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Purpose: In this paper we propose a texton based prostate Computer Aided10

Diagnosis approach which bypasses the typical feature extraction process such as11

filtering and convolution which can be computationally expensive. The study focuses12

the peripheral zone because 75% of prostate cancers start within this region and13

the majority of prostate cancers arising within this region are more aggressive than14

those arising in the transitional zone.15

Methods: For the model development, square patches were extracted at random16

locations from malignant and benign regions. Subsequently, extracted patches were17

aggregated and clustered using k -means clustering to generate textons that represent18

both regions. All textons together form a texton dictionary, which was used to19

construct a texton map for every peripheral zone in the training images. Based on20

the texton map, histogram models for each malignant and benign tissue sample were21

constructed and used as a feature vector to train our classifiers. In the testing phase,22

four machine learning algorithms were employed to classify each unknown sample23

tissue based on its corresponding feature vector.24

Results: The proposed method was tested on 418 T2-W MR images taken from 4525

patients.Evaluation results show that the best three classifiers were Bayesian Network26

(Az = 92.8% ± 5.9%), Random Forest (89.5% ± 7.1%) and k-NN (86.9% ± 7.5%).27

These results are comparable to the state-of-the-art in the literature.28

Conclusions: We have developed a prostate Computer Aided Diagnosis method29

based on textons using a single modality of T2-W MRI without the need for the30

typical feature extraction methods, such as filtering and convolution. The proposed31

method could form a solid basis for a multimodality MRI based systems.32

33
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1. INTRODUCTION35

Prostate cancer is one of the most common cancers affecting men, with an estimated 1.136

million diagnoses and 307,000 deaths in the world in 2012 1. In the same year, there were37

41,736 cases reported in the UK with 10,837 deaths. Prostate cancer rates in the UK have38

at least tripled over the last 35 years, causing prostate cancer to be the most common cancer39

among British men. In 2015, there were an estimated 220,800 incidences and around 27,50040

deaths, making it the second most deadly cancer in the United States 2.41

The most common methods used for preliminary screening are the prostate-specific anti-42

gen (PSA) test, digital rectal examination (DRE) and transrectal ultrasound (TRUS) guided43

biopsy. However, these methods have limited sensitivity and specificity. For example, an el-44

evated PSA level does not always indicate the occurrence of prostate cancer because several45

factors can increase PSA levels such as a urine infection, vigorous exercise and ejaculation46

in the 48 hours before a PSA test 4. The DRE test is highly dependent on the experience of47

the examiner. For example, a more experienced examiner can detect subtle abnormalities48

in comparison to less experienced clinicians 4,8. For TRUS guided biopsy, due to its random49

procedure, the sample needle can miss cancerous and significant tissues, meaning the test50

result can indicate incorrect results 57.51

Since there is still space for improvement in the reliability of clinical methods for screen-52

ing and detecting prostate cancer, integrating Magnetic Resonance Imaging (MRI) into53

clinical practices (e.g. MRI/Ultrasound guided biopsy and multimodality image fusion) is54

becoming popular as it has shown a significant improvement over PSA and TRUS alone55

3,4. Unfortunately such methods require substantial expertise from the radiologist. Previous56

studies have shown a high degree of inter-observer variability 3,4, indicating a high risk of57
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human error. They are also time consuming. Computer Aided Diagnosis (CAD) can assist58

radiologists in the interpretation of medical images by providing a ‘second’ opinion, which59

eliminates variability among radiologists, speeds up the analysis of the images and improves60

diagnosis decision results 5,6.61

Developing CAD systems is a difficult task due to variations in the appearance of anatomy62

in images produced by MRI scanners. Recent studies 4,7–9,42 have reported the deficiencies of63

T2-weighted (T2-W) MRI including weak texture descriptors that could be affected by noise.64

In fact, Tiwari et al.10,41 suggested that T2-W MRI texture features alone are insufficient to65

identify prostate malignancies. Recently, a popular approach to improve the performance of66

CAD systems is using multiparametric MRI. The use of multimodality MRI in developing67

CAD systems is a popular way to improve the performances of existing methods. It is noted68

that using T2-W alone is deemed insufficient, but that T2-W classification can form a solid69

basis for a multimodality MRI based CAD system.70

In 2015, Lemâıtre et al.11 conducted a review of CAD systems for prostate cancer detec-71

tion and reported that there are 42 studies in the literature from 2007 until 2014. Most of72

the methods described used typical feature extraction algorithms based on filtering and con-73

volution, which can be computationally expensive. The large number of extracted features74

also led to the need for the additional step of feature selection or dimensionality reduction.75

None of the CADs reviewed in 11 have used textons to discriminate benign and malignant76

tissue in their studies. Although the term texton was first introduced in the 80’s, it did not77

get much attention until a study of texture classification by Leung and Malik 12 in 2001.78

Later, similar studies showing promising results in texture classification were conducted by79

Varma and Zisserman 15,16 in 2005 and 2009, respectively. In medical image analysis textons80

have been used in retinal vessel segmentation 13 and lung cancer detection 14.81
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Textons can be seen as a representation of micro-structures in natural images and are82

considered as the atoms of pre-attentive human visual perception 17. In the original ap-83

proach, textons were represented by means of a collection of filter bank responses obtained84

from large filter banks such as the MR8 18, LM 12, S 19 filter banks and Gabor filter 20. All85

the response vectors were collected and clustered using k -means and the resulting cluster86

centers were called textons (hence, in a simplest definition textons are the k -means’ cluster87

centers). Nevertheless, the study in 21 showed textons can be generated by directly cluster-88

ing the image’s pixel values from patches without the need for filter banks (hence, speeding89

up the process of constructing the texton dictionary).90

In 15,16, the authors made quantitative comparisons between a typical texton-based ap-91

proach (using a filter bank) and a texton-based approach without filter bank, which showed92

that the latter appraoch produced better classification results. The study in 21 suggested93

there are three reasons for the relatively strong performance of textons generated from the94

image’s pixels in comparison to textons generated from the convolved image’s pixels. First,95

the use of filter banks reduces the number of textons that can be extracted from a texture96

image 22. For example, the number of textons are significantly reduced when an image of97

250 × 250 pixel is convolved with a 50 × 50 filter. This affects the ability of the histogram98

models to characterise a particular texture (i.e. insufficient information to model the actual99

representation of the image). Second, the large number of filters leads to small errors in100

the edge localisations which may significantly change the geometry of the textons, leading101

to errors in the estimation of the texton frequency histogram 22. Finally, most filter banks102

lead to some blurring of the texture which might remove local details in the texture hence103

resulting in different textons 22. Based on these reasons the proposed method in this paper104

did not use any filter banks but took the image’s pixels directly to generate textons.105
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The aim of this paper is to investigate the use of textons without the need for filtering106

or convolution for feature extraction in prostate cancer CAD system in a single modality107

