
Abstract Verification and Debugging of
Constraint Logic Programs

Manuel Hermenegildo, Germán Puebla,
Francisco Bueno, and Pedro López-García

{herme,german,bueno,pedro}@fi.upm.es

Department of Computer Science
Technical University of Madrid (UPM)

(Extended Abstract)

Keywords: Global Analysis, Debugging, Veriñcation, Constraint Logic
Programming, Optimization, Parallelization, Abstract Interpretation.

1 Background

The technique of Abstract Interpretation [13] has allowed the development of
sophisticated program analyses which are provably correct and practical. The
semantic approximations produced by such analyses have been traditionally ap-
plied to optimization during program compilation. However, recently, novel and
promising applications of semantic approximations have been proposed in the
more general context of program verification and debugging [3,10,7].

In the case of Constraint Logic Programs (CLP), a comparatively large
body of approximation domains, inference techniques, and tools for abstract
interpretation-based semantic analysis have been developed to a powerful and
mature level (see, e.g., [28,9,21,6,22,24] and their references). These systems
can approximate at compile-time a wide range of properties, from directional
types to variable independence, determinacy or termination, always safely, and
with a signiñcant degree of precisión.

Our proposed approach takes advantage, within the context of program ver­
iñcation and debugging, of these signiñcant advances in static program analysis
techniques and the resulting concrete tools, which have been shown useful for
other purposes such as optimization, and are thus likely to be present in compil-
ers. This is in contrast to using traditional proof-based methods (e.g., for the case
of CLP, [1, 2,15,19, 34]), developing new tools and procedures (such as speciñc
concrete [4,17,18] or abstract [10,11] diagnosers and declarative debuggers), or
limiting error detection to run-time checking (e.g., [34]).

2 An Approach Based on Semantic Approximations

We now briefly describe the basis of our approach [7,25,31]. We consider the
important class of semantics referred to as fixpoint semantics. In this setting, a

Property

P is partially correct w.r.t. X
P is complete w.r.t. X
P is incorrect w.r.t. X
P is incomplete w.r.t. X

Deñnition

wi c x
z c [P]

[P] g X
J g [[Pfl

Table 1. Set theoretic formulation of verification problems

(monotonic) semantic operator (which we refer to as Sp) is associated with each
program P. This Sp function operates on a semantic domain which is generally
assumed to be a complete lattice or, more generally, a chain complete partial
order. The meaning of the program (which we refer to as |[P]|) is deñned as the
least ñxpoint of the Sp operator, i.e., |[P]] = lfp(Sp). A well-known result is
that if Sp is continuous, the least ñxpoint is the limit of an iterative process
involving at most ui applications of Sp and starting from the bottom element of
the lattice.

Both program veriñcation and debugging compare the actual semantics of
the program, i.e., \P\, with an intended semantics for the same program, which
we denote by I . This intended semantics embodies the user's requirements, i.e.,
it is an expression of the user's expectations. In Table 1 we deñne classical
veriñcation problems in a set-theoretic formulation as simple relations between
\P\ and I .

Using the exact actual or intended semantics for automatic veriñcation and
debugging is in general not realistic, since the exact semantics can be only par­
tially known, infinite, too expensive to compute, etc. An alternative and interest-
ing approach is to approximate the semantics. This is interesting, among other
reasons, because a well understood technique already exists, abstract interpre-
tation, which provides safe approximations of the program semantics. Our first
objective is to present the implications of the use of approximations of both the
intended and actual semantics in the verification and debugging process.

2.1 Approximating Program Semantics

We start by recalling some basic concepts from abstract interpretation. In this
technique, a program is interpreted over a non-standard domain called the ab­
stract domain Da which is simpler than the concrete domain D, and the seman­
tics w.r.t. this abstract domain, i.e., the abstract semantics of the program is
computed (or approximated) by replacing the operators in the program by their
abstract counterparts.

