100 research outputs found

    A QoS-enabled resource management scheme for F-HMIPv6 micro mobility approach

    Get PDF
    In the near future, wireless networks will certainly run real-time applications with special Quality of Service (QoS) requirements. In this context micro mobility management schemes such as Fast Handovers over Hierarchical Mobile IPv6 (F-HMIPv6) will be a useful tool in reducing Mobile IPv6 (MIPv6) handover disruption and thereby to improve delay and losses. However, F-HMIPv6 alone does not support QoS requirements for real-time applications. Therefore, in order to accomplish this goal, a novel resource management scheme for the Differentiated Services (DiffServ) QoS model is proposed to be used as an add-on to F-HMIPv6. The new resource management scheme combines the F-HMIPv6 functionalities with the DiffServ QoS model and with network congestion control and dynamic reallocation mechanisms in order to accommodate different QoS traffic requirements. This new scheme based on a Measurement-Based Admission Control (MBAC) algorithm is effective, simple, scalable and avoids the well known traditional resource reservation issues such as state maintenance, signaling overhead and processing load. By means of the admission evaluation of new flows and handover flows, it is able to provide the desired QoS requirements for new flows while preserving the QoS of existing ones. The evaluated results show that all QoS metrics analyzed were significantly improved with the new architecture indicating that it is able to provide a highly predictive QoS support to F-HMIPv6

    A micro-mobility solution for supporting QoS in global mobility

    Get PDF
    Today, users want to have simultaneously mobility, Quality of Service (QoS) and be always connected to Internet. Therefore, this paper proposes a QoS micro-mobility solution able to provide QoS support for global mobility. The solution comprises enhancements in the mobility management of Mobile IPv6 (MIPv6) and in the resources management of Differentiated Services (DiffServ) QoS model. The mobility management of MIPv6 was extended with fast and local handovers to improve its efficiency in micro-mobility scenarios with frequent handovers. The DiffServ resource management has been extended with adaptive and dynamic QoS provisioning to improve resources utilization in mobile IP networks. Further, in order to improve resources utilization the mobility and QoS messages were coupled, providing a resource management able to, proactively, react to mobile events. The performance improvement of the proposed solution and the model parametrization was evaluated using a simulation model. Simulation results indicate that the solution avoids network congestion and starvation of less priority DiffServ classes. Moreover, the results also indicate that bandwidth utilization for priority classes increases and the QoS offered to MN's applications, in each DiffServ class, keeps up unchangeable with MN mobility.(undefined

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    Performance analysis of a new mobility/QoS-aware architecture

    Get PDF
    Ideally, the future Internet must provide acceptable Quality of Service (QoS) to mobile users that are running real-time applications and are moving across different access points at high speeds. The user mobility presents a great challenge to the network layer in order to maintain users on going connections. Currently, the Internet protocol that manages the user mobility at the network level is the Mobile Internet Protocol (MIP). This protocol, when a mobile user changes its point of attachment, maintains the same IP address for mobile node, so that user mobility became invisible to the application level and thus avoiding a connection interruption. Although, MIP standard allows the user mobility while maintaining an uninterrupted connection to an application, it does not have any concerns with the QoS support provided to applications with more strict performance requirements such as real-time applications. This paper addresses the issue of mobility and QoS management principles as well as the mobility and QoS management integration in the sense of build a QoS-aware architecture for mobile Internet. After covering the mobility and QoS management principles and integration, this paper also proposes a new QoS-aware architecture for mobile Internet. This new architecture takes into account the specific characteristics of mobile networks in order to design an integrated Mobility/QoS-aware management architecture suitable for real-time applications requirements. The simulation results indicate that the suggested architecture is able to provide acceptable QoS levels to real-time applications that are running in mobiles devices.(undefined

    Performance modelling of network management schemes for mobile wireless networks

    Get PDF

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    Evaluating rate-estimation for a mobility and QoS-aware network architecture

