

been developed in the last decade. Nevertheless, due to its complexity only a few

methods have achieved good results. In 2012, the Medical Image Computing and

Computer Assisted Intervention (MICCAI) society organised a Prostate MR Image

Segmentation (PROMISE12) grand challenge [220]. The results from 2012 until 2015

revealed 17 teams have taken up the challenge and only five teams achieved a score of

more than 80 with the highest score 84.36 achieved by a method proposed by Vincent

et al. [222]. Firstly, the method built a prostate model using a Minimum Description

Length (MDL) Groupwise Image Registration method and then employed a multi

start optimisation scheme to match the model to test images. The Emory team (paper

is under review by the PROMISE12 committees) was placed second achieved 83.66

where the method in [223] achieved 83.49. Birkbeck et al. [223] developed a method

using Marginal Space Learning (MSL) to align a statistical mesh model on the image.

Subsequently, using spatially varying surface classifiers the mesh is then hierarchically

refined to the image boundary. A semi-automatic method of ETHZ group (paper is

under review by the PROMISE12 committees) scored 81.24. A method of Malmberg

et al. [224] scored 80.66 placing fifth in the ranking using ‘Smart Paint ’ software

which gives options to users to fully interact with the 3D segmentation. The 2D

segmentation result is shown in 2D slices through the object.

The other segmentation methods can be referred in [225]. Although many teams

have taken up the challenge, there is still space of improvement. The average score

is 76.84 ± 4.95 and the majority of the methods have the score between 70 to 80.

Atlas-based segmentation, statistical modeling and image registration are among the

most frequent techniques employed.
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3.2.4 Candidate Generation

In CAD-PC, candidate generation is a process to segment possible malignant regions,

so they can be further analysed in the next stage of the methodology which means the

classification results are based on the number of regions (e.g. a region is classified as

being malignant or benign, such as studies in [226–228]) or based on pixels but only

within the segmented candidates. However, in some studies [200, 206, 207, 217, 229],

very pixel is considered as a possible lesion hence the output defines pixels as either

malignant or benign. Therefore, the classification results are based on larger number

of instances.

Vos et al. [226] captured blobs on the ADC map as possible malignant regions based

on the signal intensity and diameter. Subsequently the blobs detected are then fil-

tered based on their appearances and only those which met the criteria are considered

as final candidates. A similar approach used by Litjens et al. [227] to detect initial

candidates using multi-resolution Hessian blob detector on the ADC map, T2-W and

pharmacokinetic parameters maps. Subsequently, feature extraction was performed

on each detected blob before the SVM classifier was employed to generate final candi-

dates. Later, Litjens et al. [228] modified the method by using local maxima detection

to capture initial candidates followed by a post-processing step by employing region-

growing and morphological operations. A set of features were then extracted from each

of the candidates before k-NN classifier was employed to select the final candidates.

3.2.5 Feature Extraction

Feature extraction is an important task to capture information representing all tex-

tures in an image. This process can be done using several techniques such as DWT

[230], Gabor Filters [162, 163], GLCM [106, 108], LBP [74, 75] and some other

methods which have been discussed in Chapter 2. In this section, a number of fea-

tures used in CAD-PC studies will be discussed. In CAD-PC, features are computed

either based on the final candidates (a feature value represents each candidate) or

pixel based where each feature value represents each pixel.

Since different modalities provide different features, the set of features in every method

in the literature vary. For example texture and intensity based features are very popu-

lar in T1-W and T2-W MRI whereas parameter based features can be extracted from

MRS or DCE modalities. Nevertheless there are features consistently used by most
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methods such as intensity-based, edge-based, statistical-based and texture-based. Ac-

cording to the review conducted by Lemâıtre et al. [62], the most popular features

are first- and second-order statistical features. In T1-W and T2-W MR images, the

majority of the methods [206, 207, 217, 231–234] in the literature used Haralick

features (GLCM), intensity-based and edge-based features (e.g. Sobel and Kirsch

operators). Statistical-based features such as percentiles and Statistical-moments are

also among the most popular methods whereas histogram-based features such as LBP,

histogram orientation gradient (HOG), Wavelet-based, Gaussian filter bank and PDF

are among the least popular features. Other features used are fractal, position and

anatomical-based features.

In contrast, DWI, DCE and MRS modalities provide different sets of features. In DWI,

the ADC map is usually used as a source for blob detection. Studies in [226, 228] used

the ADC map to capture possible malignant regions before they were further analysed.

On the other hand, in DCE modality, a set of features represent levels of different

metabolites in prostate tissues such as wash-in and wash-out rates, absolute maximum

enhancement, 95% of maximum enhancement, onset time, time to peak, time to max

(Tmax) and the area under the gadolinium curve (also known as semi-quantitative

features) are among the most popular features used. Quantitative features were also

extracted such as forward volume transfer constant (Ktrans), the fractional volume of

extracellular space per unit volume of tissue (ve) and the reverse reflux rate constant

between extracellular space and plasma (kep). In MRS modality biological markers

such as choline, creatine and citrate metabolites are mainly used in the literature.

All these features are either extracted on the basis of pixel-based or region-based

approaches (depending on the method). Subsequently, all features are incorporated

into the feature vector for classification.

3.2.6 Feature Selection

Feature selection is a process to select only relevant information, hence eliminating

unnecessary data and reducing the data dimensionality. In other words, only features

which have significant correlation with classes (e.g. benign and malignant) will be

considered in building the predictive model. Feature selection is necessary to a) avoid

over-fitting when building a classifier model as less data means less chance of making

decisions based on noise, b) possibly improve accuracy because only the most relevant

attributes are selected to build the predictive model (a study conducted by Niaf et al.
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[231] demonstrated that feature selection significantly improves the discrimination

performance between malignant and benign regions) and c) reduce training time be-

cause fewer features are used in making decisions. The most popular feature selection

methods employed in the study of CAD-PC are based on t-test, mutual information

and minimum-redundancy–maximum-relevancy criteria. In most cases, before feature

selection is performed, each feature is usually normalised to avoid that absolute values

playing a role [235].

3.2.7 Classification

The final step of a CAD-PC is classification which involves training and testing with

features extracted from images. In the training phase, a predictive model is built

by the selected classifier usually by learning the labelled data. Subsequently, in the

testing phase the built model is applied to the test data without the knowledge of

ground truth labels.

In the past two decades, studies have used many different classifiers and results vary

even tested on the same dataset and methodology. Regardless of the choice of ker-

nel (e.g. RBF, polynomial and Gaussian), the SVM classifier is the most popular

supervised learning method used in the study of CAD-PC. However, one of the disad-

vantages of SVM is the performance is extremely dependent on the parameter settings.

To tackle this issue, a genetic algorithm was employed in which each SVM hyperpa-

rameter was treated as a “gene” in a “chromosome” encoding and the F -measure was

used as the metric for the evaluation of individual fitness [221]. For linear model clas-

sifiers, the linear discriminant analysis (LDA) is the second choice [46, 226, 233, 236]

and the logistic regression is only used by the studies in [237, 238].

In recent years, the random forests classifier was introduced to the medical image

analysis community and achieved very promising results in some medical applications

[239]. One of the advantages is the fact that it can handle high dimensional data as well

as large number of training samples [240]. In addition, its ability to estimate what

features are important in the classification is another attraction of random forests.

On the other hand, clustering methods such as k-means clustering and k-NN are also

quite popular. These methods are very easy but can work quite well which makes it

very attractive. Adaboost and multilayer perceptron are among the learning methods

which are recently used in CAD-PC.
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3.2.8 Model Validation

In any applications of CAD, the validation model for accessing the performance of

the classifier model is crucial. In CAD-PC, two techniques are broadly used: (a)

Leave-one-out Cross-validation (LOOCV) and (b) n-fold Cross-Validation (n-CV). In

LOOCV, data from one patient are kept for validation and the other data from the

other patients (all patients except the one kept for validation) are used for training.

This validation technique is popular when dealing with small number of patients,

hence considered unreliable [241]. On the other hand, n-CV was used by most

studies with a large number of patients. The n-CV technique splits dataset into n

subsets where the samples are randomly selected. For example, if the dataset contains

45 patients, and n = 9, then each subset has 5 patients. This means, all data from

the other 40 patients will be used to build the classifier model and data from the five

patients will be used for testing. This technique is regarded as a more reliable model

validation [241].

3.3 Open Challenges in CAD-PC

Developing a robust CAD-PC remains a challenging task due to the following prob-

lems:

• The state-of-the-art of prostate gland segmentation accuracy is still quite low

with an average score 76.84 ± 4.95. The best method in the literature achieving

below 85.

• The MRI images qualities can be vary depending on the protocols used by

different scanners. Hence, more accurate and standardised scanning procedures

are needed.

• It is impossible to make quantitative comparisons among the CAD-PC due to

the absence of public data. Therefore, it is difficult to determine whether one

method works well on a different dataset or not.

• Most of the proposed methods in the literature were tested on a small dataset

leading to uncertain results when tested on a larger dataset.
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• The appearance of malignant regions are still uncertain. In T2-W MRI, a region

dominated by low intensities has a higher chance of being malignant. However,

there are other factors which can cause this appearance and lead to false posi-

tives.

It is therefore expected that an improvement in one or more of these problems will lead

to a better diagnostic system with higher sensitivity and lower false positive rate, as

has been observed from previous research efforts. It is likely that more improvements

will be made in the next decade and wide deployment of prostate CAD systems in

the clinical environment will eventually occur.

3.4 Summary

This chapter has summarised the workflow overview in CAD-PC based on the existing

methods in the literature which covered all of the methods reviewed by Lemâıtre

et al. [62]. From this chapter, we can see that there a typical CAD-PC has few

similarities:

• Normalisation is seen to be a crucial step to standardise the representation of

tissues intensities across patients. This is similar to a noise removal step to

ensure data is less effected by noise or artifacts.

• An accurate prostate gland segmentation is crucial for studies involved in prostate

volume estimation. Nevertheless, studies in prostate cancer detection focus more

on the classification results rather than the accuracy of the segmentation of the

prostate boundary.

• CAD-PC studies based on multiparametric MRI performed image registration

for better anatomical and feature representation.

• Using a machine learning technique to build a predictive model for classification

is the main trend in CAD-PC.

• There are many texture descriptors have been used in CAD-PC studies and

first- and second-order statistical features are the most popular.
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• Studies of CAD-PC based on multiparametric MRI are in favor among re-

searchers because it can provide morphological and functional information about

the prostate. Nevertheless, CAD-PC studies based on single modality are still

relevant.



Chapter 4

Detection and Localisation of

Prostate Cancer using Intersection

of Binary Segmentations

This chapter proposes a CAD-PC methodology based on combining multiple segmen-

tation techniques. We extract four image features using Gaussian and median filters.

Subsequently, we use each image feature separately to generate binary segmentations.

Finally, we take the intersection of all four binary segmentations, incorporating a

model of the peripheral zone, and perform erosion to remove small false positive re-

gions. The evaluation of this method is based on 275 T2-W MRI images from 37

patients and 86% of the slices were classified correctly with 87% and 86% sensitivity

and specificity achieved, respectively. This chapter makes two contributions: firstly,

a novel Computer Aided Diagnosis approach which is based on combining multiple

segmentation techniques using only a small number of simple image features. Sec-

ondly, the development of the proposed method and its application in prostate cancer

detection and localisation using a single T2-W MRI modality with the results compa-

rable to the state-of-the-art multimodality and advanced computer vision methods in

the literature.

4.1 Introduction

The ultimate goal of this chapter (and thesis) is to develop a CAD tool for prostate

cancer detection and localisation within the PZ mainly because a) about 80% of the
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prostate cancers appear in the PZ [12, 192, 242, 243] and b) in general, prostate cancer

that arises in the peripheral zone is more aggressive than that which arises in the

transitional or central zones [244] (as discussed in Chapter 1). Therefore, in this paper

we propose a new method for detecting prostate abnormality within the PZ using

four different image features (see Figure 4.5) extracted using Gaussian and median

filters. The main objective of this method is to delineate malignant regions (and hence

localise them) within the PZ by taking the overlapping binary segmentation from

each image feature. This means pixels (or tissues) which are classified in the same

malignant cluster in all image features are considered to have the highest probability

of being malignant. However, if a pixel is classified as belonging to a benign or normal

tissue cluster in one of the image features we considered it to be a benign or normal

tissue (this will be explained in more detail in section 6.3). Figure 4.1 illustrates the

basic idea behind the proposed method in this chapter. The motivation behind this

idea is that each texture descriptor represents different information about the texture

content. Therefore, segmenting the image feature individually resulting to different

binary segmentations. By finding the overlapping binary segmentations we are able

to find the region with the highest probability of being malignant. In other words,

the pixels within this region are clustered as malignant in feature representation.

The novelty of this method resides in an approach which combines simple features (this

is similar to a forest of weak classifiers which together provide strong results), for the

first time and applied to prostate T2-W using one modality. To our knowledge, no

existing methods in the literature have used the technique of finding cancer regions by

Figure 4.1: An illustration of the basic idea behind the proposed method.
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taking the overlapping binary segmentation extracted from a small number of image

features.

4.2 A Brief Review of Segmentation Techniques

CAD can be applied in many different medical imaging applications (such as brain,

breast, chest and prostate) using different segmentation techniques. As previously

mentioned in Chapter 2, there are six different categories of segmentation technique

in CAD systems namely contour and shape based, machine learning based, region

based, statistical based, multiresolution based analysis, hybrid and soft computing

methods. The contour and shape based methods are the most popular techniques

employed in the literature. The other techniques and their applications in medical

imaging can be found in [236, 245–249].

The level set technique has been applied to several human organs (e.g. brain, car-

diac, prostate, breast, etc). Tsai et al. [250] developed a shape-based approach

using level sets and demonstrated their method by applying it to the segmentation

of cardiac and prostate MRI. The proposed method derived a parametric model for

an implicit representation of the segmenting curve by applying principal component

analysis to a collection of signed distance representations of the training data. The

parameters of this representation were then manipulated to minimize an objective

function for segmentation. Liu et al. [251] proposed a method for mass segmentation

in mammograms using a level set to improve the initial segmentation performed using

a watershed algorithm. On the other hand, Shi et al. [252] used k-means clustering

followed by a morphological opening operation for initial mass segmentation. For the

level set segmentation a linear discriminant analysis (LDA) classifier with stepwise

feature selection was used to merge the extracted features into a classification score.

In [253], a novel automatic approach to identify brain structures in magnetic res-

onance imaging (MRI) is presented for volumetric measurements. This approach

combines the active contour model with a support vector machine (SVM) classifier.

The SVM features are selected according to the structure of brain tissues: gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF). Jones et al. [249] devel-

oped an interactive segmentation method by combining both region selection and user

point selection. Evaluation results showed an accuracy on average of more than 98%

based on 248 intravascular ultrasound (IVUS) images.
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Graph searching techniques have been studied for the segmentation of biomedical im-

ages such as brain, knee and glottis [87, 88, 254]. Pedoia and Binaghi [87] proposed

a fully automatic 2D brain segmentation using graph searching technique which con-

sisted of border detection based on two-dimensional graph searching principles and

radial contour detection. In the border detection phase, polar conversion is performed

first, followed by skull and brain boundaries detection. Li et al. [88] extended the

optimal graph-searching techniques to 3D and higher dimensions using a polynomial-

time algorithm for surface segmentation in volumetric images. The method is efficient

and robustly tested on MR arterial walls and IVUS image. Finally, a study in [254]

uses the output of SVM to drive a graph-cuts segmentation, which was initially trained

as a local Golgi detector based on rotationally invariant features. It should be noted

that in some of the described segmentation approaches difference images have been

used but in general these rely on multimodality data or on some temporal sequences,

neither of which have been used in the proposed approach. In the developed ap-

proach we rely on a single modality and the variation in appearance between normal

and abnormal tissues within the peripheral zone.

Despite the relevant achievements obtained, the main limitations of contour and shape

based methods for our research are

1. Most of them require a significant amount of user interaction for initial region

selection. In our case, we want to eliminate (or minimise) user interaction in

finding cancerous regions.

2. They work well only if the boundary of the object is well defined within the

image: such methods work well for prostate gland detection [255]. In many

prostate T2-W MRI, cancerous regions are vague both in terms of appearance

and shapes, and as such many training samples would be needed.

3. The results of many of these methods are highly dependent on the initialisation.

Therefore, we applied an unsupervised machine learning based method which is Fuzzy

C-Means (FCM) clustering as proposed by Chen and Zwiggelaar [256]. Motivated

by the advantages and disadvantages of the range of FCM based algorithms the au-

thors proposed a modified FCM (mFCM) algorithm that incorporates local spatial

and intensity information based on an adaptive local window filter whose weighting

coefficients differentiate the neighbouring pixels within the local window. The method
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is less sensitive in dealing with different types of noise, intensity inhomogeneities, ex-

cludes outliers, and eliminates unnecessary blur. Moreover, the separation of filtering

from clustering can drastically reduce the running time. The mFCM has a two-pass

filtering process: firstly is to evaluate to distinguish between unreliable and reliable

neighbouring pixels and secondly a new intensity value of the central pixel is computed

based on the reliable neighbours values to generate the filtered image. Subsequently,

a fast clustering is performed on the filtered image using intensity histogram. The

mFCM algorithm will be described in details in section 1.4.4.

4.3 Modelling the Peripheral Zone

Figure 4.2 shows an example MRI image with the ground truth of the prostate gland,

central zone and tumor represented in yellow, green and red, respectively (left image),

while the right image shows a simpler schematic overview of the prostate derived from

the prostate anatomy proposed in [257] with CZ, PZ, and tumor (T).

Pathologically, about 80% of prostate cancers arise in the PZ and the rest are within

the CZ [12]. Since the percentage occurrence of cancers in the PZ is high and as

these tend to be more aggressive, we aim to detect prostate abnormality within this

region. We did not perform prostate segmentation because all prostates were already

delineated by an expert. It should be noted that Zhu et al. [255] developed a method

to detect the prostate capsule. Based on the schematic overview shown in the right

image of Figure 4.2 (also proposed in [257]), we defined our 2D prostate model based

on Figure 4.3.

The generic prostate’s PZ model in this paper is mainly inspired from similar models

proposed by Makni et al. [258] and Liu et al. [259] which used catenary and

polynomial curves, respectively. From a radiological point of view, the prostate is

Figure 4.2: Prostate MRI image (left image) with its ground truth delineated
by an expert radiologist and a schematic (right image) overview of the prostate

containing a tumor.
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Figure 4.3: Prostate gland (black) and the defined PZ below y = ax2 + bx + c
(green) which goes through v1, v2 and v3.

mainly divided into two regions in MR (the PZ and CZ). Therefore, according to

Makni et al. [258], when segmenting these regions, expert radiologists tend to follow

the rule of ’imagining’ outlines due to contrast or strong artifacts. The process of

distinguishing these regions is heavily relying on a priori knowledge of their most

likely locations [258]. Indeed, a more accurate way (probably more complex and

time consuming) could be achieved by segmenting the PZ within the prostate gland.

However, these approaches are complicated and require high accuracy in distinguishing

tissues in the PZ and CZ. In cases where there is no clear boundary between the PZ

and CZ, most segmentation based methods suffer from over-segmentation (hence,

could lead to many false positives). In contrast, defining quadratic curves is simple

and fast.

In our CAD system, we used the quadratic equation y = ax2 + bx+ c based on three

crucial coordinate points of the prostate which are v1, v2 and v3, which are determined

by the outmost x and y coordinates of the prostate boundary: xmin, xmax, ymin, ymax

(see Figure 4.3). For example, xmin and ymax can be determined by taking the min-

imum x and maximum y coordinates along the prostate boundary. Moreover, the x

coordinates of v1 and v3 are captured from xmin and xmax and their y coordinate is

determined by taking the y coordinate between ymin and ymax. On the other hand, the

x coordinate of v2 is taken from the x coordinate xmin and xmax and its y coordinate

is determined by taking 3
4

(0.75) of the distance from ymin to ymax. The coefficient

(ε = 0.75) is selected as it gives balanced results in terms of accuracy, sensitivity and

specificity (see Figure 4.18). Mathematically, these can be represented in equations

(4.1), (4.2), (4.3) and (4.4).

Cp = ((xmin + xmax)/2, (ymin + ymax)/2) (4.1)
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Figure 4.4: Three different prostate MRI images with ground truth delineated
by an expert radiologist and the estimated PZ region indicated under the magenta

line.

v1 = (xmin, (ymin + ymax)/2) (4.2)

v2 = ((xmin + xmax)/2, ymin + ((ymax − ymin)× ε)) (4.3)

v3 = (xmax, (ymin + ymax)/2) (4.4)

Once the coordinates of v1, v2 and v3 are defined, we can determine the values of a,

b and c (therefore a final quadratic equation is defined). Finally, by taking every x

coordinate from xmin to xmax into a quadratic equation we are able to determine the y

coordinate which will define the PZ’s boundary (the main goal is to analyse the region

under the green line in Figure 4.3). The approximation model is able to capture most

of the PZ area, easy to implement and computationally efficient. Figure 4.4 shows

examples of the estimated PZ boundaries in three different MRI images produced by

this method.

4.4 Methodology

Figure 4.5 shows the overview of the proposed methodology. First, we perform Gaus-

sian and median filtering on the original image to obtain G1 and M1. We extract

a probability image from G1 and M1 using greyscale frequency before we obtain the

third feature (F1) which is the magnitude of G1 and M1. This means, each element

in F1 is the sum vector of each component from G1 and M1. On the other hand, the

fourth feature (F2) is the vector magnitude of probability images from G2 and M2.

Subsequently, we use each feature separately to generate binary segmentations taking

the feature space and intensity values into account. We perform erosion on each of the

segmentations to remove small false positive regions. Finally, we take the intersection

of all four binary segmentations, taking a model of the peripheral zone (see Section

3) into account.
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Figure 4.5: Overview of the proposed methodology. Intensity values are repre-
sented by greyscale colours, with the darkest representing the lowest intensity.

4.4.1 Pre-processing

Since MRI images often suffer from different types of noise, it is necessary to apply

different types of denoising methods before doing any further processing. From a

clinical point of view, this is an appropriate step to enhance characteristics of an

important region of interest (such as textures and boundaries). Moreover, it does not

deform the anatomical locations of tissue regions because this step deals only with

noise without affecting the spatial information.

Hendrick [260] reported that one type of noise in MRI images is Gaussian noise.

Therefore, Gaussian smoothing is selected, which is also effective in reducing noise

that is problematic for image analysis algorithms. For example, image segmentation is

often affected by the presence of too many local minima/maxima and inflection points

in the data [261]. Studies performed by Barentsz et al. [262] and Viswanath et al.
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[263] suggested that most cancers shows textural distortions in T2-W images. Litjens

et al. [46] captured these characteristics using Gaussian filters. Many previous

studies have applied Gaussian filters in denoising MRI images and mammograms

[260, 264, 265]. We are aware that there are more sophisticated denoising methods

such as those based on Fourier analysis [266] or anisotropic filtering [267] which

could be explored in future work. The 2D Gaussian function is defined as

g(s, t) =
1

2πσ2
.e−

s2+t2

2σ2 (4.5)

where s is the distance from the origin in the horizontal direction, t is the distance from

the origin in the vertical direction, and σ is the standard deviation of the Gaussian

distribution. In the proposed method we used the following parameters: the kernel

size (ks) is 15× 15 and the standard deviation (σ) is 3.0. See subsection 4.4.3 for the

selection of the Gaussian parameters (σ and ks) and their resulting variability can be

seen in Figure 4.17.

On the other hand, we used median filtering to preserve the regional boundaries

(e.g. tumor regions). It is claimed that using median filtering is much better at

preserving sharp edges [268] and in our case we want to preserve the information-

bearing structures such as tumor boundaries [192]. The median filter works by

replacing the pixel value with the median value in the neighborhood of that pixel. We

used a sliding window of 5 × 5 pixels. Other sizes are possible (such as 3 × 3, 7 × 7

and 9× 9) give similar results.

4.4.2 Feature Extraction

In the previous step we have extracted two texture features using Gaussian (G1) and

median (M1) filters. In this section, two more texture features will be extracted by

manipulating G1 and M1. We calculated the probability images using equation (4.6)

and calculate the vector sum using equation (4.7). Probability images are commonly

used to model the expected appearance of an object (e.g. tumor region) in a given

reference space. Many studies suggested that prostate cancer appears darker within

the PZ and is similar to the tissues outside the prostate gland. By computing a prob-

ability image we are able to quantify the likelihood of every pixel/voxel belonging to

specific tissues (e.g. tumor region). This also means each pixel/voxel can be repre-

sented by a value of the likelihood of being malignant. The conversion to probability
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images acts as a normalisation across the feature images and as such these can all be

treated in the same framework. We calculate the probability image for each of G1

and M1. This means, for an f(i, j) image, the probability value for the kth grey level

is calculated using:

P (i, j) =
#(f(i, j) = k)

M ×N
(4.6)

where #(f(i, j) = k) is the number of pixels at the kth intensity level in aM×N image,

and as such each element in P is the probability value for a particular intensity level.

Others have exploited probability images for segmentation [269, 270]. To calculate

features F1 and F2, we find the sum vector for every corresponding element in G1 and

M1 using equation (4.7). According to [271] by taking the square root of the sum

of squares between two corresponding signals produces a good image with little noise

and continuous edge marking while another study performed in [272] suggested that

equation (4.7) can improve the signal to noise ratio (SNR). In this case, corresponding

signals are the corresponding pixels in G1 and M1.

In(i, j) =
√
G2
n(i, j) +M2

n(i, j) , n = 1 or 2 (4.7)

In total, four features are extracted, namely the Gaussian feature (G1), the median

feature (M1), the magnitude Gaussian and median features (F1) and the magnitude

of the probability images of Gaussian and median features (F2). Before image seg-

mentation is performed, we applied noise reduction to F1 and F2 to minimise the

noise retained/created after being processed using equations (4.6) and (4.7). In the

proposed method we applied a smoothing method developed by Garcia [273] which

is robust in dealing with weighted, missing, and outlying values by using an itera-

tive procedure (which is the case in G2 and M2). The method is a fast and robust

version of discrete smoothing splines based on discrete cosine transform (DCT). The

algorithm, uses penalised least squares method, allows fast smoothing of data in one

and higher dimensions. Moreover, the method automatically determines the amount

of smoothing carried out by minimising the generalised cross-validation score, hence

avoiding over- or under-smoothing [273].

Figure 5.5 shows examples of all extracted features G1, F1, F2 and M1. We can see

that the malignant region appears brighter in F2 and darker in the other features.
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Figure 4.6: Example extracted features, from left to right: G1, F1, F2 and M1.
The outline prostate is defined by the yellow line and the malignant region (in the

PZ) is indicated by the red arrow.

4.4.3 Gaussian Parameters

The selection of the parameters for the Gaussian smoothing function is based on the

studies in [274–278], which indicated that, the standard deviation (σ) and kernal

size (ks), are linked. According to the experiments with different Gaussian convo-

lution algorithms conducted in [274], the authors showed that the amount of error

(the smaller the error the closer the denoised image is in comparison to the original

image) did not change significantly after σ ≥ 2. This means, for many Gaussian al-

gorithms the error is much higher (less accurate) when σ<2. On the other hand, for

the selection of kernel size (ks) several authors [275–278] suggested that in general,

filter size should be d3σe to d5σe and odd [278, 279]. For instance, if σ = 2.5, the

recommended minimum kernel size is 9 (3×2.5 = d7.5e = 8, since it should be an odd

number according to [278, 279], the nearest odd value is 9). Similarly, selecting σ = 1

would suggest the smallest kernel size of 3 × 3. Although there are no quantitative

experimental results for optimal Gaussian parameters on medical images such as MRI

or ultrasound, their results indicate a general guideline for selecting Gaussian param-

eters. In the proposed method we used several σ values together with several kernel

sizes and chose the ones that give the highest accuracy, sensitivity and specificity (see

Figure 4.17). The selection of parameters is not the major focus of this study but the

development of a novel method of prostate cancer detection and localisation within

the PZ is.

4.4.4 Clustering

In the proposed method, image segmentation is performed using a Fuzzy C-Means

(FCM) algorithm as it has been widely applied in a variety of medical image seg-

mentation applications [256, 280]. However, one common problem with FCM is its
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ability in handling different types of noise and intensity inhomogeneities taking lo-

cal spatial and intensity information into account. The conventional FCM algorithm

[281] assumes that every pixel can belong to multiple classes with varying degrees of

membership. The algorithm works by assigning membership to each data point cor-

responding to each cluster center on the basis of distance between the cluster and the

data point. The closer the data point to the cluster center the higher its membership

value for that cluster. Let Y = (y1, y2, ..., yR) denote an image with R pixels to be

partitioned into d clusters. FCM iteratively minimises the objective function defined

as

Jfcm =
d∑
p=1

R∑
q=1

umpq‖yq − vp‖2 (4.8)

with the following constraints:
∑d

p=1 upq = 1 for ∀q and 0 <
∑R

q=1 upq < R for ∀p,
where upq represents the membership of pixel yq to the pth cluster, yq represents the

feature data of the qth pixel, and vp is the prototype value of the pth cluster centre.

The parameter m (equal to 2 in this study as defined in [109]) is a weighting exponent

on each fuzzy membership that controls the fuzziness of the resulting partition.

Motivated by the advantages and disadvantages of the range of FCM based algorithms,

Chen and Zwiggelaar [256] presented a number of modifications to the Enhanced FCM

(EnFCM) [282] and fast generalised fuzzy c-means (FGFCM) [283] algorithm, hence

propose a mFCM algorithm which incorporates local spatial and greylevel information.

An adaptive local window filter is introduced which differentiates the weight of the

neighbouring pixels when computing the filter response value of the central pixel.

Moreover, the mFCM algorithm automatically determines the weighting coefficients

of the neighbouring pixels based on their spatial and greylevel associations with the

central pixel. The mFCM algorithm works as follow [109]:

1. Define a local square window W centred on pixel W c
(i,j) (the surplus ‘c’ indicates

central). The authors proposed a window size of 5× 5, hence this size is used in

this method (other shapes and sizes are possible). W(i,j) represents each of the

pixels (except the central pixel) in W .