T2-W MRI. The novel contributions of our work are:108

1. This is the first CAD method which has investigated the use of textons in classifying109

benign and malignant tissues within the prostate gland in MRI.110

2. The proposed method learns directly from image pixels without the need to use a filter111

bank. In comparison, most prostate cancer CAD systems in the literature compute112

large numbers of texture descriptors, which are computationally expensive. In fact,113

computing a large number of texture descriptors also leads to an additional (essential)114

step of feature selection or dimensionality reduction.115

The clinical motivations of our work are three-fold:116

1. Finding cancer regions in each MRI image manually by a radiologist is time consuming.117

A CAD system can potentially speed up this process by delineating cancerous regions118

automatically.119

2. Computer algorithms are deterministic while radiologists’ results can be variable. For120

example, fatigue affects radiologists’ performances, potentially resulting in missing121

cancerous regions.122

3. The accuracy of detecting prostate cancer among radiologists varies depending on the123

level of experience. In comparison, a CAD system can eliminate this issue as it can124

provide consistent results.125

4. Prostate cancer CAD acts as a second opinion which can significantly improve the126

performance of less experienced radiologists.127
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2. METHODOLOGY128

FIG. 1. A general overview of the proposed method.

Figure 1 shows a flowchart of our proposed method. For every input image, we roughly129

estimate the area of the prostate’s peripheral zone (PZ) followed by normalisation and noise130

reduction. Subsequently, for every training image we randomly extract patches from benign131

and malignant regions within the PZ and employed k -means clustering to generate textons132

(the output of this stage in the texton dictionary). Each pixel in every training image is133

labelled with the texton to which it lies closest, producing texton maps. Using the texton134

maps, a histogram of textons (the frequency with which each texton occurs) is constructed135

for every pixel within the PZ. The texton histograms from all pixels are treated as feature136

vectors and used to train our classifiers. Finally, at the testing phase, every unseen PZ137

is processed in the same way and the trained classifiers are used to decide, for each pixel,138

whether it belongs to the benign or malignant class. The next subsections will explain this139

process in more details.140

2.A. Capturing the Peripheral Zone141

We employed the 2D model developed by Rampun et al.25 to estimate the area of the PZ.142

The method uses a quadratic equation based on the central coordinates of the prostate gland,143

the left-most and right-most coordinates of the prostate gland boundary (each prostate144

boundary was provided by a radiologist). This allows us to model a priori general knowl-145
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FIG. 2. Example images of prostate MRI with ground truth delineated by an expert radiologist

and the estimated PZ region under the magenta line. PZ (peripheral zone), CZ (central zone) and

T (Tumour).

edge of radiologists which is similar to the methods of Makni et al.43 and Liu et al.25. Figure146

2 shows example MRI images with the ground truth location of the prostate gland, transi-147

tional/central zone (CZ) and tumor (T) represented in red, yellow and green respectively,148

while the magenta line is the estimated boundary of the PZ based on the method given149

in 25. Note that our study is only developed within the segmented PZ which is under the150

magenta line in Figure 2. Our clinical justifications for currently focusing on the peripheral151

zone (PZ) is 8,47,48:152

1. More than 75% of prostate cancers are located within this region.153

2. The majority of prostate cancers arising within this region are more aggressive than154

those arising in the transitional zone.155

3. Most prostate cancers start to develop in this zone before spreading to the transitional156

zone.157
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2.B. Pre-processing158

The major problem with MR images is that specific tissues do not have fixed specific159

intensity values. This is mainly caused by 8,26–28: a) corruption by thermal noise due to160

receiver coils, b) different scanning protocols causing large intensity variations and c) poor161

radio frequency coil uniformity. These can significantly affect the discriminative performance162

hence need to be corrected 28. Following the pre-processing procedure method described163

in 8,29,30, each image is median filtered to preserve edge boundaries. Subsequently, image164

intensities were normalised to zero mean unit variance and anisotropic diffusion filtering 30,31
165

was applied to remove noise.166

We used the anisotropic diffusion and median filter to eliminate low-level noise and sharp167

noise (e.g. bright spikes), respectively. The anisotropic diffusion is a robust filter, however168

studies 8,30 have shown that it is ineffective for eliminating sharp noise. The idea behind169

anisotropic diffusion is to use a diffusion function to prevent smoothing happening across170

edges, and therefore it preserves edges in the images. Unfortunately, the gradient to the noise171

element (e.g. sharp noise) may compete with edge responses and the diffusion function172

cannot distinguish between image structure and noise contribution. By combining both173

filters, they work in a complementary way to gradually eliminate the overall noise element174

without blurring the edges and textures of the image. The filters we use are both of size175

3 × 3 for the entire study.176

2.C. Texton Dictionary177

Figure 3 shows the summary of steps to construct the texton dictionary. Textons (i.e.178

m × n window square, where m and n are rows and columns, respectively) were retrieved179
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FIG. 3. Generating the texton dictionary. Patches from the same class are aggregated and clustered

using the k -means algorithm. Red (black solid line) and blue (white dotted line) patches are

malignant and benign samples, respectively.

from benign and malignant regions. To construct the texton dictionary, we followed the work180

of Varma and Zisserman 15,16,18,21. For every PZ area in the training images we randomly181

extracted m × n patches of raw pixels from benign and malignant regions. Subsequently,182

all patches extracted from benign regions were clustered using the k -means algorithm. The183

same process was performed for all patches extracted from malignant regions. A summary184

of the k -means algorithm can be found in32. The cluster centroids produced by the k -means185

algorithm are the textons. Once all textons from both classes (benign and malignant) were186

generated, they were combined to form the texton dictionary. As shown in Figure 3, each187

texton is unique and has its own id (TX = tx1, tx2, tx3......txn) saved in a matrix which will188

be used to construct the texton map for each image.189

FIG. 4. Example of textons generated from malignant (top row) and benign (bottom row) regions.

Figure 4 shows textons extracted from both classes. Visually it can been seen that190

textons generated from benign regions (bottom row) look smoother than the ones retrieved191
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from malignant regions (top row).192

2.D. Feature Extraction193

In this study, texton histograms are used to model benign and malignant tissue. These194

histograms are calculated in two main stages. The first stage is to generate the texton map,195

where every pixel in the image (within the PZ) is assigned to the closest texton (using the196

Euclidean distance) in the texton dictionary. We used a sliding window, W T of the same197

size as the textons, and found the texton, TX, with the shortest Euclidean distance to the198

image patch W T . Subsequently, the central pixel in WT is assigned the texton id which is199

the closest to WT. This process was repeated for every pixel in the image until all pixels200

were assigned with the corresponding textons ‘ids’. By the end of this stage, a texton map201

was constructed for every PZ which was used in the subsequent stages.202

FIG. 5. A graphical illustration on how to construct a texton value of an image patch.

