240 research outputs found

    Automatic Detection of Mass Outages in Radio Access Networks

    Get PDF
    Fault management in mobile networks is required for detecting, analysing, and fixing problems appearing in the mobile network. When a large problem appears in the mobile network, multiple alarms are generated from the network elements. Traditionally Network Operations Center (NOC) process the reported failures, create trouble tickets for problems, and perform a root cause analysis. However, alarms do not reveal the root cause of the failure, and the correlation of alarms is often complicated to determine. If the network operator can correlate alarms and manage clustered groups of alarms instead of separate ones, it saves costs, preserves the availability of the mobile network, and improves the quality of service. Operators may have several electricity providers and the network topology is not correlated with the electricity topology. Additionally, network sites and other network elements are not evenly distributed across the network. Hence, we investigate the suitability of a density-based clustering methods to detect mass outages and perform alarm correlation to reduce the amount of created trouble tickets. This thesis focuses on assisting the root cause analysis and detecting correlated power and transmission failures in the mobile network. We implement a Mass Outage Detection Service and form a custom density-based algorithm. Our service performs alarm correlation and creates clusters of possible power and transmission mass outage alarms. We have filed a patent application based on the work done in this thesis. Our results show that we are able to detect mass outages in real time from the data streams. The results also show that detected clusters reduce the number of created trouble tickets and help reduce of the costs of running the network. The number of trouble tickets decreases by 4.7-9.3% for the alarms we process in the service in the tested networks. When we consider only alarms included in the mass outage groups, the reduction is over 75%. Therefore continuing to use, test, and develop implemented Mass Outage Detection Service is beneficial for operators and automated NOC

    Dependability of the NFV Orchestrator: State of the Art and Research Challenges

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The introduction of network function virtualisation (NFV) represents a significant change in networking technology, which may create new opportunities in terms of cost efficiency, operations, and service provisioning. Although not explicitly stated as an objective, the dependability of the services provided using this technology should be at least as good as conventional solutions. Logical centralisation, off-the-shelf computing platforms, and increased system complexity represent new dependability challenges relative to the state of the art. The core function of the network, with respect to failure and service management, is orchestration. The failure and misoperation of the NFV orchestrator (NFVO) will have huge network-wide consequences. At the same time, NFVO is vulnerable to overload and design faults. Thus, the objective of this paper is to give a tutorial on the dependability challenges of the NFVO, and to give insight into the required future research. This paper provides necessary background information, reviews the available literature, outlines the proposed solutions, and identifies some design and research problems that must be addressed.acceptedVersio

    Autonomic Overload Management For Large-Scale Virtualized Network Functions

    Get PDF
    The explosion of data traffic in telecommunication networks has been impressive in the last few years. To keep up with the high demand and staying profitable, Telcos are embracing the Network Function Virtualization (NFV) paradigm by shifting from hardware network appliances to software virtual network functions, which are expected to support extremely large scale architectures, providing both high performance and high reliability. The main objective of this dissertation is to provide frameworks and techniques to enable proper overload detection and mitigation for the emerging virtualized software-based network services. The thesis contribution is threefold. First, it proposes a novel approach to quickly detect performance anomalies in complex and large-scale VNF services. Second, it presents NFV-Throttle, an autonomic overload control framework to protect NFV services from overload within a short period of time, allowing to preserve the QoS of traffic flows admitted by network services in response to both traffic spikes (up to 10x the available capacity) and capacity reduction due to infrastructure problems (such as CPU contention). Third, it proposes DRACO, to manage overload problems arising in novel large-scale multi-tier applications, such as complex stateful network functions in which the state is spread across modern key-value stores to achieve both scalability and performance. DRACO performs a fine-grained admission control, by tuning the amount and type of traffic according to datastore node dependencies among the tiers (which are dynamically discovered at run-time), and to the current capacity of individual nodes, in order to mitigate overloads and preventing hot-spots. This thesis presents the implementation details and an extensive experimental evaluation for all the above overload management solutions, by means of a virtualized IP Multimedia Subsystem (IMS), which provides modern multimedia services for Telco operators, such as Videoconferencing and VoLTE, and which is one of the top use-cases of the NFV technology

    An Investigation into the testing and commissioning requirements of IEC 61850 Station Bus Substations

    Get PDF
    The emergence of the new IEC 61850 standard generates a potential to deliver a safe, reliable and effective cost reduction in the way substations are designed and constructed. The IEC 61850 Station Bus systems architecture for a substation protection and automation system is based on a horizontal communication concept replicating what conventional copper wiring performed between Intelligent Electronic Devices (IED’s). The protection and control signals that are traditionally sent and received across a network of copper cables within the substation are now communicated over Ethernet based Local Area Networks (LAN) utilising Generic Object Oriented Substation Event (GOOSE) messages. Implementing a station bus system generates a substantial change to existing design and construction practices. With this significant change, it is critical to develop a methodology for testing and commissioning of protection systems using GOOSE messaging. Analysing current design standards and philosophies established a connection between current conventional practices and future practices using GOOSE messaging at a station bus level. A potential design of the GOOSE messaging protection functions was implemented using the new technology hardware and software. Identification of potential deviations from the design intent, examination of their possible causes and assessment of their consequences was achieved using a Hazard and Operability study (HAZOP). This assessment identified the parts of the intended design that required validating or verifying through the testing and commissioning process. The introduction of a test coverage matrix was developed to identify and optimise the relevant elements, settings, parameters, functions, systems and characteristics that will require validating or verifying through inspection, testing, measurement or simulations during the testing and commissioning process. Research conducted identified hardware and software that would be utilised to validate or verify the IEC 61850 system through inspection, testing, measurement or simulations. The Hazard and Operability study (HAZOP) has been identified as an effective, structured and systematic analysing process that will help identify what hardware, configurations, and functions that require testing and commissioning prior to placing a substation using IEC 61850 Station bus GOOSE messaging into service. This process enables power utilities to understand new challenges and develop testing and commissioning philosophies and quality assurance processes, while providing confidence that the IEC 61850 system will operate in a reliable, effective and secure manner