2. Find the median intensity (Wmed) and compute the intensity deviation (Wσ)

within the neighbouring pixel values in W .
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3. Find the reliable and unreliable neighbouring pixels. Reliable pixels are those

with difference value is larger than Wσ. The difference value for each neighbour-

ing pixel can be computed by subtracting W(i,j) with Wmed. Let denotes W r
i,j as

reliable neighbouring pixels (the surplus ‘r’ indicates reliable).

4. Define a local window filter and compute the weighting coefficient (Crc) between

W r
i,j and W c

(i,j).

Crc =

C∆D̂.C∆Î if W(i,j) ∈ W r
(i,j)

0 otherwise
(4.9)

where C∆D̂ and C∆Î are coefficients determined by local spatial distance and

the local intensity difference between W r
(i,j) and W c

(i,j), respectively. Both can

be computed using the following equations:

C∆D̂ =

exp
(

(−∆D̂)
λD̂

)
if W(i,j) ∈ W r

(i,j)

0 otherwise
(4.10)

C∆Î =

exp
(
−(W c

i,j−W r
i,j)

2

λÎ .σ
2
rc

)
if W(i,j) ∈ W r

(i,j)

0 otherwise
(4.11)

where λD̂ and λÎ are the scales which influence the C∆D̂ and C∆Î , respectively.

In this study, we used the original parameters suggested by the author, λD̂ = 1

and λÎ=3. The Euclidean distance between pixels W c
(i,j) and W r

(i,j) formulated

∆D̂, where σ2
rc is the intensity deviation from the central pixel W c

i,j with each

of the reliable neighbouring pixels (W r
i,j) which can be calculated as follow

σrc =

√√√√√
∑

W(i,j)∈W r
(i,j)

(W r
(i,j) −W c

(i,j))
2

N r
(4.12)

where Nr is the number of reliable neighbouring pixels.

5. The image is filtered using the defined local window filter. The resulting inten-

sity value (Rc
i,j) of the central pixel is computed by:

Rc
i,j =

∑
W(i,j)∈W r

(i,j)

(
Crc.W

r
(i,j)

)
∑

W(i,j)∈W r
(i,j)

(Crc)
(4.13)
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6. From the intensity histogram of the filtered image count the number of greylevels

and the number of pixels with the same greylevel.

7. Cluster the filtered image based on its intensity histogram using the EnFCM

algorithm [282].

In the proposed method, we segment every image feature, separately into four dif-

ferent classes based on the number of tissue categories in the prostate: normal (non-

neoplastic) prostatic tissue, benign prostatic hyperplasia, high-grade prostatic intraep-

ithelial neoplasia, and prostatic adenocarcinoma [284]. The first two categories are

benign tissues, the third one is a risk factor for malignancy (we included this into

one of the malignant classes to reduce false negatives) and the last one is malignant.

Most cancer regions in the PZ tend to have a dark appearance [12, 16]. Moreover,

several studies suggested that prostate cancer tissue tends to appear darker on a

T2-weighted MRI image [47, 48, 285]. In fact, radiologists also tend to use darker

regions to identify abnormality within the PZ [49]. Since most malignant regions

contain lower intensities, cancerous regions could be detected within the prostate by

taking the segmented regions that correspond to the first two lowest intensity fuzzy

c-means clusters (indicated by the superscript ’low’ in Figure 4.7) in G1, F1 and M1.

However, since malignant regions in F2 are represented by higher average intensity

values, we take segmented regions which correspond to the two highest intensity fuzzy

c-means clusters. This process can be represented using the following equation

O = Glow
1 ∩ F low

1 ∩ F high
2 ∩M low

1 (4.14)

where ‘low’ and ‘high’ are low and high intensity represented in the segmented regions

within the prostate and O represents the overlapping region from all four binary

segmentations. Figure 4.7 shows an example of this process.

After selecting the regions of interest (segmented areas which are under the approxi-

mate PZ’s boundary (green line in Figure 4.3)), we combine all binary segmentations

and find its overlapping region as shown in Figure 4.7. Finally, we perform erosion

to remove noisy pixels which will be explained in the next subsection. Note that

segmented areas above the green line were ignored in this study because we are only

interested in detection within the PZ.
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Figure 4.7: After performing FCM clustering on every feature, we only take
segmented regions which correspond to the first two lowest intensity FCM in G1,
F1 and M1, and segmented regions which correspond to the two highest intensity
clusters in F2. Note that only segmented areas which are under the green line
in Figure 4.3 (the estimation of the PZ’s boundary) will be taken into account.

Segmented areas above the green line were removed.

4.4.5 Post-processing

The post-processing step in this method involves erosion which is one of the basic

operators in the area of mathematical morphology. The erosion operator aims to

reduce the boundaries of regions of foreground pixels using the following rule ‘the

value of the output pixel is the minimum value of all the pixels in the input pixel’s

neighborhood. In a binary image, if any of the pixels is set to 0, the output pixel is set

to 0’ [286]. By performing erosion on the binary segmentation, we can reduce the

number of false positives. The number of pixels removed from the objects in an image

depends on the size and shape of the structuring element used. Figure 4.8 shows how

the erosion operator works on a binary image.

Figure 4.8: Using the erosion operator of ‘disk’ shape and size=1 on a binary
image
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The operator has two parameters: (a) the types of structuring element (e.g. disk,

diamond, circle, flat, etc.) and (b) the size of the structuring element (the number of

adjacent pixels from the pixel of interest or central pixel). In the proposed method

we used a ‘disk’ shaped structuring element with size either 1 or 2. The ‘disk’ shape

was chosen due to regions with ellipse-shape have higher change of being malignant

[287, 288]. The size selection of the structuring element depends on the size of the

segmented region within the peripheral zone. If the size of the segmented region

within the peripheral zone covers ≥ 20% of the size of the peripheral zone, the size of

the structuring element is 2, otherwise 1. This ensures that every segmented region

is not over eroded or under eroded during the process.

4.5 Database Descriptions

Data from 37 patients (range: 40-74 years) with biopsy-proven prostate cancer were

included in this study. All patients underwent T2-W MR imaging at the Department

of Radiology at the Norfolk and Norwich University Hospital, Norwich, UK. MR

acquisitions were performed prior to radical prostatectomy. All patients gave their

written consent to participate in this study which was approved by the institutional

review board. All images were obtained on a 1.5 Tesla magnet (Sigma, GE Medical

Systems, Milwaukee, USA) using a phased array pelvic coil, with a 24 × 24 cm field

of view, 512 × 512 matrix, 3mm slice thickness, and 0.5mm inter-slice gap. Each

patient has 5 to 12 slices. However, since our current study is focusing only within

the PZ, slices with no visible PZ (the whole prostate gland is covered by the CZ) were

excluded in this study (e.g. see Figure 4.9). All images were manually annotated by an

expert radiologist (and further validated/confirmed by two independent radiologists)

with more than 10 years experience in diagnosing prostate cancer in MRI. In total

our database contains 275 slices taken from an axial direction (135 malignant and 140

normal slices). Each slice contains the annotations of prostate gland, central zone and

cancerous regions (if present).

4.6 Experimental Results

Data was analysed and classified as to whether the prostate contains cancer. The

detection of cancer occurs when there are any retained segmented regions (Glow
1 ∩



Chapter 4. CAD: Intersection of Binary Segmentations 77

F low
1 ∩ F high

2 ∩ M low
1 ) within the peripheral zone. Subsequently, we compared the

result with the ground truth whether the prostate contains cancer regions or not. We

use several quantitative measures to evaluate the results such as sensitivity (Sen),

specificity (Spe) and classification accuracy (CA). Each of these metrics can be

calculated using the following equations

Sen =
TP

TP + FN
(4.15)

Spe =
TN

TN + FP
(4.16)

CA =
TP + TN

TN + TP + FP + FN
(4.17)

where TP and FP denote the number of true positives and false positives, respectively.

Similarly, TN and FN indicate the numbers of true negatives and false negatives.

Accuracy means the number of correctly classified slices (or pixels in voxel based

classification) out of the total number of slices. Sensitivity measures the proportion of

actual positives which are correctly identified (in this case the percentage of malignant

slices which are correctly identified) whereas specificity measures the proportion of

actual negatives which are correctly identified (in this study the percentage of normal

slices which are correctly identified). The proposed method achieved CA=86% (237

samples are classified correctly) and 38 samples data are misclassified with 7% (20

samples) false negative and 6% (18 samples) false positive results. In addition, the

method produced Sen=87% and Spe=86%. Erosion with flexible size of structuring

element and regions intersection (Glow
1 ∩ F low

1 ∩ F high
2 ∩M low

1 ) reduce the number of

false positive and false negative results by ≈ 20%.

Figure 4.9: The whole of the prostate gland is fully covered by the CZ. All cases
like this were excluded in our study because our current focus is within the PZ.
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Figure 4.10: Malignant slices: prostate capsules are delineated in yellow and
central zones and tumors are in green and red, respectively. The detected regions

are indicated as the highlighted regions.

4.6.1 Correct Detection (Classification)

Figure 4.10 presents several examples of correct detection/classification. Correct de-

tection means an image (MRI slice) is classified correctly (malignant or normal) re-

gardless of the location of tumor within the PZ. The segmentation results are divided

into three different categories; small malignant region, large malignant region and

obscure malignant region. For the first category, the proposed method shows its sen-

sitivity dealing with small malignant regions within the PZ as shown in image 3, 9,

10, 16 and 18. In those images, the proposed method managed to segment malignant

regions correctly (in red line) despite their small sizes. In the second category, we
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Figure 4.11: Normal slices: prostate capsules are delineated in yellow and central
zones in green. The lack of segmented regions on the images indicates no cancer

regions present.

show results in detecting and localising malignant region in larger areas. This can

be seen in images 1, 4, 7, 13, 14, 15, 17, 19 and 20 where cancers are spread quite

substantially within the PZ and some within the CZ. Results in Figure 4.10 show that

these regions were segmented within the expert radiologist’s ground truth. Finally

(third category), we show results when malignant regions are obscure within the PZ.

In image 2, there are three dark regions (left, middle and right) within the PZ and

visually it is very difficult to identify which one of those regions is cancerous. As

a result, although the proposed method managed to segment the malignant region,

there is one false positive region in the middle of the PZ. On the other hand, in image

8 we can visually see that there is no sign of irregularity (the whole PZ looks uniform),

which makes the abnormal regions obscured. Other examples of the experimental re-

sults can be seen in image 5, 6, 11, 12, 21, 22, 23 and 24. Figure 4.11 shows examples

of experimental results in normal slices. The PZs in image 25 to 28 show no sign (or

small signs) of irregularity which made it easier to identify normal slices.

4.6.2 Correct Detection with Incorrect Localisation

This section presents two examples of results where overall classification is correct

but the tumor location is incorrect. For localisation, we compare the position of

the segmented region based on (Glow
1 ∩ F low

1 ∩ F high
2 ∩ M low

1 ) ⊆ Mr, where Mr is

a cancerous region within the PZ. In our evaluation, incorrect localisation is when

Figure 4.12: In both slices (image 29 and 30) the segmentation results show
correct overall classification (true positive) but incorrect localisation in comparison

to the location of the ground truth.
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the area of the segmented region is < 50% within the cancerous region delineated

by an expert radiologist. On the other hand, correct localisation means ≥ 50% of

the area of the segmented region is within the annotated malignant region. Our

method produced 81% (109 slices true positives) correct localisation with respect to

the number of malignant slices (135 samples) which means 6% (8 slices) of malignant

cases were classified correctly but tumors were localised incorrectly and the other 18

slices are false negatives. This may have been caused when normal regions have dark

or very similar appearance to cancerous regions (low intensity) in the PZ. According to

[257] low signal intensity may be seen in the PZ on T2-weighted when blood products

may persist after prostate biopsy. Moreover, when the location of the tumor is outside

our PZ model (area under the green line in Figure 4.3). Figure 4.12 shows examples

from our experimental results for correct classification but incorrect localisation.

4.6.3 False Positives and Negatives

Figure 4.13 shows four examples of false positive results from four different prostates.

In images 31, 32, 33 and 34, there are clearly dark regions (higher probability of cancer)

within the PZ which leads to false positive results. Based on the results in Figure

4.13, we can visually see that irregularity can occur in some normal slices which makes

it hard to differentiate between malignant and normal regions. On the other hand,

Figure 4.14 shows examples of false negative results from four different prostates. The

malignant regions show obscure irregularity which lead to false negatives.

Figure 4.13: False positive results from four different prostates.

Figure 4.14: False negative results from four different prostates. Tumor regions
are delineated in red.
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Figure 4.15: Large malignant region. From left to right, σ = 3, 5, 7 with kernel
size 9×9, 15×15 and 21×21, respectively. The number of classified pixels are 189,

239 and 343.

Figure 4.16: Small malignant region. From left to right, σ = 3, 5, 7 with kernel
size 9× 9, 15× 15 and 21× 21, respectively. The number of classified pixels are 59,

55 and 46.

4.6.4 Parameters Justification

Figure 4.17 shows the justification of our selected parameters. Based on the varying

σ = 2, 3, 5, 7 and 9, the following kernel sizes 7×7, 9×9, 15×15, 21×21 and 27×27 are

applied, respectively. The results show that better sensitivity (above 80%) is achieved

when 2 ≤ σ ≤ 5. The sensitivity of the proposed method decreases when σ > 5 due

to the level of smoothing applied to images. For instance, higher value of σ would

affect (e.g. over-smoothed) the appearance of small malignant regions, hence decreases

the sensitivity. On the other hand, the method achieved its highest specificity when

σ = 5. Using σ ≤ 5 still gives similar sensitivity to the other methods in the literature.

Although varying the σ and kernel size did not change the results significantly, we

have shown the quantitative results for the justification of our selected parameters.

However, varying these parameters certainly affect the areas of segmented regions.

Figure 4.15 shows close up examples of segmented region using different values of

σ and kernel sizes together with their quantitative segmentation results (number of

classified pixels). It shows that larger σ values benefit larger malignant region but

reduce the segmented area for a smaller malignant region as shown in Figure 4.16.

Too large σ value (e.g. 50) would over smooth the image and the abnormality might

disappear which lead to false negatives.

Figure 4.18 shows results using different ε values. Our experimental results show that

ε = 0.75 produced balanced results in terms of accuracy, sensitivity and specificity. A
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Figure 4.17: Sensitivity, specificity and accuracy using different values of σ and
ks.

Figure 4.18: Coefficient ε = 0.75 produce balanced results, with higher specificity
for larger ε values and higher sensitivity for lower ε values.

larger ε value (e.g. 0.95) reduces the area under the curve (green line in Figure 4.3),

hence most cancerous tissues were missed which increased specificity but reduced the

algorithm’s sensitivity. On the other hand, a smaller ε value (e.g. 0.55) increases

the area under the curve (green line in Figure 4.3). This increased the algorithm’s

sensitivity (and false positives) because the larger area leads to a higher chance of

cancerous tissues being detected.
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4.7 Discussion

The proposed method produced similar accuracy, sensitivity and specificity to the

state of art in the literature particularly in single modality T2-Weighted MRI. How-

ever, due to various factors a direct comparison is less appropriate but will be discussed

in Chapter 7. In contrast to the earlier methods, our method is different in the sense

that:

1. The proposed method does not need a classifier model, hence no training phase

is needed to be able to discriminate malignant and benign tissues. In contrast

to most of the methods [21, 192, 206, 227, 229, 231] in the literature they used

machine learning techniques to build predictive models and subsequently used

the models to make prediction (e.g. benign or malignant) in testing unknown

cases.

2. We only used a single modality for abnormality detection which is T2-Weighted

MRI whereas majority or the studies in the literature combined different modal-

ities to extract more different features. The methods in [54] used multimodality

such as diffusion MRI and MR Spectroscopy. Similarly, the method proposed in

[21] used a multiparametric MR of T1- and T2-weighted imaging. Engelbrecht

et al. [54] suggests that various techniques such as dynamic contrast material

enhanced MR imaging, diffusion-weighted imaging, and MR spectroscopy have

the potential to improve the detection of prostate cancer. On the other hand

[289] combined the use of diffusion-weighted MRI and 1H MR Spectroscopy to

get better results in discriminating malignant and normal tissues.

3. The method in [287] used additional clinical knowledge (e.g. location and shape

of the region) to discriminate cancer regions in addition to image features while

the proposed method is entirely relaying on intensity-based image features to

achieve similar results.

4. Our method used a small number of image features to discriminate malignant

and benign regions and produced similar results to the state of art in the liter-

ature whereas the methods in [287, 290] used more features.

5. The methods in [243, 291–293] used various perfusion parameters on a single

modality while our method is purely based on image features but still managed

to achieve similar results.
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In our study, one obvious drawback of the proposed method is the risk of classifying

correctly with incorrect localisation of the tumor, which could be problematic from

a clinical point of view. Secondly, in some cases when the prostate’s peripheral zone

is almost non-existent, the proposed method is more likely to produce false positives.

This is due to the intensities being very similar between the central gland and the

malignant region [257]. Finally, if the prostate’s shape does not conform to the shape

of our prostate model a smaller area of the PZ will be analysed which may increase

the chance of malignant regions being missed. Therefore, in order to accommodate

these limitations for future work we are planning to use a multiparametric approach

(e.g. T2-W+DWI+DCE) instead of stand alone T2-W MRI. This means more image

features can be extracted which could help to distinguish malignant and benign tissues.

In addition, we intend to cover the whole prostate gland instead of only the PZ.

4.8 Summary

In summary, the proposed method uses the following image features: a) G1 and

M1 are extracted from Gaussian and median filters, and b) F1 and F2 are the sum

vectors of the probability images (G2 and M2) which were extracted from G1 and

M1. The classification of malignant prostate and localisation are defined based on

Glow
1 ∩M low

1 ∩F low
1 ∩F high

2 and (Glow
1 ∩M low

1 ∩F low
1 ∩F high

2 ) ⊆Mr, respectively within

the peripheral zone. Erosion and regions intersections are applied to reduce false

positives and false negatives.

The proposed method delineates regions which have the highest probability to be

malignant (see results in Figure 4.10), hence help radiologists to perform targeted

biopsies and potentially improve the accuracy of prostate cancer diagnosis [294]. We

have presented a novel method of prostate cancer detection and localisation within the

PZ and successfully applied it on 37 patients covering 275 MRI images. Gaussian and

median filters together show promising potential to be effective texture descriptors to

identify cancer regions within the peripheral region. The other two features are image

magnitudes computed from the probability image and median and Gaussian filtered

images. The proposed idea, which is based on regions intersection and flexible size of

erosion’s structuring element, suggest a good potential to reduce false positives and

false negatives in the proposed method.
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In the next chapter, another CAD method will be proposed using a large number

of texture features extracted and various types of machine learning techniques will

be employed. Chapter 5 will cover 215 texture descriptors and each of them will be

evaluated individually and ranked to find out which of them has the best ability to

differentiate benign and malignant regions. Furthermore, the effects of using different

window sizes also will be assessed the texture descriptors’ performance. On the other

hand, 11 machine learning techniques will be employed and quantitatively compared

to find out which technique has the best predictive model.



Chapter 5

Multifeature with Machine

Learning Algorithms in Prostate

Cancer Detection

In this chapter, we propose a CAD-PC using various features mainly motivated by sta-

tistical, psychological and image and signal processing points of view. Eleven different

classifiers were employed to achieve the best possible results. For this purpose, 215 tex-

ture descriptors were extracted divided into six categories namely first-order, second-

order, Tamura’s features, gradient-based features and filter bank. The proposed method

was tested based on 418 T2-weighted MR images taken from 45 patients and evalu-

ated using 9-fold cross validation with five patients in each fold. The results demon-

strated comparable results with existing CAD systems using multiparametric MRI. We

achieved area under the receiver operating curve (Az) values equal to 90% ± 7.6%,

89.5% ± 8.9%, 87.9% ± 9.3% and 87.4% ± 9.2% for Bayesian Networks, ADTree,

Random Forest and Multilayer perceptron classifiers, respectively, while a meta-voting

classifier using average probability as a combination rule achieved 92.7%± 7.4%. Re-

sults are comparable to the state-of-the-art models both CAD-PC based on single and

multi-modality.

5.1 Introduction

Many studies have reported the limitations of computer-aided diagnosis systems using

single modality T2-weighted MRI, which can include weak texture descriptors and an

86
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excessive amount of noise. Researchers have used multiparametric MRI to improve the

performances of their methods. However, CAD methods based on multiparametric

MRI have their own limitations as discussed in Chapters 1 and 3. Therefore, the

ultimate goal here is to develop a CAD-PC demonstrating that a CAD system based

on a single modality of T2-W MRI is capable of achieving similar performances to

those based on multiparametric MRI for prostate cancer detection. Although previous

studies conducted by Lv et al. [211] and Lopes et al. [208] have shown CAD systems

based on single modality achieved Az>90% using fractal features, their studies need to

be further evaluated due to small numbers of datasets 130 and 104 region of interests

(ROI), respectively. In fact, Lv et al. [211] did not perform cross validation to further

evaluate the results of their method. The novel contributions of this chapter are the

following:

1. The proposed method incorporates a large number (215) of different texture

descriptors from T2-W MRI. This means our study investigates a number of

novel feature options that have not previously been applied in CAD-PC. To

the authors’ knowledge the previously used largest number of 2D texture de-

scriptors in the literature using only T2-W MRI was in a study conducted by

Viswanath et al. [295] (110 texture descriptors) and 83 texture descriptors by

Tiwari et al. [65]. Using multiparametric MRI Niaf et al. [231] extracted 140

texture descriptors from T2-W MRI, diffusion imaging (DWI), and dynamic

contrast enhanced (DCE).

2. We extensively compare 9 classifiers’ performances with two additional combined

classifiers (11 classifiers in total). Again, to our knowledge the largest number

of classifiers used in the literature in CAD-PC is in a study conducted by Niaf

et al. [231] (4 classifiers), and Litjens et al. [46] and Ozer et al. [198] employed

3 classifiers.

3. Since this study involved a large number of texture descriptors, we evaluated

all features individually and combined them to improve performances of the

proposed method. By evaluating them, we are able to determine which features

individually give the best performances on each classifier.

4. Finally we investigate the effect of different window size on the performance of

the proposed method as well as the performances of the features individually.

To our knowledge, none of the current CAD-PC in the literature have reported
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quantitatively the effect of window sizes on performance. Many studies [65,

231, 233, 263, 296] selected window size without a qualitative justification.

These contributions are expected to be beneficial to the research community as they

provide state-of-the-art CAD-PC using single modality T2-W MRI. Moreover, this

study provides general guidelines on selecting window size, classifier as well as the set

of features in CAD-PC development.

5.2 A Review of Machine Learning Algorithms

In this section we briefly review 11 machine learning algorithms (or classifiers). Many

machine learning techniques have been developed and described in the literature over

the last decades. A full review of machine learning algorithms in pattern recognition

can be found in [297]. It is difficult to categorise each method, as many method have

similarities in terms of implementation, structures, etc. However, in general these al-

gorithms can be divided into 11 categories [298]: deep learning, ensemble, neural net-

work, regularisation, rule system, regression, bayesian, decision tree, dimensionality

reduction, instance based and clustering. In the area of pattern recognition of prostate

cancer imaging, these algorithms are known as classifiers which are categorised into

the following methods: rule-based, clustering, linear model, non-linear model, proba-

bilistic, ensemble, kernel-based, neural network and graphical model based classifiers.

In the study of CAD-PC, kernal-based and ensemble methods have gained the highest

popularity among researchers in the last decade. To be more precise Support Machine

Vectors (SVM) and Random Forest (RF) have showed high discrimination capability

between benign and malignant tissues. Therefore in this chapter, these two classifiers

will be employed to build statistical predictive models. However, SVM is very sensi-

tive in relation to its parameter settings whereas RF is very robust and less dependent

on its parameters.

The CAD-PC studies in [21, 45, 65, 194, 196–198, 208, 226–228, 233, 291, 299, 300]

built SVM models for classification purpose. SVM is a supervised learning method

which aims to find the best linear hyperplane which separates two classes by max-

imising the margin between them [301, 302]. However, many classification tasks in

real world cases are non-linear and linear SVM is not able to handle such datasets.

For a non-linear boundary between two classes a non-linear mapping function will be

used to transform the data into a new feature space (by computing the feature map),
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which means data will be projected into a higher-dimension space (e.g. from 2D to

3D) so a hyperplane which can separate those classes can be found. This is based on

the assumption that data which is linearly nonseparable in the original feature space

may be linearly separable in a higher-dimensional space. Nevertheless, computing the

feature map can be computationally expensive and inefficient. These issues can be

solved using ‘kernel trick’ by computing the dot product between two vectors without

transforming these vectors into a higher-dimensional space. There are a few popu-

lar kernel functions which are often used in SVM such as Polynomial, Gaussian and

Radial Basis Function (RBF) and Sigmoid kernel.

In contrast, the CAD-PC studies in [46, 65, 229, 238] employed ensemble learning

classifiers. The RF classifier was used in [46, 65, 229, 238] is among the most popular

classifier in the study of CAD-PC. The RF classifier builds a large number of learning

models using decision trees from various sub-samples of the training dataset to increase

the classification accuracy [303]. By employing different learning models to create

a class boundary, a model with low variance can be created by averaging noise and

unbiased models which is the main idea of a bagging technique [304]. The training

data will be divided into many sub-samples (also known as forests) randomly (e.g.

100 forests) and a decision tree will be created in each of the sub-samples (hence, 100

forests will have 100 decision trees). Each of these decision trees will be used to make

a prediction in a test sample and the final decision will be determined via the majority

vote among the decision trees. For example if 60 decision trees predicted the sample

is ‘benign’ and 40 decision trees predicted the sample is ‘malignant’ then the decision

result will be ‘benign’.

A couple of decision tree based classifiers will be employed in this study namely C4.5

(also known as J48) [305] and alternating decision tree (ADTree) [306]. The C4.5

classifier is based on the top-down, recursive and conquer strategy. In this method,

the best attribute is first selected to split the root node. The best attribute is the one

which has the purest nodes which means all the instances at that node have the same

class label and no need to further split. This can be determined by measuring the

amount of ‘information entropy’ for each attribute (the highest amount of ‘information

entropy’ will be the best attribute) [305]. Once the best attribute is selected, a

branch for each possible attribute value (e.g. let say we have five branches) is created.

The first branch is then split based on the attribute which has the highest value of

‘information entropy’ (excluded the first attribute selected) which will split instances

into subsets. Similarly, the second branch will be split based on the attribute which
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has the second highest value of ‘information entropy’. The same procedure will be

applied to split the third until fifth branch. Repeat this process recursively for each

branch until all instances have the same class label (no need to further split).

The ADTree is another classifier which uses the concept to map the classification

procedure in a form of a decision tree but using ‘boosting’ approach to improve the

classification accuracy [306]. The ‘boosting approach’ [307] is a learning algorithm

which iteratively builds a weak classifier based on the accuracy of the previously built

weak classifier. This makes the later weak classifier more tolerant to the misclassified

data in the previous iteration. In a conventional decision tree, the root node represents

the best attribute but in ADTree it is a prediction node simply contain a numeric

score (prediction value) [306]. The prediction value is a weight computed based on

the error rate produced by the previous week classifier. The next layer of the node

are called decision nodes which specify the predictive condition (contains attributes).

The tree’s structure will be alternating between prediction nodes and decision nodes.

An instance is classified by following all possible paths for which all decision nodes

are true from the root node to the leaves through the whole tree. The classification

score (also represents the confidence level) is computed by summing up the prediction

values along the corresponding paths [308].

The Näıve Bayes (NB) [309] classifier is based on the Bayes’ theorem [310] where

the algorithm assumes that all the relationships among attributes are conditionally

independent of each other. It does not have iterative parameters which makes it easy

and very fast, hence it is very popular in applications with very large datasets, and

also making it quite popular in several CAD-PC studies such as [217, 231, 236, 311].

In this study, the basic idea behind the Bayes’ theorem is to calculate the probability

of an instance classified as being malignant or benign based on the observed data from

the training sample. The probability of an instance being classified as malignant is

evaluated by computing the probability of its attribute value occurring in the class

‘malignant’ of the training data [309]. However, since the NB classifier assumes all

attributes are conditionally independent [309], all probabilities of attribute values

in an instance have to be multiplied to get a single probability value (which is the

product of probabilities). The value of the final probability represents the degree of

likeliness of being classified into a particular class and the classification results will

be based on the highest probability. Therefore for an instance (or test data) with

multi-attribute, to compute its probability of being in a particular class, it can be
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computed using the following equation

P (class|A) = P (a1|class)× P (a2|class)× .....P (af |class)× P (class) (5.1)

where A = a1, a2, a3....af consists of attribute values and P (an|class) is the prob-

ability of the predictor in a given class and P (class) is the probability of a given

class.

In contrast, Bayesian Network (BNet) [312] does not have assumptions like the NB

(attributes are conditionally independent of each other) but computes the probability

dependencies between attributes. The map/graph structures (each node is connected

with the other nodes) are used to represent knowledge about an uncertain domain.

Each node in the graph represents an attribute which contains a random variable

while the arch between the nodes represents the probabilistic dependencies among

the corresponding random variables. This means the probabilistic relationship among

two random variables (of attributes) is computed by the BNet algorithm based on

the Bayes’ rule [310]. The attributes in the training data are first mapped in a form

of graph topology based on the probability dependency values among the attributes.

This can be done by computing the probability of the random variable occurring in

the training data. For a random variable (A) which is dependent on another variable

(B), the algorithm computes the probability of A given that B has occurred (Bayes’

rule [310]). In the testing phase, to determine whether an instance belongs to the

‘malignant’ or ‘benign’ class, the BNet computes the probability of being in the class

‘malignant’ given the attributes and the joint probability of the attributes [312]. The

summation of these two probabilities values will be the confidence value of whether

an instance belongs to a particular class or not.