Figure 6 shows examples of texton maps of three PZs generated in this phase. Each203

pixel within the PZ was replaced with the corresponding texton ‘id ’. At the second stage,204

using the texton map we were able to generate a histogram model for each pixel by using a205

sliding window of the same size. A histogram for each pixel was constructed based on the206

occurrence of each texton’s frequency within the neighborhood of the central pixel (including207

the central pixel).208209
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FIG. 6. Examples of texton maps of three PZs taken from three different prostates.

Figure 7 shows an example of constructing a histogram for each pixel. In this example,210

there are 10 textons (5 textons for each class) in the dictionary and each histogram of a211

tissue was constructed based on 9×9 window size; this means the histogram was constructed212

based on the texton frequency within 81 pixels (and 25 pixels for 5 × 5 window size). Note213

that every histogram was normalised to unity. This yielded histograms for each tissue in214

the training images, which are used as feature vectors representing every pixel. To this end,215

each pixel is represented in a txt dimension feature space where txt is the number of textons216

in the dictionary (10 in this example). Similarly, if there are 30 textons (15 textons per217

class), each pixel is represented in a 30 dimensional feature space. It should be noted that218

the data dimensional is independent of W T . Finally, the constructed histogram for each219

pixel was treated as feature vector in the training and testing phases.220

FIG. 7. Constructing a histogram for each pixel in from the texton map.
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3. EXPERIMENTAL SETTINGS221

3.A. Materials and Dataset222

Our dataset consists of 418 T2-W MR images (227 malignant and 191 normal slices re-223

sulting in 74,208 malignant pixels and 97,310 normal pixels) taken from 45 patients aged224

54 to 74 (all patients had biopsy-proven prostate cancer). Each patient has between 6 to225

13 slices covering the top to the bottom of the prostate gland. The prostate gland, ma-226

lignant and transitional zone were delineated by an expert radiologist with more than 10227

years experience in prostate MRI. All sequences with prostate cancer cases were confirmed228

malignancies based on TRUS biopsy reports. All annotated cases of malignant cancer were229

confirmed as clinically significant (Gleason score grade 7 and above). Vollmer 55 who con-230

ducted a study (526 patients) about the relationship between tumour length and Gleason231

score found that tumour length was positively and significantly related to Gleason score.232

The study found that the median tumour length for Gleason scores 4 through 6 was 2.9mm,233

the median length for Gleason scores 7 through 10 was 13.1mm. These results are similar234

to the study conducted by Lee et al. 56 who found most cancer with Gleason score ≥ 7 have235

longer cancer core length (based on more than 5000 patients). In another study conducted236

by Billis et al. 54 covering 401 patients with Gleason score ≤ 6 found that the median core237

cancer length was 1.5mm with the range of 0.5mm-3.0mm. All patients underwent T2-238

W MR imaging at the Department of Radiology Norfolk and Norwich University Hospital,239

Norwich, UK. MR acquisitions were performed prior to radical prostatectomy. All images240

were obtained on a 1.5 Tesla magnet (Sigma, GE Medical Systems, Milwaukee, USA) using241

a phased array pelvic coil, with a 24 × 24 cm field of view, 512 × 512 matrix, 3mm slice242

thickness, 3.5mm inter-slice gap and 0.47mm pixel spacing.243
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Approximately 60% (pre-processing, PZ modelling, construction of texton dictionary,244

feature extraction and segmentation) of the source code was written in Matlab 2012a and245

40% (training and testing in machine learning) was written in Java. All experiments were246

run under the Window 7 operating system with an Intel core i5 processor.247

3.B. Training and Testing248

All pixels within the radiologist’s tumor annotation were extracted as prostate cancer249

samples. This area was delimited by the tumor mask, to ensure no pixels outside the tumor250

region were included in the malignant samples. All pixels outside the tumor region and251

within the PZ were considered benign samples. Similarly, this region was delimited by the252

tumor or prostate gland masks to ensure no pixels within the tumor region and outside the253

prostate gland were included as benign samples.254

A stratified nine runs 9-fold cross-validation (9-FCV) scheme was employed. The folds255

were populated on a patient basis to ensure no samples from the same patient were used in256

the training and testing phases (45 patients in our case, hence each fold contains 5 patients).257

Each classifier was trained using the histograms of textons from the training partition for258

that fold. In the testing phase each unseen instance/pixel from the testing data (taken259

from 5 randomly selected patients) was classified as malignant or benign. During the cross-260

validation we set aside a small set of patients (in our case 5 patients) as the validation set261

and trained the classifiers on the remaining 40 patients. This process was randomised and262

the results presented in our paper are the average of the 9-FCV.263

For classification, we employed four machine learning algorithms in WEKA 44 namely264

the Bayesian Network (BNet) 33, Alternating Decision Tree (ADTree) 34, Random Forest265

(RF) 35, Linear Discriminant Analysis (LDA) 50 and k-Nearest Neighbours (k-NN) with the266
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following default settings; Hill climbing search algorithm, number of boosting iterations is 10,267

number of initial random forests are 100, the ridge parameter is 1e−6 and k=1, respectively.268

4. EXPERIMENTAL RESULTS269

The performances were measured using the most popular metrics in the literature: Area270

Under the Curve (Az, also known as AUC) and Classification Accuracy (CA). The Az in-271

dicates the trade-off between the true positive rate against the false positive rate, where272

CA represents the number of pixel classified correctly. The CA can be calculated as273

TP+TN
TN+TP+FP+FN

. TP and FP denote the number of true positives and false positives, respec-274

tively. Similarly, TN and FN indicate the numbers of true negatives and false negatives.275

Note that the Az values in this paper are presented as a percentage (0− 100) instead of the276

automatic normalised range (0-1). The standard deviation measures the dispersion of both277

metrics across 9-fold cross validation. The t-test statistics was used to compare the best278

results (both metrics) between the best classifier with the other classifiers. This determines279

whether the best classifier produced significantly better results in comparison to the other280

classifiers.281

One of the main challenges in developing a texton based approach in texture classification282

is finding the best window size (ws) for W T and the number of textons (txt) as these283

parameters can influence the classification results. For this purpose, we used the following284

ws = 5 × 5, 7 × 7, 9 × 9, 11 × 11 and 13 × 13. For txt, we tested the following values285

6, 10, 12, 16, 20, 24 and 30. Note that these numbers represent the number of textons for286

both classes (e.g. txt = 6, 3 benign textons and 3 malignant textons).287

Tables I and II show Az and CA results, respectively using the ADTree classifier which288

produced best results of Az=83.2% and CA=75.3%. At the smaller ws, the classifiers289
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produced Az ranging from 74% to 77%. The results are slightly better at ws = 7 × 7 with290