    UniPreCIS : A data pre-processing solution for collocated services on shared IoT

    Full text link
    Next-generation smart city applications, attributed by the power of Internet of Things (IoT) and Cyber-Physical Systems (CPS), significantly rely on the quality of sensing data. With an exponential increase in intelligent applications for urban development and enterprises offering sensing-as-aservice these days, it is imperative to provision for a shared sensing infrastructure for better utilization of resources. However, a shared sensing infrastructure that leverages low-cost sensing devices for a cost effective solution, still remains an unexplored territory. A significant research effort is still needed to make edge based data shaping solutions, more reliable, feature-rich and costeffective while addressing the associated challenges in sharing the sensing infrastructure among multiple collocated services with diverse Quality of Service (QoS) requirements. Towards this, we propose a novel edge based data pre-processing solution, named UniPreCIS that accounts for the inherent characteristics of lowcost ambient sensors and the exhibited measurement dynamics with respect to application-specific QoS. UniPreCIS aims to identify and select quality data sources by performing sensor ranking and selection followed by multimodal data pre-processing in order to meet heterogeneous application QoS and at the same time reducing the resource consumption footprint for the resource constrained network edge. As observed, the processing time and memory utilization has been reduced in the proposed approach while achieving upto 90% accuracy which is arguably significant as compared to state-of-the-art techniques for sensing. The effectiveness of UniPreCIS has been evaluated on a testbed for a specific use case of indoor occupancy estimation that proves its effectiveness

    An experimental study of fog and cloud computing in CEP-based Real-Time IoT applications

    Get PDF
    Internet of Things (IoT) has posed new requirements to the underlying processing architecture, specially for real-time applications, such as event-detection services. Complex Event Processing (CEP) engines provide a powerful tool to implement these services. Fog computing has raised as a solution to support IoT real-time applications, in contrast to the Cloud-based approach. This work is aimed at analysing a CEP-based Fog architecture for real-time IoT applications that uses a publish-subscribe protocol. A testbed has been developed with low-cost and local resources to verify the suitability of CEP-engines to low-cost computing resources. To assess performance we have analysed the effectiveness and cost of the proposal in terms of latency and resource usage, respectively. Results show that the fog computing architecture reduces event-detection latencies up to 35%, while the available computing resources are being used more efficiently, when compared to a Cloud deployment. Performance evaluation also identifies the communication between the CEP-engine and the final users as the most time consuming component of latency. Moreover, the latency analysis concludes that the time required by CEP-engine is related to the compute resources, but is nonlinear dependent of the number of things connected

    On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems

    Get PDF
    Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors.This research was partly supported by iLand (EU ARTEMIS-1-00026) granted by the ARTEMIS JUand the Spanish Ministry of Industry, Commerce and Tourism. It has also been partly funded by the REM4VSS (TIN2011-28339) project grant of the Spanish Ministry of Economy and Competitiveness and by Universidad Carlos III de Madrid. The authors would also like to mention the large development team of the iLand reference implementation that performed an outstanding role to achieve a software proven also on commercial applications, and they thank them for their valuable efforts and work.Publicad

    Automated IT Service Fault Diagnosis Based on Event Correlation Techniques

    Get PDF
    In the previous years a paradigm shift in the area of IT service management could be witnessed. IT management does not only deal with the network, end systems, or applications anymore, but is more and more concerned with IT services. This is caused by the need of organizations to monitor the efficiency of internal IT departments and to have the possibility to subscribe IT services from external providers. This trend has raised new challenges in the area of IT service management, especially with respect to service level agreements laying down the quality of service to be guaranteed by a service provider. Fault management is also facing new challenges which are related to ensuring the compliance to these service level agreements. For example, a high utilization of network links in the infrastructure can imply a delay increase in the delivery of services with respect to agreed time constraints. Such relationships have to be detected and treated in a service-oriented fault diagnosis which therefore does not deal with faults in a narrow sense, but with service quality degradations. This thesis aims at providing a concept for service fault diagnosis which is an important part of IT service fault management. At first, a motivation of the need of further examinations regarding this issue is given which is based on the analysis of services offered by a large IT service provider. A generalization of the scenario forms the basis for the specification of requirements which are used for a review of related research work and commercial products. Even though some solutions for particular challenges have already been provided, a general approach for service fault diagnosis is still missing. For addressing this issue, a framework is presented in the main part of this thesis using an event correlation component as its central part. Event correlation techniques which have been successfully applied to fault management in the area of network and systems management are adapted and extended accordingly. Guidelines for the application of the framework to a given scenario are provided afterwards. For showing their feasibility in a real world scenario, they are used for both example services referenced earlier
    corecore