The k-Nearest Neighbour (k-NN) is one of the simplest supervised learning algorithms

and is very popular in image classification. Nevertheless, in the study of CAD-PC,

this method is less popular as it did not not produce as good results as the SVM

and RF classifiers. In fact, studies in [228, 231, 236] used k-NN just to make a

comparison with different machine learning algorithms. The prediction of an instance

belonging to a particular class is determined by the closest neighbour(s) in a feature

space within k neighbours, where k is the number of neighbouring instances (from

the training data) set by the user. For example, a test data (td) with three attributes

will be mapped into three dimensional feature space and (let k=5) the algorithm will

consider five closest neighbours (using Euclidean distance). Subsequently, k-NN will

check whether the instance is surrounded by neighbouring instances of ‘malignant’ or
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‘benign’ class. A majority vote approach will be used for this purpose. For example

if three of the five neighbouring instances labeled as ‘malignant’ classes then td will

be classified as belonging to ‘malignant’ class. Another classifier employed in this

method is Simple Logistic (SL) [313], which is a popular classifier for building linear

logistic regression models. The SL classifier contains two main approaches: firstly

a boosting algorithm called ‘LogitBoost ’ [314] is used to improve the classification

accuracy and secondly simple linear regression (SLR) functions were used as base

learners [314]. This means, for each iteration a base learner will be constructed

and the least-squares fitting technique is used to fit the base learner (weak learner)

into the logistic regression model. The base learner is created using SLR by finding

the linear relationship between dependent and independent variables [313]. In this

algorithm, the number of boosting iterations represents the number of base learners.

The ‘LogitBoost ’ algorithm is one of the variations of boosting approach, however in

comparison to the conventional boosting (e.g. majority vote, averaging, etc), at each

iteration the ‘response variables’ is calculated to estimate the error of the current

model (logistic regression model) on the training data and a weak learner is fitted (or

added) to improve the current model [313]. The process is repeated until the value

of least-squared error is minimised (hence a final model is achieved).

Multilayer perceptron (MLP) [315] is based on the neural network learning algorithm

inspired by the biological neural network such as brain. The perceptron consists of

weights (including bias), the summation processor and an activation function (e.g.

threshold function). The weights are numeric values which will be adjusted accord-

ingly by the algorithm to reduce the error rate and the summation processor is the

sum of the inputs and bias whereas the activation function is the threshold function

which will determine the classification result. For example, an instance with five fea-

ture values is fed into the perceptron and if the predicted outcome is the same as the

expected outcome, then there is no need to change the weights [316]. Otherwise the

weights need to be changed to reduce the error. The MLP algorithm is a solution of

the single linear perceptron to solve non-linear separable data using the back prop-

agation method. Indeed the difference is that the MLP contains L layers (L > 1)

whereas single linear perceptron contains only one layer. Therefore, the inputs of Lth

hidden layer is the outputs of the Lth−1 layer and the outputs of the last hidden layer

is the input of the output layer which will calculate the output error and result. The

idea behind the back propagation method is that the weights of the previous layer

which can be adjusted in reverse if the outcome is not the same with the expected
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result. Studies which have employed the MLP classifier achieved high specificity but

low sensitivity in [299].

Finally, the proposed method employed a traditional ensemble method which selects

the two best (M-V(b2)) and three best (M-V(b2)) classifier (best area under the

curve (AUC) values) based on the results produced after the training phase and use

average probability as a combination rule [317]. This means the probability value (or

confidence value) produced by each of the selected classifiers will be averaged and the

mean of confidence values will be used to determine the final classification (e.g. if the

mean of confidence value is more than 0.5 is considered malignant). To select the two

best (or three best) classifiers, in the training phase, we performed 9-cross validation

on the training data for all classifiers and select those have the highest two and three

ROC values and combined them as an ensemble classifier.

5.3 Methodology

Figure 5.1: A general overview of the proposed method.

Figure 5.1 provides a general overview of our method. For every input image, we

estimate the area of the prostate’s PZ and extract 215 feature descriptors. We nor-

malise each of the selected features. Feature selection was performed to eliminate

irrelevant or redundant features and use them to train 11 classifiers. Finally in the

testing phase, for every unseen pixel within the PZ the trained classifiers determined

whether it belongs to the malignant or benign class.

5.3.1 Capturing the Peripheral Zone

Since segmenting the PZ manually is time consuming, we employed the method in

Chapter 4 to segment the PZ, which uses a quadratic equation based on the central

coordinates of the prostate gland, the left-most and right-most coordinates of the
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Figure 5.2: Example images of prostate MRI with the ground truth delineated
by an expert radiologist and the estimated PZ region under the magenta line.

prostate gland boundary. Figure 5.2 shows example MRI images with the ground

truth of prostate gland, central zone (CZ) and tumor (T) represented in red, yellow

and green, respectively, while magenta line is the estimated boundary of PZ.

5.3.2 Pre-processing

The major problem in MRI image analysis is that intensities do not have a fixed tissue

specific numeric meaning even within the same MRI protocol, the same body region,

and the same scanner [189–191]. These problems are mainly caused by [189–192]:

a) corruption by thermal noise due to receiver coils, b) intensity variations due to

different scanning protocols and c) poor radio frequency coil uniformity. Intensity

variations in MR data can significantly affect performances of many image processing

techniques, hence, they need to be corrected [191]. Following the pre-processing

procedure method described in [192, 204, 205], each image is median filtered to

preserve edge boundaries. Subsequently, image intensities were normalised to zero

mean unit variance and anisotropic diffusion filtering [205, 318] is applied to remove

noise. The basic anisotropic diffusion equation presented in [318] is defined as

∂I(x, y, t)

∂t
= div[f(‖ 5I(x, y, t) ‖).5 I(x, y, t)] (5.2)

where t is the time parameter (number of iterations), 5I(x, y, 0) is the original image

(the t = 0 indicates no iteration has been performed), 5I(x, y, t) is the local image

gradient at tth iteration and f(.) is the conductance (or flux) function. Perona and

Malik [318] suggested two conductance functions:

f(x) = exp
[
−(

x

K
)2
]

(5.3)
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f(x) =
1

1 + ( x
K

)2
(5.4)

Previously, Black et al. [319] introduced a more robust flux function which is able to

preserve sharper edges defined as

f(x) =

0.67[1− ( x
K
√

5
)2] ,x ≤ k

√
5

0 , otherwise
(5.5)

The idea behind anisotropic diffusion is that it diffuses the image more in homogeneous

areas, but not cross region boundaries and less near the inhomogeneous areas and

edges. In contrast to the conventional smoothing techniques, the anisotropic diffusion

has the knowledge of the region boundaries (using flux function) and thus preserves

them [205, 318]. This reduces the noise of an image without blurring the edges

because only pixels within the homogeneous region were smoothed. In comparison

to isotropic diffusion techniques, the new value of the central pixel is computed by

including neighbouring pixel values (although they come from different regions) in the

calculation which means pixels located along the boundaries (or edges) are blurred.

This will have similar effects in other techniques such as moving average filter. The

following steps briefly describe the process of anisotropic diffusion filtering, using

Figure 5.3 as pixels reference:

• Step 1: I is convolved with four gradient operators separately to find the gradient

images (see [320] for the convolution masks used), resulting 5I.

• Step 2: The smoothed image at tth iteration is computed as follow [321].

It+1(s) = It(s) +
λ

ηs

∑
p∈ηs

fk(| 5 Is,p|))5 Is,p (5.6)

Figure 5.3: I(s), I(N), I(S), I(W ), I(E) represent the the central, north, south,
left (west) and right (east) pixel, respectively.
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where s denotes the pixel position in a 2-D grid (e.g. see Figure 5.3), K is the

gradient threshold parameter and the constant λ controls the diffusion rate at

any point in the image. On the other hand, ηs represents the spatial 4-pixel

neighbourhood of pixel s (see Figure 5.3): ηs = N,S,E,W .

5 Is,p = It(p)− It(s), p ∈ ηs = N,S,E,W (5.7)

This method is chosen because it does not cause inter regional blurring [192, 204, 205].

However, [192, 204, 205] suggested that anisotropic diffusion filtering needs to be

applied on the median-filtered and normalized images for better results. Therefore

parameters for the anisotropic diffusion methods were based on the study conducted

in [205]. The authors suggested the median filter with the smallest window size of

3× 3 for the following parameters of anisotropic diffusion: K=the standard deviation

of the image gradient, λ = 1
7

(a small number is used to avoid destabilizing the diffu-

sion process [267, 318]), the number of iteration=5 (suggested in [205]) and we used

a Tukey biweight norm as the diffusion coefficient proposed by Black et al. [319]. This

three-step pre-processing approach has the following advantages [192, 205] a) while

suppressing the noise, it simultaneously preserves the edge boundaries b) it standard-

ises image intensities for all patients avoiding dissimilar intensity values for the same

tissue types c) it is a robust denoising method without blurring the tumor nodule

edges. Other denoising techniques in the literature could also be investigated [266].

Figure 5.4 shows a visual comparison between mean, median and anisotropic diffusion

filtering method. The resulting patch using mean filtering looks blurred whereas the

texture in the patch using median filtering looked jagged. On the other hand, the

texture using anisotropic diffusion looks preserved and smooth in comparison to the

original image.
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Figure 5.4: A visual comparison between filtered patch using mean, median and
anisotropic diffusion filtering.

5.3.3 Feature Extraction

In this study, we extracted a set of 215 image features where the selection was mainly

motivated by statistical, psychological and image and signal processing points of view.

This means each pixel is represented in a 215 dimensional feature space. These features

were selected based on the visual characteristics of malignant regions as indicated by

expert pathologists as well as their efficiency in discriminating between malignant

and benign regions [1, 174, 263]. However, although the bank of filters of Varma

and Zisserman [1] and Tamura’s texture features [174], have never been applied in

CAD-PC, their studies [1, 168, 174] showed excellent results in texture classification.

In this study, for first and second-order statistical features, Tamura texture features

and grey-level percentile based features and estimated for each pixel for a local n×m
window [231] where n and m are rows and columns, respectively. The features

extracted in this study can be divided into the following categories:

First-order statistical features (F1). These features mainly rely on image in-

tensity as used in many pattern recognition algorithms. Studies in CAD-PC [198,

206, 231, 263, 296] have used intensity-based feature extensively in the last decade.

From a clinical point of view, most malignant regions in the PZ tend to have a dark

appearance (low intensity) [12, 16] (we are aware that in some cases low intensity does

not represent malignancy (resulting in false positive detection) due to inflammation

and post-biopsy scarring [49], therefore other texture descriptors such as a filter bank

were used in this study) and radiologists tend to use darker regions as the basis of
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their a priori knowledge to identify abnormality within the PZ [49]. Moreover, sev-

eral studies have suggested that prostate malignant tissue tends to appear darker on

a T2-W MRI image [47, 48, 285]. Therefore the selection of intensity-based features

is appropriate in this study. Niaf et al. [231] used mean, median and standard devi-

ation in their study. In addition, we extracted mean and median absolute deviation,

skewness, kurtosis, the mean of correlation coefficients, local contrast, variance and

local probability (11 features in total). A study in [322] indicated that many malig-

nant regions are more likely to have low contrast value. On the other hand, in the

previous chapter we have used probability images to quantify the likelihood of every

pixel/voxel belonging to specific tissues (e.g. tumor region).

Second-order statistical features (F2). The main motivation of using Haralick’s

features (Grey Level Co-occurrence Matrix (GLCM)) [108] is that these texture

features characterized homogeneity, grey-level transitions, and anatomical structures

of the image [62] as well as its simplicity, large range of potential features and its

popularity (second after intensity-based features in MRI [62]). Julesz [169] states

that first order statistics alone are not sufficient for humans to discriminate between

two textures. Hence, in order for a CAD system to be able to discriminate textures

Madabhushi et al. [296] considers both first-order and second-order statistical features.

The GLCM is defined as the joint probability of occurrence of two grey level values

at a given offset both in terms of distance and orientations [110]. We extracted all

features originally suggested by Haralick et al. [108] and all features which were further

suggested by Conners et al. [112]. To maximise the texture information captured from

the co-occurrence matrix we considered four orientations (θ = 0◦, 45◦, 90◦ and 135◦

) with distance d limited to 1. In addition, we calculate the mean, variance and

standard deviation of four orientations for each of the features (154 features in total).

From a clinical point of view, according to [323] malignant regions have a higher

degree of uniformity in T2-W MRI. In fact, studies in [324, 325] suggested that

the distribution of malignant foci detected by biopsies in the peripheral zone of the

prostate is homogeneous. To capture these characteristics in features we use GLCM

as we can calculate uniformity (also known as energy) and homogeneity.

Percentiles based features (F3) [58] namely percentile 25% and percentile 75% to

quantify the symmetry of the image (or a region of interest) intensity [83] (2 features

in total). Vos et al. [300] and Niaf et al. [231] extracted similar features and found that

many malignant regions have smaller values of percentile 75% (2 features in total).

In our case we compute these features by replacing the central pixel with 25% and
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75% percentile value of the grey levels within a n×m sliding window. These features

represent the distribution of signal intensity within a specified window (e.g. 7 × 7

or 9 × 9). A smaller value of percentile 75% indicates that the central pixel within

a specified window is surrounded by pixels with low intensities which increases the

probability of being malignant (most tumors display low signal intensity within the

PZ in T2-W MRI [50]).

Tamura texture features (F4). In [174] six texture features corresponding to

human visual perception were proposed: coarseness, contrast, directionality, line-

likeness, regularity, and roughness. However, from experiments testing the significance

of these features with respect to human perception, it was concluded that only the

first three features are very important [174]. Therefore we only use the first three

features in this study which are coarseness, contrast and directionality (3 features in

total). Note that in this study we extracted the original (or standard) Tamura texture

features. Since many malignant regions are more likely to have low contrast value

[322], our initial hypothesis is that Tamura’s contrast feature is more effective than

the one extracted from the GLCM because Tamura contrast captures the variation of

grey-level range and the polarisation of the distribution of black and white whereas

GLCM contrast only captures the intensity variations within a n×m window [326].

Gradient features (F5). There are many operators (e.g. Sobel filter, Kirsch filter,

etc) that could be used to extract these features. In this study we only selected the

most discriminative ones according to the results by Niaf et al. [231], namely image

numerical gradient at 0◦ and 90◦ orientations and image magnitude. Secondly, using

Sobel operators we extracted image gradient at 0◦, 90◦ and diagonal orientations and

image magnitude (7 features in total). According to [173], gradient operators perform

well in characterising micro-textures as well as providing more consistent behavior as

a descriptor of pathologies than co-occurrence matrices. In the previous chapter, we

used image magnitude as one of our texture descriptors to segment malignant regions.

Filter bank features (F6). From a clinical point of view, most malignant regions

show textural distortions in T2-W MRI [262, 263]. Litjens et al. [46] captured these

characteristics in features using a Gaussian texture bank. However the conventional

Gaussian texture bank is a) more sensitive to rotation (hence, rotated versions of

malignant textures would be classified as non-malignant unless those rotated ver-

sions were included in the training set) and b) it does not incorporate spots/bars and

edges. Therefore, we employed a filter bank as proposed by Varma and Zisserman [1]
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which is rotationally invariant and takes edges and spots/bars into account (38 fea-

tures in total). The filter bank consist of an edge and a bar filter, at 6 orientations

(θ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦) and 3 scales ((σx, σy) = (1, 3), (2, 6), (4, 12)), Gaus-

sian and Laplacian of Gaussian filters both with σ =10 pixels (in total 38 responses).

Viswanath et al. [263] extracted texture features using a bank of Gabor filters but the

results from their study showed that Haralick’s features were more discriminant in

capturing malignant regions within the PZ and features extracted from Gabor filters

work better in detecting malignant regions within the CZ.

Figure 5.5 shows eight examples of image features used in this study and Table 5.1

summarises the list of features used in this study which are divided into six categories.

5.3.4 Feature Scaling and Feature Selection

Since we have 215 texture descriptors, feature selection is necessary to a) reduce

over-fitting when building a classifier model as less data means less chance of making

decisions based on noise, b) possibly improve accuracy because only the most rele-

vant attributes are selected to build a classifier model (a study conducted by Niaf

Figure 5.5: Image responses of some of the features used in this study. The
top image is original image together with an annotation from a radiologist: red,
yellow and green indicates tumour, prostate gland and central gland, respectively.
The features are: Laplacian of Gaussian (image 1), GLCM- energy (image 2), local
contrast (image 3), gradient of Sobel operator (image 4), probability image (image
5), GLCM- correlation (image 6), image magnitude of Sobel operator (image 7) and

percentiles 75% (image 8).
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Table 5.1: Summary of features used in this study.

Category Features Total

F1: Mean, median, standard deviation, mean and median
of absolute deviation, skewness, kurtosis, mean of cor-
relation coefficients, local contrast, variance and local
probability

11

F2: GLCM features of Haralick et al. [53], Soh and Tsat-
soulis [63] and Clausi [64] by taking 4 orientations and
mean, variance and standard deviation of 4 orientations

154

F3: Grey-level percentile 25% and percentile 75% 2

F4: Tamura’s textures features namely coarseness, contrast
and directionality

3

F5: Image numerical gradient (0◦ and 90◦ orientations), im-
age magnitude, using Sobel operator image gradient (0◦,
90◦ and diagonal orientations) and image magnitude.

7

F6: Filter bank of Varma and Zisserman [30] which contains
an edge and a bar filter, at 6 orientations and 3 scales,
a Gaussian and Laplacian of Gaussian filters

38

et al. [231] demonstrated that feature selection significantly improves the discrimina-

tion performance between malignant and benign regions) and c) reduce training time

because fewer features are used in making decisions. Many feature selection methods

have been developed in the literature [225]. However, the main focus of this paper

is not to select the best feature selection method but to build a robust CAD-PC us-

ing a single modality of T2-W MRI for prostate malignant diagnosis. Before feature

selection is performed, we normalised each selected feature to avoid absolute values

playing a role [235]. Following the suggestion in [235], each of the features was

linearly scaled to the range [0,1] and the same was applied for the test data.

Subsequently, we employed the CfsSubsetEval [327] attribute evaluator and the

GreedyStepwise search method in WEKA [2]. The CfsSubsetEval [327] method

measures the value of a subset of features by considering each feature’s predictive

ability with the degree of redundancy between the other features within the sub-

set, while the GreedyStepwise search method performs a greedy forward or backward

search through the feature space [327]. Recently, Chen et al. [328] used the same

method in classifying microcalcification clusters in mammograms.
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5.3.5 Data Clasification

In this study we employed 11 different classifiers to achieve the best possible results

using the WEKA data mining suite [2]. These classifiers were selected due to their

robustness and popularity in CAD-PC [62]. Since our study evaluates a large number

of classifiers, tuning parameters for each of the classifiers is time consuming and

computationally expensive. Therefore, all parameters were left on default settings.

The classifiers used in this study are presented in Table 5.2 (which includes their

abbreviation).

Table 5.2: List of classifiers used in our study. For more details please refer the
default parameter settings in WEKA [2].

Classifiers Summary of default parameters in WEKA

SVM [302] Kernel =‘Polynomial’, soft margin (C)=1.0

SL [313] Number of boosting iterations=0

RF [303] Initial number of random forests=100

MLP [315] Learning rate=0.3, momentum=0.2, epochs=500

NB [309] Without kernel estimator

BNet [312] Hill climbing search algorithm

k -NN [329] k=1, Euclidean distance

C4.5 [305] Confidence threshold=0.25

ADTree [306] Number of boosting iterations=10

M-V (b2) [317] Combination rule=average probability

M-V (b3) [317] Combination rule=average probability

5.4 Experimental Settings

This section presents the specification of the MR scanner and dataset used in this

thesis.



Chapter 5. CAD: Multifeature and Machine Learning 103

5.4.1 Materials and Dataset

Our dataset consists of 418 T2-W MR images taken from 45 patients aged 54 to 74 (all

patients had biopsy-proven prostate cancer). Each patient has between 6 to 13 slices

covering the top to the bottom of the prostate gland. The prostate gland, malignant

and transitional zone were delineated by an expert radiologist with more than 10 years

experience in prostate MRI. All sequences with prostate cancer cases were confirmed

malignancies based on TRUS biopsy reports. All malignant regions annotated cases

were clinically significant cancer (Gleason score grade 7 and above). All patients

underwent T2-W MR imaging at the Department of Radiology at the Norfolk and

Norwich University Hospital, Norwich, UK. MR acquisitions were performed prior to

radical prostatectomy. All images were obtained on a 1.5 Tesla magnet (Sigma, GE

Medical Systems, Milwaukee, USA) using a phased array pelvic coil, with a 24 × 24

cm field of view, 512 × 512 matrix, 3mm slice thickness, and 0.5mm inter-slice gap.

Approximately 60% of the source code was written in Matlab 2012a and 40% was

written in Java. All experiments were run under the Windows 7 operating system

with an Intel core i5 processor.

5.4.2 Training and Testing

All pixels within the radiologist’s tumor annotation were extracted as prostate cancer

samples (e.g. within the red outlined region in Figure 5.2). This area was truncated

by the tumor mask, to ensure no pixels outside the tumor region were included in

the malignant samples. On the other hand, every pixel outside the tumor region

and within the PZ (under the magenta line in Figure 5.2) was considered as benign.

Similarly, this region is truncated by the tumor and prostate gland masks to ensure

no pixels within the tumor region and outside the prostate gland were included as

benign samples. A stratified nine runs 9-fold cross-validation (9-FCV) scheme was

employed. A leave one patient out approach was employed to ensure no samples from

the same patient were used in the training and testing phases. We chose 9 folds

instead of 10 folds to ensure each fold has the same number of patients (45 patients

in our case, hence each fold contains 5 patients). Each classifier was trained and in

the testing phase, each unseen instance/pixel from the testing data (taken from 5

randomly selected patients) was classified as malignant or non-malignant.
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5.5 Experimental Results

In this study the experimental results are divided into four categories: performance

based on classifiers, performance using different window sizes, performance evaluation

before and after feature selection and feature evaluation (top 20 features).

5.5.1 Overall Performance

This section presents the overall performance of the proposed method using different

classifiers. The performances were measured using the most popular metrics in the

literature: Area Under the Curve (Az, also known as AUC), Classification Accuracy

(CA), sensitivity (Sen), specificity (Spe) and time taken for training and testing (t).

Az indicates the trade-off between the true positive rate against the false positive

rate, where CA represents the number of pixel classified correctly. On the other

hand, Sen measures the proportion of actual positives which are correctly identified

(in this case the percentage of malignant pixels which are correctly identified) and Spe

measures the proportion of actual negatives which are correctly identified. Sensitivity,

specificity and accuracy can be calculated as Sen = TP
TP+FN

, Spe = TN
TN+FP

and

CA = TP+TN
TN+TP+FP+FN

, respectively. TP and FP denote the number of true positives

and false positives, respectively. Similarly, TN and FN indicate the numbers of true

negatives and false negatives. The time taken by each classifier is measured in minutes

to complete both training and testing in 9-FCV. On the other hand, p values indicate

the significant difference for all metrics (Az, CA and Sen) between M-V classifier

(best 2) in comparison to the other 10 classifiers.

Table 5.3 shows that overall performances for each of the classifiers employed in this

study and Table 5.4 contains the p values for the four main metrics between the

M-V (best 2) classifier against the other 10 classifiers. The M-V (best 2) classifier

outperformed all classifiers in all metrics and was statistically significant in terms

of Az with all individual classifiers (at least p < 0.05). The performance of M-V

(best 2) classifier also significant for CA and Sen in comparison to most of the results

produced by single classifiers. However, there is no significant difference in comparison

to M-V (best 3) classifier for Az, CA and Sen. These results are similar in terms of

CA for BNet, ADTree and RF. The results indicate that using several classifiers in

making decisions often produces better results due to their ability to handle complex

data representation (or high dimensional data). For example, when the feature space
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Table 5.3: Overall performances using different classifiers using a 11× 11 sliding
window.

Classifiers Az(%) CA(%) Sen(%) Spe(%) t

M-V (b2) 92.7 ± 7.4 85.5 ± 7.2 93.3 ± 9.1 86.5 ± 8.6 21.70

M-V (b3) 92.3 ± 7.6 85.3 ± 7.6 92.7 ± 9.5 86.1 ± 8.1 24.30

BNet 90.0 ± 7.6 83.5 ± 7.6 90.8 ± 9.5 85.4 ± 7.9 3.83

ADTree 89.5 ± 8.9 83.7 ± 8.5 88.9 ± 11.6 85.6 ± 8.1 53.48

RF 87.6 ± 9.3 84.7 ± 7.2 91.8 ± 7.1 85.9 ± 8.3 19.22

MLP 87.4 ± 9.2 81.0 ± 9.9 86.5 ± 12.2 83.3 ± 9.3 294.17

NB 86.9 ± 10.5 80.5 ± 8.7 90.9 ± 10 82.6 ± 9.2 1.23

SL 85.6 ± 9.8 78.6 ± 9.5 80.1 ± 16.8 79.6 ± 10.2 444.37

C4.5 79.3 ± 9.8 82.4 ± 6.8 86.7 ± 7.6 82.3 ± 7.3 21.60

SVM 77.3 ± 9.9 78.5 ± 10.4 78.6 ± 17.2 80.5 ± 10.7 154.98

k -NN 68.8 ± 10.1 72.0 ± 11.9 81.9 ± 9.2 75.8 ± 9.4 116.78

Table 5.4: The p values for Az, CA and Sen between the M-V classifier (best 2)
against the other 10 classifiers from results in Table 5.3.

Classifiers Az CA Sen Spe

M-V (b2) - - - -

M-V (b3) 0.8028 0.8965 0.7565 0.8181

BNet 0.0873 0.2005 0.2041 0.5287

ADTree 0.0643 0.2801 0.0455 0.6101

RF 0.0067 0.5961 0.3843 0.7339

MLP 0.0026 0.0135 0.0027 0.0910

NB 0.0024 0.0029 0.2340 0.0375

SL 0.0001 0.0001 <0.0001 0.0005

C4.5 <0.0001 0.0357 0.0002 0.0124

SVM <0.0001 <0.0001 <0.0001 0.0034

k -NN <0.0001 <0.0001 <0.0001 <0.0001

dimension is large many possible hypotheses could be created by a single classifier to

build a prediction model (in our case the number of training samples can be up to

150,000 instances). This increases the probability that the classifier cannot guarantee

finding the best hypothesis and approximation boundary of the target classes [97].



Chapter 5. CAD: Multifeature and Machine Learning 106

Hence, there is a risk of selecting a hypothesis or class boundary with a low accuracy

on unseen data [97]. However, using several classifiers in making a decision increases

the chance of selecting the best hypothesis by combining and averaging decisions or

class boundaries for a final decision [97].

Individually, the BNet classifier performed best with Az=90% followed by the ADTree,

RF and MLP classifiers with an Az=89.5%, 87.6% and 87.4%, respectively. BNet is

expected to perform better than NB due to its ability of mapping the relationships

among variables (or features) to build a predictive model without being restricted by

the independence condition, whereas NB builds a predictive model based on a certain

condition between two variables. Unfortunately, the independence condition is not

always true and this leads to a less accurate model. MLP produced good results as

it shares similar property with BNet (models the relationships among the input layer

(which contains features), the hidden layer (the neuron) and the output layer (the

actual class prediction)). On the other hand, RF and ADTree produced promising

results due to their ability to perform like an ensemble classifier (consider various

decisions and use averaging to improve predictive accuracy). In fact, ADTree employs

boosting to improve the conventional decision tree algorithm (e.g. C4.5). Therefore

ADTree produced better results in all three metrics compared to C4.5. In addition,

RF and BNet contain efficient approaches for avoiding data over fitting. On the other

hand, k-NN performed poorly in our study (Az=67.5%). This may be caused by the

number of neighbourhoods (k=1) as this restricts the algorithm to make decision based

on a nearest single neighbourhood instead of based on several neighbours. Similarly,

the low performance of SVM (Az=76%) is expected to have been caused by default

parameter settings. It is known that the performance of SVM is heavily affected by

its parameters such as the choice of kernel, the kernel’s parameters, and soft margin

parameter C.

In terms of accuracy, there is still room for improvement (despite all predictive models

produced CA>70%) as it can be seen that none of the predictive models managed

to achieve CA>90%. The highest accuracy presented in Table 5.3 is achieved by the

predictive models built by meta-classifiers via a voting approach which resulted in

just above 85%. From a sensitivity point of view all predictive models achieved more

than 80% except the model built by SVM. Both meta classifiers achieved more than

90% with acceptable time taken for training and testing below 25 minutes for 9-FCV.

Individually, the predictive models built by BNet, RF and NB classifiers achieved

more than 90% sensitivity in comparison to MLP (86.5%) and ADTree (88.9%), where
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other predictive models achieved reasonable sensitivities. On the other hand, the NB

classifier is the fastest predictive model taking less than 2 minutes to complete 9-FCV

followed by the BNet classifier, which took less than 4 minutes. The slowest predictive

models are the ones built by SL, MLP and SVM classifiers which took 444.37, 294.17

and 154.98 minutes, respectively.

Figure 5.6 shows the segmentation results produced by the proposed method in this

chapter using different machine learning algorithms. In Figure 5.6, there are two ma-

lignant regions within the PZ which both are detected and segmented. The BNet

classifier outperformed the other classifiers individually. However, the M-V (b2) com-

bining the BNet and MLP classifiers produced the best Az and CA. The M-V (b3)

classifier (combination of the BNet, MLP and ADTree classifiers) also produced a

good segmentation result but slightly poorer on the second malignant region. All

classifiers successfully detected the first malignant region (left annotation in red) but

a poor segmentation produced by the k -NN classifiers for both malignant regions.

Note that the NB, ADTree and J48 classifiers produced good segmentation for the

first malignant region and only the BNet classifier managed to segment most area

(under the magenta line) of the second malignant region (right annotation in red).

On the other hand, all classifiers produced false positives and false negatives for the

second and first malignant regions, respectively.

Figure 5.7 shows another example of segmentation results with only one malignant

region (red line) and has a visible appearance within the PZ. In comparison to the

segmentation results in Figure 5.6, the NB classifier produced the best accuracy better

than the M-V(b3) classifier. Nevertheless in this case, the M-V(b2) still produced

the highest accuracy whereas the BNet, MLP, ADTree and SVM generated poor

segmentation results.The M-V (b2) is a combination of the NB and J48 classifiers and

an additional k -NN classifier for the M-V (b3).

Similar segmentation results were produced by M-V(b2) and M-V(b3) in another case

in Figure 5.8. However, the RF, SL, MLP and SVM classifiers produced very poor

results in comparison to the results produced in Figures 6.9 and 6.10. The BNet

classifier remains the best classifier individually and the M-V (b2) remains the best

classifier in comparison to the other machine learning algorithms employed in this

study.