    Get PDF
    In a nearby future wireless networks will run applications with special QoS requirements. FHMIP is an effective scheme to reduce Mobile IPv6 handover disruption but it does not deal with any other specific QoS requirement. Therefore new traffic management schemes are needed in order to provide QoS guarantees to real-time applications and this implies network mobility optimizations and congestion control support. Traffic management schemes should deal with QoS requirements during handover and should use some resource management strategy in order to achieve this. In this article a new resource management scheme for DiffServ QoS model is proposed, to be used by access routers as an extension to FHMIP micromobility protocol. In order to prevent QoS deterioration, access routers pre-evaluate the impact of accepting all traffic from a mobile node, previous to the handover. This pre-evaluation and post decision on whether or not to accept any, or all, of this new traffic is based on a measurement based admission control procedure. This mobility and QoS-aware network architecture, integrating a simple signaling protocol, a traffic descriptor, and exhibiting adaptive behavior has been implemented and tested using ns-2. All measurements and decisions are based on DiffServ class-of-service aggregations, thus avoiding large flow state information maintenance. Rate estimators are essential mechanisms to the efficiency of this QoS-aware overall architecture. Therefore, in order to be able to choose the rate estimator that better fits this global architecture, two rate estimators - Time Sliding Window (TSW) and Exponential Moving Average (EMA) - have been studied and evaluated by means of ns-2 simulations in QoS-aware wireless mobility scenarios.Nuno V. Lopes was supported by an FCT Grant (SFRH/BD/35245/2007

    Framework to facilitate smooth handovers between mobile IPv6 networks

    Get PDF
    Fourth generation (4G) mobile communication networks are characterised by heterogeneous access networks and IP based transport technologies. Different access technologies give users choices to select services such as levels of Quality of Service (QoS) support, business models and service providers. Flexibility of heterogeneous access is compounded by the overhead of scanning to discover accessible services, which added to the handoff latency. This thesis has developed mechanisms for service discovery and service selection, along with a novel proposal for mobility management architectures that reduced handoff latency. The service discovery framework included a service advertisement data repository and a single frequency band access mechanism, which enabled users to explore services offered by various operators with a reduced scanning overhead. The novel hierarchical layout of the repository enabled it to categorise information into various layers and facilitate location based information retrieval. The information made available by the repository included cost, bandwidth, Packet Loss (PL), latency, jitter, Bit Error Rate (BER), location and service connectivity information. The single frequency band access mechanism further enabled users to explore service advertisements in the absence of their main service providers. The single frequency access mechanism broadcasted service advertisements information piggybacked onto a router advertisement packet on a reserved frequency band for advertisements. Results indicated that scanning 13 channels on 802.11 b interface takes 189ms whereas executing a query with maximum permissible search parameters on the service advertisement data repository takes 67ms. A service selection algorithm was developed to make handoff decisions utilising the service advertisements acquired from the service discovery framework; based on a user's preference. The selection algorithm reduced the calculation overhead by eliminating unsuitable networks; based on interface compatibility, service provider location, unacceptable QoS (Quality of service) and unacceptable cost; from the selection process. The selection algorithm utilised cost, bandwidth, PL, latency, jitter, BER and terminal power for computing the most suitable network. Results indicated that the elimination based approach has improved the performance of the algorithm by 35% over non- elimination oriented selection procedures, even after utilising more selection parameters. The service discovery framework and the service selection algorithm are flexible enough to be employed in most mobility management architectures. The thesis recommends Seamless Mobile Internet Protocol (SMIP) as a mobility management scheme based on the simulation results. The SMIP protocol, a combination of Hierarchical Mobile Internet Protocol (HMIP) and Fast Mobile Internet Protocol (FMIP), suffered hand off latency increases when undergoing a global handoff due to HMIP. The proposed modification to the HMIP included the introduction of a coverage area overlap, to reduce the global handoff latency. The introduction of a Home Address (HA) in Wireless Local Area Networks (WLAN) binding table enabled seamless handoffs from WLANs by having a redirection mechanism for the user's packets after handoff. The thesis delivered a new mobility management architecture with mechanisms for service discovery and service selection. The proposed framework enabled user oriented, application centric and terminal based approach for selecting IPv6 networks

    A survey on mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology

    Get PDF
    International audienceMobility has the advantage of enlarging WSN applications. However, proposing a mobility support protocol in Wireless Sensor Networks (WSNs) represents a significant challenge. In this paper, we propose a survey on the mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology. This technology enables to connect IP sensor devices to other IP networks without any need for gateways. We highlight the advantages and drawbacks with performances issues of each studied solution. Then, in order to select a typical classification of mobility management protocols in WSNs, we provide some classification criteria and approaches on which these protocols are based. Finally, we present a comparative study of the existing protocols in terms of the required performances for this network type
    corecore