The concrete and abstract domains are related via a pair of monotonic map-
pings: abstraction O : 1) H Da, and concretization 7 : Da 1—> D, which relate the
two domains by a Galois insertion (or a Galois connection) [13]. We will denote
by [[PJa the result of abstract interpretation for a program P. Typically, abstract
interpretation guarantees that |P]] a is an over-approximation of the abstract se-

mantics of the program itself, a(|P]]). Thus, we have that [[PJa 3 a(|[P]|), which
we will denote as [[P]]a+. Alternatively, the analysis can be designed to safely
under-approximate the actual semantics, and then we have that [[PJa C a(|[P]|),
which we denote as |P]] a_.

2.2 Abstract Verification and Debugging

The key idea in our approach is to use the abstract approximation [PJ directly
in veriñcation and debugging tasks. As we will see, the possible loss of accu-
racy due to approximation prevenís full veriñcation in general. However, and
interestingly, it turns out that in many cases useful veriñcation and debugging
conclusions can still be derived by comparing the approximations of the actual
semantics of a program to the (also possibly approximated) intended semantics.

A number of approaches have already been proposed which make use to
some extent of abstract interpretation in veriñcation and/or debugging tasks.
Abstractions were used in the context of algorithmic debugging in [27]. Abstract
interpretation for debugging of imperative programs has been studied by Bour-
doncle [3], and for the particular case of algorithmic debugging of logic programs
by Comini et al. [12] (making use of partial speciñcations) and [10].

In our approach we actually compute the abstract approximation |P]] a of
the actual semantics of the program [[PJ and compare it directly to the (also
approximate) intention (which is given in terms of assertions [30]), following
almost directly the scheme of Table 1. This approach can be very attractive
in programming systems where the compiler already performs such program
analysis in order to use the resulting information to, e.g., optimize the generated
code. Le., in these cases the compiler will compute |P]]a anyway.

For now, we assume that the program speciñcation is given as a semantic
valué 2a <G Da. Comparison between actual and intended semantics of the pro­
gram is most easily done in the same domain, since then the operators on the
abstract lattice, that are typically already deñned in the analyzer, can be used
to perform this comparison. Thus, for comparison we need in principie a([[P]]).
Using abstract interpretation, we can usually only compute instead [[P]]a, which
is an approximation of a([[P]]). Thus, it is interesting to study the implications
of comparing Ia and |P]] a .

In Table 2 we propose (sufficient) conditions for correctness and completeness
w.r.t. Ia, which can be used when [[PJ is approximated. Several instrumental
conclusions can be drawn from these relations.

Analyses which over-approximate the actual semantics (i.e., those denoted as
|P]] a +) , are specially suited for proving partial correctness and incompleteness
with respect to the abstract speciñcation Ia. It will also be sometimes possible
to prove incorrectness in the extreme case in which the semantics inferred for
the program is incompatible with the abstract speciñcation, i.e., when [P]]a+ n
Ia = 0. We also note that it will only be possible to prove completeness if the
abstraction is precise, i.e., |P]] a = a([[P]]). According to Table 2 only |[P]]a- can
be used to this end, and in the case we are discussing [[P]]a+ holds. Thus, the
only possibility is that the abstraction is precise.

Property

P is partially correct w.r.t. Ta

P is complete w.r.t. Ta

P is incorrect w.r.t. Ta

P is incomplete w.r.t. Ta

Deñnition

«(P l)CI a
I . C « ([P])
a ([P])gXa

i.2«(Pl)

Sufflcient condition

PL+CXa
z« c [P]a_

[P] a _ g J a , o r
[P] a + n J a = 0 A [P] a / 0

z« 2 [PL+

Table 2. Validation problems using approximations

On the other hand, if analysis under-approximates the actual semantics, Le.,
in the case denoted [[P]]a-, it will be possible to prove completeness and incor-
rectness. In this case, partial correctness and incompleteness can only be proved
if the analysis is precise.

If analysis information allows us to conclude that the program is incorrect
or incomplete w.r.t. Ia, an (abstract) symptom has been found which ensures
that the program does not satisfy the requirement. Thus, debugging should be
initiated to lócate the program construct responsible for the symptom.

More details about the theoretical foundation of our approach can be found
in [7,31].

3 A Practical Framework and its Implementation

Using the ideas outlined above, we have developed a framework [25, 29] capable
of combined static and dynamic validation, and debugging for CLP programs,
using semantic approximations, and which can be integrated in an advanced
program development environment comprising a variety of co-existing tools [16].