Chapter 5. CAD: Multifeature and Machine Learning 108

Figure 5.6: Example 1: Segmentation results using different machine learning
algorithms.

Figure 5.7: Example 2: Segmentation results using different machine learning
algorithms.
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Figure 5.8: Example 3: Segmentation results using different machine learning
algorithms.

5.5.2 Performance using Different Window Sizes

The selection of window size (ws) is one of the major issues in image processing. Many

studies (such as [65, 231, 233, 263, 296]) in CAD-PC did not report how window

sizes affect the overall performance of their methods. In this study, we investigated

the effects of ws on performance quantitatively. For this purpose we conducted five

experiments using the following ws: 3×3, 5×5, 7×7, 9×9, 11×11, 13×13, 15×15,

17 × 17 and 19 × 19. From a clinical point of view, these sizes enable us to see the

variation of results according to the different sizes of malignant regions. We selected

these sizes because these are the most common window sizes used in the literature.

For this purpose we assess the performance of each classifier based on its Az and CA

values. Figure 5.9 and 5.10 are graphical representation for all classifiers employed in

this study using different window sizes.

The results presented in Tables 5.5 and 5.6 show that ws affects the performance of the

proposed method both in terms of Az and CA values. In general using smaller ws such

as 3×3 and 5×5 produced lower results compared to 9×9 and 11×11 due to insufficient

information such as limited spatial information, limited intensities and grey level

variations, the statistical values calculated from the neighbourhood are affected by
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Figure 5.9: A graph representation for Az values for all classifiers using different
window sizes.

noise, etc. A study [330] suggests that large windows contain more information than

small ones (hence, provides better texture characterisation). Moreover, several studies

suggest that an appropriate guideline for window sizes is 7× 7 and 9× 9 [331, 332],

where medium window sizes do not increase classification accuracy significantly [333]

(in our case most CA and Az values at 9 × 9 and 11 × 11 are very similar in Tables

5.5 and 5.6). Nevertheless, an absolute optimal size window is difficult to determine

due to the complexity of the problem domain. As shown in Tables 5 and 6 the Az

values for all classifiers decreased after ws = 11×11. A large ws causes the computed

feature values within neighbouring pixels to over-represent the actual characteristic

of the region.
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Figure 5.10: A graph representation for CA values for all classifiers using different
window sizes.
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Table 5.5: More details of Az values using different window sizes

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

M-V (b2) 89.3 ± 7.1 89.6 ± 7.3 90.6 ± 6.8 91.7 ± 6.8 92.7 ± 7.4 87.6 ± 6.9 86.3 ± 7.3 84.3 ± 6.9 83.3 ± 8.5

M-V (b3) 88.9 ± 7.5 89.2 ± 7.6 90.3 ± 7.3 91.5 ± 6.9 92.3 ± 7.6 87.2 ± 6.7 84.5 ± 7.1 83.9 ± 7.1 81.3 ± 9.1

BNet 85.7 ± 9.2 87.1 ± 9.8 88.1 ± 8.5 89.9 ± 9.9 90.0 ± 7.6 82.7 ± 9.9 83.1 ±11.6 83.1 ± 13.3 82.3 ± 14.9

ADTree 82.4 ± 9.5 84.4 ± 9.8 85.8 ± 10.3 86.5 ± 10.0 89.5 ± 8.9 83.5 ± 11.0 82.4 ± 11.6 82.5 ± 12.5 78.6 ± 17.0

RF 83.2 ± 8.1 85.1 ± 8.6 85.7 ± 9.0 87.8 ± 9.2 87.9 ± 9.3 82.2 ± 9.8 82.2 ± 11.9 81.3 ± 12.7 76.8 ± 15.4

MLP 81.2 ± 9.3 83.4 ± 9.7 85.8 ± 8.6 88.4 ± 7.7 87.4 ± 9.2 76.2 ±11.4 78.2 ± 13.1 83.2 ± 12.7 78.4 ± 14.3

NB 74.7 ± 10.3 77.1 ± 10.9 83.3 ± 10.5 87.3 ± 9.6 86.9 ± 10.5 77.9 ± 13.7 78.9 ± 13.4 75.3 ± 10.7 74.8 ± 11.4

SL 79.9 ± 8.3 80.7 ± 8.8 83.2 ± 8.9 86.2 ± 7.1 85.6 ± 9.8 80.2 ± 9.7 80.3 ± 11.9 78.3 ± 11.4 75.9 ± 11.9

C4.5 72.6 ± 9.2 74.1 ± 8.9 74.7 ± 9.5 77.5 ± 10 79.3 ± 9.8 78.3 ± 10.4 76.7 ± 12.5 72.3 ± 12.4 72.3 ± 14.4

SVM 69.3 ± 7.8 71.5 ± 7.6 74.6 ± 8.7 76.2 ± 7.9 77.3 ± 9.9 79.8 ± 10.3 79.8 ± 11.9 75.3 ± 11.7 74.3 ± 12.9

k-NN 67.7 ± 7.7 68.5 ± 7.3 66.0 ± 8.2 67.5 ± 8.6 68.8 ± 10.0 70.7 ± 15.2 67.8 ± 17.7 71.9 ± 12.9 68.8 ± 11.0

This can be clearly seen in Tables 5.5 and 5.6 in both Az and CA. A large ws (e.g. 17 × 17 and 19 × 19) caused both metrics to

decrease below 85%. The results change between 5%-10% at ws = 3× 3 and 19× 19. The proposed method achieved lower results at

ws = 3× 3 due to insufficient information to characterise tumour regions. Similarly, at ws = 19× 19 the proposed method produced

lowest results. According to Wolters et al. [98], the typical size ranges of malignant regions in prostate MRI are 5− 20mm (on average

12.5mm, using medium sizes ws are an appropriate (e.g. 9× 9 or 11× 11) in our case since it is the average tumor size and ws = 3× 3

would be too small). For most classifiers there are small improvement (less than 2%) for both Az and CA using 9 × 9 and 11 × 11.

Nevertheless, using different ws showed a significant difference for most classifiers in terms of Az and CA.
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Table 5.6: More details of CA values using different window sizes

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

M-V (b2) 79.5 ± 7.3 80.1 ± 6.8 82.8 ± 7.1 83.6 ± 7.5 85.5 ± 7.2 85.1 ± 8.7 84.7 ± 8.1 80.7 ± 8.4 78.5 ± 10.5

M-V (b3) 78.9 ± 7.5 79.3 ± 7.3 82.5 ± 6.7 83.0 ± 8.1 85.3 ± 7.6 84.3 ± 8.3 84.1 ± 8.5 80.1 ± 8.1 77.3 ± 11.3

BNet 80.3 ± 6.1 81.4 ± 6.4 82.2 ± 6.6 82.6 ± 8.3 83.5 ± 7.6 88.1 ± 9.8 87.3 ± 11.5 82.3 ± 11.7 81.3 ± 15.2

ADTree 78.3 ± 6.1 79.4 ± 6.2 82.6 ± 6.3 82.7 ± 6.0 83.7 ± 8.5 86.7 ± 11.6 85.7 ± 13.7 83.1 ± 14.6 77.1 ± 18.0

RF 81.3 ± 5.9 82.3 ± 5.6 82.7 ± 6.0 85.2 ± 5.3 84.7 ± 7.2 83.1 ± 12.9 81.2 ± 15.4 84.3 ± 15.4 79.6 ± 18.7

MLP 77.5 ± 6.5 78.8 ± 6.3 79.4 ± 7.1 83.2 ± 6.3 81.0 ± 9.9 83.2 ± 11.5 84.1 ± 13.9 83.6 ± 14.7 80.7 ± 16.8

NB 65.7 ± 19.3 67.2 ± 20.4 67.7 ± 20.8 71.3 ± 19 80.5 ± 8.7 84.1 ± 11.9 85.9 ± 11.6 80.1 ± 12.7 73.8 ± 19.1

SL 70.1 ± 8.3 72.8 ± 8.2 76.4 ± 8.2 77.5 ± 9.1 78.6 ± 9.5 86.9 ± 10.4 86.7 ± 13.5 77.8 ± 15.8 77.9 ± 19.0

C4.5 77.2 ± 5.6 78.9 ± 5.4 79.4 ± 6.2 81.8 ± 6.1 82.4 ± 6.8 72.4 ± 13.7 72.2 ± 15.5 75.1 ± 17.0 73.5 ± 23.6

SVM 72.0 ± 8.5 72.2 ± 8.8 75.7 ± 9.2 77.6 ± 9.1 78.5 ± 10.4 77.9 ± 11.6 78.2 ± 12.5 75.1 ± 14.0 74.1 ± 16.5

k-NN 69.9 ± 5.3 72.5 ± 5.7 70.5 ± 8.5 70.3 ± 12.4 72.0 ± 11.9 67.1 ± 13.7 66.4 ± 13.9 73.8 ± 14.6 67.3 ± 15.5

For example, increasing ws = 3×3 to 11×11 increases CA value from 79.5 ± 7.3 to 85.5 ± 7.2 (p < 0.0001). However, some classifiers

produced lower results when using a larger ws. For example the SVM classifier produced Az=77.5% using 5 × 5 but produced 3%

and 1% lower at 7× 7 and 11× 11, respectively. Similar for k -NN in terms of accuracy we can see that its best performance is using

5× 5 with CA=72.5%. Interestingly, some classifiers produced the best CA at ws = 13× 13 such as BNet and ADTree. Nevertheless,

most classifiers produced poorer CA at ws ≥ 15 × 15. Therefore, based on these results using ws = 9 × 9, 11 × 11 or 13 × 13 is an

appropriate guideline when selecting window size in our study.
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Table 5.7: The p values between the best Az value against the others across all classifiers and window sizes. Bold values indicate
statistically insignificant.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

M-V (b2) 0.0264 0.0455 0.1615 0.5028 - 0.0007 < 0.0001 < 0.0001 < 0.0001

M-V (b3) 0.0155 0.0271 0.1211 0.4237 0.8028 0.0002 < 0.0001 < 0.0001 < 0.0001

BNet < 0.0001 0.0022 0.0061 0.0872 0.0873 < 0.0001 < 0.0001 < 0.0001 < 0.0001

ADTree < 0.0001 < 0.0001 0.0002 0.0008 0.0643 < 0.0001 < 0.0001 < 0.0001 < 0.0001

RF < 0.0001 < 0.0001 < 0.0001 0.0054 0.0067 < 0.0001 < 0.0001 < 0.0001 < 0.0001

MLP < 0.0001 < 0.0001 < 0.0001 0.0069 0.0026 < 0.0001 < 0.0001 < 0.0001 < 0.0001

NB < 0.0001 < 0.0001 < 0.0001 0.0027 0.0024 < 0.0001 < 0.0001 < 0.0001 < 0.0001

SL < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

C4.5 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

SVM < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

k-NN < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 5.7 show the significance values between the best Az against the others results for all classifiers and window sizes tested in the

proposed method. The results indicate that combining classifiers produced significantly better Az value in comparison to a single

classifier. Nevertheless, there is no statistical significance when comparing it with the Az values produced by the BNet classifier both

at ws = 9× 9 and 11× 11. Similarly, there is no statistical significance between the best Az produced by M-V (b2) classifier against

M-V (b3) classifier at ws = 7× 7, 9× 9 and 11× 11.
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Table 5.8: The p values between the best CA value against the others across all classifiers and window sizes. Bold values indicate
statistically insignificant.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19

M-V (b2) < 0.0001 < 0.0001 < 0.0032 0.0142 0.1527 0.1235 0.073 0.0001 < 0.0001

M-V (b3) < 0.0001 < 0.0001 0.0016 0.0071 0.1310 0.0477 0.0384 < 0.0001 < 0.0001

BNet < 0.0001 0.0001 < 0.0008 0.0041 0.0128 - 0.7188 0.0108 0.0117

ADTree < 0.0001 < 0.0001 0.0015 0.0016 0.0226 0.5352 0.3371 0.0561 < 0.0001

RF < 0.0001 0.0005 0.0016 0.0801 0.0601 0.0384 0.011 0.1615 0.0108

MLP < 0.0001 < 0.0001 < 0.0001 0.0048 0.0006 0.0292 0.1141 0.0872 < 0.0001

NB < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0001 0.0818 0.332 < 0.0001 < 0.0001

SL < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.5754 0.5755 < 0.0001 < 0.0001

C4.5 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0013 < 0.0001 < 0.0001 < 0.0001 < 0.0001

SVM < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

k-NN < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 5.8 presents the significance values between the best CA against the others results for all classifiers and window sizes tested in

the proposed method. The best CA=88.1% by BNet classifier at ws = 13 × 13, but there is no statistical significance difference if

compared with the results produced by M-V (b2), ADTree, SL and NB at the same scale. At a slightly larger scale (ws = 13 × 13),

there is no statistical significance between the best CA with the result produced by the MLP classifier. On the other hand, at smaller

scales (9× 9 and 11× 11), the RF classifier produced similar results with the best CA.
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Figure 5.11: Performance comparisons among classifiers before and after feature
selection using 11× 11 window size

5.5.3 Performances before and after feature selection

A study by Niaf et al. [231] showed that feature selection can deliver a significant

improvement in a classification model’s performance. Therefore, in this study we

investigated the effects (both for Az and CA) of feature selection using two different

window sizes (11 × 11). In the first experiment no feature was excluded and in the

next experiment only features selected using CfsSubsetEval [327] were included in

training and testing.

Figure 5.11 and 5.12 shows that there is a significant improvement in both Az and

CA (p < 0.05) for most classifiers after feature selection is performed due to different

levels of data complexity. For example it is easier to build a predictive model in a

lower dimensional dataset (e.g. 20 features per instance) than in a higher dimensional

dataset (e.g. 215 features per instance). The difficulty in building a predictive model

in a higher dimensional dataset increases the error rate (hence reduces predictive

accuracy). However, the improvement for most classifiers is less than 3% except

BNet, MLP, SL and NB classifiers which showed an improvement of approximately

5% to 10% in both Az and CA. For example, the significant difference for Az values

before and after feature selection are p < 0.0001, p = 0.0292 and p = 0.0072 for BNet,

MLP and NB classifiers, respectively at 11× 11. This may be caused by two reasons:

1. BNet, MLP and NB classifiers share similar concepts of building a predictive

model by mapping the relationships among features. Increasing the number of

features means building a more complex predictive model (e.g. a large number
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Figure 5.12: Performance comparisons among classifiers before and after feature
selection using 7× 7 window size

of features creates more complex network structure) as a larger number of re-

lationships can be created. The complexity increases error rates and decreases

the accuracy of the model in making a prediction in unseen cases.

2. BNet, MLP and NB classifiers do not have an approach to avoid data over fitting

which means even weak and uncorrelated features will be considered in building

a classification model.

Therefore performing feature selection is expected to be beneficial for BNet, MLP

and NB classifiers as it decreases the level of complexity of the model. In comparison,

for most tree-based classifiers only strong features will be considered in building the

predictive model even without performing feature selection (the classifier selects the

most correlated features in building a classification model). This suggests that the

performance of the RF and ADTree classifiers are less affected by feature selection.

From the results shown in Figure 5.11, differences for RF and ADTree classifiers

before and after feature selection are less than 2% for both Az and CA. In addition,

ADTree employs boosting procedures (uses many weak hypotheses to build a strong

hypothesis) which often produce better results. Similarly, C4.5 is also a tree-based

classifier which was not affected significantly by the feature selection (no significant

difference p = 0.4207 for Az at 11× 11). On the other hand, the results produced by

the Meta classifiers are mainly affected by the performance of the top three individual

classifiers. In this study,the BNet, MLP, RF, NB and ADTree are among the top 3

classifiers combined in the M-V (based on the 3 best Az values in the training phase).
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5.5.4 Features Evaluation

We also investigated feature performance individually. For this purpose we conducted

experiments by ranking the top 20 features based on the number of selection (ns) over

the number of runs in 9-FCV (81 runs in total in this study) at nine different ws. The

maximum value of ns is 81. The higher the ns the more frequently the feature has

been selected by CfsSubsetEval [327].

Table 5.9: Top 20 most selected features using ws = 3× 3.

Features ns

Gaussian filter, Laplacian of Gaussian filter, image magnitude 81

Standard deviation, GLCM: sum of squares variance (θ = 135◦), GLCM:
variance of homogeneities (θ = 0◦, 45◦, 90◦, 135◦),

78

Local probability, local contrast, median 76

Variance, GLCM: Dissimilarity (θ = 45◦) 74

GLCM: variance (θ = 45◦), bar/spot filter ((σx, σy) = (4, 12), θ = 150◦) 73

Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦) 72

bar/spot filter ((σx, σy) = (4, 12), θ = 90◦),bar/spot filter ((σx, σy) =
(1, 3), θ = 0◦), edge filter ((σx, σy) = (1, 3), θ = 90◦)

70

image magnitude of Sobel operator, mean 69

GLCM: Entropy (θ = 45◦), GLCM: Energy (θ = 90◦), 67

In our experiments evaluating the effects of ws on a feature’s performance can be seen

as one of the important parts in this study. Table 5.9 shows the list of top 20 most

discriminant features based on the ns value for ws = 3 × 3. There were 65 features

selected with minimum ns=1 using ws = 3 × 3. Features such as Gaussian filter,

Laplacian of Gaussian filter and image magnitude were always selected by CfsSub-

setEval [327] in 9-FCV of 81 runs. F2 and F6 features (see Table 1) dominate the list

at the smallest window where none of Tamura’s features were selected. F1 features

such as mean, median, local probability and local contrast are also among the most

popular features at ws = 3× 3. On the other hand, 64 features were selected at least

once at ws = 5× 5.
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Table 5.10: Top 20 most selected features using ws = 5× 5.

Features ns

GLCM: sum of squares variance (θ = 135◦), Gaussian filter, Laplacian of
Gaussian filter, bar/spot filter ((σx, σy) = (1, 3), θ = 30◦), bar/spot filter
((σx, σy) = (1, 3), θ = 0◦), edge filter ((σx, σy) = (1, 3), θ = 90◦), image
magnitude, image magnitude of Sobel operator, variance

81

Image gradient θ = 90◦, image gradient θ = 0◦ 80

Local probability, local contrast 79

Bar/spot filter ((σx, σy) = (1, 3), θ = 150◦), bar/spot filter ((σx, σy) =
(4, 12), θ = 90◦)

77

Bar/spot filter ((σx, σy) = (2, 6), θ = 90◦), bar/spot filter ((σx, σy) =
(2, 6), θ = 60◦), bar/spot filter ((σx, σy) = (4, 12), θ = 150◦)

76

Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦) 75

Bar/spot filter ((σx, σy) = (2, 6), θ = 30◦) 74

Results in Table 5.10 show that all features selected at least 80 times in 9-FCV come

from F1, F2, F5 and F6, followed by local probability and local contrast with ns =79.

Other features in the top 20 are a bank of bar/spot filters (also from F6) covering

different scales and orientations. Most of the features selected at ws = 5 are filter

bank of Varma and Zisserman [1]. Increasing ws to 7 × 7 decreased the number of

features selected to 59.

The results in Table 5.11 show that features from category F5 and F6 remain in

favour. Variance along with image magnitude of Sobel operator remain among the

most discriminant features. Interestingly, the ns value for GLCM: sum of squares

variance (θ = 135◦) dropped to 68, placing it 16th in the ranking. However, it can

been seen that new features appear to be listed in the top 20 such as variance of

cluster prominences (θ = 0◦, 45◦, 90◦, 135◦), Tamura contrast and kurtosis. Moving

up to ws = 9×9, Tamura’s contrast reached its best performance (ns=81) as it can be

seen in Table 5.12. Similarly for image gradient of the Sobel operator, Gaussian filter

and Laplacian of Gaussian filter remain among the top features with maximum ns

value. The number of bar/spot filters has decreased and only one GLCM feature was

selected in the top 20. New features such as percentiles 75% and edge filters appeared

into the list while variance dropped its ns value from 81 to 75. Table 5.13 shows the

results using ws = 11 × 11. The results reveal a similar pattern for Gaussian filter,

Laplacian of Gaussian filter, image magnitude of Sobel operator, Tamura contrast,
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Table 5.11: Top 20 most selected features using ws = 7× 7.

Features ns

Gaussian filter, Laplacian of Gaussian filter, bar/spot filter ((σx, σy) =
(1, 3), θ = 0◦), bar/spot filter ((σx, σy) = (1, 3), θ = 90◦), image magni-
tude of Sobel operator, image magnitude , variance

81

Local contrast 80

Bar/spot filter ((σx, σy) = (1, 3), θ = 30◦) 77

Bar/spot filter ((σx, σy) = (1, 3), θ = 150◦) 74

Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦), local probability 73

GLCM: sum of squares variance (θ = 135◦) 68

Variance of cluster prominences (θ = 0◦, 45◦, 90◦, 135◦) 67

Bar/spot filter ((σx, σy) = (1, 3), θ = 90◦) 60

Tamura contrast 59

Image gradient (θ = 0◦) 55

Bar/spot filter ((σx, σy) = (2, 6), θ = 60◦) 54

Kurtosis 52

image magnitude and variance. Although some ns values for some of the features (such

as local probability, image gradient of Sobel operator and local contrast) dropped by

at least 10, they remain in favour among the top 20 most discriminant features out of

216 features extracted in this study. Edge filters which were selected at ws = 9×9 are

not listed at ws = 11× 11, instead 3 GLCM features based on the feature’s variance

of four orientations (θ = 0◦, 45◦, 90◦, 135◦) were selected.

Results in Tables 5.14 and 5.15 show that ns values for Gaussian and Laplacian of

Gaussian have dropped to 76 and 70, respectively. These features are becoming less

discriminant in much larger ws as shown in Tables 5.16 and 5.17 (but still in the

top 20). Other features such as Tamura’s contrast, image gradient, image magnitude

and some edge filters remain consistent within the top 10 (note that the ns score

for Tamura’s contrast is always ≥ 80 when ws ≥ 9 × 9 ). Several features which

were based on the variance of four orientation of single GLCM features (e.g GLCM:

dissimilarities and autocorrelations) appear in the list at ws ≥ 17× 17.
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Table 5.12: Top 20 most selected features using ws = 9× 9.

Features ns

Gaussian filter, Laplacian of Gaussian filter, bar/spot filter ((σx, σy) =
(4, 12), θ = 0◦), image magnitude of Sobel operator, image gradient of
Sobel operator (θ = 45◦), image magnitude , image gradient (θ = 90◦),
Tamura contrast

81

Image gradient of Sobel operator (θ = 90◦), local probability 80

Local contrast 79

Bar/spot filter ((σx, σy) = (1, 3), θ = 0◦) 78

Image gradient of Sobel operator (θ = 0◦) 76

Variance 75

Percentiles 75% 74

Bar/spot filter ((σx, σy) = (4, 12), θ = 45◦) 59

Image gradient (θ = 0◦) 42

An edge filter ((σx, σy) = (2, 6), θ = 30◦) 36

An edge filter ((σx, σy) = (2, 6), θ = 0◦) 29

GLCM: standard deviation of sum of variances (θ = 0◦, 45◦, 90◦, 135◦) 24

Table 5.18 presents all the common features across different ws based on the total

ns. The image magnitude has the highest ns = 723 (maximum ns = 729) followed by

the image magnitude of Sobel operator (ns = 687). This indicate that these features

are fairly consistent regardless to the ws (similar to the study claimed by Kovalev

[70]). From these experiment results, it can be seen that the ws parameter affects the

performance of the features. For example GLCM: sum of squares variance (θ = 135◦)

appear to be in the top 20 list using smaller ws but did not perform well using larger

ws (e.g 9 × 9 and 11 × 11). Similarly, Tamura’s contrast was listed among the most

discriminant feature using medium ws but performed poorly using smaller ws (5×5).

In addition, some features performed well only using certain values of ws. For example

Kurtosis appeared to be in the list only at ws = 7× 7, 13× 13 and 15× 15.

However, there are some features less affected by the ws parameter. For example the

Gaussian filter, Laplacian of Gaussian filter, image magnitude of the Sobel operator,

image magnitude, local contrast, local probability and variance (always in the top 20).

Our experimental results support an earlier study conducted by Kovalev et al. [173]

who claimed that image gradients have a more consistent behavior as a descriptor
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Table 5.13: Top 20 most selected features using ws = 11× 11.

Features ns

Gaussian filter, Laplacian of Gaussian filter, image magnitude of Sobel
operator, Tamura contrast, image magnitude , variance

81

Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦), local probability 70

Bar/spot filter ((σx, σy) = (1, 3), θ = 30◦) 63

Image gradient of Sobel operator (θ = 45◦) 54

Bar/spot filter ((σx, σy) = (1, 3), θ = 150◦) 52

Bar/spot filter ((σx, σy) = (1, 3), θ = 90◦) 51

Local contrast 50

GLCM: variance of autocorrelations (θ = 0◦, 45◦, 90◦, 135◦) 48

GLCM: variance of sum of variances (θ = 0◦, 45◦, 90◦, 135◦) 44

Percentiles 75% 43

GLCM: sum of variance (θ = 45◦) 41

An edge filter ((σx, σy) = (1, 3), θ = 90◦) 36

GLCM: variance of cluster shades (θ = 0◦, 45◦, 90◦, 135◦) 33

Image gradient (θ = 0◦) 30

Table 5.14: Top 20 most selected features using ws = 13× 13.

Features ns

GLCM: sum of squares variance (θ = 135◦), bar/spot filter ((σx, σy) =
(1, 3), θ = 60◦), image gradient of Sobel operator (θ = 45◦), image
magnitude, image gradient (θ = 90◦), Tamura contrast, variance and
local contrast

81

Image magnitude of Sobel operator and local probability 78

Gaussian filter, Laplacian of Gaussian filter and image gradient (θ = 0◦) 76

GLCM: variance of cluster prominences (θ = 0◦, 45◦, 90◦, 135◦) and per-
centile 75%

59

An edge filter ((σx, σy) = (1, 3), θ = 0◦) and an edge filter ((σx, σy) =
(1, 3), θ = 90◦)

46

An edge filter ((σx, σy) = (1, 3), θ = 150◦) and kurtosis 41

An edge filter ((σx, σy) = (1, 3), θ = 30◦) and an edge filter ((σx, σy) =
(2, 6), θ = 90◦)

37
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Table 5.15: Top 20 most selected features using ws = 15× 15.

Features ns

Image gradient of Sobel operator (θ = 45◦), image magnitude, image
gradient (θ = 90◦), Tamura contrast, variance

80

Image magnitude of Sobel operator, GLCM: variance sum of variance
(θ = 0◦, 45◦, 90◦, 135◦) and local probability

75

Gaussian filter, Laplacian of Gaussian filter, GLCM: variance of cluster
prominences (θ = 0◦, 45◦, 90◦, 135◦) and image gradient (θ = 0◦)

70

An edge filter ((σx, σy) = (1, 3), θ = 0◦) 65

GLCM: sum of variance (θ = 0◦) and kurtosis 33

GLCM: sum of square variance (θ = 135◦) 29

An edge filter ((σx, σy) = (2, 6), θ = 120◦) 26

GLCM: variance of sum of square variances (θ = 0◦, 45◦, 90◦, 135◦), image
gradient (θ = 90◦) and local contrast

24

Percentile 75% 14

Table 5.16: Top 20 most selected features using ws = 17× 17.

Features ns

GLCM: variance of sum of variances (θ = 0◦, 45◦, 90◦, 135◦), variance,
Tamura’s contrast, image gradient (θ = 0◦)

81

Image magnitude of Sobel operator and image magnitude 77

GLCM: variance of sum of square variances (θ = 0◦, 45◦, 90◦, 135◦), local
contrast

74

An edge filter ((σx, σy) = (1, 3), θ = 60◦), image gradient of Sobel oper-
ator (90◦) and local probability

73

Gaussian filter, Laplacian of Gaussian and An edge filter ((σx, σy) =
(2, 6), θ = 120◦)

43

GLCM: autocorrelation (135◦) 33

GLCM: variance of cluster prominences (θ = 0◦, 45◦, 90◦, 135◦) 23

GLCM: variance of dissimilarities (θ = 0◦, 45◦, 90◦, 135◦), Variance of
autocorrelations (θ = 0◦, 45◦, 90◦, 135◦), image gradient (0◦)

10
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Table 5.17: Top 20 most selected features using ws = 19× 19.

Features ns

Image gradient (0◦), image magnitude and Tamura’s contrast 80

GLCM: variance of sum of square variances (θ = 0◦, 45◦, 90◦, 135◦), An
edge filter ((σx, σy) = (1, 3), θ = 60◦), variance and GLCM: variance of
sum of variances (θ = 0◦, 45◦, 90◦, 135◦)

70

Image gradient of Sobel operator (θ = 0◦) and image magnitude of Sobel
operator

64

Local probability 58

Local contrast 49

Image gradient of Sobel operator 39

GLCM: variance of contrasts (θ = 0◦, 45◦, 90◦, 135◦), Gaussian filter and
Laplacian of Gaussian

22

GLCM: variance of dissimilarities (θ = 0◦, 45◦, 90◦, 135◦) 17

GLCM: variance of cluster prominences (θ = 0◦, 45◦, 90◦, 135◦) 10

GLCM: variance of autocorrelations (θ = 0◦, 45◦, 90◦, 135◦) and An edge
filter ((σx, σy) = (2, 6), θ = 120◦)

9

compared to GLCM features. Tamura contrast, local probability, variance and per-

centiles 75% are among the most promising features but they need to be extracted

with particular window sizes (e.g. 9 × 9 and 11 × 11). This is similar to the other

features such as Gaussian and Laplacian of Gaussian (best at ws ≤ 13× 13).

In a very large ws (e.g. 17× 17 or 19× 19), the ns value for Gaussian and Laplacian

of Gaussian filters have decreased significantly from ns = 76 at ws = 13 × 13 to

ns = 43 (ws = 17 × 17) and ns = 22 (ws = 19 × 19), respectively. This may be

caused using a larger size of filter will oversmooth (or blur) the textures within the

prostate gland and remove important characteristics of benign and malignant tissues.