Az ranging from 75% to 79%. It produced the best Az at 9 × 9 with average Az>80%291

regardless of the number of textons. However, in terms of accuracy the ADTree classifiers292

produced better results on average at 11 × 11 (CA>70% ).293

TABLE I. Az (%) values for ADTree classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 77.3 ± 12.1 79.4 ± 12.4 83.8 ± 10.8 83.2 ± 10.6 82.3 ± 10.7

10 76.5 ± 11.9 77.6 ± 13.0 82.9 ± 9.8 80.7 ± 10.7 80.2 ± 9.9

12 75.9 ± 11.9 77.3 ± 12.2 81.9 ± 9.7 80.2 ± 11.5 80.0 ± 10.7

16 76.2 ± 11.7 77.0 ± 12.0 82.1 ± 10.7 82.5 ± 9.6 81.3 ± 10.2

20 75.1 ± 11.3 76.1 ± 10.1 81.6 ± 10.2 76.5 ± 12.9 76.3 ± 11.9

24 75.6 ± 11.9 75.6 ± 11.8 80.9 ± 9.9 76.6 ± 12.1 75.9 ± 11.5

30 74.3 ± 12.0 75.1 ± 12.1 80.7 ± 10.9 76.3 ± 12.6 75.5 ± 11.7

TABLE II. CA (%) values for ADTree classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 71.0 ± 13.3 70.3 ± 14.6 71.9 ± 15.1 72.7 ± 14.6 70.9 ± 15.1

10 69.5 ± 15.6 68.2 ± 14.4 69.7 ± 16.7 70.7 ± 16.3 70.1 ± 15.5

12 70.8 ± 15.4 67.4 ± 14.9 69.3 ± 12.8 70.5 ± 16.3 70.3 ± 16.1

16 68.6 ± 16.1 66.9 ± 15.4 69.3 ± 10.7 75.3 ± 13.6 74.3 ± 12.9

20 68.3 ± 16.2 68.5 ± 14.5 69.2 ± 14.9 69.8 ± 16.2 68.3 ± 15.3

24 68.1 ± 17.5 65.8 ± 16.3 70.0 ± 14.9 68.4 ± 16.8 67.1 ± 16.1

30 63.9 ± 21.1 65.3 ± 15.1 69.1 ± 15.1 69.7 ± 16.8 68.1 ± 15.3

The results for the BNet classifier can be found in Tables III and IV. The BNet classifier294

performed best when features were extracted using a larger window (e.g. 11 × 11). At295

ws = 11× 11 and txt = 16 the BNet outperformed the other classifiers with Az=92.8% and296

CA=84%. At ws = 13 × 13 with the same value of txt the BNet classifier decreased 1.5%297

and on average. In fact, it can also be seen that all Az and CA went down regardless of the298
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number of textons. One noticeable pattern can be seen from the results in Tables III and299

IV is at ws = 5 × 5 until 11 × 11 the range of Az value increased around 4% to 5% at each300

window size and gradually decreased at 13 × 13. In terms of the number of textons, it did301

not affect the performance much on both metrics (variation between 1%-3%).302

TABLE III. Az (%) values for BNet classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 79.2 ± 11.5 83.7 ± 10.7 89.5 ± 7.9 90.8 ± 7.8 89.4 ± 7.7

10 80.1 ± 11.4 84.3 ± 10.2 90.3 ± 6.7 92.0 ± 6.9 91.3 ± 7.5

12 80.2 ± 11.0 84.8 ± 10.1 90.0 ± 7.1 91.6 ± 6.1 90.7 ± 6.9

16 81.7 ± 10.6 85.0 ± 9.9 90.9 ± 7.1 92.8 ± 5.9 91.3 ± 5.7

20 80.5 ± 11.2 85.3 ± 9.7 90.8 ± 7.0 91.4 ± 6.0 90.7 ± 5.9

24 80.9 ± 11.5 85.4 ± 9.6 90.8 ± 6.8 91.5 ± 6.3 90.1 ± 6.1

30 81.0 ± 10.9 84.2 ± 8.9 90.9 ± 7.3 91.8 ± 5.9 91.1 ± 6.0

TABLE IV. CA (%) values for BNet classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 70.0 ± 15.2 73.6 ± 13.2 78.6 ± 10.2 80.5 ± 10.8 78.1 ± 10.2

10 70.4 ± 14.1 74.0 ± 12.4 80.1 ± 9.9 83.0 ± 8.5 82.3 ± 9.5

12 70.4 ± 14.5 74.5 ± 11.7 80.3 ± 10.1 82.1 ± 10.1 81.7 ± 10.2

16 72.3 ± 14.2 75.1 ± 11.8 81.4 ± 8.9 84.0 ± 7.0 82.8 ± 7.5

20 70.2 ± 14.8 75.7 ± 12.6 81.9 ± 8.0 82.0 ± 8.9 81.5 ± 8.3

24 71.6 ± 14.6 75.6 ± 12.1 81.4 ± 8.9 83.0 ± 8.3 82.3 ± 8.9

30 70.8 ± 14.3 75.3 ± 11.9 81.8 ± 8.2 82.8 ± 8.7 81.9 ± 7.9

The k-NN classifier performed well with Az=86.9% and CA=80.2% as shown in Table V303

and VI, respectively. In terms of the area under the curve, the classifier performed better304

with a smaller number of textons regardless of the ws. This can be seen in Table V where305

most Az values are above 80% at txt = 6, but as the txt value increases the Az value decreases306

to around 70%. The lowest accuracy was produced at the largest window of 13 × 13 with307
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30 textons in the texton dictionary.308

TABLE V. Az (%) values for k -NN classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 80.2 ± 11.3 82.7 ± 9.9 86.9 ± 7.5 85.2 ± 7.1 85.6 ± 7.4

10 80.0 ± 10.1 80.8 ± 9.1 83.5 ± 6.8 80.1 ± 7.9 79.1 ± 7.9

12 79.4 ± 9.6 78.3 ± 8.7 80.4 ± 7.5 79.0 ± 8.5 78.8 ± 8.3

16 77.0 ± 9.4 74.8 ± 8.4 77.3 ± 7.4 77.7 ± 8.2 76.6 ± 8.1

20 73.6 ± 8.6 72.2 ± 8.4 75.5 ± 7.4 72.8 ± 8.4 74.0 ± 8.9

24 71.7 ± 8.3 70.1 ± 7.8 74.5 ± 7.9 71.6 ± 9.2 69.9 ± 9.5

30 69.8 ± 8.1 69.8 ± 7.3 73.1 ± 7.4 70.7 ± 9.1 69.8 ± 9.3

TABLE VI. CA (%) values for k -NN classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 74.8 ± 11.3 74.3 ± 11.2 78.1 ± 9.6 80.2 ± 9.1 78.9 ± 9.3