This framework has been implemented as a generic preprocessor composed of
several tools. Figure 1 depicts the overall architecture of the system. Hexagons
represent the different tools involved and arrows indicate the communication
paths among the different tools.

Program veriñcation and detection of errors is ñrst performed at compile-time
by using the sufficient conditions shown in Table 2. Le., by inferring properties
of the program via abstract interpretation-based static analysis and comparing
this information against (partial) speciñcations written in terms of assertions.
Such assertions are linguistic constructions which allow expressing properties of
programs.

Classical examples of assertions are type declarations (e.g., in the context of
(C)LP those used by [26,32,5]). However, herein we are interested in supporting
a much more powerful setting in which assertions can be of a much more general
nature, stating additionally other properties, some of which cannot always be
determined statically for all programs. These properties may include properties
deñned by means of user programs and extend beyond the predeñned set which
may be natively understandable by the available static analyzers. Also, in the
proposed framework only a small number of (even zero) assertions may be present

Program

Builtins/
Libs

syntax
error/
warning •semantic

comp-time
error/warning

_ . Static
Syntax _̂ _ Analysis.

checker

- Assertion
Normalizer

. & Lib Itf.

Fig. 1. Architecture of the Preprocessor

in the program, Le., the assertions are optional. In general, we do not wish to limit
the programming language or the language of assertions unnecessarily in order
to make the validity of the assertions statically decidable (and, consequently,
the proposed framework needs to deal throughout with approximations). We
also propose a concrete language of assertions which allows writing this kind of
(partial) speciñcations for CLP [30].

The assertion language is also used by the preprocessor to express both the
information inferred by the analysis and the results of the comparisons performed
against the speciñcations.1 As can be derived from Table 2, these comparisons
can result in proving statically (Le., at compile-time) that the assertions hold
(Le., they are validated) or that they are violated, and thus bugs have been
detected. User-provided assertions (or parts of assertions) which cannot be stat­
ically proved ñor disproved are optionally translated into run-time tests. Both
the static and the dynamic checking are provably safe in the sense that all errors
flagged are deñnite violations of the speciñcations.

The practical usefulness of the framework is illustrated by what is arguably
the ñrst and most complete implementation of these ideas: CiaoPP,2 the Ciao
system preprocessor [29, 24]. Ciao is a public-domain, next-generation constraint
logic programming system, which supports ISO-Prolog, but also, selectively for
each module, extensions and restrictions such as, for example, puré logic pro­
gramming, constraints, functions, objects, or higher-order. Ciao is speciñcally
designed to a) be highly extensible and b) support modular program analysis,
debugging, and optimization. The latter tasks are performed in an integrated
fashion by CiaoPP.

1 Interestingly, the assertions are also quite useful for generating documentation au-
tomatically (see [23]).

2 A demonstration of the system was performed at the meeting.

CiaoPP, which incorporates analyses developed by several groups in the LP
and CLP communities, uses abstract interpretation to infer properties of pro-
gram predicates and literals, including types, modes and other variable instanti-
ation properties, constraint independence, non-failure, determinacy, bounds on
computational cost, bounds on sizes of terms in the program, etc. It processes
modules separately, performing incremental analysis. CiaoPP can ñnd errors at
compile-time (or perform partial veriñcation) by checking how programs cali sys­
tem libraries. This is possible since the expected behaviour of system predicates
is also given in terms of assertions This allows detecting errors in user programs
even if they contain no assertions. Also, the preprocessor can detect errors as
well by checking the assertions present in the program or in other modules used
by the program. As already mentioned, assertions are completely optional. Nev-
ertheless, if the program is not correct, the more assertions are present in the
program the more likely it is for errors to be automatically detected. Thus, for
those parts of the program which are potentially buggy or for parts whose cor-
rectness is crucial, the programmer may decide to invest more time in writing
assertions than for other parts of the program which are more stable. In addition,
CiaoPP also performs program transformations and optimizations such as múl­
tiple abstract specialization, parallelization (including granularity control), and
inclusión of run-time tests for assertions which cannot be checked completely at
compile-time.