Nevertheless, gradient based features such as image gradient and image magnitude

showed consistent performance regardless to the size of ws used.
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Table 5.18: Top 20 common features across different ws.

Features ns

Image magnitude 723

Image magnitude of Sobel operator 687

Local probability 668

Variance 623

Gaussian filter and Laplacian of Gaussian 616

Local contrast 601

Tamura contrast 543

Image gradient (θ = 0◦) 469

Image gradient (θ = 90◦) 403

Bar/spot filter ((σx, σy) = (1, 3), θ = 0◦) 310

GLCM: sum of square variance θ = 135◦) 308

Bar/spot filter ((σx, σy) = (2, 6), θ = 0◦) 290

Image gradient of Sobel operator (θ = 45◦) 242

Edge filter ((σx, σy) = (1, 3), θ = 90◦) 233

GLCM: variance of sum of variances (θ = 0◦, 45◦, 90◦, 135◦) 226

Bar/spot filter ((σx, σy) = (1, 3), θ = 60◦) 224

Bar/spot filter ((σx, σy) = (1, 3), θ = 30◦) 221

Image gradient of Sobel operator (θ = 90◦) 217

Bar/spot filter ((σx, σy) = (1, 3), θ = 150◦) 203

Figures 5.13 and 5.14 show histogram representations for malignant and non-malignant

data taken from four different features from the top 20 list at 9 × 9. On the other

hand, Figures 5.15 and 5.16 show the features distribution in 2D feature space. Most

malignant and benign data are quite separated in Gaussian versus Tamura contrast

feature spaces. For image 2 in Figure 5.15, although there are fairly large amounts

of data overlapping in local contrast versus percentiles 75%, the number of data sep-

arated are still quite noticeable. Similar in Figure 5.16 both feature distributions are

visible despite there are large amounts of data overlapping.
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Figure 5.13: Histogram representations for some of the texture features used
in this study. From left to right: GLCM : (1) local probability (ns = 80) , (2)
percentiles 75% (ns = 74). Each graph represents 152, 445 instances taken at

ws = 9× 9. Note that each histogram has the range of 0 to 1.

Figure 5.14: Histogram representations for some of the texture features used in
this study. From left to right: GLCM : (1) local contrast (ns = 79) and (2) Tamura
contrast (ns = 81). Each graph represents 152, 445 instances taken at ws = 9× 9.

Note that each histogram has the range of 0 to 1.

Figure 5.15: Pairwise scatterplots for two pairs of feature in 2D feature space.
From left to right, (1) Gradient of the Sobel operator θ = 0◦) versus magnitude and
(2) local contrast versus percentiles 75% (each graph represents 152, 445 instances

taken using 9× 9 sliding window).
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Figure 5.16: Pairwise scatterplots for two pairs of feature in 2D feature space.
From left to right, (3) Gaussian versus Tamura contrast feature and (4) magnitude
versus Laplacian of Gaussian (each graph represents 152, 445 instances taken using

9× 9 sliding window).

5.6 Parameter Optimisation

Since the performance of most machine learning algorithms (classifiers) are depend on

the parameters chosen by the users, we investigated the performance of three of the 11

classifiers employed in this study which are the k-NN, RF and the ADTree classifier.

Performing parameter optimisation for each of the classifiers are time consuming due

to the size of dataset (number of instances) and the complexity of the classifier itself

(e.g. the SVM classifier has three main parameters and to find the best combination

is time consuming). Note that in this section we used the data with features extracted

using ws = 11 × 11. Therefore the results presented in this section are preliminary

results as we have not tested features extracted using different ws and classifiers. For

the k-NN classifier we tested k = 1 up to k = 41 (with 2 neighbours interval). On the

other hand, for the RF and ADTree classifiers, we tested the initial number of random

forests (rF ) from 5 to 165 (with an interval rF = 5) and the number of boosting (nB)

from 1 to 41 (with an interval nB = 2, nB = 10 is included as the WEKA default

value), respectively.

Figure 5.17 shows the Az and CA results using different number of neighbours for the

k-NN classifier. In terms of Az, there is a visible difference between k = 1 and k ≥ 3.

At the larger number of neighbours (k ≥ 29), the Az slightly decreases to below 75%.

On the other hand, there is a steady increment of CA (except at k = 7) as the number

of neighbours increases before the same result achieved at k = 39 and k = 41. Figure

5.18 presents the performance of the RF classifier at different number of initial random

forests. At r ≤ 25, the RF classifier produced Az<86% and CA<83%. The best Az

and CA are achieved at rF = 90 (also rF = 115 to rF = 135) and rF = 100, 105,
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Figure 5.17: The Az and CA values using different k values for the k-NN classifier.
Default k = 1 in WEKA.

respectively. Similar Az values were achieved at rF ≥ 140, whereas CA decreased to

approximately 83% at rF ≥ 160.

Finally, Figure 5.19 shows the performance of the ADTree classifier using different

numbers of boosting. The ADTree classifier produced the best Az and CA at nB = 10

which is the default setting in WEKA. Other values of nB produced very similar

results in both metrics expect nB = 1. Note that, a significant change in classification

accuracy at nB = 10. This may be caused the training data has a better representative

to the testing sample at nB = 10 as a larger nB (e.g. nB > 10) could possibly cause

the predictive model is overfitting. These preliminary results show that the default

parameters set in WEKA for ADTree and RF classifiers are good enough to get an idea

how well a classifier works in a CAD-PC system. For example the ADTree classifier

produced the highest Az and CA at the default value given in WEKA. Similarly for the

RF classifier the highest CA was achieved at rF = 100 which is the default value given

in WEKA. Although the highest Az was achieved at rF = 90 (and rF = 115 to 135),

the difference is not significant at rF = 100 (around 1% difference). Nevertheless,

around 3% difference between the default k = 1 given in WEKA and larger k (e.g.

k = 11).
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Figure 5.18: The Az and CA values using different rF values for the RF classifier.
Default rF = 100 in WEKA.

Figure 5.19: The Az and CA values using different nB values for the ADTree
classifier. Default nB = 10 in WEKA.
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5.7 Discussion

The limitations of our study are: firstly, we are unable to compare our results quanti-

tatively with the existing methods in the literature mainly due to the absence of public

datasets. Every group of researchers has their own datasets which are not publicly

available. This is currently one of the major issues in CAD-PC causing most studies

in the literature to make only qualitative comparisons. Secondly, we are unable to

compare our results quantitatively with the actual prospective clinical performance

due to absence of radiologist performance in our dataset. Nevertheless, the stud-

ies in [46, 231] suggest that a radiologist performance ranging between Az=80% to

86%. Although these values are based on their datasets, this roughly indicates that

CAD-PC have the potential to assist radiologists as a second or first reader setting

[46]. Thirdly, since our study employed 11 different classifiers to get the best possible

results, performing parameter optimisation for each of the classifiers is time consum-

ing and computationally expensive (therefore all parameters in this study were left

on the default settings in WEKA). However, we have made an initial investigation

regarding to this issue and included our preliminary results in Section 5.6. Finally

feature’s performance results are based on only one feature selection method (CfsSub-

setEval [327]). Therefore the results maybe different using different feature selection

methods which could be investigated in future work. However, from our experimental

results we achieved several similarities with some studies [173, 231] in terms of feature

consistency and performance particularly for F5 features.

5.8 Summary

In summary, the proposed method extracted 215 texture feature from each pixel.

Features are divided into six categories namely first-order statistical features, second-

order statistical features, Tamura’s features, gradient-based features and filter bank.

Anisotropic diffusion was applied on each median-filtered image to efficiently remove

noise and artifacts without blurring the image, hence preserving the edges and tex-

tures. Before feature selection is performed, features were normalised to [0,1] absolute

values play a role. Subsequently, we employed the CfsSubsetEval [41] attribute eval-

uator and the GreedyStepwise search method in WEKA [2] to select only relevant

features. Eleven classifiers were employed to build predictive models for the classifi-

cation of the testing data. The evaluation results show that the proposed methods
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achieved similar results to the state-of-the-art in the literature. This chapter high-

lights the following points:

1. CAD systems based on single modality T2-W MRI could achieve similar results

to those based on multiparametric MRI. From a clinical point of view a CAD

system based on T2-W MRI tends to have a lower running cost and is more

convenient for both patient and physician.

2. Combining different classifiers produce better results in Az especially when deal-

ing with high dimensional data.

3. In this study feature selection improved the performance of the developed CAD

system. This further supports an earlier study conducted by Niaf et al. [231].

4. We identified the most discriminant texture descriptors out of 215 features ex-

tracted in this study.

5. We investigated different ws and obtained optimal ws = 11×11 (with very close

results achieved at ws = 9× 9 and 13× 13).

6. We performed an initial investigation of the effect of the parameters on the

classifiers’ performances as shown in Figures 5.19, 5.18 and 5.17.

In the next chapter, a texton based CAD approach will be proposed to classify be-

nign and malignant tissues using the same machine learning techniques used in this

chapter.



Chapter 6

A Texton Based Approach in

Prostate Cancer Detection

This chapter proposes a CAD-PC methodology using textons to classify benign and

malignant tissues within the prostate peripheral zone. For this purpose square patches

are randomly extracted from malignant and benign regions. Subsequently, extracted

patches are aggregated and clustered using k-means clustering technique to generate

textons which represent both regions. All textons are combined to form the texton

dictionary which was used to construct a texton map for every peripheral zone in

the training images. Based on the texton map, histogram models for each malignant

and benign tissue sample are constructed and used as a feature vector to train our

classifiers. The proposed method was tested on 418 T2-W MR images taken from 45

patients and evaluation results show that the best three Az = 92.8% ± 5.9%, 89.5% ±
7.1% and 87.7% ± 8.6% achieved by Bayesian Network, Random Forest and C4.5

classifiers, respectively which are comparable with the state-of-the-art in the literature.

6.1 Introduction

The ultimate goal of this chapter (and thesis) is to develop a CAD tool for prostate

cancer detection within the PZ using a histogram based feature (e.g. textons). In

2013, Liu et al. showed that using histogram based features such as Local Binary

Pattern (LBP) [74] and Histogram Orientated Gradient (HOG) [334] to discriminate

benign and malignant regions in CAD-PC can achieve comparable results (Az=83%)

132
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with the other features in the literature. This was further supported by a recent study

conducted by Kwak et al. [335] whose method used LBP and its variants in conjunction

with b-value of DWI. In 2015, Lemâıtre et al. [62] conducted a review of CAD systems

based on mono and multiparametric MRI for prostate cancer detection and reported

that there are 42 studies in the literature from 2007 until 2014. Nevertheless, none of

the methods have used textons to discriminate benign and malignant tissue in their

studies. Although the term texton was first introduced in the 80’s, it did not get

much attention until a study of texture classification by Leung and Malik [159] in

2001. Later, similar studies showing promising results in texture classification were

conducted by Varma and Zisserman [1, 168] in 2005 and 2009, respectively. On

the other hand, in medical image analysis textons have been used in retinal vessel

segmentation [171] and lung cancer detection [172].

As previously discussed in Chapter 2, due to the lack of a good mathematical model

the term ‘texton’ remains unclear in the literature [170]. However, textons can be seen

as a representative of micro-structures in natural images and are considered as the

atoms of pre-attentive human visual perception [169]. Many texton based approaches

[139, 159, 336–339] in image classification used histograms as representatives of the

texture in an image. In the original approach, textons are represented by means

of a collection of filter bank responses obtained from large filter banks such as the

MR8 [139], LM [159], S [340] filter banks and Gabor filter [341]. All the response

vectors are collected and clustered using k -means and the resulting cluster centers are

called textons (hence, in a simplest definition textons are the k -means’ cluster centers).

Nevertheless, the study in [161] showed textons can be generated by directly clustering

the image’s pixel values from patches without the need of filter banks (hence, speeding

up the process of constructing the texton dictionary) and more robust in characterising

textures.

The study in [342] suggested there are three reasons for the relatively strong perfor-

mance of textons generated from the image’s pixels in comparison to textons generated

from the convolved image’s pixels. First, the use of filter banks reduces the number of

textons that can be extracted from a texture image [336]. For example, the number

of textons are significantly reduced when an image of 250 × 250 pixel is convolved

with a 50× 50 filter. This affects the quality of the histogram models to characterise

a particular texture (e.g. insufficient information to model the actual representation

of the texture). Second, the large number of filter banks leads to errors in the edge

localisations which may significantly change the geometry of the textons, leading to
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errors in the estimation of the texton frequency histogram [336]. Finally, most filter

banks lead to some blurring on the texture which might remove local details in the

texture hence alter the actual texton representation of the texture [336]. Motivated

from these suggestions, the proposed method in this chapter did not use any filter

banks but took the image’s pixels directly to generate textons.

The novel contributions of this chapter are:

1. This is the first CAD method which has investigated the use of textons in

classifying benign and malignant tissues within the prostate.

2. The proposed method learns directly from image pixels without the need of

using a filter bank. In comparison, most CAD-PC in the literature compute

large numbers of texture descriptors, which are computationally expensive. In

fact, computing a large number of texture descriptors also leads to an additional

essential step such as feature selection or dimensionality reduction.

6.2 An Overview of a Texton Based Approach

Figure 6.1 shows a typical texton based approach in texture image classification. To

generate histogram models representation of a particular texture class, texture images

from the same class are filtered (e.g. convolution) by a filter bank (e.g. Gabor filter,

LM, MR8, etc.) resulting in a set of filtered images. The resultant filter responses

are aggregated and clustered using the k -means algorithm to generate textons which

Figure 6.1: A general overview of a texton based approach in image classification
adapted from [1]. The original images are the training set of the same texture class.
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are stored in m× n matrix called ‘texton dictionary’. Each texton is unique and has

its own identity (id). To construct a texton map for each texture image, the image

is first convolved with a filter bank and then labelling (using texton id) each filter

response with the texton which is the most similar or closest (e.g. euclidean distance)

with the texton in the ‘texton dictionary’. In this process each pixel in the image

is replaced with the corresponding texton id. The histogram model for an image

represents the frequencies of texton ids in the texton map. The same workflow is

applied for the other texture images. This means, if there are 100 texture images in

the particular class, we will have 100 histogram models which represent the different

texture variations of the class. In the testing phase, the same procedure is applied

to generate the histogram model of the test image. Finally, the histogram model is

compared (using similarity measure e.g. X2) with each of the histogram models from

all texture classes. As we can see, the speed of typical texton based approaches are

affected by the number of convolutions in the bank filter (e.g. the number of filters).

6.3 Methodology

Figure 6.2: A general overview of the proposed method.

Figure 6.2 shows a flowchart of our proposed method. For every input image, we

roughly estimate the area of the prostate’s PZ followed by normalisation and noise

reduction. Subsequently, for every training image we randomly extract patches from

benign and malignant regions within the PZ and employed k -means clustering to

generate textons (the texton dictionary is constructed). Each pixel in every training

image is labelled with the texton to which which it lies closest, producing texton maps.

Using the texton maps, a histogram of textons (the frequency of each texton occurs)

is constructed for every pixel within the PZ . All histograms of textons from all pixels

are treated as feature vectors and used to train our classifiers. Finally, at the testing

phase, every unseen PZ is processed in the same way and the trained classifiers are

used to decide, for each pixel, whether it belongs to the benign or malignant class.



Chapter 6. CAD: A Texton Based Approach 136

6.3.1 Capturing the Peripheral Zone

To capture (or segment) the peripheral zone we employed exactly the method pre-

viously used in Chapters 4 and 5. Figure 6.3 shows example MRI images with the

Figure 6.3: Example images of prostate MRI with ground truth delineated by an
expert radiologist and the estimated PZ region under the magenta line.

ground truth of prostate gland, central zone (CZ) and tumor (T) represented in red,

yellow and green, respectively, while magenta line is the estimated boundary of PZ.

6.3.2 Pre-processing

Most of the CAD systems in the literature integrate a pre-processing step as part

of the methodology. It is an important step to remove unwanted artifacts or noise

which can affect the classification accuracy due to alteration of the actual texture’s

representation. In this method we employed a robust noise reduction method of

Perona and Malik [318] called ‘anisotropic diffusion filtering’ which was explained in

Chapter 5. Note that the anisotropic diffusion filter was applied on median filtered

images as described in [192, 204, 205] to preserve edge boundaries. Subsequently,

image intensities were normalised to zero mean unit variance and anisotropic diffusion

filtering [205, 318] was applied to remove noise.

6.3.3 Texton Dictionary

Figure 6.4 shows the workflow to construct the texton dictionary. Textons (e.g. 9× 9

square window) were retrieved from benign and malignant regions. To construct the

texton dictionary, we followed the studies of Varma and Zisserman [1, 139, 161, 168,

342]. For every PZ area in the training images we randomly extract 9 × 9 patches

of raw pixels from benign and malignant regions. Subsequently, all patches extracted

from benign regions were aggregated and clustered into textons using the k -means
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Figure 6.4: Generating the texton dictionary. Patches from the same class are
aggregated and clustered using the k -means algorithm. Blue and green patches are

malignant and benign samples, respectively.

algorithm. The same process was performed for all patches extracted from malignant

regions. To summarise the k -means algorithm [343–345]:

1. k points are selected randomly in the feature space which represent the initial

group centroids of k clusters.

2. Each object in the feature space is assigned to the cluster with the closest

centroid.

3. Recalculate the position of the k centroids when all objects are assigned.

4. Repeat Steps 2 and 3 until the centroids no longer move (until it converges).

The cluster centroids produced by the k -means algorithm are the textons. Once all

textons from both classes (benign and malignant) were generated, they were combined

to form the texton dictionary. As shown in Figure 6.4, each texton is unique and has

its own id (TX = tx1, tx2, tx3......txn) saved in a matrix which will be used to construct

the texton map for each image.

Figure 6.5: Example of textons generated from benign (bottom row) and malig-
nant (top row) regions.

Figure 6.5 shows a sample of textons extracted from both classes. Visually it can be

seen that textons generated from benign regions look smoother than the ones retrieved

from malignant regions.



Chapter 6. CAD: A Texton Based Approach 138

6.3.4 Feature Extraction

In this study, feature extraction is a process to generate histogram models for benign

and malignant tissues. This phase consists of two main stages. The first stage (Figure

6.6) is to generate the texton map, where every pixel in the image (within the PZ) is

assigned to the closest texton (using euclidean distance) in the texton dictionary. We

used a sliding window WT (blue patch in Figure 6.4) of the same size as the previous

phase and finding the shortest Euclidean distance between WT with each texton in

TX.

Subsequently, the central pixel in WT is replaced with the texton id which is the

closest to WT. This process is repeated for every pixel in the image until all pixels

are assigned with the corresponding textons ‘ids’. By the end of this stage, a texton

map is constructed for every PZ which will be used in the subsequent stages. Figure

6.7 shows examples of texton maps of three PZs generated in this phase. Each pixel

within the PZ was replaced with the corresponding texton ‘id’.

At the second stage, using the texton map we are able to generate a histogram model

for each pixel by using a sliding window of the same size in the previous stage. A his-

togram for each pixel is constructed based on the occurrence of each texton’s frequency

within the neighborhood of the central pixel (including the central pixel). Figure 6.8

shows an example of constructing a histogram for each pixel. In this example, there

are 10 textons (5 textons for each class) in the dictionary and each histogram of a tis-

sue is constructed based on 5×5 window size; this means the histogram is constructed

based on the texton frequency within 25 pixels (or 81 pixels for a 9× 9 window size).

Note that every histogram is normalised to unity. This yields a histogram for each

tissue in the training image which is used as a feature vector representing every pixel.

To this end, each pixel is represented in a txt dimensional feature space where txt is

Figure 6.6: A graphical illustration on how to construct a texton map of an image.
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Figure 6.7: Examples of texton maps of three PZs taken from three different
prostates.

Figure 6.8: Constructing a histogram for each pixel from the texton map.

the number of textons in the dictionary (10 in this example). Similarly, if there are

30 textons (15 textons per class), each pixel is represented in a 30 dimensional feature

space. It should be noted that the data dimension is independent of WT.Finally, the

constructed histogram for each pixel will be treated as feature vector in the training

and testing phases.

6.4 Experimental Settings

This section presents the specification of the MR scanner and dataset used in this

thesis.

6.4.1 Materials and Dataset

Our dataset consists of 418 T2-W MR images taken from 45 patients aged 54 to 74 (all

patients had biopsy-proven prostate cancer). Each patient has between 6 to 13 slices

covering the top to the bottom of the prostate gland. The prostate gland, malignant

and transitional zone were delineated by an expert radiologist with more than 10 years

experience in prostate MRI. All sequences with prostate cancer cases were confirmed

malignancies based on TRUS biopsy reports. All malignant regions annotated cases

were clinically significant cancer (Gleason score grade 7 and above). All patients

underwent T2-W MR imaging at the Department of Radiology at the Norfolk and

Norwich University Hospital, Norwich, UK. MR acquisitions were performed prior to
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radical prostatectomy. All images were obtained on a 1.5 Tesla magnet (Sigma, GE

Medical Systems, Milwaukee, USA) using a phased array pelvic coil, with a 24 × 24

cm field of view, 512 × 512 matrix, 3mm slice thickness, and 0.5mm inter-slice gap.

Approximately 60% of the source code was written in Matlab 2012a and 40% was

written in Java. All experiments were run under the Window 7 operating system

with an Intel core i5 processor.

6.4.2 Training and Testing

All pixels within the radiologist’s tumor annotation were extracted as prostate cancer

samples. This area was truncated by the tumor mask, to ensure no pixels outside

the tumor region were included in the malignant samples. On the other hand, all

pixels outside the tumor region and within the PZ were considered benign samples.

Similarly, this region is truncated by the tumor and prostate gland masks to ensure

no pixels within the tumor region and outside the prostate gland were included as

benign samples. A stratified nine runs 9-fold cross-validation (9-FCV) scheme was

employed. The folds were populated on a patient basis to ensure no samples from the

same patient were used in the training and testing phases. We chose 9 folds instead of

10 folds to ensure each fold has the same number of patients (45 patients in our case,

hence each fold contains 5 patients). Each classifier was trained and in the testing

phase, for every unseen instance/pixel from the testing data (taken from 5 randomly

selected patients) was classified as malignant or non-malignant.

6.5 Experimental Results

In this study the experimental results are divided into three categories: performance

based on classifiers, performance using different window (or patch) sizes and perfor-

mance using different number of textons. The performances were measured using

the most popular metrics in the literature: Area Under the Curve (Az, also known

as AUC), Classification Accuracy (CA), Sensitivity (Sen) and Specificity (Spe). Az

indicates the trade-off between the true positive rate against the false positive rate,

where CA represents the number of pixel classified correctly. On the other hand,

Sen and Spe measure the proportion of actual positives and negatives which are cor-

rectly identified, respectively (in this case the percentage of malignant pixels which

are correctly identified). Sensitivity, specificity and accuracy can be calculated as
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Sen = TP
TP+FN

, Spe = TN
TN+FP

and CA = TP+TN
TN+TP+FP+FN

, respectively. TP and FP

denote the number of true positives and false positives, respectively. Similarly, TN

and FN indicate the numbers of true negatives and false negatives. On the other

hand, p values indicate the significant difference for all metrics (Az, CA and Sen)

between the best classifier in comparison to the other classifiers.

6.6 Overall Results

This section summarises the overall results. Table 6.1 and 6.2 show that best Az,

CA, Sen and Spe for all classifiers regardless of the ws and txt. Overall, BNet

classifier with Az=92.8% and CA=84% outperformed the other classifiers in both

metrics, which is statistically significant against all classifiers except the CA of the

RF classifier. This means, RF classifier produced the second best results in both

metrics with Az=89.5% and CA=81.1% at ws = 11× 11 and txt = 6. The lowest Az

was produced by the NB classifier with just above 82%. In comparison, all classifiers

achieved Az>82% but in terms of accuracy most classifiers achieved CA<80%. On

the other hand, the overall results show that best results for all classifiers employed

were achieved using either ws = 9× 9 or 11× 11 and txt = 6 or 16. Considering the

best Az values of all classifiers, results suggest that the proposed method can achieve

similar performances to the other CAD-PC in the literature. Furthermore, based on

the best Az, our method qualitatively outperformed most of the existing methods.

Nevertheless, in terms of accuracy there is space for improvement. Table 6.3 presents

the statistical significance in a hypothesis test between the best Az and CA against

the other results regardless of the ws and txt.

Figure 6.9 shows the segmentation results produced using different classifiers. The

RF and MLP classifiers produced good accuracy covering most area of the malignant

region. In comparison to the features used in Chapter 5, the k-NN and SVM classifiers

performed better than the NB and ADtree classifiers in this case.

Figure 6.10 shows another example of segmentation results in a more difficult case

(the malignant region is obscure and the size of the PZ is small). In this example,

the RF classifier again produced the highest accuracy followed by the k-NN classi-

fier. The BNet and NB classifiers generated reasonable segmentation results but poor

segmentation results of the SVM and SL classifiers with both have large false positives.
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Figure 6.9: Example 1: Segmentation results using different machine learning
algorithms.

Figure 6.10: Example 2: Segmentation results using different machine learning
algorithms.
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Table 6.1: The best Az and CA for all classifiers regardless of the ws and number
of textons (txt) in the texton dictionary.

Az (%) CA (%)

ADTree 83.8 ± 11.9 (ws = 9× 9, txt = 6) 75.3 ± 13.6 (ws = 11× 11, txt = 16)

BNet 92.8 ± 5.9 (ws = 11× 11, txt = 16) 84.0 ± 7.0 (ws = 11× 11, txt = 16)

C4.5 87.9 ± 8.6 (ws = 11× 11, txt = 6) 78.6 ± 10.5 (ws = 11× 11, txt = 6)

k -NN 86.9 ± 7.5 (ws = 9× 9, txt = 6) 80.2 ± 9 (ws = 11× 11, txt = 6)

MLP 85.6 ± 9.3 (ws = 11× 11, txt = 16) 76.2 ± 11.5 (ws = 11× 11, txt = 16)

NB 82.5 ± 11.1 (ws = 11× 11, txt = 16) 76.7 ± 15.4 (ws = 11× 11, txt = 16)

RF 89.5 ± 7.1 (ws = 11× 11, txt = 6) 81.1 ± 9.3 (ws = 11× 11, txt = 6)

SL 81.4 ± 10.6 (ws = 9× 9, txt = 24) 75.7 ± 14.2 (ws = 11× 11, txt = 16)

Table 6.2: The best Sen and Spe for all classifiers regardless of the ws and number
of textons (txt) in the texton dictionary.

Sen (%) Spe (%)

ADTree 81.2 ± 10.8 (ws = 9× 9, txt = 6) 84.6 ± 12.7 (ws = 9× 9, txt = 6)

BNet 86.7 ± 6.5 (ws = 11× 11, txt = 16) 93.6 ± 6.7 (ws = 11× 11, txt = 6)

C4.5 86.2 ± 8.9 (ws = 11× 11, txt = 6) 87.5 ± 11.2 (ws = 11× 11, txt = 6)

k -NN 84.7 ± 8.2 (ws = 9× 9, txt = 6) 88.3 ± 9.4 (ws = 11× 11, txt = 6)

MLP 85.8 ± 10.4 (ws = 11× 11, txt = 16) 84.8 ± 10.8 (ws = 11× 11, txt = 16)

NB 83.8 ± 10.9 (ws = 11× 11, txt = 16) 83.6 ± 15.4 (ws = 11× 11, txt = 16)

RF 86.3 ± 7.6 (ws = 11× 11, txt = 6) 92.6 ± 8.3 (ws = 11× 11, txt = 6)

SL 78.6 ± 12.6 (ws = 9× 9, txt = 16) 82.1 ± 15.2 (ws = 9× 9, txt = 16)

6.6.1 Results for all Classifiers

This section presents the results for all classifiers based on the the ws and txt param-

eters. One of the main challenges in developing a texton based approach in texture

classification is finding the best ws and txt as these parameters can influence the final

results. For this purpose, we used the following ws = 3×3, 5×5, 7×7, 9×9, 11×11 and

13×13 (top row). On the other hand, we tested the following txt = 6, 10, 12, 16, 20, 24

and 30 (left column). Note that these numbers represent the number of textons for

both classes (e.g. txt = 6, 3 textons for benign and 3 textons for malignant class).

Tables 6.4 and 6.5, shows Az and CA results, respectively using ADTree classifier
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Table 6.3: The p values between the best Az and CA against the other results
regardless of the ws and txt.

Az CA Sen Spe

ADTree p <0.0001 p=0.00013 p=0.0034 p <0.0001

BNet - - - -

C4.5 p=0.0016 p=0.004 p=0.7642 p=0.0017

k -NN p <0.0001 p=0.025 p=0.2005 p=0.0021

MLP p <0.0001 p=0.0001 p=0.6241 p <0.0001

NB p <0.0001 p=0.0038 p=0.126 p <0.0001

RF p =0.016 p=0.095 p=0.7872 p=0.5287

SL p <0.0001 p=0.0004 p=0.0001 p <0.0001

which produced best Az=83.2% and CA=75.3%. At the smaller ws, the classifiers

produced Az ranging from 71% to 79% with slightly better at ws = 7 × 7 compared

to ws = 3 × 3. It produced the best Az at 9 × 9 (Az>80% regardless to the number

of textons).

The results for the best classifier in the proposed methods can be found in Tables

6.6 and 6.7. The BNet classifier performed best when features were extracted using a

larger ws (e.g. 11 × 11). At ws = 11 × 11 and txt = 16 the BNet outperformed the

other predictive models with Az=92.8% and CA=84%. At ws = 13 × 13 the BNet

predictive model decreased 1.5% and on average it can also be seen that all Az and

CA went down regardless to the number of textons. One noticeable pattern can be

seen from the results in Tables 6.6 and 6.7 is at ws = 3 × 3 until 11 × 11 the the

Table 6.4: Az (%) values for ADTree classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 74.6 ± 11.9 77.3 ± 12.1 79.4 ± 12.4 83.8 ± 10.8 83.2 ± 10.6 82.3 ± 10.7

10 74.3 ± 11.1 76.5 ± 11.9 77.6 ± 13.0 82.9 ± 9.8 80.7 ± 10.7 80.2 ± 9.9

12 74.5 ± 11.2 75.9 ± 11.9 77.3 ± 12.2 81.9 ± 9.7 80.2 ± 11.5 80.0 ± 10.7

16 73.8 ± 11.5 76.2 ± 11.7 77.0 ± 12.0 82.1 ± 10.7 82.5 ± 9.6 81.3 ± 10.2

20 73.1 ± 11.2 75.1 ± 11.3 76.1 ± 10.1 81.6 ± 10.2 76.5 ± 12.9 76.3 ± 11.9

24 72.6 ± 11.6 75.6 ± 11.9 75.6 ± 11.8 80.9 ± 9.9 76.6 ± 12.1 75.9 ± 11.5

30 72.3 ± 11.1 74.3 ± 12.0 75.1 ± 12.1 80.7 ± 10.9 76.3 ± 12.6 75.5 ± 11.7
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range of Az value increased around 4% to 5% at each ws and gradually decreased at

13 × 13. In terms of the number of textons, it did not effect the performance much

on both metrics.