10 74.7 ± 11.7 74.2 ± 9.1 75.9 ± 8.5 74.3 ± 9.9 76.3 ± 9.4

12 75.5 ± 10.8 73.2 ± 8.7 74.3 ± 8.5 73.6 ± 10.1 72.1 ± 10.3

16 73.4 ± 10.3 71.1 ± 8.5 73.1 ± 8.3 74.3 ± 9.6 73.2 ± 9.8

20 72.2 ± 9.5 69.6 ± 8.2 71.8 ± 8.0 70.0 ± 9.6 69.3 ± 9.7

24 71.1 ± 9.6 68.7 ± 8.4 71.4 ± 8.4 68.9 ± 10.1 68.5 ± 10.4

30 69.9 ± 9.3 67.8 ± 8.5 70.6 ± 8.2 68.5 ± 10.5 67.7 ± 10.6

Tables VII and VIII show the results of the second best classifier in our experiments309

which is the RF. In terms of Az, the RF performed best at larger ws (e.g. 9×9 and 11×11)310

with txt = 6 or 10. In our experiment, using the maximum number of textons (txt = 30)311

decreased the Az from 89.5% to 81.6%, which is statistically significant (p < 0.001). On the312

other hand, both metrics are highest at ws = 11 × 11 and lowest at ws = 5 × 5.313

Tables IX and X show the results of the proposed method using the LDA classifier. The314

best Az value was achieved at ws = 9 × 9 which is 80.7%. At the same ws, the proposed315

method achieved on average 79.9% and higher Az was achieved txt > 12. In terms of316
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TABLE VII. Az (%) values for RF classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 80.3 ± 11.3 83.6 ± 9.8 88.2 ± 7.4 89.5 ± 7.1 86.2 ± 8.1

10 80.6 ± 9.9 83.0 ± 8.8 87.2 ± 6.6 86.7 ± 7.8 85.5 ± 8.2

12 80.4 ± 9.6 81.9 ± 8.7 85.7 ± 6.7 86.0 ± 8.0 82.7 ± 7.9

16 79.5 ± 9.3 80.4 ± 8.7 85.1 ± 7.5 86.3 ± 8.1 83.6 ± 8.2

20 77.3 ± 9.1 79.3 ± 8.9 84.4 ± 7.4 82.6 ± 8.9 81.1 ± 8.2

24 76.9 ± 8.9 78.8 ± 9.1 83.9 ± 7.6 82.0 ± 9.4 81.3 ± 9.5

30 75.9 ± 9.1 78.3 ± 9.9 83.4 ± 8.4 81.6 ± 9.7 80.9 ± 8.9

TABLE VIII. CA (%) values for RF classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 74.9 ± 11.3 74.6 ± 10.9 78.4 ± 9.6 81.1 ± 9.3 77.8 ± 9.8

10 74.8 ±11.7 75.2 ± 8.9 77.7 ± 8.7 77.5 ± 9.9 75.3 ± 9.5

12 75.9 ± 10.6 74.9 ± 8.9 76.9 ± 8.7 77.8 ± 9.0 74.3 ± 8.9

16 74.5 ± 10.1 73.9 ± 8.8 76.3 ± 8.7 77.0 ± 10.0 75.1 ± 9.5

20 74.0 ± 9.4 73.4 ± 8.6 75.3 ± 8.2 74.0 ± 9.7 73.0 ± 9.3

24 73.6 ± 9.7 72.7 ± 9.1 75.2 ± 8.4 73.0 ± 10.2 74.0 ± 10.3

30 73.1 ± 9.7 72.5 ± 9.3 74.3 ± 8.6 72.1 ± 11.0 72.2 ± 10.8

accuracy, the highest CA = 75.8% was achieved at ws = 11 × 11. Our results are within317

the range of the existing studies 4,42,51,52 in the literature.318

Overall, the BNet classifier with Az=92.8% and CA=84% outperformed the other classi-319

fiers in both metrics, which is statistically significant (p<0.001) against all classifiers except320

the CA of RF classifier (p=0.095) and k -NN classifier (p=0.025). The p value between the321

best Az and CA of the BNet classifier against the best results of ADTree is p<0.001. The322

p value against the best Az of k-NN is p<0.001. The RF classifier produced the second323

best results in both metrics with Az=89.5% and CA=81.1% at ws = 11 × 11 and txt = 6.324

The k-NN and ADTree classifiers achieved Az>83% but in terms of accuracy the ADTree325
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TABLE IX. Az (%) values for LDA classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 74.6 ± 13.9 75.0 ± 15.4 79.1 ± 12.1 78.2 ± 13.8 77.3 ± 12.5

10 75.2 ± 12.9 74.9 ± 13.7 79.5 ± 11.3 79.2 ± 11.9 78.2 ± 12.3

12 74.9 ± 12.3 75.8 ± 13.3 79.7 ± 11.2 78.6 ± 12.4 77.5 ± 11.9

16 75.9 ± 12.6 75.9 ± 13.1 80.2 ± 11.7 79.1 ± 12.8 78.5 ± 12.5

20 75.2 ± 12.2 75.7 ± 12.7 80.3 ± 11.1 74.6 ± 14.6 73.6 ± 13.2

24 75.5 ± 12.7 75.5 ± 12.7 80.1 ± 11.5 75.8 ± 14.2 73.2 ± 13.7

30 75.3 ± 11.9 75.1 ± 12.6 80.7 ± 11.7 75 .4± 13.1 73.2 ± 13.5

TABLE X. CA (%) values for LDA classifier.

5× 5 7× 7 9× 9 11× 11 13× 13

6 65.2 ± 17.6 64.5 ± 18.3 67.7 ± 16.8 67.8 ± 16.9 67.2 ± 16.5

10 65.7 ± 16.3 65.9 ± 18.1 67.9 ± 16.5 69.7 ± 18.1 68.7 ± 15.7

12 64.7 ± 16.1 67.1 ± 15.8 67.6 ± 14.8 70.2 ± 16.6 69.5 ± 16.1

16 67.4 ± 15.9 66.0 ± 16.6 68.7 ± 15.7 75.1 ± 13.2 69.1 ± 13.5

20 64.2 ± 16.6 66.3 ± 16.5 68.8 ± 15.3 68.5 ± 17.1 67.3 ± 17.3

24 66.7 ± 16.2 66.6 ± 16.2 69.4 ± 14.3 75.8 ± 14.2 67.5 ± 15.8

30 66.0 ± 15.7 66.1 ± 16.3 70.1 ± 14.6 68.4 ± 15.3 67.1 ± 15.3

achieved CA<80%. The overall results show that the best results for all classifiers employed326

were achieved using either ws = 9 × 9 or 11 × 11 and txt = 6 or 16. Considering the best327