Finally, the implementation of the preprocessor is generic in that it can be
easily customized to different CLP systems and dialects and in that it is designed
to allow the integration of additional analyses in a simple way. As a particularly
interesting example, the preprocessor has been adapted for use with the CHIP
CLP(FD) system. This has resulted in CHIPRE, a preprocessor for CHIP which
has been shown to detect non-trivial programming errors in CHIP programs. In
the next section we show an example of a debugging session with CHIPRE. More
information on the system can be found in [29].

4 A Sample Debugging Session with C H I P R E

In this section we will show some of the capabilities of our debugging framework
through a sample session with CHIPRE, an implemented instance of the frame­
work. Consider Figure 2, which contains a tentative versión of a CHIP program
for solving the ship scheduling problem, a typical CLV(FD) benchmark.

Often, the results of static analysis are good indicators of bugs, even if no
assertion is given. This is because "strange" results often correspond to bugs. An
important observation is that plenty of static analyses, such as modes and regular
types, compute over-approximations of the success sets of predicates. Then, if
such an over-approximation corresponds to the empty set then this implies that
such predicate never succeeds. Thus, unless the predicate is dead-code, this often
indicates that the code for the predicate is erroneous since every cali either fails
ñnitely (or raises an error) or loops. If analysis is goal-dependent and thus also
computes an over-approximation of the calling states to the predicate, predicates

solve(Upper,Last,N,Dis,Mis,L,Sis):-

length(Sis, N),

Sis :: 0..Last,

Limit :: 0..Upper,

End :: 0..Last,

set_precedences(L, Sis, Dis),

cumulative(Sis, Dis, Mis, unused, unsed, Limit, End, unused),

min_max(labeling(Sis), End).

labeling([]) .

labeling([H|T]):-

delete(X, [H|T],R,0,most_constrained),

indomain(X),

labeling(R).

set_precedences(L, Sis, Dis):-

Array_star ts=. . [s t a r t s I S i s] , '/, s t a r t s (S l ,S2,S3, . . .)
Array_durations=. . [durat ionslDis] , */, durations(Dl ,D2,D3, . . .)
i n i t i a l i z e _ p r e c (L , A r r a y _ s t a r t s) ,
s e t_pre_ lp (l , a r r a y _ s t a r t s , Array_durations).

set_pre_lp([] , _, _) .
set_pre_lp([After#>=Before|R], Ar ray_s ta r t s , Array_durat ions) : -

arg(After , Array_s ta r t s , S2),
arg(Before, Array_s ta r t s , S I) ,
arg(Before, Array_durations, DI) ,
S2 #>= SI + DI,
set_pre_lp(R, Array_s ta r t s , a r ray_dura t ions) .

i n i t i a l i z e _ p r e c (_ , _) .

Fig. 2. A tentative ship program in CHIP

which are dead-code can often be identiñed by having an over-approximation of
the calling states which corresponds to the empty set.

We now preprocess the current versión of our example program using regular
type [35,14,21,20,33] analysis. Our implementation of regular types is goal-
dependent and thus computes over-approximations of both the success set and
calling states of all predicates. In addition, our analysis also computes over-
approximations of the valúes of variables at each program point. Once analysis
information is available, the preprocessor automatically checks the consistency
of the analysis results and we get the following messages:

WARNING: Literal set_precedences(L, Sis, Dis)

at solve/7/1/5 does not succeed!

WARNING: Literal set_pre_lp(l, array_starts, Array_duration)

at set_precedences/3/l/4 does not succeed!

The ñrst warning message refers to a literal (in particular, the 5th literal in
the l s t clause of s o l v e / 7) which calis the predicate s e t_precedences /3 , whose
success type is empty. Also, even if the success type of a predicate is not empty,
i.e., there may be some calis which succeed, it may be possible to detect tha t
at a certain program point the given cali to the predicate cannot succeed be-
cause the type of the particular cali is incompatible with the success type of
the predicate. This is the reason for the second warning message. Note tha t
this kind of reasoning can only be made if (1) the static analysis used infers
properties which are downwards closed, i.e., once they hold they keep on be-
ing valid during forward execution and (2) analysis computes descriptions at
each program point which, as already mentioned, is the case with our regu­
lar type analysis. Note tha t the predicate se t_pre_lp /3 can only succeed if
the valué at the ñrst argument is compatible with a list. However, the cali
s e t _ p r e _ l p (l , array_s tar t s , Array_duration) has the constant 1 at the ñrst
argument position. This is actually a bug, as the constant 1 should instead be the
variable L. Once we correct this bug, in subsequent preprocessing of the program
both warning messages disappear. In fact, the ñrst one was also a consequence of
the same bug which propagated to the calling predicates of s e t_precedences /3 .

