1,507 research outputs found

    Provably Correct Compiler Generation

    Get PDF
    We have designed, implemented, and proved the correctness of a compiler generator that accepts action semantic descriptions of imperative programming languages. We have used it to generate compilers for both a toy language and a non-trivial subset of Ada. The generated compilers emit absolute code for an abstract RISC machine language that is assembled into code for the SPARC and the HP Precision Architecture. The generated code is an order of magnitude better than that produced by compilers generated by the classical systems of Mosses, Paulson, and Wand. Our machine language needs no run time type-checking and is thus more realistic than those considered in previous compiler proofs. We use solely algebraic specifications; proofs are given in the initiaI model. The use of action semantics makes the processable language specifications easy to read and pleasant to work with. We view our compiler generator as a promising first step towards user-friendly and automatic generation of realistic and provably correct compilers

    The Ecce and Logen Partial Evaluators and their Web Interfaces

    No full text
    We present Ecce and Logen, two partial evaluators for Prolog using the online and offline approach respectively. We briefly present the foundations of these tools and discuss various applications. We also present new implementations of these tools, carried out in Ciao Prolog. In addition to a command-line interface new user-friendly web interfaces were developed. These enable non-expert users to specialise logic programs using a web browser, without the need for a local installation

    Action semantics in retrospect

    Get PDF
    This paper is a themed account of the action semantics project, which Peter Mosses has led since the 1980s. It explains his motivations for developing action semantics, the inspirations behind its design, and the foundations of action semantics based on unified algebras. It goes on to outline some applications of action semantics to describe real programming languages, and some efforts to implement programming languages using action semantics directed compiler generation. It concludes by outlining more recent developments and reflecting on the success of the action semantics project

    Theory and Practice of Action Semantics

    Get PDF
    Action Semantics is a framework for the formal descriptionof programming languages. Its main advantage over other frameworksis pragmatic: action-semantic descriptions (ASDs) scale up smoothly torealistic programming languages. This is due to the inherent extensibilityand modifiability of ASDs, ensuring that extensions and changes tothe described language require only proportionate changes in its description.(In denotational or operational semantics, adding an unforeseenconstruct to a language may require a reformulation of the entire description.)After sketching the background for the development of action semantics,we summarize the main ideas of the framework, and provide a simpleillustrative example of an ASD. We identify which features of ASDsare crucial for good pragmatics. Then we explain the foundations ofaction semantics, and survey recent advances in its theory and practicalapplications. Finally, we assess the prospects for further developmentand use of action semantics.The action semantics framework was initially developed at the Universityof Aarhus by the present author, in collaboration with David Watt(University of Glasgow). Groups and individuals scattered around fivecontinents have since contributed to its theory and practice

    Synthesis of Recursive ADT Transformations from Reusable Templates

    Full text link
    Recent work has proposed a promising approach to improving scalability of program synthesis by allowing the user to supply a syntactic template that constrains the space of potential programs. Unfortunately, creating templates often requires nontrivial effort from the user, which impedes the usability of the synthesizer. We present a solution to this problem in the context of recursive transformations on algebraic data-types. Our approach relies on polymorphic synthesis constructs: a small but powerful extension to the language of syntactic templates, which makes it possible to define a program space in a concise and highly reusable manner, while at the same time retains the scalability benefits of conventional templates. This approach enables end-users to reuse predefined templates from a library for a wide variety of problems with little effort. The paper also describes a novel optimization that further improves the performance and scalability of the system. We evaluated the approach on a set of benchmarks that most notably includes desugaring functions for lambda calculus, which force the synthesizer to discover Church encodings for pairs and boolean operations

    Abstract verification and debugging of constraint logic programs

    Get PDF
    The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7]

    Partial-indistinguishability obfuscation using braids

    Get PDF
    An obfuscator is an algorithm that translates circuits into functionally-equivalent similarly-sized circuits that are hard to understand. Efficient obfuscators would have many applications in cryptography. Until recently, theoretical progress has mainly been limited to no-go results. Recent works have proposed the first efficient obfuscation algorithms for classical logic circuits, based on a notion of indistinguishability against polynomial-time adversaries. In this work, we propose a new notion of obfuscation, which we call partial-indistinguishability. This notion is based on computationally universal groups with efficiently computable normal forms, and appears to be incomparable with existing definitions. We describe universal gate sets for both classical and quantum computation, in which our definition of obfuscation can be met by polynomial-time algorithms. We also discuss some potential applications to testing quantum computers. We stress that the cryptographic security of these obfuscators, especially when composed with translation from other gate sets, remains an open question.Comment: 21 pages,Proceedings of TQC 201
    corecore