In comparison to the previous method in Chapter 5, the C4.5 classifier performed

very well in this method with Az=87.9% and CA=78.6% as shown in Tables 6.8 and

6.9, respectively. The Az value gradually increased from the smallest ws until 11× 11

which is similar to the previous classifiers. Nevertheless, there is no clear pattern of

changes in terms of accuracy as most CA values are between the range of 72% to 75%

regardless of ws and txt.

Another classifier which performed quite well in comparison to the features extracted

in the previous chapter is k-NN with Az=86.7% and CA=80.2% as shown in Table

6.10 and 6.11, respectively. In terms of area under the curve, the classifier performed

better with smaller number of textons regardless of the ws. This can be seen in Table

6.10 when most Az values are above 80% at txt = 6. As the txt value increases the

Az value decreases to around 70%. The lowest accuracy was produced at the largest

ws of 13× 13 with 30 textons in the texton dictionary.

Tables 6.12 and 6.13 show the results of MLP classifiers. Regardless of ws and txt, the

results show that the MLP classifier performed 1.4% and 7.9% worst than its previous

Az and CA, respectively in the previous chapter. For instance, the best CA=76.2%

at ws = 11× 11 and txt = 16, whereas in the previous chapter its best Az=84.1% at

15× 15 and on the same ws it produced 81%. Nevertheless, regardless of the number

of textons on average its best Az=84.4% at 9× 9.

Table 6.5: CA (%) values for ADTree classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 70.4 ± 18.2 71.0 ± 13.3 70.3 ± 14.6 71.9 ± 15.1 72.7 ± 14.6 70.9 ± 15.1

10 73.0 ± 18.3 69.5 ± 15.6 68.2 ± 14.4 69.7 ± 16.7 70.7 ± 16.3 70.1 ± 15.5

12 72.5 ± 18.6 70.8 ± 15.4 67.4 ± 14.9 69.3 ± 12.8 70.5 ± 16.3 70.3 ± 16.1

16 72.4 ± 19.2 68.6 ± 16.1 66.9 ± 15.4 69.3 ± 10.7 75.3 ± 13.6 74.3 ± 12.9

20 72.4 ± 19.9 68.3 ± 16.2 68.5 ± 14.5 69.2 ± 14.9 69.8 ± 16.2 68.3 ± 15.3

24 72.1 ± 20.7 68.1 ± 17.5 65.8 ± 16.3 70.0 ± 14.9 68.4 ± 16.8 67.1 ± 16.1

30 70.6 ± 21.7 63.9 ± 21.1 65.3 ± 15.1 69.1 ± 15.1 69.7 ± 16.8 68.1 ± 15.3
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Table 6.6: Az (%) values for BNet classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 74.4 ± 11.9 79.2 ± 11.5 83.7 ± 10.7 89.5 ± 7.9 90.8 ± 7.8 89.4 ± 7.7

10 75.4 ± 11.5 80.1 ± 11.4 84.3 ± 10.2 90.3 ± 6.7 92.0 ± 6.9 91.3 ± 7.5

12 75.5 ± 11.5 80.2 ± 11.0 84.8 ± 10.1 90.0 ± 7.1 91.6 ± 6.1 90.7 ± 6.9

16 75.4 ± 11.5 81.7 ± 10.6 85.0 ± 9.9 90.9 ± 7.1 92.8 ± 5.9 91.3 ± 5.7

20 75.5 ± 11.4 80.5 ± 11.2 85.3 ± 9.7 90.8 ± 7.0 91.4 ± 6.0 90.7 ± 5.9

24 75.3 ± 11.4 80.9 ± 11.5 85.4 ± 9.6 90.8 ± 6.8 91.5 ± 6.3 90.1 ± 6.1

30 76.3 ± 10.8 81.0 ± 10.9 84.2 ± 8.9 90.9 ± 7.3 91.8 ± 5.9 91.1 ± 6.0

Table 6.7: CA (%) values for BNet classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 67.2 ± 15.8 70.0 ± 15.2 73.6 ± 13.2 78.6 ± 10.2 80.5 ± 10.8 78.1 ± 10.2

10 69.1 ± 13.2 70.4 ± 14.1 74.0 ± 12.4 80.1 ± 9.9 83.0 ± 8.5 82.3 ± 9.5

12 68.1 ± 13.3 70.4 ± 14.5 74.5 ± 11.7 80.3 ± 10.1 82.1 ± 10.1 81.7 ± 10.2

16 67.4 ± 14.1 72.3 ± 14.2 75.1 ± 11.8 81.4 ± 8.9 84.0 ± 7.0 82.8 ± 7.5

20 67.2 ± 14 70.2 ± 14.8 75.7 ± 12.6 81.9 ± 8.0 82.0 ± 8.9 81.5 ± 8.3

24 67.5 ± 13.7 71.6 ± 14.6 75.6 ± 12.1 81.4 ± 8.9 83.0 ± 8.3 82.3 ± 8.9

30 68.0 ± 12.7 70.8 ± 14.3 75.3 ± 11.9 81.8 ± 8.2 82.8 ± 8.7 81.9 ± 7.9

Table 6.8: Az (%) values for C4.5 classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 71.6 ± 10.8 78.7 ± 11.6 82.4 ± 11.5 87.6 ± 8.7 87.9 ± 8.6 86.2 ± 8.3

10 74.4 ± 11.2 80.0 ± 11.1 83.1 ± 10.1 87.1 ± 7.9 85.2 ± 8.5 84.1 ± 8.1

12 75.5 ± 10.6 80.3 ± 10.7 82.8 ± 10.2 85.9 ± 7.7 83.3 ± 8.4 82.3 ± 7.9

16 76.1 ± 10.7 80.9 ± 11.1 81.2 ± 10.0 84.3 ± 7.9 82.4 ± 8.4 81.1 ± 8.3

20 75.4 ± 10.2 79.7 ± 10.7 80.0 ± 9.8 81.8 ± 7.4 76.9 ± 8.1 75.7 ± 7.7

24 75.4 ± 10.4 79.5 ± 10.8 77.9 ± 9.3 80.5 ± 7.2 75.7 ± 8.9 74.5 ± 8.8

30 70.2 ± 9.8 78.1 ± 10.2 77.8 ± 9.1 77.6 ± 6.9 74.2 ± 9.2 73.2 ± 9.3

The NB classifier is among the simplest and fastest classifier employed in the proposed

method. The results shown in Tables 6.14 and 6.15 indicate that the NB classifier

produced an acceptable performance with the best Az=82.5% and CA=76.7%. In
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Table 6.9: CA (%) values for C4.5 classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 71.2 ± 17.6 74.4 ± 11.5 74.2 ± 11.9 76.8 ± 10.6 78.6 ± 10.5 75.2 ± 10.5

10 74.7 ± 15.5 74.6 ± 12.2 74.8 ± 9.3 76.3 ± 10.1 76.5 ± 11.3 74.3 ± 11.6

12 74.6 ± 15.2 75.8 ± 11.2 74.8 ± 9.7 75.4 ± 10.4 75.7 ± 11.7 73.3 ± 11.1

16 74.5 ± 14.8 75.4 ± 11.4 73.7 ± 9.4 75.4 ± 9.9 77.7 ± 10.4 75.7 ± 10.1

20 74.5 ± 15.2 74.8 ± 10.3 73.2 ± 8.9 74.5 ± 9.1 72.5 ± 10.7 70.5 ± 10.8

24 74.5 ± 14.9 74.0 ± 10.6 72.1 ± 8.9 74.0 ± 9.2 72.0 ± 10.7 71.3 ± 10.5

30 73.6 ± 15.1 73.4 ± 10.3 71.3 ± 9.3 73.0 ± 8.6 71.2 ± 10.6 70.6 ± 10.1

Table 6.10: Az (%) values for k -NN classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 76.3 ± 11.3 80.2 ± 11.3 82.7 ± 9.9 86.9 ± 7.5 85.2 ± 7.1 85.6 ± 7.4

10 77.3 ± 10.6 80.0 ± 10.1 80.8 ± 9.1 83.5 ± 6.8 80.1 ± 7.9 79.1 ± 7.9

12 77.5 ± 10.7 79.4 ± 9.6 78.3 ± 8.7 80.4 ± 7.5 79.0 ± 8.5 78.8 ± 8.3

16 77.4 ± 10.5 77.0 ± 9.4 74.8 ± 8.4 77.3 ± 7.4 77.7 ± 8.2 76.6 ± 8.1

20 76.4 ± 10.2 73.6 ± 8.6 72.2 ± 8.4 75.5 ± 7.4 72.8 ± 8.4 74.0 ± 8.9

24 76.0 ± 10.2 71.7 ± 8.3 70.1 ± 7.8 74.5 ± 7.9 71.6 ± 9.2 69.9 ± 9.5

30 75.1 ± 9.4 69.8 ± 8.1 69.8 ± 7.3 73.1 ± 7.4 70.7 ± 9.1 69.8 ± 9.3

Table 6.11: CA (%) values for k -NN classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 71.2 ± 17.6 74.8 ± 11.3 74.3 ± 11.2 78.1 ± 9.6 80.2 ± 9.1 78.9 ± 9.3

10 74.9 ± 15.4 74.7 ± 11.7 74.2 ± 9.1 75.9 ± 8.5 74.3 ± 9.9 76.3 ± 9.4

12 75.0 ± 14.9 75.5 ± 10.8 73.2 ± 8.7 74.3 ± 8.5 73.6 ± 10.1 72.1 ± 10.3

16 74.6 ± 14.5 73.4 ± 10.3 71.1 ± 8.5 73.1 ± 8.3 74.3 ± 9.6 73.2 ± 9.8

20 74.5 ± 14.7 72.2 ± 9.5 69.6 ± 8.2 71.8 ± 8.0 70.0 ± 9.6 69.3 ± 9.7

24 74.5 ± 14.4 71.1 ± 9.6 68.7 ± 8.4 71.4 ± 8.4 68.9 ± 10.1 68.5 ± 10.4

30 73.3 ± 13.9 69.9 ± 9.3 67.8 ± 8.5 70.6 ± 8.2 68.5 ± 10.5 67.7 ± 10.6

terms of accuracy, results using small ws (e.g. 3× 3 and 5× 5) indicate poor perfor-

mance of below 65%. It produced good results when employed in the previous method

(Chapter 5) with Az=87.3% and 86.9% at ws = 9× 9 and 11× 11, respectively. On
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Table 6.12: Az (%) values for MLP classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 73.1 ± 12.4 70.5 ± 16.2 79.8 ± 12.3 85.1 ± 10.7 84.0 ± 10.3 81.3 ± 10.9

10 74.8 ± 11.4 77.8 ± 11.9 79.1 ± 12.3 85.0 ± 9.1 83.1 ± 11.0 80.9 ± 11.3

12 75.0 ± 11.5 77.5 ± 11.8 80.0 ± 11.4 84.4 ± 9.2 83.1 ± 10.0 80.5 ± 11.1

16 75.3 ± 11.1 78.1 ± 12.2 79.1 ± 13.1 84.5 ± 9.4 85.6 ± 9.3 82.2 ± 9.8

20 75.7 ± 11.7 77.2 ± 12.2 78.0 ± 12.2 84.3 ± 9.2 80.5 ± 10.9 79.8 ± 10.8

24 76.1 ± 12.2 77.7 ± 12.4 78.2 ±11.8 84.1 ± 9.3 80.5 ± 11.4 79.3 ± 11.3

30 75.9 ± 11.9 77.5 ± 11.4 78.3 ± 11.2 83.7 ± 9.5 79.8 ± 11.8 78.5 ± 12.0

Table 6.13: CA (%) values for MLP classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 70.5 ± 21.4 75.8 ± 13.6 70.7 ± 15.1 72.4 ± 13.3 72.8 ± 14.8 70.2 ± 14.2

10 71.6 ± 19.6 71.0 ± 14.5 67.6 ± 15.1 73.4 ± 11.6 71.5 ± 14.6 69.3 ± 15.7

12 72.2 ± 18.4 71.6 ± 13.8 70.0 ± 13.3 71.3 ± 11.7 71.4 ± 14.8 69.8 ± 15.5

16 71.8 ± 18.5 70.8 ± 13.5 69.7 ± 13.1 71.5 ± 12.5 76.2 ± 11.5 72.0 ± 12.2

20 71.5 ± 18.1 71.2 ± 12.9 68.6 ± 12.9 71.6 ± 11.1 71.8 ± 12.7 68.8 ± 13.9

24 70.9 ± 19.1 70.7 ± 13.5 68.3 ± 13.7 72.3 ± 11.1 71.0 ± 13.3 68.3 ± 13.7

30 70.5 ± 18.8 70.6 ± 13.3 68.5 ± 12.3 72.1 ± 10.9 70.2 ± 12.7 67.8 ± 14.2

average, using the same scales the NB classifier produced Az=81.5% and 78% which

is statistically significant (p < 0.01).

Tables 6.16 and 6.17 show the results of the second best classifier in our experiments

which is the RF. In terms of Az, the RF performed best at larger scales (e.g. 9 × 9

and 11 × 11) with txt = 6 or 10. In our experiment, using the maximum number

of texton (txt = 30) decreased the Az from 89.5% to 81.6%, which was statistically

significant (p < 0.001). However, at ws = 3 × 3 the Az values show a very small

variation (σ = 0.53) regardless of txt. On the other hand, both metrics are highest at

ws = 11× 11 and lowest at ws = 5× 5.

Finally, Tables 6.18 and 6.19 show the results of SL classifier. The results show

an acceptable performance with best Az=81.4% and CA=75.7%. On average, the

SL classifier better Az at ws = 9 × 9 but produced better CA at ws = 11 × 11.

Interestingly, in terms of accuracy, it has better performance on average at ws = 3×3
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Table 6.14: Az (%) values for NB classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 74.3 ± 12.4 75.8 ± 13.6 76.6 ± 14.8 82.2 ± 12.3 80.0 ± 12.7 79.9 ± 12.3

10 74.9 ± 11.6 76.7 ± 12.7 76.4 ± 13.8 82.0 ± 10.6 79.1 ± 12.5 78.5 ± 12.8

12 75.3 ± 11.7 76.3 ± 12.3 76.7 ± 13.8 81.6 ± 11.1 82.5 ± 11.1 80.1 ± 11.3

16 74.6 ± 11.8 75.8 ± 12.7 76.7 ± 13.1 81.3 ± 11.1 74.8 ± 19.8 75.3 ± 20.1

20 74.6 ± 11.8 75.8 ± 12.7 76.7 ± 13.1 81.3 ± 11.1 74.8 ± 19.8 75.3 ± 20.1

24 74.5 ± 11.4 76.4 ± 12.4 76.1 ± 13.0 80.8 ± 10.9 75.3 ± 14.9 74.3 ± 15.3

30 74.9 ± 10.5 75.8 ± 11.8 75.7 ± 12.7 81.5 ± 11.4 75.7 ± 13.6 73.2 ± 14.6

Table 6.15: CA (%) values for NB classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 62.8 ± 17.9 63.2 ± 18.6 64.1 ± 20.0 65.3 ± 17.8 70.0 ± 19.6 67.3 ± 19.2

10 60.0 ± 18.6 62.7 ± 19.3 64.5 ± 20.0 68.7 ± 13.9 71.1 ± 19.4 70.2 ± 19.6

12 60.1 ± 18.8 61.5 ± 19.6 64.4 ± 19.5 69.3 ± 13.0 71.6 ± 18.9 70.5 ± 18.2

16 59.9 ± 18.9 64.2 ± 18.7 64.4 ± 19.5 70.3 ± 17.5 76.7 ± 15.4 71.1 ± 15.3

20 60.2 ± 18.7 61.6 ± 19.4 64.8 ± 20.0 69.4 ± 17.4 69.0 ± 19.8 67.5 ± 17.5

24 61.0 ± 18.5 64.2 ± 18.9 64.7 ± 19.5 69.6 ± 17.2 69.3 ± 19.9 67.3 ± 18.1

30 61.5 ± 18.3 63.1 ± 19.0 64.5 ± 19.3 68.7 ± 18.2 70.2 ± 19.1 68.1 ± 19.2

Table 6.16: Az (%) values for RF classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 76.3 ± 11.3 80.3 ± 11.3 83.6 ± 9.8 88.2 ± 7.4 89.5 ± 7.1 86.2 ± 8.1

10 77.3 ± 10.5 80.6 ± 9.9 83.0 ± 8.8 87.2 ± 6.6 86.7 ± 7.8 85.5 ± 8.2

12 77.6 ± 10.6 80.4 ± 9.6 81.9 ± 8.7 85.7 ± 6.7 86.0 ± 8.0 82.7 ± 7.9

16 77.5 ± 10.5 79.5 ± 9.3 80.4 ± 8.7 85.1 ± 7.5 86.3 ± 8.1 83.6 ± 8.2

20 76.9 ± 10.2 77.3 ± 9.1 79.3 ± 8.9 84.4 ± 7.4 82.6 ± 8.9 81.1 ± 8.2

24 76.6 ± 10.1 76.9 ± 8.9 78.8 ± 9.1 83.9 ± 7.6 82.0 ± 9.4 81.3 ± 9.5

30 76.2 ± 9.4 75.9 ± 9.1 78.3 ± 9.9 83.4 ± 8.4 81.6 ± 9.7 80.9 ± 8.9
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Table 6.17: CA (%) values for RF classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 71.2 ± 17.5 74.9 ± 11.3 74.6 ± 10.9 78.4 ± 9.6 81.1 ± 9.3 77.8 ± 9.8

10 74.8 ± 15.4 74.8 ±11.7 75.2 ± 8.9 77.7 ± 8.7 77.5 ± 9.9 75.3 ± 9.5

12 75.0 ± 14.9 75.9 ± 10.6 74.9 ± 8.9 76.9 ± 8.7 77.8 ± 9.0 74.3 ± 8.9

16 74.6 ± 14.5 74.5 ± 10.1 73.9 ± 8.8 76.3 ± 8.7 77.0 ± 10.0 75.1 ± 9.5

20 74.6 ± 14.6 74.0 ± 9.4 73.4 ± 8.6 75.3 ± 8.2 74.0 ± 9.7 73.0 ± 9.3

24 74.7 ± 14.2 73.6 ± 9.7 72.7 ± 9.1 75.2 ± 8.4 73.0 ± 10.2 74.0 ± 10.3

30 73.6 ± 13.6 73.1 ± 9.7 72.5 ± 9.3 74.3 ± 8.6 72.1 ± 11.0 72.2 ± 10.8

Table 6.18: Az (%) values for SL classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 53.1 ± 6.2 71.7 ± 14.2 72.6 ± 16.0 80.5 ± 10.3 76.9 ± 14.6 74.3 ± 14.9

10 70.3 ± 13.4 74.1 ± 13.3 74.7 ± 14.0 80.6 ± 11.7 76.9 ± 12.9 74.1 ± 14.3

12 71.8 ± 11.9 74.2 ± 12.4 75.6 ± 13.5 79.8 ± 10.8 77.1 ± 12.8 76.1 ± 12.3

16 72.6 ± 11.5 75.8 ± 12.3 76.1 ± 12.9 80.6 ± 11.2 81.2 ± 11.5 80.2 ± 11.3

20 72.8 ± 11.7 75.1 ± 12.1 75.8 ± 12.9 80.9 ± 10.9 74.5 ± 14.6 73.2 ± 15.1

24 73.3 ± 11.5 75.8 ± 12.6 75.6 ± 12.8 81.4 ± 10.6 75.8 ± 14.4 74.1 ± 14.1

30 74.3 ± 11.1 75.5 ± 12.1 75.3 ± 12.9 80.9 ± 11.7 75.6 ± 13.3 73.4 ± 12.9

Table 6.19: CA (%) values for SL classifier.

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

6 71.7 ± 20.4 69.9 ± 16.8 65.7 ± 16.1 68.2 ± 16.3 67.2 ± 18.1 66.1 ± 19.1

10 71.0 ± 22.2 69.4 ± 16.1 64.2 ± 15.3 67.7 ± 15.6 70.6 ± 19.1 69.3 ± 19.3

12 71.9 ± 19.1 70.1 ± 13.6 66.5 ± 12.5 67.3 ± 14.6 71.0 ± 17.8 68.3 ± 18.2

16 72.0 ± 18.7 69.3 ± 14.6 66.9 ± 13.2 68.0 ± 15.0 75.7 ± 14.2 71.5 ± 14.5

20 72.1 ± 18.7 68.9 ± 13.9 66.2 ± 12.0 68.8 ± 14.2 69.0 ± 18.2 67.8 ± 18.3

24 71.8 ± 18.6 68.3 ± 14.7 65.8 ± 12.6 68.4 ± 13.7 68.3 ± 18.5 67.6 ± 18.7

30 71.4 ± 18.7 68.2 ± 14.1 64.3 ± 14.3 69.5 ± 13.6 69.0 ± 17.2 68.1 ± 17.8
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in comparison to the other scales. However, in terms of Az all results show around

80% regardless to txt at ws = 9× 9.

6.7 Parameter Optimisation

Similar in Chapter 5, we tested the performances of three classifiers (k−NN, ADTree

and RF) when the parameters of the classifiers are varied. The same parameter ranges

were used as mentioned in 5.6.

Figure 6.11 shows results for Az and CA when k is varied from 1 to 41. The data

was extracted using ws = 11 × 11 and txt = 12 (6 texton per class). In terms of

classification accuracy no significant difference was noticed as all CA were between

72% to 74%. Nevertheless, there was a significant difference in terms of Az at k = 1

and k = 5. The Az increased to just below 84% as the k increases in comparison to

k = 1 where the Az value is around 79%.

On the other hand, Figure 6.12 shows the results for the ADTree classifier using 22

different nB values. The classifier produced Az ≤ 80% and CA ≤ 70% at nB ≤ 9. At

the default nB given in WEKA [2] produced around Az=83% and CA=73%. At nB ≥

Figure 6.11: The Az and CA values using different k values for the k-NN classifier.
Default k = 1 in WEKA.
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Figure 6.12: The Az and CA values using different nB values for the ADTree
classifier. Default nB = 10 in WEKA.

Figure 6.13: The Az and CA values using different rF values for the RF classifier.
Default rF = 100 in WEKA.
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11 both metrics change around 1% before they gradually increase at nB ≥ 17 and

reaches Az ≤ 83% and CA ≤ 73%. As shown in Figure 6.12, the classifier produced

the best Az and CA at nB = 10. Our explaination for this behaviour are two-fold: first

it may be caused that an optimal model for the data was achieved at nB = 10 which

means adding more boosting iteration resulting an overfitting model and secondly

adding more boosting iteration decreases the training error but increases the test error

which affects the overall accuracy. In an early study conducted by the original authors,

Freund and Manson [306] showed that a significant test error was encountered at

nB > 10. In Figure 6.13, the RF classifier achieved the highest Az=91% at rF = 50

with Az just above 82% with rF = 85. Overall, there is no significance difference for

both performance metrics using rF = 5 to 165, the CA=80%-82% and Az=89%-91%.

In this section, one visible pattern for all the classification results is after an optimal

model (or optimal parameter) is achieved both metrics showed very little change in

percentage (almost no difference) which may be caused by the size of our data (more

than 150,000 instances). For example 100 misclassified instances has very little effect

on the percentage.

6.8 Discussion

In our experiments, the results suggest that the number textons in the dictionary has

a significant effect on both Az and CA. For example ADTree, C4.5, k-NN and RF

classifiers produced better results with smaller number of txt value. In contrast, the

BNet and MLP classifiers performed better with txt = 16 or 20, whereas the SL and

NB classifiers were not affected much by the number of texton in the dictionary. Both

metrics are highly influenced by the ws used to construct the histograms (treated as

feature vector) from the texton maps which is similar to the previous method proposed

in Chapter 5. Furthermore, using the maximum value of ws (in our case 13 × 13),

reduced the performance on both metrics. In terms of selecting the best ws and txt,

most classifiers performed well at 9 × 9 and 11 × 11 with 6 or 16 textons (3 and 8

textons per class, respectively).

At a smaller ws, features are unable to characterise the actual texture (or in our case

the texton distribution) as smaller ws tends to capture noise. On the other hand, at

a larger ws (e.g. 9 × 9) features tend to be more reliable because ‘noisy pixels’ are

shrunk due to dominating ‘reliable pixels’ (e.g. malignant pixels). However, when

using a large ws (e.g. 13× 13), the performance tends to decrease because the chance
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of mixing up pixels from benign or malignant class is higher, hence altering the actual

feature’s representation of a particular class. On the other hand, the number of textons

affects the complexity of the predictive model built by the classifier. For example

using smaller number of textons yields to a less complex data (e.g. RF and ADTree)

and reduces the amount of error in finding the boundary between two classes, hence

increases the accuracy. In some classifiers using a slightly larger number of textons

results a better classification models (e.g. BNet and MLP) due to the increase layers

created in the model which lead to a better classification.

There are two main advantages of the proposed method: first it bypasses the typical

feature extraction algorithm such filtering and convolution which can be computation-

ally expensive and secondly it does not need the additional step of feature selection

as the number of textons are already small (e.g. txt = 6 or 16). With a large number

of features (e.g. in our previous method extracted 215 features), selecting the best

features can be time consuming. Although feature selection can significantly improve

classification results, it needs to be applied with a robust feature selection algorithm

as discussed in the previous chapter and a study conducted by Niaf et al. [231]. The

results suggested that even with txt = 6, our method can produce Az>90% with the

BNet classifier and using the simplest classifier (k-NN) still can achieve around 87%.

In fact, all classifiers employed in this study produced Az>80%.

Indeed, one of the limitations of this study is that we are unable to compare the results

quantitatively with the existing methods due to absence of public datasets which is the

major problem among the research communities in CAD-PC. Nevertheless, the results

presented in this chapter further support the potential of CAD in detecting prostate

cancer and minimising clinicians’ deficiencies during the screening phase and hopefully

can provide more reliable results. Moreover, we only performed three experiments

(for three classifiers) in the parameter optimisation section and only used features

extracted using ws = 11× 11.

6.9 Summary

To summarise this chapter, we have presented the first texton based approach for

prostate cancer detection in the literature and experimental results show that all clas-

sifiers achieved Az>80% regardless of ws and txt. The best Az=92.8% was achieved
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using the BNet classifier where the RF classifier produced ≈ 90%, which is similar to

the recent method proposed in [46]. This chapter highlights the following points:

1. The proposed texton based approach performed better in comparison to the

previous method on the basis of there is no need to combine several classifiers

(e.g. Meta-Vote as previously used in Chapter 5) and there is no need to employ

feature selection as the number of features is already minimised.

2. The proposed method produced better results with small number of textons

which means our method tends to produce a less complex data and classification

model hence decreases the training and testing time for reliable results.

3. This chapter further investigated the use of ws in CAD-PC study and found

very similar results to the previous chapter (all classifiers achieved their peak

performance at 9× 9 or 11× 11).

4. The experimental results show that the expensive feature extraction methods

via filtering and convolution in CAD-PC could be bypassed by using a texton

based approach.

In the next chapter, we will qualitatively compare our results with the state-of-the-art

in the literature and discuss some of the existing methods and how our methods differ

from their methods.



Chapter 7

Qualitative Comparisons

This chapter makes qualitative comparisons with the state-of-the-art methods described

in the literature and covers the following: (a) why it is difficult to make quantitative

comparisons in CAD-PC (b) a brief review some of the existing methods (c) quali-

tative comparisons against the actual clinical performance and (d) discussion about

the performance results from different perspectives. Although it is difficult to draw

a conclusion as to which method produced superior performance, experimental results

indicate that the proposed methods in this thesis achieved similar results to the existing

methods as well as human performance.

7.1 Introduction

Despite promising results of CAD-PC in assisting radiologists in diagnostic decision

making, the major problem is the lack of publicly available datasets resulting in each

group of researchers having their own different datasets. This makes quantitative

comparisons difficult due to:

1. Differences in the type of modalities (different modalities such as T2-weighted

(T2-W) MRI, diffusion (DWI) MRI, dynamic contrast enhanced (DCE) MRI,

Magnetic resonance spectroscopy (MRS), etc.) and protocols used in the other

studies. Many of the earlier studies were based on a single modality such as

T1-W, T2-W and DCE [206, 207, 211, 346]. However, as the MRI technol-

ogy evolved most of the later CAD-PC studies were based on multiparametric

156
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MRI data, such as [46, 200, 226, 229, 231, 232, 311, 347]. This makes quan-

titative comparisons are difficult as the tissues’ numerical representations are

inconsistent in different modalities.

2. Absence of public datasets also makes quantitative comparisons among CADs

in the literature difficult. Each team of researchers has their own datasets which

cause a huge range of variability in terms of noise, acquisition protocol, the size

of the dataset (e.g. number of patients) and image quality. For example the

methods in [21, 211, 231] were evaluated based on datasets taken using 1.5 Tesla

MRI scanners whereas the studies in [45, 46, 263] were evaluated on datasets

taken from 3.0 Tesla MRI scanners. In terms of image clarity, the 3.0 Tesla MRI

scanners produce better vascular imaging quality.

3. Studies were conducted within different regions of the prostate. For example,

some studies [21, 192, 231, 236, 259] were conducted within the prostate PZ

only and some [46, 64, 65, 229] took the whole prostate gland into account.

Visually it is harder to detect and differentiate malignant regions within the

CZ in comparison to the ones in the PZ. Although the study by Viswanath

et al. [295] suggested that tumours in the CZ and PZ are significantly different,

their dataset was acquired using 3.0 Tesla MRI scanner.