Az values of all classifiers, results suggest that the proposed method can achieve similar328

performances to other prostate cancer CAD in the literature. Furthermore, based on the329

best Az, our method qualitatively outperformed most of the existing methods. Nevertheless,330

in terms of accuracy there is space for improvement.331

The RF classifier (Tables VII and VIII) perform better than the ADTree and k -NN332

because of its ability to perform like an ensemble classifier (consider various decisions and333

use averaging to improve predictive accuracy). The k -NN classifier produced better results334
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than the ADTree at txt = 6 because of the simplicity of its decision rule as well as the335

data itself (low data dimension). Nevertheless, the ADTree classifier performed better than336

the k -NN at txt > 10 because it employs a ‘boosting’ approach (building a decision tree337

iteratively based on the error produced in the previous decision tree). A larger number338

of textons would be beneficial for the ADTree classifier because a better representation of339

the problem domain can be created iteratively. Results in Table III and IV show that340

the BNet classifier produced consistent results regardless of txt and outperformed the other341

classifiers. The BNet is expected to perform better due to its ability to map the relationships342

among variables (or features) to build a predictive model without being restricted by the343

independence condition. Finally, the LDA produced the worst results in our experiments.344

Our explanations for this behaviour are two-fold. Firstly, the LDA is a linear classifier which345

means that the data would be linearly separable. Our test/training data are much more346

complex and the decision boundary between classes is expected to be non-linear. Secondly,347

the decision rules in the LDA classifier are incapable of dealing with complex data such as348

prostate MRI. Existing studies 4,42,51,52 whose methods employed the LDA classifier achieved349

similar results ranging between Az = 75% − 84% whereas our proposed method achieved350

Az = 80.7% which is similar to the current methods.351

The top and bottom rows in Figure 8 shows the segmentation results of two different352

cases produced by the classifiers employed in this study. The BNet, RF and k-NN classi-353

fiers produced good segmentation accuracy covering most area of the malignant region. In354

the second case (bottom row) the RF classifier again produced the highest accuracy fol-355

lowed by the k-NN classifier whereas the BNet and ADTree classifiers generated reasonable356

segmentation results.357
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FIG. 8. Segmentation results using different machine learning algorithms.

5. PARAMETER OPTIMISATION358

Since the performance of most machine learning algorithms are dependent on the pa-359

rameters chosen by the users, we further investigated the performance of three classifiers360

employed in this study which are the k-NN, RF and the ADTree classifier (note that the361

BNet classifier does not have adjustable parameter in WEKA). Performing parameter op-362

timisation for each of the classifiers are time consuming due to the size of dataset (number363

of instances more than 170,000) and the complexity of the classifier itself. Note that in this364

section we used the data with features extracted using ws = 11 × 11 based on the results365

in the previous section and we have not tested on features extracted using different ws. For366

the k-NN classifier we tested k = 1 up to k = 41 (at 2 neighbours interval to ensure odd k367

values). For the RF and ADTree classifiers, we tested the initial number of random trees368

(rF ) from 5 to 165 (with an interval rF = 5) and the number of boosting (nB) from 1 to369

41 (with an interval nB = 2, nB = 10 the WEKA default value), respectively. The purpose370

of these experiments is to demonstrate the stability of the proposed method when different371

parameters are used.372

Figure 9 shows results for Az and CA when k is varied from 1 to 41. The data was373

extracted using ws = 11 × 11 and txt = 12 (6 texton per class). In terms of classifica-374
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FIG. 9. The Az and CA values using different k values for the k-NN classifier. Default k = 1 in

WEKA44.

tion accuracy no significant difference was noticed as all CA were between 72% to 74%.375

Nevertheless, there was a significant difference in terms of Az at k = 1 and k = 5. The376

Az increased to just below 84% as the k increases in comparison to k = 1 where the Az377

value is around 79%. This indicates that the classifier tends to produce better result when378

comparing k neighbours instead of just taking the nearest neighbour in classification.379

Figure 10 shows the results for the ADTree classifier using 22 different nB values. The380

classifier produced Az ≤ 80% and CA ≤ 70% at nB ≤ 9. At the default nB given in381

WEKA44, it produced around Az=83% and CA=73%. At nB ≥ 11 both metrics change382

around 1% before they gradually increase at nB ≥ 17 and reaches Az ≤ 83% and CA ≤ 73%.383

As shown in Figure 10, the classifier produced the best Az and CA at nB = 10. Our384

explaination for this behaviour are two-fold: first it may be caused that an optimal model385

for the data was achieved at nB = 10, which means adding more iterations results in an386
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FIG. 10. The Az and CA values using different nB values for the ADTree classifier. Default

nB = 10 in WEKA44.

FIG. 11. The Az and CA values using different rF values for the RF classifier. Default rF = 100

in WEKA44.

overfitted model; second, adding more iterations decreases the training error but increases387
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the test error, which affects the overall accuracy. In an early study conducted by Freund388

and Manson 34 they showed that a significant test error was encountered at nB > 10.389

In Figure 11, the RF classifier achieved the highest Az=91% at rF = 50 with Az just above390

82% with rF = 85. Overall, there is no significance difference for both performance metrics391

using rF = 5 to 165, the CA=80%-82% and Az=89%-91%. In this section, one visible392

pattern for all the classification results is after an optimal model (or optimal parameter) is393

achieved, both metrics showed very little change, which may be caused by the size of our394

data (more than 170,000 instances). For example, 100 misclassified instances has very little395

effect on the percentage. Oshiro et al.53 conducted a study investigating the correlation396

between the numbers of random forests and Az values, and found that in most cases the397

classifier achieved high AUC value between random forest 8 to 64 (similar to our results in398

Figure 11). Adding more random forest only increases the computational time.399

6. QUALITATIVE COMPARISON400

Despite promising results of CAD in assisting radiologists in diagnostic decision making,401

the major problem is the lack of publicly available datasets, resulting in each group of402

researchers having their own dataset. Several factors contribute to the difficulty of making403

quantitative comparisons in prostate cancer CAD:404

1. Differences in the type of modalities (different modalities such as T2-weighted (T2-405

W) MRI, diffusion-weighted (DWI) MRI, dynamic contrast enhanced (DCE) MRI,406

Magnetic resonance spectroscopy (MRS), etc.) and protocols used in the other studies407

as the tissues’ numerical representations are inconsistent for different modalities.408

2. Absence of public datasets also makes quantitative comparisons among CADs in the409
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literature difficult. Each team of researchers has their own datasets which cause a410

huge range of variability in terms of noise, acquisition protocol and image quality.411

3. Studies were conducted within different regions of the prostate. Visually it is harder412

to detect and differentiate malignant regions within the CZ in comparison to the ones413

in the PZ.414

4. Finally, another difficulty is that the basis of evaluation have been different (e.g. vol-415

ume, slice, regions or voxel/pixels). Pixel level evaluation is more challenging as the416

number of instances increases as the number of pixels increases, resulting in more417

complex data, whereas the number of instances is limited to the number of regions418

annotated by the radiologists in region level evaluation.419

Nevertheless qualitative comparisons can roughly indicate the relative performance of the420

proposed method in this paper.421

TABLE XI. Qualitative comparison with eight of the existing CAD methods in the literature. Note

that # and WP indicate the number of patients and whole prostate, respectively.