4.1 A i d i n g t h e A n a l y z e r

In the ship program, all initial queries to the program are intended to be to the
s o l v e predicate. However, the compiler has no way to automatically determine
this. Thus, in the absence of more information, the most general possible calis
have to be assumed for all predicates in the program.3 One way to alleviate this
is t o provide entry assertion(s) which are assumed to cover all possible initial
calis t o the program. Even the simplest entry declaration which can be given
for predicate s o lve , i.e., ' : - entry so lve /7 . ' , is very useful for goal-dependent
static analysis. Since it is the only entry assertion, the only calis t o the rest
of the predicates in the program are those generated during computations of
s o l v e / 7 . This allows analysis to start from the predicate s o l v e / 7 only, instead
of from all predicates. Reducing the number (and generality) of start ing points
for goal-dependent analysis by means of entry declarations often leads to in-
creased precisión and reduced analysis times. However, analysis will still make
no assumptions regarding the arguments of the calis t o s o l v e / 7 since there is
no further information available. This could be improved using a more accurate
entry declaration such as the following:

: - entry solve/7 : i n t * in t * in t * l i s t (i n t) * l i s t (i n t) * l i s t * term.

It gives the types of the seven arguments, and describes more precisely the valid
input data. Note tha t the assertion above also speciñes a mode for the calling
pat terns . The ñrst three arguments are required t o be instantiated to integers.

3 Note that this can be partly alleviated with a strict module system such as that
of Ciao [8], in which only exported predicates of a module can be subject to initial
queries.

The forth and ñfth must be fully instantiated to lists of integers. The sixth argu-
ment is (only) required to be instantiated to a list skeleton. Finally, the seventh
argument can be any possible term. Note that, by default, our assertion language
interprets properties in assertions as instantiation properties. However, the as­
sertion language also allows the use of compatibility properties if so desired [30].

4.2 Assertions for System Predicates

Consider a new versión of the ship program, after correcting the typo involv-
ing L and introducing the (simple) entry declaration ' : - entry solve/7.'. When
preprocessing the program the following messages are issued:

ERROR: Bu i l t in predíca te
cumulative(Sis,Dis,Mis,unused,unsed,Limit,End,unused)
at so lve /7 /1 /6 i s not ca l led as expected (argument 5) :
Called: "unsed
Expected: in t l i s t_or_unused

ERROR: Bu i l t in predica te arg(After ,Array_star ts ,S2)
at se t_pre_ lp /3 /2 / l i s not ca l led as expected (argument 2) :
Called: ~ar ray_s tar t s
Expected: s t r u c t

Which indicate that the program is still deñnitely incorrect. Note that the pre-
processor could not detect this without the extra precisión allowed by the entry
assertion. In error messages involving regular types, one important issue is not
to confuse term constructors with type constructors. In order to improve the
readability and conciseness of the error messages, the marker " is used to dis-
tinguish terms (constants) from regular types (which represent regular sets of
terms). By default, valúes represent regular types. However, if they are marked
with " they represent constants. In our example, intlist_or_unused is a type
since it is not marked with " whereas "unsed is a constant. Note that though it
is always possible to deñne a regular type which contains a single constant such
as unsed and distinguish terms from types by the context in which the valué ap-
pears, we opt by introducing the marker " ("quote") since in our experience this
improves readability of error messages. Note that deñning such type explicitly
instead would require inventing a new ñame for it and providing the deñnition
of the type together with the error message.

Corning back to the pending error messages, the ñrst message is due to the
fact that the constant unused has been mistakingly typed as unsed in the ñfth
argument of the cali to the CHIP builtin predicate cumulative/8. As indicated
in the error message, this predicate requires the ñfth argument to be of type
intlist_or_unused which was deñned when writing assertions for the system
predicates in CHIP and which indicates that such argument must be either the
constant unused or a list of integers.