4. Finally, another difficulty is that the bases of evaluation have been different (e.g.

volume, slice, regions or voxel/pixels). Pixel level evaluation is more challenging

as the number of instances increases for a larger area of the region which makes

the classifier model more complex. On the other hand, at region level evaluation

the number of instances is limited to the number of regions annotated by the

radiologists. For example the results reported in [21, 300] are based on 87 and 90

regions of interest (ROI), respectively annotated by the radiologists. Similarly

the method in [211] was evaluated based on 130 selected ROI by the authors.

This means the number of instances in the training and testing phases is quite

small. In comparison, the number of instances in our study are around 150,000.

Nevertheless qualitative comparisons can roughly indicate the relative performance of

the proposed methods in this thesis.
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7.2 Comparisons

This section presents the CAD-PC results reported in the literature based on the

current review conducted by Lemâıtre et al. [62] in 2015 which covers more than 35

methods from 2007 until 2014. The evaluation metrics used in most studies are area

under the curve (Az or AUC), accuracy (CA), sensitivity (Sen) and specificity (Spe).

However, note that most of the authors did not report all metrics (indicated as ‘-’).

The studies also covered both multiparametric and monoparametric CAD methods.

Tables 7.1, 7.2 and 7.3 present the results of the existing methods in the literature

ranked according to Az, CA, Sen and Spe. The strength of the magnetic field used

by the scanner for data acquisition is indicated as 1.5T or 3.0T.
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Table 7.1: Qualitative comparison: Dynamic Contrast Enhanced (DCE), Diffusion Weighted (DWI), Magnetic Resonance Spectroscopy
(MRS) and Magnetic Field Strength (MFS).

Authors Patients Studied Zones MRI Modality (MFS) Az (%) CA (%) Sen (%) Spe (%)

Vos et al. (2010) [21] 29 PZ only T2-W + DCE (1.5T) 97 - - -

Lv et al. (2009) [211] 55 PZ only T2-W (1.5T) 97 - - -

Peng et al. (2013) [45] 48 PZ and CZ T2-W + DCE + DWI (3.0T) 95 - 82 95

Antic et al. (2013) [348] 53 PZ and CZ T2-W + DWI (1.5T) 94 - - -

Lopes et al. (2011) [208] 17 PZ only T2-W (1.5T) 93 - 93 93

Our method 45 PZ only T2-W (1.5T) 92.8 84 86.7 93.6

Our method 45 PZ only T2-W (1.5T) 92.7 88.1 93.3 86.5

Vos et al. (2008) [300] 34 PZ only T2-W + DCE (1.5T) 92 - - -

Vos et al. (2008) [349] 29 PZ only T2-W + DCE (1.5T) 91 - - -

Tiwari et al. (2013) [350] 19 PZ and CZ T2-W + MRS (1.5T) 91 - - -

Ampeliotis et al. (2008) [207] 25 PZ only T2-W + DCE (1.5T) 90 87 - -

Tiwari et al. (2012) [65] 36 PZ and CZ T2-W + MRS (1.5T) 90 - - -

Litjens et al. (2014) [46] 347 PZ and CZ T2-W + DCE + DWI (3.0T) 89 - - -

Niaf et al. (2012) [231] 30 PZ only T2-W+ DWI + DCE (1.5T) 89 - - -

Niaf et al. (2011) [351] 30 PZ only T2-W+ DWI + DCE (1.5T) 89 - - -

Tiwari et al. (2013) [229] 29 PZ and CZ T2-W + MRS (1.5T) 89 - - -

Giannini et al. (2011) [217] 10 PZ only T2-W+ DWI + DCE (1.5T) 87 - 79 84
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Table 7.2: Qualitative comparison (continues from Table 7.1).

Authors Patients Studied Zones MRI Modality (MFS) Az (%) CA (%) Sen (%) Spe (%)

Tiwari et al. (2009) [352] 15 PZ and CZ T2-W + MRS (1.5T) 84 - 84 81

Chan et al. (2003) [233] 15 PZ only T2-W + DWI (1.5T) 84 - - -

Liu et al. (2013) [194] 54 PZ and CZ T2-W + DCE + DWI (3.0T) 83 - - -

Viswanath et al. (2009) [200] 6 PZ and CZ T2-W + DCE (3.0T) 82 - - -

Puech et al. (2009) [346] 100 PZ and CZ DCE (1.5T) 77 - 100 43

Viswanath et al. (2011) [64] 12 PZ and CZ T2-W + DCE + DWI (3.0T) 77 - - -

Viswanath et al. (2012) [295] 22 PZ and CZ T2-W (3.0T) 73 - - -

Langer et al. (2009) [353] 25 PZ only T2-W + DCE + DWI (1.5T) 71 - - -

Liu et al. (2009) [234] 11 PZ only T2-W+ DWI + DCE (1.5T) - 89 90 88

Ampeliotis et al. (2007) [206] 25 PZ only T2-W + DCE (1.5T) - 84 - -

Sung et al. (2011) [291] 42 PZ and CZ DCE (3.0T) - 83 77 77

Viswanath et al. (2008) [354] 16 PZ and CZ T2-W (1.5T) - - 88 85

Tiwari et al. (2008) [355] 18 PZ and CZ MRS (1.5T) - - 87 85

Our method 37 PZ only T2-W (1.5T) - 86 87 86

Parfait et al. (2012) [299] 22 PZ and CZ MRS (3.0T) - - 84 97

Ozer et al. (2010) [198] 20 PZ only T2-W+ DWI + DCE (1.5T) - - 78 74

Ozer et al. (2009) [197] 20 PZ only T2-W+ DWI + DCE (1.5T) - - 76 75
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Table 7.3: Qualitative comparison (continues from Table 7.2).

Authors Patients Studied Zones MRI Modality (MFS) Az (%) CA (%) Sen (%) Spe (%)

Artan et al. (2010) [196] 10 PZ only T2-W+ DWI + DCE (1.5T) - 78 74 82

Artan et al. (2009) [195] 21 PZ only T2-W+ DWI + DCE (1.5T) - - 66 72

Matulewicz et al. (2014) [356] 18 PZ and CZ MRS (3.0T) - - 63 99

Viswanath et al. (2008) [218] 6 PZ and CZ T2-W + DCE (3.0T) - - 60 66

Results from all three tables show that the smallest and largest datasets were used by Viswanath et al. [218] and Litjens et al. [46]

which covered 6 and 347 patients, respectively with an average around 37 patients per study. Only 10 studies were conducted based on

datasets acquired using MRI scanner machine with MFS=3.0T. The number of CAD-PC studied within the PZ and the whole prostate

gland are similar (20 and 18 studies conducted within the PZ and whole prostate gland, respectively including our proposed method).

In terms of performance evaluation metrics more than 65% of the methods used Az and approximately half of the methods used Sen

and Spe to measure the performance of their methods. On the other hand, 67% of the methods are based on multiparametric MRI and

only 33% are based on single modality. In terms of performance and the size of dataset, results in Tables 7.1, 7.2 and 7.3 indicate that

there is no visible correlation between them. For example Viswanath et al. [200] achieved an Az=82% based on 6 patients whereas

Litjens et al. [46] achieved Az=89% based on 347 patients. On the other hand, the method proposed by Vos et al. [21] was evaluated

based on 29 patients achieved Az=97% but in a larger dataset of 100 patients Puech et al. [346] reported an Az=77%. Nevertheless,

we do not know the number of instances used in the dataset. For example a large number of patients does not mean it has large

number of instances (e.g. if the classification is based on ROI). In comparison, pixel based classification tend to have a larger number

of instances although the number of patients is small. Unfortunately the majority of the studies did not report this information.
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All methods in Table 7.1 achieved at least Az=87%. The methods proposed by Vos

et al. [21] and Lv et al. [211] achieved the highest Az=97%. Vos et al. [21] proposed a

method using features extracted from quantitative pharmacokinetic (PK) maps and

T2-W MRI before training a SVM to calculate the malignancy likelihood of each

lesion. However, the method was tested on a small dataset of 87 ROI taken from

29 patients. In an earlier study, using similar features Vos et al. [300] reported an

Az=92% based on 90 ROI taken from 34 patients. On the other hand, Lv et al. [211]

used analysis of histogram fractal dimension (HFD) and texture fractal dimension

(TFD) information on a single modality of T2-W MRI. Although the study covered

55 patients, the actual evaluation was based on selected 130 ROI of 12 × 12 pixels

(which means only a small part of the PZ region was covered). In fact, Lv et al. [211]

did not perform cross validation to further evaluate their method. In our study, we

performed 9-FCV as well as tested the proposed method on 418 PZ regions.

Peng et al. [45] reported Az=95% using three modalities of T2-W, DCE, and DWI-

MRI and extracted 10th percentile apparent diffusion coefficient (ADC), average ADC,

and T2-W skewness. Subsequently, individual image features were combined using

linear discriminant analysis (LDA) to perform leave-one-patient-out cross validation.

From an evaluation point of view, their study is similar to the studies in [21, 211].

Although Peng et al. [45] reported that their study covered 48 patients, the actual

evaluation was based on 104 ROI (61 malignant ROI, 43 normal ROI). In a smaller

study of 17 patients, Lopes et al. [208] concluded that classical texture features (such

as Haralick, wavelet, and Gabor filters) are less discriminant in classifying malignant

and benign regions in comparison to fractal and multifractal features. In their study,

they combined fractal and multifractal features and employed SVM and AdaBoost

classifiers to get Az=93% in comparison to the combination of classical texture fea-

tures (Az=88%). Antic et al. [348] achieved an Az of 1% better (in comparison to

the method of Lopes et al. [208]) by combining only T2-W and DWI with a larger

number of patients (54) covered the whole prostate gland. In comparison, our pro-

posed methods achieved similar results qualitatively with some of the methods in the

literature regardless of the size of dataset, modality and studied zones.

In [300] the authors extracted statistical features such as percentile 25%, 75% and

Ktrans from each of the annotated ROI in DCE images before employing SVMs for

classification. Vos et al. [349] reported Az = 92% for malignant and benign discrim-

ination and 83% for suspicious malignant and benign discrimination which is similar

to the earlier study. Ampeliotis et al. [206] who conducted two similar studies on the
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same dataset reported an accuracy of 84% but by applying feature generation trans-

form which reduces the dimension of the feature vectors the accuracy increased to 87%

with Az=90% in [207]. Niaf et al. [231] extracted 140 texture features from 180 ROI

(30 patients) and achieved Az=89% which is similar to the methods in [19, 25, 88].

Niaf et al. [231] compared the performance of four different classifiers (SVM, LDA,

k -NN and NB) based on four different feature selection methods. Further, their re-

sults showed that employing feature selection significantly improved the performance

of their method and gradient features showed a high discriminant capability in their

study.

The methods in [46, 231, 353] attempted to cover the whole prostate gland. Re-

cently, Litjens et al. [46] conducted a study which covered 347 patients and reported

Az=89%. Their method consisted of two stages: in the first stage the prostate gland

was segmented using a multi-atlas-based segmentation method and features based on

intensity, anatomical, pharmacokinetic, texture and blobness were calculated. Sub-

sequently, each voxel was classified using GentleBoost and RF classifiers to generate

a likelihood map. On each likelihood map local maxima detection was performed to

capture ROI with the highest probability of being malignant. A method by Tiwari

et al. [229] which is based on multi-kernel graph embedding in T2-W and MRS pro-

duced Az=89% covering 29 patients. The method [229] was also based on a two-stage

classification approach: in the first stage, a voxel based classification was performed

by employing a random forest classifier in conjunction with the SeSMiK-GE based

data representation and a probabilistic pairwise Markov Random Field (MRF) al-

gorithm to identify malignant ROI. Subsequently, each of the segmented malignant

ROI was classified as either high or low Gleason grade. Using the same method, in a

smaller study of 19 patients Tiwari et al. [350] reported an Az=91%. Later, Tiwari

et al. [65] proposed a data integration framework for T2-W and MRS for prostate

cancer detection. Texture descriptors such as Gabor, gradient, first- and second-order

statistical features were extracted from T2-W and wavelet features were extracted

from MRS images. Both feature sets were fused (via dimensionality reduction) using

their proposed framework before employing a probabilistic boosting tree (PBT), SVM

and RF classifiers. They reported an improvement of at least Az=5% in comparison

to the results without using the proposed data integration framework.

On the other hand, Giannini et al. [217] developed a method based on the features

extracted from registered images of different MRI modalities. The Bayesian classifier

was used to fuse all the extracted features into a probability map (the region with the
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highest probability of being malignant is considered cancerous region). Preliminary

results show that the proposed method achieved Az=87%. A study by Viswanath

et al. [295] attempted to differentiate the textural characteristics of malignant regions

within the CZ and PZ. They extracted 110 texture descriptors and reported that Har-

alick’s features (e.g sum entropy and difference average) achieved Az=73% in differen-

tiating cancer regions within the PZ, whereas Gabor features performed better within

the CZ (Az=73%). However, in a study of multiparametric MRI Viswanath et al. [64]

reported an increase of at least 4%. In a smaller dataset Viswanath et al. [200] (6

patients) Az=82% although in the earlier study [218] they reported only 60% accu-

racy using the same dataset. In contrast to the study conducted by Chan et al. [233],

they introduced a multichannel statistical classifier and applied it for prostate cancer

detection. The method achieved a reasonable Az=84% considering their texture fea-

tures are only based on image intensity obtained from T2-W and DWI. The proposed

methods of Puech et al. [346] and Langer et al. [353] achieved Az<80% covering 100

and 25 patients, respectively. Puech et al. [346] used a scoring algorithm approach as

part of their method. The scoring algorithm was firstly developed based on median

and maximum ‘wash-in’ and ‘wash-out’ slope values and they used these values to

assign malignancy likelihood score for each of the ROI. Langer et al. [353] combined

three MRI modalities via several image fusion techniques and achieved a reasonable

Az=71% based on 25 patients.

In unsupervised CAD methods, Liu et al. [234] reported 89%, 88% and 90% accu-

racy, sensitivity and specificity, respectively based on 11 patients covering the PZ

only. In their method the authors proposed a new segmentation method using fuzzy

Markov random fields (fuzzy MRFs) for the segmentation of multispectral MRI. In-

stead of treating the MRF and class parameters separately, the authors combined

these together which produced more accurate segmentation results. In comparison,

our unsupervised method achieved 86%, 87% and 86% accuracy, sensitivity and speci-

ficity, respectively based on 37 patients in the same zone of the prostate. On the other

hand, Sung et al. [291] investigated the value of CAD-PC in different prostate zones

using DCE (3.0T) based on 42 patients. Their study revealed that accuracy, sensitiv-

ity, and specificity were 83%, 77%, and 77%, respectively, in the entire prostate; 77%,

91%, and 64%, respectively, in the TZ; and 89%, 89%, and 89%, respectively, in the

PZ.

Ozer et al. [197, 198] who developed two different methods showed that the combi-

nation of the pharmacokinetic parameters derived from DCE MRI with T2 MRI and
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DWI increased the segmentation accuracy significantly but showed similar sensitiv-

ities and specificities using SVM and Relevance Vector Machines (RVM) classifiers.

Similarly, Artan et al. [196] showed that multispectral MRI helps to increase the

accuracy of prostate cancer localisation compared to single modality. The authors de-

veloped a segmentation method by combining conditional random fields (CRF) with

a cost-sensitive framework which incorporates spatial information. Considering the

features are only derived from pixel intensities of multispectral MR modality images,

the method achieved 78%, 74% and 82% accuracy, sensitivity and specificity, respec-

tively. Nevertheless in a larger dataset of 21 patients in [195] the author reported

66% and 72% sensitivity and specificity, respectively. Finally, Parfait et al. [299]

achieved a high specificity of 97% but a lower sensitivity of 84% based on MRS (3.0T)

data whereas Matulewicz et al. [356] on the same modality reported 99% and 63%

specificity and sensitivity, respectively.

7.3 Graphical Representations of the State-of-the-

art

This section presents the performance distributions in all four metrics reported in the

studies discussed previously. In each of the performance distributions, we calculated

each metric average and the number of patients. Subsequently, the average line is

drawn in each graph to visualise which methods achieved above the average of the-

state-of-the-art. This is indicated within the magenta region called ‘above the average

zone’. This zone covers methods with performance above the average. The average of

each metric is calculated by finding the summation of a particular metric and dividing

it by the number of methods which have reported the corresponding metric in their

studies. Note that studies were based on the recent review conducted by Lemâıtre

et al. [62].

Figure 7.1 shows the distribution of Az values against the number of patients from

studies in the literature (only those studies which have reported Az). The graph

indicates that there is no correlation between these two variables (number of patients

and Az). Both of our proposed methods in Chapters 5 and 6 can be seen in green and

red colours, respectively. Most studies covered 30 to 50 patients achieved Az>90%

and with 100 patients Puech et al. [346] reported Az=77%. The study of Litjens

et al. [46] which covered 347 patients achieved Az=89%. The yellow lines indicate
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Figure 7.1: A scatter plot representation of the Az against the number of patients.

Figure 7.2: A scatter plot representation of the CA against the number of patients.

the average number of patients and average Az based on 25 studies which have used

this metric to measure the performance of their methods, resulting average number of

patients is 45 and average Az=87.5%. Based on these statistical figures, both of our

proposed methods achieved above the average of the state-of-the-art.

In terms of accuracy, only eight studies reported the performance of their methods

using this metric and only two of our proposed methods (both in Chapters 4 and 5)

managed to reach the ‘above the average zone’ as shown in Figure 7.2. Although the

studies in [206, 234] achieved CA=89% and 87%, respectively but their methods were

evaluated based on 25 and 11 patients respectively which is below the average number
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Figure 7.3: A scatter plot representation of the Sen against the number of pa-
tients.

of patients of the eight studies. On the other hand, in a larger study of 42 patients

based on a single modality (DCE (3.0T)) Sung et al. [291] reported CA=83%.

On the other hand, Figure 7.3 shows the distribution of Sen against the number

of patients (only those studies have reported Sen). Lemâıtre et al. [62] reviewed

19 studies in the literature which have reported the sensitivity performance of their

methods. The average Sen=81.5% with average number of prtients is 27 and only

five methods have achieved above these average values (in terms of Sen against the

number of patients) and three of them are our proposed methods in Chapters 4, 5 and

6 (indicated in magenta, red and green, respectively). The other two methods were

proposed by Puech et al. [346] and Peng et al. [45]. Once again, the graph indicates

that there is no correlation between sensitivity and the number of patients. All our

proposed methods achieved Sen>86% and although the method of Puech et al. [346]

produced Sen=100%, it has poor Spe=43%.

Figure 7.4 shows the distribution of Spe against the number of patients from studies

in the literature (only those studies have reported Spe). Similar to Sen Lemâıtre

et al. [62] reviewed19 studies in the literature. The average Spe of the 19 methods is

82.2% which is slightly higher than the Sen on the same average number of patients.

Based on this average value only four methods have achieved ‘above the average zone’

and three of them are our proposed methods in Chapters 4, 5 and 6 (indicated in

magenta, red and green, respectively). The other method which produced the highest

specificity within the ‘above the average zone’ was proposed by Peng et al. [45].
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Figure 7.4: A scatter plot representation of the Spe against the number of pa-
tients.

Table 7.4: The average performance metric for multiparametric and monopara-
metric studies.

Metric(%) Multiparametric Monoparametric

Az 87.6 87.6

CA 84.5 85.3

Sen 76.6 85.9

Spe 79.7 84.5

# patients 37 36

7.4 The Average of the State-of-the-art

This section presents the average performances based on the different categories and

streams of the CAD-PC studies in Table 7.1, Table 7.2 and Table 7.3. The first

stream is based on the modality used and the second stream is based on the strength

of a magnetic field used to acquire the dataset. In the first stream, studies are divided

into multiparametric and monoparametric. The second stream categorises each study

based on 1.5T or 3.0T. The main difference between these strengths is that 3.0T has

better resolution allows a better quality for anatomical representation.

Table 7.4 shows the average of each performance metrics in mono and multiparametric

studies. We found 26 CAD-PC multiparametric studies in the literature with an

average number of patients is 37 per study. However, not all studies reported the
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Table 7.5: The average performance metric for studies based on 1.5T and 3.0T
datasets.

Metric(%) 1.5T 3.0T

Az 88.9 83.2

CA 85.2 83.0

Sen 84.4 73.2

Spe 80.6 86.8

# patients 27 57

result of all performance metrics. The average Az and CA per multiparametric study

are 87.6% and 84.5%, respectively which are similar with monoparametric studies

(87.6% and 85.3%, respectively). In contrast, the average sensitivity and specificity

for each multiparametric study are 76.6% and 79.7%, respectively. In monoparametric

studies,the average Sen=85.8% and Spe=84.5% which are higher than the average

values in multiparametric studies.

On the other hand, Table 7.5 shows the average performance metrics in studies based

on data acquired using 1.5T and 3.0T magnetic field. The results show that CAD-

PC from datasets acquired using 1.5T produced higher results in all metrics except

specificity. The average Az, CA and Sen in these studies are 88.9%, 85.2% and

84.4%, respectively. Studies used higher spatial resolution datasets produced Spe =

86.8% which is 6.2% higher than those studies have used datasets with a lower spatial

resolution. Studies based on 3.0T dataset produced lower Sen=73.2% and Az=83.2%

but similar CA=83%.

Based on the average values in table 7.4 and 7.5, it seems that CAD-PC based on

monoparametric and 1.5T dataset produced better results in terms of Az, CA and

Sen. However, we would like to emphasise to the reader that this does not allow us

to draw definitive conclusions because the average values were calculated based on

different studies using different datasets. Nevertheless, this tells us about the trends

of the current state-of-the-art. In a more robust comparison, several studies [46, 64,

196, 229] indicated that using multiparametric MRI leads to a better performance as

more information about the tissues characteristics can be acquired. In those studies,

they evaluate the performance results based on exactly the same dataset. Similarly,

although studies based on 1.5T datasets produced better results on average, it does
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not mean that using 1.5T datasets are better because practically an MRI scanner with

3.0T produce better spatial resolution allowing high quality vascular imaging.

7.5 Findings from Qualitative Comparisons

We would like make the following findings drawn based on the qualitative comparisons

of the different studies in the literature:

1. It is difficult to make a quantitative comparison based on the results in Tables

in 7.1, 7.2 and 7.3. Therefore, it is impossible to draw a definitive conclusion

as to which method is superior because many factors (as previously discussed)

come into play.

2. Regarding the optimal performance, although the method in [211] based on

single modality produced the highest Az=97%, several other studies [46, 64, 196,

229] showed that using multiparametric MRI data improved the performance

results significantly compared to monoparametric MRI data.

3. In multiparametric studies combining features from T2-W and DCE produced

the best Az=97% qualitatively as reported in [21] whereas combining features

from three modalities (T2-W + DCE + DWI) generated best Az=95%.

4. For the similar reason in point number 1, it is difficult to draw a firm conclusion

about which modality provides better performance for an individual method.

Nevertheless, from the results in Tables in 7.1, 7.2 and 7.3, CAD-PC based on

single modality (T2-W) produced better results qualitatively. However, Tiwari

et al. [229, 350, 355] observed that MRS is more suitable modality to highlight

cancer regions. In another study, Litjens et al. [46] observed that DWI modality

was more suitable than DCE and T2-W to distinguish cancerous regions in their

method.

5. In recent years, many multiparametric CAD-PC have been developed due to

vast amounts of features which can be extracted from different modalities, and

hence have attracted the attention of both radiologists and computer vision

researchers.
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7.6 Qualitative Comparison with Human Perfor-

mance

Niaf et al. [231] reported preliminary results with radiologists performances for two and

15 years experience with Az=80% and 86%, respectively. Litjens et al. [46] reported

the range of 10 radiologist performances were between Az=81% to 83%. From these

studies, we have a general idea of a typical radiologist’s performance in comparison

to CAD-PC. In our case, the proposed method achieved Az=93% which is signifi-

cantly better (p <0.001) than human performance and some CAD systems based on

multiparametric MRI [65, 231, 300, 353].

7.7 Summary

To summarise, this chapter highlights the following:

1. We have compared our results with the state-of-the-art qualitatively and our

proposed methods achieved above the average performance in all metrics (Az,

CA, Sen and Spe).

2. Due to absence of public datasets, different modalities, different levels of eval-

uation and different studied zones of the prostate gland it is extremely difficult

to make a quantitative comparison. Therefore this underlines one of the major

ongoing deficiencies in the study of CAD-PC which need to be resolved.

3. We have briefly described some of the major CAD-PC studies in the literature.

4. From the compiled results shown in Table 7.1, 7.2 and 7.3, it is difficult to draw

a conclusion which method is superior in the literature.
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Summary and Discussion

The major focus of this thesis is developing computer algorithms for prostate cancer

detection in MRI. Many studies have considered the potential of CAD-PC and shown

it to be quite promising. In this chapter, we will focus on the main areas of this

thesis both from the point of view of the general audience and computer scientists. In

addition, we will discuss the advantages, limitations, challenges and the prospects of

CAD-PC in clinical practices.

8.1 Chapter 1: Introduction

In Chapter 1, we have presented the current data covering incidence of prostate can-

cer in the world, Europe and the UK. In general, although the survival rates have

increased due to early detection the number of cases are expected to increase to 1.7

million in 2030 globally. However this figure is partly influenced by the increase in

detection incidence from ‘less developed countries’. This reflects the current screening

methods (e.g. PSA and DRE) within these countries. The increase is also because

more sophisticated screening methods will be available in the future which will en-

able clinicians to detect prostate cancer at a very early stage, which will improve the

prognoses for those with the disease.

In terms of screening methods, PSA, DRE and TRUS are among the most common

procedures available in most hospitals. Many studies have discussed the accuracy,

sensitivity and specificity as well as several concerns such as over-diagnosis, over-

treatment, invasiveness and post operative complications. It would be interesting

172
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to investigate the variability among clinicians especially when performing DRE and

TRUS methods as the accuracy for these methods is highly reliant on the clinician’s

experience (e.g. when taking sample tissues from the prostate gland).

In this chapter also we briefly discussed the role of MRI in prostate cancer. Currently,

MRI is only used to further investigate the staging of prostate cancer already diag-

nosed and confirmed by the doctor. This means MRI assists clinicians by providing

better prognosis and treatment planing for the patient. In contrast, MRIs have been

used as a first reader setting in mammography and lung imaging. MRI technologies

are expensive, and to our knowledge there is no study in the literature has investigated

the performance of MRI as a first reader screening method. The use of multiparamet-

ric MRI is becoming popular both among the radiologists and computer scientists.

Nevertheless, the lack of standardised protocol among institutions is currently a major

issue. Therefore, currently MRIs are used to support the development of CAD-PC by

providing a vast amount of data.

8.2 Chapter 2: Texture analysis

In Chapter 2, we briefly reviewed different aspects of texture analysis and its applica-

tions in different fields. In the last 30 years, many different types of texture analysis

methods and techniques have been developed and successfully applied in research ar-

eas. However, due to the degree of complexity and diversity it is impossible to give a

universal definition of textures [66]. Therefore, many studies in the literature define

textures based on the application and problem domain. In addition, textures also can

be defined from different perspectives such as statistical, psychological and image and

signal processing.

According to Ojala et al. [74, 75], there are four main problem domains in texture

analysis: (a) texture classification, (b) texture segmentation, (c) texture synthesis and

(d) shape analysis. In texture classification, training is needed to build a predictive

model before the model is used to classify the test data. In contrast, texture seg-

mentation is a process of grouping or clustering pixels based on their properties such

as contrast, homogeneity, etc. This means, pixels that represent the same texture

will be grouped together. On the other hand, texture synthesis is basically a method

to create textures artificially and a process of computationally constructing a large
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digital image from a small digital sample image [91, 94]. As for shape analysis it is

a process to capture the geometric structures and contours of an image.

In texture analysis techniques, we have briefly reviewed four main methods covering

statistical, structural, signal processing and model based. Statistical methods exploit

the information of spatial distribution and intensity of pixel values in an image such as

the grey level co-occurrence matrix introduced by Haralick et al. [108]. Geometrical

methods attempt to capture the structural properties of the textures according to

some placement rules such as orientation and distance [116]. In signal processing

methods, the characteristics of a texture is computed using a set of filters which are

designed to stimulate visual perception and spatial frequency in the human brain.

Each filter is uniquely designed to capture a particular texture property. Finally,

model based methods try to model the appearance of the texture by considering the

relationship of each pixel with its neighbouring pixels.

We also presented some of the most popular texture descriptors for texture represen-

tation in CAD-PC studies. In Section 2.4, the following features were clarified: (a)

first-order statistical features, (b) second-order statistical features, (c) local binary

pattern (d) filter banks, (e) textons (f) gradient based features, (g) Tamura’s features

and (h) fractal based features. Each of these features was explained in a step-by-step

manner in Chapter 2. Since these features were first introduced some time ago, many

authors have made different variations and it is impossible to review and include every

variant in this thesis.

Although many texture descriptors for texture representation are described in the

literature, to our knowledge no study that has used all these features and evaluated

them individually as to which feature performed best for prostate cancer detection in

MRI. Similarly, there is no CAD-PC study which has attempted to investigate how

certain features performed on different CAD-PC methods. This would have given

an indication as to which of these components (features or method framework) has

stronger influence on the performance results. In many CAD-PC studies, features

were selected because of their excellent performance as a general texture classification

rather than for clinical reasons.
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8.3 Chapter 3: Computer Aided Detection Sys-

tems

We briefly discussed the general framework of typical CAD-PC both mono and multi-

parametric in Chapter 3. Although there are many CAD-PCs have been developed in

the literature, these methods shared some common workflows such as pre-processing,

feature extraction, training and testing. In pre-processing step, most CADs employed

noise filtering and normalisation to remove artifacts caused by the magnetic coil and

to standardise pixel intensity, respectively. In some cases, depending on the data,

some CADs involved bias correction to remove the hyper-intense signal around the

coil of an image. Image registration techniques are popular among CADs based on

multiparametric MRI. In feature extraction, image based features (both on region and

pixel-based features) are among the most popular information used to train classifiers.