Authors # Zone Modality Az

Vos et al. 36 29 PZ T2-W, DCE 97

Lv et al. 37 55 PZ T2-W 97

Peng et al. 38 48 WP T2-W, DCE, DWI 95

Our method 45 PZ T2-W 93

Vos et al. 39 29 PZ T2-W, DCE 91

Tiwari et al. 40 19 WP T2-W, MRS 91

Tiwari et al. 41 36 WP T2-W, MRS 90

Litjens et al. 4 347 WP T2-W, DCE, DWI 89

Kwak et al. 45 244 WP T2-W, DWI 89

Niaf et al. 42 30 PZ T2-W, DWI, DCE 89
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All methods in Table XI achieved at least Az=89%. The methods proposed by Vos422

et al.36 and Lv et al.37 achieved the highest Az=97%. Vos et al.36 proposed a method using423

features extracted from quantitative pharmacokinetic (PK) maps and T2-W MRI before424

training a SVM to calculate the malignancy likelihood of each lesion. However, the method425

was tested on a small dataset of 87 regions of interest (ROI) taken from 29 patients. On426

the other hand, Lv et al.37 used analysis of histogram fractal dimension (HFD) and texture427

fractal dimension (TFD) information on a single modality of T2-W MRI. Although the428

study covered 55 patients, the actual evaluation was based on 130 selected ROI of 12 × 12429

pixels (which means only a small part of the PZ region was covered). In fact, Lv et al.37 did430

not perform cross validation to further evaluate their method. In our study, we performed431

9-FCV as well as tested the proposed method on 418 PZ regions.432

Peng et al. 38 reported Az=95% based on T2-W, DCE, and DWI using the following433

features: 10th percentile apparent diffusion coefficient (ADC), average ADC, and T2-W434

skewness. Subsequently, individual image features were combined using linear discriminant435

analysis (LDA) to perform leave-one-patient-out cross validation. From an evaluation point436

of view, their study is similar to the studies in 36,37. Although Peng et al.38 reported that their437

study covered 48 patients, the actual evaluation was based on 104 ROI (61 malignant ROI,438

43 normal ROI). In comparison, our proposed methods achieved similar results qualitatively439

with some of the methods in the literature regardless of the size of dataset, modality and440

studied zones.441

Another study by Vos et al.36 reported Az = 91% for malignant and benign discrimina-442

tion, and 83% for suspicious malignant and benign discrimination, which is similar to the443

earlier study conducted by them 39. Niaf et al.42 extracted 140 texture features from 180444

ROI (30 patients) and achieved Az=89% which is similar to the method in 4. Niaf et al.42445
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compared the performance of four different classifiers (SVM, LDA, k -NN and NB) based on446

four different feature selection methods. Further, their results showed that employing fea-447

ture selection significantly improved the performance of their method and gradient features448

showed a high discriminant capability in their study.449

Litjens et al. 4 conducted a study which covered 347 patients and reported Az=89%.450

Their method consisted of two stages: in the first stage the prostate gland was segmented451

using a multi-atlas-based segmentation method and features based on intensity, anatomical,452

pharmacokinetic, texture and blobness were calculated. Subsequently, each voxel was clas-453

sified using GentleBoost and RF classifiers to generate a likelihood map. On each likelihood454

map local maxima detection was performed to capture ROIs with the highest probability of455

being malignant. A method by Tiwari et al.40 which is based on multi-kernel graph embed-456

ding in T2-W and MRS produced Az=89% covering 29 patients. The method 40 was also457

based on a two-stage classification approach: in the first stage, a voxel based classification458

was performed by employing a random forest classifier in conjunction with the SeSMiK-GE459

based data representation and a probabilistic pairwise Markov Random Field (MRF) algo-460

rithm to identify malignant ROIs. Subsequently, each of the segmented malignant ROIs was461

classified as either high or low Gleason grade. Using the same method, in a smaller study462

40 of 19 patients Tiwari et al. reported an Az=91%. Later, Tiwari et al.41 proposed a data463

integration framework for T2-W and MRS for prostate cancer detection. Texture descrip-464

tors such as Gabor, gradient, first and second order statistical features were extracted from465

T2-W and wavelet features were extracted from MRS images. Both sets of features were466

fused (via dimensionality reduction) using their proposed framework before employing a467

probabilistic boosting tree (PBT), SVM and RF classifiers. They reported an improvement468

of at least Az=5% in comparison to the results without using the proposed data integration469
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framework.470

Finally, a recent study by Kwak et al. 45 combining texture descriptors (different varia-471

tions of Local Binary Pattern) in T2-W and b-value in DWI showed similar results to the472

studies of Litjens et al. 4 and Niaf et al.42. However, the proposed method involved a three-473

step feature selection process, which can be time consuming. In fact, texture information474

extracted using local binary patterns and its variants yields a large number of features and475

extracting unecessary features, both of which can be computationally expensive. In com-476

parison to our proposed method, we achieve Az approximately 90% using the RF classifier477

with only 6 textons (only 6 features and feature selection is not necessary) and at smaller478

rF , our proposed method achieved Az>91% using the same classifier.479

7. DISCUSSION480

In our experiments, the results suggest that the number of textons in the dictionary has481

a significant effect on both Az and CA. For example ADTree, k-NN and RF classifiers482

produced better results at a smaller txt value. In contrast, the BNet classifier performed483

slightly better at txt = 16 or 20. Both metrics are highly influenced by the ws used to484

construct the histograms (treated as feature vectors) from the texton maps. Furthermore,485

using the maximum value of ws (in our case 13 × 13), reduced the performance on both486

metrics. In terms of selecting the best ws and txt, most classifiers performed well at 9 × 9487

and 11 × 11 with 6 or 16 textons (3 and 8 textons per class, respectively).488

All classifiers produced the best results when the size of the textons generated are either489

9 × 9 or 11 × 11. Our explanations for this are four-fold. Firstly using a small ws such as490

5 × 5 does not provide sufficient information about the regions (such as limited intensities491

and grey level variations). Secondly, small textons which contain or affected by noise are492
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unable to characterise the actual representation of the region. Thirdly, using a medium493

ws (e.g. 9 × 9) features tend to be more reliable because ‘noisy pixels’ are shrunk by the494

domination of ‘reliable pixels’ (e.g. malignant pixels). Finally, when using a large ws (e.g.495