The automatic detection of this error at compile-time has been possible be-
cause the CHIP builtins have been provided with assertions that describe their

intended use. Though system predicates are in principie considered correct under
the assumption that they are called with valid input data, it is often useful to
check that they are indeed called with valid input data. In fact, existing CLP sys-
tems perform this checking at run-time. The existence of such assertions allows
checking the calis to system predicates at compile-time in addition to run-time
in CLP systems which originally do not perform compile-time checking.

In the second message we have detected that we cali the CHIP builtin predi-
cate arg/3 with the second argument bound to array_starts which is a constant
(as indicated by the marker ") and thus of arity zero. This is incompatible with
the expected cali type struct, i.e., a structure with arity strictly greater than
zero. In the current versión of CHIP, this will genérate a run-time error, whereas
in other systems such as Ciao and SICStus, this cali would fail but would not
raise an error. Though we know the program is incorrect, the literal where the
error is flagged, arg(After, Array_starts, S2) is apparently correct. We cor­
rect the ñrst error and leave detection of the cause for the second error for later.

The different behaviour of seemingly identical builtin predicates (such as
a rg /3 in the example above) in different systems further emphasizes the ben-
eñts of describing builtin predicates by means of assertions. They can be used
for easily customizing static analysis for different systems, as assertions
ier to understand by naive users of the analysis than the hardwired internal
representation used in ad-hoc analyzers for a particular system.

4.3 Assertions for User-Defined Predicates

Up to now we have seen that the preprocessor is capable of issuing a good
number of error and warning messages even if the user does not provide any
check assertions (assertions that the system should check to hold). We believe
that this is very important in practice. However, adding assertions to programs
can be useful for several reasons. One is that they allow further semantic checking
of the programs, since the assertions provided encode a partial speciñcation of
the user's intention, against which the analysis results can be compared. Another
one is that they also allow a form of diagnosis of the error symptoms detected,
so that in some cases it is possible to automatically lócate the program construct
responsible for the error.

Consider again the pending error message from the previous iteration over
the ship program. We know that the program is incorrect because (global) type
analysis tells us that the variable Array_starts will be bound at run-time to the
constant array_starts. However, by just looking at the deñnition of predicate
set_pre_lp it is not clear where this constant comes from. This is because the
cause of this problem is not in the deñnition of set_pre_lp but rather in that
the predicate is being used incorrectly (i.e., its precondition is violated). We thus
introduce the following ca l i s assertion, which describes the expected calis to
the predicate:

: - c a l i s set_pre_lp(A,B,C) : (s t ruc t (B) , s t ruc t (O) .

In this assertion we require that both the second and third parameters of the
predicate, i.e., B and C are structures with arity greater than zero, since in the
program we are going to access the arguments in the structure of B and C with
the builtin predicate arg/3 .

The next time our ship program is preprocessed, having added the ca l i s
assertion, besides the pending error message of above regarding a rg /3 , we also
get the following one:

ERROR: fa l se a s se r t ion a t se t_precedences/3/ l /4
unexpected c a l i (argument 2) :

Called: ~ar ray_s ta r t s
Expected: s t ruc t

This message tells us the exact location of the bug, the fourth literal of the
ñrst clause for predicate set_precedences/3. This is because we have typed the
constant array_starts instead of the variable Array_starts in such literal.

Thus, as shown in the example above, user-provided check assertions may
help in locating the actual cause for an error. Also, as already mentioned, and
maybe more obvious, user-provided assertions may allow detecting errors which
are not easy to detect automatically otherwise.

After correcting the bug located in the previous example, preprocessing the
program once again produces the following error message:

ERROR: fa l se a s se r t ion a t se t_pre_lp /3 /2 /5
unexpected c a l i (argument 3) :

Called: ~array_durations
Expected: s t ruc t

which would not be automatically detected by the preprocessor without user-
provided assertions. The obvious correction is to replace array.durations in
the recursive cali to set_pre_lp in its second clause with Array_durations.

After correcting this bug, preprocessing the program with the given assertions
does not genérate any more messages. Besides, the user provided ca l i s assertion
would have been proved by analysis.