Image based features include texture-based, edge-based, histogram-based, intensity-

based, etc. Another set of features are those extracted from DCE modality called

DCE-based features. In contrast to image-based features, these features represent

the different metabolites levels in prostate tissues based on whole-spectra approach,

semi-quantitative approach and quantitative approach. Using the same approaches,

MRSI-based features can be extracted from MRSI modality. However, MRSI-based

features not only represent metabolites levels but metabolic activity occurring in the

malignant and benign regions within the prostate gland.

From dimensionality reduction point of view, principal component analysis and sta-

tistical tests are the first choice for most researchers in CAD-PC studies. On the

other hand, in training and testing phases, the SVM classifier using RBF kernel is

the most frequent machine learning algorithm used to distinguish benign and malig-

nant instances. However in the last five years the RF classifier has gained popular-

ity tremendously among the medical image analysis community. Many studies have

shown the effectiveness of SVM classifier after parameter optimisation. In contrast,

most CAD-PC studies have used the RF classifier did not perform parameter optimi-

sation as the method itself is already robust [46]. However, it might be interesting

to make a quantitative comparison between these classifiers (since these are the most

popular classifiers in CAD-PC studies) before and after parameter optimisation. In

this thesis we have found that SVM did not perform well mainly due to default pa-

rameters in WEKA. On the other hand, the RF classifiers performed well both in
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Chapters 5 and 6. In addition, we discovered two more classifiers which performed

well in both methods (Chapters 5 and 6) are the MLP and BNet classifiers.

8.4 Chapter 4: Detection and Localisation of Prostate

Cancer using Intersection of Binary Segmenta-

tions

In Chapter 4, we proposed a new unsupervised CAD method for prostate cancer de-

tection using the intersection of binary segmentations. For this purpose, we extracted

four different image features based on Gaussian and median filtering techniques. The

first two image features were computed using the conventional Gaussian (G1) and

median (M1) filtering. The third image feature (F1) was computed by calculating the

image magnitude between G1 and M1 before applying a robust smoothing method in

[273]. On the other hand, the fourth image feature (F2) was calculated by computing

the probability image from each G1 and M1. Subsequently, the image magnitude (F2)

is computed from the resulting probability images. In the image segmentation phase,

each of the extracted image features are segmented individually using the modified

FCM algorithm of Chen and Zwiggelaar [256] which resulted in four separate bi-

nary segmentations. Using these binary images, we took the overlapping segmented

regions as the most cancerous areas. Finally to remove false positives we performed

erosion on the resulting image. Evaluation results showed that the proposed method

achieved similar performance to the other CAD-PC methods in the literature. The

main advantage of this method is the fact that it uses only four feature images but

still can produce similar results compared with the other methods which use a large

number of features. Nevertheless, we would like to emphasise to the reader that the

numerical results are based on different datasets and evaluation levels.

Many of the proposed CAD methods in the literature used machine learning tech-

niques. In comparison, our method bypasses the training phase in a typical CAD

framework. Technically, supervised CAD-PC methods could be time consuming de-

pending on the classifiers. For instance, the SVM and MLP classifiers are slower in

comparison to the NB and BNet classifiers. In fact, using classifiers such as SVM

and k-NN requires the parameter optimisation step which is quite time consuming

(depending on the number of training and testing data). In terms of complexity,

supervised methods tend to be more complex as they require feature selection or
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dimensionality reduction particularly those methods involving a large number of fea-

tures. In addition, the training phase adds another layer of complexity especially when

using a complex classifier such as the MLP. In terms of performance most supervised

CAD methods are theoretically more robust as the method itself has the opportunity

to learn and build a model of the training data. However it is hard to draw such con-

clusion due to limited number of unsupervised CAD-PC studies. Although Liu et al.

[234] reported 89%, 88% and 90% accuracy, sensitivity and specificity, respectively,

there is no qualitative comparison made by the authors against the other supervised

methods in the literature.

8.5 Chapter 5: Multifeature and Unsupervised Ma-

chine Learning Algorithms in Prostate Cancer

Detection

In contrast to the proposed method in the previous chapter, in Chapter 5 we in-

vestigated 215 texture descriptors covering different window sizes, filters, techniques

and orientations. Furthermore, we employed 11 machine learning techniques ranging

from tree-based, Bayesian-based, function-based to network-based classifier. Some of

the classifiers such as the SVM and RF are the most popular machine learning algo-

rithm in CAD-PC studies. The proposed method consists of five phases: (a) noise

filtering (b) feature extraction (c) feature scaling (d) feature selection (e) data classi-

fication (training and testing). In the noise filtering phase, we combined median and

anisotropic diffusion filtering methods to remove noise as well as to retain textures.

Subsequently, a set of 215 features were extracted comprising first- and second-order

statistics, filter bank, Tamura’s features and gradient based features. In the next

phase, each feature vector was normalised to [0-1] followed by feature selection to

eliminate unnecessary features and reduce data dimensionality. In the final phase, 11

classifiers were trained and each predictive model was used in the testing phase.

Evaluation results showed that the proposed method achieved similar results to the

current state-of-the-art in terms of Az, CA, Sen and Spe. In this chapter we also

investigated the effect of feature selection on the classification performance. Results

showed a significant improvement for most classifiers when employing feature selection.

However most tree-based and the SVM classifiers produced less than 5% improvement.
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Furthermore, we investigated the effect of window sizes on feature’s performance indi-

vidually. Our evaluations results showed that the second-order statistical features are

more effective at smaller resolutions whereas the filter bank performed well from 3×3

until 13×13 before their performances decreased at much larger window sizes. Gradi-

ent based features are among the most consistent texture descriptors which performed

well in all tested window sizes (from 3× 3 to 19× 19). For first-order statistical and

Tamura’s features, only certain features are discriminative (e.g. percentile 75% and

Tamura’s contrast). To our knowledge our study is the first to investigate the effects of

window sizes on the feature’s performance individually. Nevertheless, the evaluation

was only based on CfsSubsetEval [327] attribute evaluator and the GreedyStepwise

search method in WEKA [2] which is one of the limitations of this study. Another

limitation is that we were unable to compare our results quantitatively with the other

methods in the literature mainly due to absence of public datasets. Since our study

employed 11 different classifiers to get the best possible results, performing param-

eter optimisation for each of the classifiers is time consuming and computationally

expensive (therefore all parameters in this study were left on the default settings in

WEKA). However, we have made an initial investigation regarding to this issue on

the ADTree, k-NN and RF classifiers and included our preliminary results in Section

5.6 and 6.7. Finally, the proposed method showed that it is possible to develop a

monoparametric CAD method for prostate cancer detection with similar performance

to the ones based on multiparametric MRI.

8.6 Chapter 6: A Texton Based Approach in Prostate

Cancer Detection

Our final CAD method proposed in Chapter 6 is based on textons. Similar to textures,

many studies argued that it is hard to define a universal definition of textons due to

lack of a good mathematical model [170]. However, textons can be seen as a rep-

resentative of micro-structures in natural images and are considered as the atoms of

pre-attentive human visual perception [169]. In our study, we defined textons as the

k -means’ cluster centers. In our proposed method, there are two main advantages of

using a texton based approach: firstly it bypasses the conventional feature extraction

methods based on filtering and secondly it avoids the typical dimensionality reduction
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methods such as feature selection which both can be time consuming. To our knowl-

edge this is the first texton based CAD approach in the literature applied in relation

to prostate cancer detection.

The proposed method consists of the following steps: (a) pre-processing, (b) construct

texton dictionary, (c) feature extraction, (d) training and testing. We used the same

median and anisotropic diffusion filtering techniques in Chapter 5 in the pre-processing

phase. To construct the texton dictionary we did not use filter bank as originally

proposed by Varma and Zisserman [1]. Instead we followed the the later study by

them in [161] which clusters benign and malignant patches directly from the original

image pixels. In the feature extraction phase, each pixel is represented as a histogram

treated as a feature vector. The constructed histogram for each pixel consists of

the frequency of the neighbouring texton occurrence within the ws (or patch size)

including the texton at the central pixel. Subsequently we employed 8 classifiers to

build predictive models and test the models on the unseen cases.

Evaluation results show the proposed method achieved similar results with the state-

of-the-art in all performance metrics. Indeed, most texton based approaches are

rely on two parameters ws and txt. In our experiments we found ws = 9 × 9 and

11 × 11 with 6 and 16 textons produced the best results for most classifiers. On the

other hand, the BNet, RF and C4.5 classifiers are the best three machine learning

algorithms produced Az>87%. This chapter further supports our findings in Chapter

5: firstly in terms of using suitable window sizes, secondly the proposed method

further suggests that it is possible to develop CAD methods based on T2-W MRI

which can achieve similar performance to the ones based on multiparametric MRI

and thirdly, quantitative comparison in both studies (Chapters 5 and 6) showed that

the BNet produced the best Az value as an individual classifier.

Finally, one of the limitations of our study is we did not perform parameter optimi-

sation of the machine learning algorithms employed in Chapters 5 and 6 (except the

k−NN, ADTree and RF classifiers) but used the default parameter settings in WEKA

[2]. However, despite using default parameter settings, our proposed methods showed

that Az>90% which is similar with most methods in the literature. The results of

varying the parameters for the RF and ADTree classifiers shown that similar results

were achieved for both performance metrics (Az and CA). However, at a very small

values of nB (e.g. nB = 1) and rF (rF = 5), at least 3% to 5% difference in compar-

ison to the results produced at a given parameter value in WEKA. Our preliminary

results of parameter optimisation for the ADTree, k-NN and RF classifiers indicated
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that the default parameter values given in WEKA are good enough as initial settings

investigate the classifier’s performance.

8.7 Chapter 7: Qualitative comparisons

Chapter 7 presented qualitative comparisons between our proposed methods and the

state-of-the-art covering four different performance metrics Az, CA, Sen and Spe.

We presented 38 CAD-PC studies in the literature including our methods and rank

them based on Az, CA, Sen and Spe accordingly. The highest Az=97%, CA=89%,

Sen=100% and Spe=99% produced by the methods by Vos et al. [21], Liu et al. [234],

Puech et al. [346] and Matulewicz et al. [356], respectively. Although these numbers

look high the averages are Az=87.5%, CA=84.9%, Sen=81.5% and Spe=82.2% based

on 38 studies including our methods. Qualitative comparisons showed that our pro-

posed methods produced similar results in all four performance metrics.

If considering the average Az against the average number of patients only six methods

[45, 46, 211, 348] in the literature managed to achieved the ‘above the average zone’

including our proposed methods in Chapters 5 and 6. However, in terms of average

CA versus average number of patients only our methods in Chapters 4 and 6 produced

results within that zone. On the other hand, two methods [194, 346] and all of our

proposed methods produced sensitivity results which are ‘above the average zone’.

Similarly, all our proposed methods produced above the average in terms of specificity

versus the number of patients together with the method of Peng et al. [45].

In general, the CAD-PC studies can be seen in two different streams: firstly CAD

methods based on mono and multiparametric and secondly whether data is acquired

using scanner 1.5T or 3.0T magnetic field strength. In Chapter 7, we calculated the av-

erage performances between these categories and found out that there is no significant

improvement between mono and multiparametric in terms of Az and CA. However,

monoparametric MRI produced better Sen=85.9% and Spe=84.5% in comparison to

multiparametric Sen=76.6% and Spe=79.7% with 37 and 36 average number of pa-

tients, respectively. In terms of datasets, methods based on 1.5T datasets produced

better average results in all metrics except specificity where methods based on 3.0T

produced average Spe=86.8%. Nevertheless, these comparisons should be carefully

interpreted because each method was evaluated based on different datasets.
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As discussed in the previous chapter, quantitative comparison is difficult due to differ-

ences in the type of datasets, absence of public datasets, studies being conducted at

different regions and evaluation at different levels. These issues remain problematic

making the study of CAD-PC complex in terms of building a solid foundation for the

state-of-the-art as well as qualitative comparison. Furthermore, the limited number of

quantitative comparisons between CAD-PC against radiologists performance makes

it hard to draw a conclusion as to the extent to which the computer systems can help

radiologists in diagnosis decision making.



Chapter 9

Conclusions and Future work

The conclusions of the work covered in this thesis are given in this chapter followed

by proposals for future work which would build on the the findings this thesis. This

covers how the aim and objectives of this thesis were achieved. Finally, the novel

contributions of this thesis are highlighted and a list of publications is presented in the

final section of this chapter.

9.1 Conclusions

In this thesis, we have presented three CAD methods for prostate cancer detection

within the PZ based on a single modality T2-W MRI using image processing and

machine learning techniques. Evaluation results showed that all proposed methods

achieved similar results compared with the-state-of-the-art in terms of Az, CA, Sen

and Spe in both CAD-PC based on mono and multiparametric MRI. Moreover, the

proposed methods outperformed some of the methods using 3.0T datasets which have

better imaging resolution in comparison to 1.5T datasets. Therefore this answers our

research question raised in Chapter 1 as to whether it is possible to develop a computer

algorithm based on single modality and achieve similar performance to those based

on multimodality. We are aware that T2-W MRI alone is insufficient in developing

a more robust CAD-PC system as multimodality MRI can provide more informative

data (e.g. physiological tissue characteristics and metabolites composition) which

are not available in a conventional MRI. Nevertheless, this study identifies a set of

discriminant texture descriptors which can be combined with features from the other

modalities, hence provide a solid basis for a CAD-PC based on multimodality.

182
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We started by investigating the epidemiology of prostate cancer including prostate

cancer incidence and mortality, the current screening methods for prostate cancer

detection including their advantages and disadvantages, the prospect of mono and

multiparametric MRI in prostate imaging and how CAD in MRI can be beneficial to

clinicians and patients. Following this investigation, we carried out a literature review

on MRI image analysis and studied existing approaches in the field which established

a foundation for our work in this thesis. It was clear that the development of CAD-

PC is an important and active field among the research community in medical image

analysis. In comparison to other the CAD methods for breast, brain, bone, and lung

imaging, the number of CAD-PC is relatively small. Moreover, many CAD-PC studies

were tested based on small datasets. Therefore, further developments are needed to

investigate the prospects of CAD as a first reader as a diagnostic tool in conjunction

with radiologists in hospitals. Based on these, we concluded that there is an urgent

need to develop CAD methods for prostate cancer detection whether based on mono

or multiparametric MRI both for detection and staging.

Subsequently (Chapter 2), we investigated the most popular texture descriptors used

in CAD-PC which are first- and second-order statistical features. Other features

such as LBP, fractal, gradient and intensity based are also among the most popular

features used in CAD-PC studies. We also investigated the general framework of

CAD-PC based on the existing studies in the literature (Chapter 3). Based on the

35 CAD-PC studies reviewed in [62], we concluded that a typical CAD-PC consists

of three main phases: (a) pre-processing, (b) feature extraction and (c) training and

testing classifiers. However, in some cases additional phases might be needed such

as post-processing and image regularisation or registration. This gave the basis of

framework for the proposed methods in this thesis. In Chapter 2, we made an initial

step to achieve the project’s second and fifth objectives by investigating different

texture descriptors used in the literature and Chapter 3 gave us an idea of a typical

design of a CAD-PC arcitecture.

In our first method in Chapter 4, we have successfully developed an unsupervised

CAD method using four texture descriptors and used the modified FCM algorithm to

cluster each image feature individually. The resulting binary segmentations were then

stacked and the overlapping regions are taken as malignant regions. In this method,

we found that the use of probability image was effective to quantify the probability

of each pixel being malignant or benign. On the other hand, image magnitude was

used to capture consistent behavior of the texture. For noise removal, we used median
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and Gaussian filters and erosion technique was employed to remove false positives and

negatives by ≈ 20%. As a result, the proposed method achieved 86%, 83% and 96%

accuracy, sensitivity and specificity, respectively. In this chapter, we partly achieved

our fifth objective by developing an unsupervised CAD-PC. In addition, we have

investigated the texture appearance of malignant and benign regions within the PZ

using features smoothed by median and Gaussian filters (hence we partly achieved our

second objective). The first objective of this thesis was also achieved in this chapter

as we have developed a 2D model to automatically estimate the boundary of the PZ.

Further, we developed a supervised CAD method in Chapter 5. For this purpose a so-

phisticated noise removal of anisotropic diffusion filtering method in conjunction with

median filtering were used to remove unwanted artifacts from our dataset. Since there

are many different texture descriptors which have been developed in recent decades,

it is time consuming to implement each of them. Nevertheless, we investigated 215

texture descriptors covering different resolutions, filters, techniques and orientations.

For classification purposes, we employed 11 machine learning algorithms to achieve

the best possible results. In this method, we addressed five different questions: (a)

does ws affect the CAD performance both in terms of Az and CA?, (b) does the

selection of ws affect the performance of the texture descriptor itself?, (c) can we

produce a general guideline for using ws in CAD-PC studies?, (d) which features per-

formed well in CAD-PC? and (e) which machine learning algorithms performed well

and consistent in CAD-PC studies?. Our experimental results suggested the following

answers: (a) the selection of ws has a significant effect on CAD-PC methods in terms

of Az and CA, (b) the selection of ws has a significant effect on the performance for

most texture descriptors, (c) our experimental results suggested that 9×9 and 11×11

generally have significantly better results in comparison to the other resolutions both

in terms Az and CA (d) gradient based features performed well in most ws whereas fil-

ter bank, Tamura’s contrast feature and percentile 75% are also highly recommended

at medium size resolution, and (e) combining different classifiers to decide a class

boundary often produced better results. However, individually the BNet, ADtree,

RF, and MLP produced better results in comparison to the other classifiers tested in

our experiments. As a result, the proposed method in Chapter 5 produced Az=92.7%

when several classifiers were used to draw a class boundary and individually the BNet

classifier produced the best Az=90%. This chapter extended the achievement of the

project’s fifth objective via the development of supervised CAD-PC. Furthermore,

we also extended the achievement of our second objective as 215 texture descriptors
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were investigated. Based on our experimental results, we identified the most discrim-

inant features which can differentiate benign and malignant regions. Furthermore, we

found that ws = 9× 9 and 11× 11 produced the best Az and CA for most classifiers.

Therefore, we achieved our third and fourth objectives in Chapter 5.

In our third method (Chapter 6) we investigated how textons can be used as robust

texture descriptors in prostate cancer detection. For this purpose we developed a

CAD method based on the occurrence of textons within the neighbouring pixels. In

this method we take the definition of textons as the resulting centroids from the k-

means clusering algorithms. The method contains three main phases: constructing

texton dictionary, feature extraction and training and testing. To our knowledge this

is the the first CAD-PC based on textons. Our study (in Chapter 6) highlighted

two main advantages of using textons: firstly, it bypasses the typical feature extrac-

tion techniques (e.g. filtering and convolution) and secondly dimensionality reduc-

tion (e.g. feature extraction) is not needed. On the other hand, visual comparison

showed that extracted textons from benign regions are smoother in comparison to the

ones extracted from malignant regions. Evaluation results showed the BNet classifier

(Az=92.8%) once again outperformed the other classifiers, individually followed by

the RF classifier which achieved Az=89.5%. Our experimental results suggest that

ws = 9 × 9 and 11 × 11 with txt = 6 and 16 produced the best results in terms of

Az and CA. This further confirms our experiments results in Chapter 5 in terms of

the selection of ws in CAD-PC studies. Moreover, experimental results in Chapter 5

and 6 suggest that there is no significant difference between the results achieved at

9 × 9 and 11 × 11 in terms of Az and CA. Chapter 6 completed the second,fourth

and fifth objectives of this project because: (a) a texton based approach was used

to further investigate the texture appearance of malignant and benign regions (visu-

ally textons extracted from malignant regions look rougher), (b) experimental results

suggest that best results were achieved at 9 × 9 amd 11 × 11 which further support

our initial findings in Chapter 5 and (c) another supervised CAD-PC was developed

using textons. The final objective of this project was partly achieved in Chapters 4,

5 and 6 as proposed methods were evaluated based on 275 and 418 MR images of 37

and 45 patients, respectively.

In terms of qualitative comparison with the state-of-the-art, the results in Chapter

7 suggested that our methods have similar capability in all performance metrics.

The comparisons were made against 35 CAD studies in the literature covering seven

different aspects which are Az, CA, Sen, Spe, number of patients, modality (e.g. mono
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or multiparametric MRI) and types of datasets (e.g. 1.5T or 3.0T). At present, valid

quantitative comparisons of CAD-PC studies are impossible due to the differences in

datasets such as the number of patients (or dataset size) and different modalities.

In fact, the absence of publicly available datasets makes it extremely difficult to

compare the existing methods. As a result, for most existing CAD-PC described in the

literature can only make qualitative comparisons. On the other hand, although several

studies in [46, 64, 196, 229] claimed multiparametric MRI produced significantly

better results than monoparametric, our analysis comparison in Chapter 7 showed

that there is no significant difference in terms of Az and CA on average, whereas in

terms of Sen and Spe CAD-PCs based on single modality tends to produce better

results. However, these are the average results based on different studies, which means

results were produced based on different datasets. The final objective of this thesis was

fully completed as extensive qualitative comparisons were made in Chapter 7 against

35 CAD-PC studies mainly covering different performance metrics and datasets.

From a clinical point of view this thesis highlighted the following advantages: (a)

a fully automatic CAD-PC can minimise the workload of radiologists in analysing

MRI images, (b) the development of CAD-PC not only can help the detection process

faster, but robust and consistent, (c) CAD-PC can provide a visual representation to

clinicians as to which regions of the prostate have high probability of being malignant,

helping more accurate biopsy sampling (d) CAD-PC can provide a second opinion

to the radiologist, hence improving detection accuracy. On the other hand, from a

computer vision point of view this thesis highlighted the following advantages: (a)

we have highlighted the most discriminant texture descriptors from the 215 features

extracted, (b) this thesis also provides general guidelines regarding window size when

extracting features including how resolution size affects the performance both of the

feature and the method itself and (c) our experiment results in Chapter 5 and 6

suggested that the BNet and RF classifiers provide the best results in terms of Az

and CA.

9.2 Future Work

Based on our investigation conducted in this thesis and analysis of our experimental

results, we suggest the following future work:
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1. It should be noted that all the CAD-PC developed in this thesis were only

tested within the prostate’s PZ region. Therefore the main recommendation

for future work of this thesis is to develop or modify the methods and evaluate

them covering the whole prostate gland. This includes investigating benign

and malignant regions within the CZ by finding the most discriminant texture

descriptors.

2. Since all machine learning algorithms employed in this study were left on the

default parameter settings in WEKA [2], future work may investigate the effects

of parameter optimisation. However, preliminary results of the k-NN, RF and

ADTree classifiers showed that the default parameters given in WEKA are fairly

good as an initial guideline on selecting a classifier in CAD-PC.

3. Although we have investigated more than 200 texture descriptors, there are

still many features to be investigated such as histogram based features, Scale-

invariant feature transform (or SIFT), etc.

4. Since this thesis only focuses on a single modality T2-W MRI, the future work of

CAD-PC is to investigate the performance of the proposed methods if features

from other modalities such as DCE and DWI are combined.

5. A study of quantitative comparison can be seen as one of the main challenges

in future direction of CAD-PC studies.

9.3 Novel Contributions

The main contributions and novel aspects of this thesis are summarised as follows:

1. This thesis presents a substantial literature review regarding CAD-PC studies

covering the statistics incidence and mortality, current status of prostate cancer

from clinical point of view, texture analysis in mono and multiparametric MRI,

more than 200 texture descriptors, a general framework of CAD-PC, 11 machine

learning algorithms and 35 CAD-PC studies.

2. A new unsupervised CAD-PC approach which is based on combining multiple

binary segmentation using only four simple image features. The novelty of this

method lies in the approach which combines simple features (this is similar to

a forest of weak classifiers which together provide strong results), for the first
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time and applied to prostate T2-W using one modality. To our knowledge, no

existing methods in the literature have used the technique of finding cancer

regions by taking the overlapping binary segmentation extracted from a small

number of image features.

3. A new supervised CAD-PC using 215 texture features covering different window

sizes, filters, techniques and orientations from T2-W MRI only. This means, this

thesis investigated more feature options and some of them have not yet been

applied in CAD-PC. To our knowledge the previously used largest number of

2D texture descriptors in the literature using only T2-W MRI was in a study

conducted by Viswanath et al. [295] (110 texture descriptors) and 83 texture

descriptors by Tiwari et al. [65]. Using multiparametric MRI Niaf et al. [231]

extracted 140 texture descriptors from T2-W MRI, diffusion-weighted imaging

(DWI), and dynamic contrast enhanced (DCE).

4. We quantitatively compared 9 classifiers’ performances with two additional com-

bined classifiers (11 classifiers in total). Again, to our knowledge the largest

number of classifiers used in the literature in CAD-PC is the study conducted

by Niaf et al. [231] (4 classifiers), and Litjens et al. [46] and Ozer et al. [198]

employed 3 classifiers. The classifiers’ performances were further tested in our

experiment in Chapter 6 and some classifiers produced similar results. This pro-

vides a general guideline for future researchers with suggested options referred

for the selection of classifiers.

5. Since this study involved a large number of texture descriptors, we evaluated

all features individually and combined them to improve performances of the

proposed method. By evaluating them, we are able to determine which features

individually give the best performances on each classifier. The analysis of our

experimental results generated a list of discriminative features for every window

size which can be beneficial to the research community and future researchers

regarding the selection of texture descriptors in CAD-PC studies.

6. We investigated the effect of different window sizes on the performance of the

proposed method as well as the performances of the features individually. To

our knowledge, none of the current CAD-PC in the literature have reported

quantitatively the effect of window sizes on performance. Many studies [65,

231, 233, 263, 296] selected window size without a qualitative justification. In

this thesis we investigated 9 different window sizes (from 3× 3 to 19× 19) and
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qualitative comparison showed that ws = 9× 9 and 11× 11 produced the best

results. This also provides a general guideline for future researchers regarding

the likely best options for window size in CAD-PC studies.

7. A new supervised texton based CAD-PC approach. This is the first CAD

method which has investigated the use of textons in classifying benign and

malignant tissues within the prostate. To our knowledge there is no CAD which

has investigated textons in prostate cancer detection particularly in MRI.

8. The proposed texton based CAD-PC approach learns directly from image pix-

els without the need to use a filter bank. In comparison, most CAD-PC in

the literature computed large number of texture descriptors via filtering, and

this is computationally expensive. In fact, computing a large number of tex-

ture descriptors can also lead to an additional step such as feature selection or

dimensionality reduction.

9. An extensive qualitative comparison with the state-of-the-art covered seven dif-

ferent aspects: Az, CA, Sen, Spe, number of patients, modality (e.g. mono or

multiparametric MRI) and types of datasets (e.g. 1.5T or 3.0T). This provides a

summary for the research community regarding the current trends in CAD-PC

studies.

9.4 List of Publications

A list of publications resulting from this thesis is shown as follows:

Journals

1. A. Rampun, Z. Chen, P. Malcolm, B. Tiddeman, and R. Zwiggelaar. Computer-

aided diagnosis: detection and localization of prostate cancer within the periph-

eral zone. International Journal for Numerical Methods in Biomedical Engi-

neering, in press (2015). ISSN 2040-7947. doi: 10.1002/cnm.2745. URL:http:

//dx.doi.org/10.1002/cnm.2745. (Accepted: IF=2.052)

2. A. Rampun, P. Malcolm and R. Zwiggelaar. Detection of Prostate Abnormal-

ity within the Peripheral Zone Using Grey Level Distribution. Journal of Image

and Graphics, 2(1), pp. 15–21, 2014.

URL: http://dx.doi.org/10.1002/cnm.2745
URL: http://dx.doi.org/10.1002/cnm.2745
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4. A. Rampun, P. Malcolm and R. Zwiggelaar. Detection and Localisation of

Prostate Cancer within the Peripheral Zone using Scoring Algorithm. In pro-

ceedings of the 16th Irish Machine Vision and Image Processing, IMVIP’14,

Londonderry, Northern Ireland, pp. 75–80, August 2014.

5. A. Rampun, P. Malcolm and R. Zwiggelaar. A Block-based Approach for Ma-

lignancy Detection within the Prostate Peripheral Zone in T2-weighted MRI. In

proceedings of the 2nd Bioimaging Conference, BioImaging’15, Lisbon, Portugal,

pp. 56–63, January 2015.
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Multimodality magnetic resonance imaging of prostate cancer. Journal of En-

dourology, 24(5):677–684, 2010.

[55] A. Sciarra, V. Panebianco, S. Salciccia, M. Osimani, D. Lisi, M. Ciccariello,

R. Passariello, F. Di Silverio, and V. Gentile. Role of dynamic contrast-enhanced

magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the

detection of local recurrence after radical prostatectomy for prostate cancer.

European Urology, 54(3):589–600, 2008.

[56] H. Kajihara, Y. Hayashida, R. Murakami, K. Katahira, R. Nishimura,

Y. Hamada, K. Kitani, M. Kitaoka, Y. Suzuki, M. Kitajima, T. Hirai, S. Mor-

ishita, K. Awai, and Y. Yamashita. Usefulness of diffusion-weighted imaging in

the localization of prostate cancer. International Journal of Radiation Oncology

Biology Physics, 74(2):399–403, 2009.

[57] L. K. Bittencourt, D. Hausmann, N. Sabaneeff, E. L. Gasparetto, and J. O.

Barentsz. Multiparametric magnetic resonance imaging of the prostate: current

concepts. Radiologia Brasileira, 47(5):292–300, 2014.



Bibliography 198

[58] J. L. Leake, R. L. Hardman, V. Ojili, I. Thompson, A. Shanbhogue, J. Hernan-

dez, and J. Barentsz. Prostate MRI: Access to and current practice of prostate

MRI in the united states. Journal of the American College of Radiology, 11(2):

156–160, 2014.

[59] C. Tempany and F. Franco. Prostate MRI: Update and current roles. Applied

Radiology, 41(3):17–22, 2012.

[60] K. Doi. Computer-aided diagnosis in medical imaging: Historical review, current

status and future potential. Computerized medical imaging and graphics: the

official journal of the Computerized Medical Imaging Society, 31(4–5):198–211,

2007.

[61] J. T. Rothwax, A. K. George, B. J. Wood, and P. A. Pinto. Multiparametric

MRI in biopsy guidance for prostate cancer: Fusion-guided. BioMed Research

International, 2014:1–7, 2014.
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