13 × 13), the performance tends to decrease because the chance of mixing up pixels from496

benign and malignant classes is higher, hence altering the actual feature’s representation of497

a particular class.498

The number of textons affects the complexity of the predictive model built by the classi-499

fier. Most classifiers produced better results using smaller number of textons (e.g. txt = 6)500

because it reduces the data complexity. This makes it much easier for the classifier to create501

decision boundaries between classes which decreases error rates and increases the accuracy502

of the model in making a prediction in unseen cases. Nevertheless, for the BNet classifier503

using a small number of textons (e.g. txt = 6) is insufficient to build a network model that504

can represent the problem. A larger number of textons was needed (e.g. txt = 16) to build505

an optimum network model to represent the problem.506

From a computer vision point of view, the appearance of textons are determinded by507

pixel intensities which means they could be influenced by the image intensities. In contrast,508

feature-based textons are less affected by image intensities. Therefore, to overcome this509

issue most of the texton-based approaches perform image normalisation. In our study, we510

used a similar approach by normalising image intensities to zero mean and unit variance.511

The standardization gives similar representation for normal and malignant regions for the512

whole prostate. From a data classification point of view, data imbalance between normal513

and malignant samples (resulting in a model biased towards the class with a larger number514

of samples) is another challenge in the development of prostate cancer CAD. Most CAD515

systems employed stratified cross validation as a standard procedure to build a predictive516
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model. Recently, Fehr et al.49 proposed an alternative procedure using data augmentation517

for classifying prostate cancer aggressiveness.518

There are two main advantages of the proposed method: first it bypasses the typical519

feature extraction algorithm such as filtering and convolution which can be computationally520

expensive; secondly it does not need the additional step of feature selection as the number of521

textons are already small (e.g. txt = 6 or 16). With a large number of features, selecting the522

best features can be time consuming. Although feature selection can significantly improve523

classification results, it needs to be applied with a robust feature selection algorithm. The524

results suggested that even at txt = 6, our method can produce Az>90% with the BNet525

classifier and using the simplest classifier (k-NN) can still achieve around 87%. In fact, all526

classifiers employed in this study produced Az>80%. There are three reasons why most527

texton-based methods in the literature used larger numbers of textons in comparison to528

our proposed method. Firstly, most filter banks lead to blurring of the appearance of the529

texture. This results in a larger number of textons being needed to characterise the actual530

representation of the texture. Secondly, the number of textons used is depending on the531

variation (or complexity) of the textures. For example to construct a texton model for a grass532

image we need more textons because the variations are huge due to different orientations,533

shapes, colours, sizes, etc. In contrast to a specific cancer (e.g. prostate or lung cancer),534

which can show limited variations. In retinal vessel segmentation 13, the authors reported535

that 12 textons are sufficient to get good segmentation results. Similarly, the study in 14
536

achieved more than 85% accuracy in lung cancer detection using only 10 textons. Finally,537

most studies investigated a larger number of classes which increase the number of textons538

in the codebook (texton dictionary) considerably. For example, studies in 15,16,18,21 classified539

more than 60 different textures resulting in more than a thousand textons generated in the540
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codebook. In comparison, the studies in 13,14 classified only two classes vessel and non-vessel541

and healthy and non-healthy resulting in the best accuracy using 12 and 10 textons.542

The main limitation of this study is that we are unable to compare the results quan-543

titatively with existing methods due to the absence of public datasets. This is the major544

problem among the research communities in prostate cancer CAD. Secondly, we are un-545

able to test the classifiers at different parameters with features extracted using different ws.546

Nevertheless, the experimental results presented in this paper showed the prospect of CAD547

based on T2-W MRI to achieve similar results with CADs based on multiparametric MRI548

(and as such would form an excellent basis for multiparametric MRI based CAD) without549

the need for the typical feature extraction methods such as filtering and convolution. In ad-550

dition, preliminary results indicated that the proposed method could achieve better results551

when the classifier’s parameters were optimised. Although the proposed method achieved552

Az = 92.8%, we would like to emphasise that this does not indicate that our method is bet-553

ter in comparison to the other prostate cancer CAD based on multiparametric MRI. We are554

aware that several studies 4,9,46 have shown that combining different features from different555

modalities can increase the CADs performance. It should be noted that the classification556

accuracies reported in this study were based on the prostate PZ. Therefore the proposed557

method may not produce the same accuracy when tested within the CZ due to different MR558

phenotypes (e.g. the tissue contrast between PZ and CZ is different due to higher water559

content within the PZ). Another limitation of our study is that our ground truth was based560

on TRUS biopsies report and annotated by a radiologist. Due to the random procedure561

and limited access on the horns of the PZ, TRUS biopsies can miss cancerous tissues, par-562

ticularly small lesions. This means some of our training samples might be inaccurate (e.g.563

some benign lesions might be malignant). In contrast, template biopsy can help detect small564
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lesions as its procedure tends to obtain more tissue samples from across the prostate. On565

the other hand, radical prostatectomy allows the whole prostate to be examined thoroughly566

in the lab which will give definite results about how aggressive the cancer is and how far567

it may have spread. Future work will investigate combining texton with features from the568

other modalities such as DCE, MRS and DWI and use patches with deep learning to see if569

there is a significant effect on both performance metrics.570

8. SUMMARY AND CONCLUSIONS571

The proposed method consists of the following steps: (a) pre-processing, (b) construction572

of the texton dictionary, (c) feature extraction, (d) training and testing. We used median573

and anisotropic diffusion filtering techniques in the pre-processing phase. To construct574

the texton dictionary we did not use a filter bank as originally proposed by Varma and575

Zisserman 15. Instead we followed their later study in 21 which clusters benign and malignant576

patches directly from the original image pixels. In the feature extraction phase, each pixel577

is represented as a histogram treated as a feature vector. The constructed histogram for578

each pixel consists of the frequency of the neighbouring texton occurrence within the ws (or579

patch size) including the texton at the central pixel. Subsequently we employed 4 classifiers580

to build predictive models and test the models on unseen cases.581

Evaluation results show the proposed method achieved similar results with the state-582

of-the-art in all performance metrics. Indeed, the texton based approach relies on two583

parameters ws and txt. In our experiments we found ws = 9× 9 and 11× 11 with 6 and 16584

textons produced the best results for most classifiers. The BNet, RF and k -NN classifiers585

are the best three machine learning algorithms produced Az >87%.586

In conclusion, we have developed a CAD texton based approach based on a single modal-587
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ity of T2-W MRI and have similar performance with those based on multiparameteric MRI588

and as such would form an excellent basis for multiparametric MRI based CAD. Experi-589

mental results suggest that textons can be used as robust texture descriptors to characterise590

benign and malignant tissues. The main advantages of the proposed method are: firstly591

it bypasses the conventional feature extraction methods based on filtering and secondly it592

avoids dimensionality reduction methods or feature selection which can both be time con-593

suming. To our knowledge this is the first texton based CAD method in the literature594

applied to prostate cancer detection.595
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