Additionally, if some part of an assertion for a user-deñned predicate has not
been proved ñor disproved during compile-time checking, it can be checked at
run-time in the classical way, i.e., run-time tests are added to the program which
encode in some way the given assertions. Introducing run-time tests by hand into
a program is a tedious task and may introduce additional bugs in the program.
In the preprocessor, this is performed automatically upon user's request.

Compile-time checking of assertions is conceptually more powerful than run-
time checking. However, it is also more complex. Since the results of compile-time
checking are valid for any query which satisñes the existing entry declarations,
compile-time checking can be used both to detect that an assertion is violated
and to prove that an assertion holds for any valid query, i.e., the assertion is
validated. The main problem with compile-time checking is that it requires the
existence of suitable static analyses which are capable of proving the properties of

interest. For conciseness, we have shown the possibilities of our system using only
a (regular) type analysis. However, the system is generic in tha t any program
property (for which a suitable analysis exists in the system) can be used for
debugging. As mentioned before, currently CiaoPP can infer types, modes and
other variable instantiation properties, constraint independence, non-failure of
predicates, determinacy, bounds on computational cost, bounds on sizes of terms
in the program, and other properties.

M o r e info: For more information, full versions of selected papers and techni-
cal reports, and/or t o download Ciao and other related systems please access
h t t p : / / w w w . c l i p . d i a . f i . u p m . e s / .

References

1. K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes
through types to assertions. Formal Aspects of Computing, 6(6):743-765, 1994.

2. K. R. Apt and D. Pedreschi. Reasoning about termination of puré PROLOG
programs. Information and Computation, 1(106): 109-157, 1993.

3. F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Pro-
gramming Languages Design and Implementation'93, pages 46-55, 1993.

4. J. Boye, W. Drabent, and J. Maluszyñski. Declarative diagnosis of constraint pro­
grams: an assertion-based approach. In Proc. of the 3rd. Int'l Workshop on Auto-
mated Debugging-AADEBUG'97, pages 123-141, Linkoping, Sweden, May 1997.
U. of Linkoping Press.

5. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla.
The Ciao Prolog System. Reference Manual. The Ciao System Documenta-
tion Series-TR CLIP3/97.1, School of Computer Science, Technical University of
Madrid (UPM), August 1997. System and on-line versión of the manual available
at h t t p : / / c l i p .d i a . f i . upm.es /So f tware /C iao / .

6. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan­
dard Prolog Programs. In European Symposium on Programming, number 1058 in
LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

7. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyñ­
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int'l Workshop on Au-
tomated Debugging-AADEBUG'97, pages 155-170, Linkoping, Sweden, May 1997.
U. of Linkoping Press.

8. D. Cabeza and M. Hermenegildo. The Ciao Module System: A New Module System
for Prolog. In Special Issue on Parallelism and Implementation of (G')LP Systems,
volume 30 of Electronic Notes in Theoretical Computer Science. Elsevier - North
Holland, March 2000.

9. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35-101, 1994.

http://www.clip.dia.fi.upm.es/
http://clip.dia.fi.upm.es/Software/Ciao/

10. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic
programs by abstract diagnosis. In M. Dams, editor, Analysis and Verification
of Múltiple-Agent Languages, 5th LOMAPS Workshop, number 1192 in Lecture
Notes in Computer Science, pages 22-50. Springer-Verlag, 1996.

11. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of
Logic Programming, 39(l-3):43-93, 1999.

12. M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In 1995
International Logic Programming Symposium, pages 275-287, Portland, Oregon,
December 1995. MIT Press, Cambridge, MA.

13. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principies of Programming Languages, pages 238-252,
1977.

14. P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In
F. Pfenning, editor, Types in Logic Programming, pages 157-187. MIT Press, 1992.

15. P. Deransart. Proof methods of declarative properties of definite programs. Theo-
retical Computer Science, 118:99-166, 1993.

16. P. Deransart, M. Hermenegildo, and J. Maluszynski. Analysis and Visualiza-
tion Tools for Constraint Programming. Number 1870 in LNCS. Springer-Verlag,
September 2000.

17. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. The Use of Assertions in
Algorithmic Debugging. In Proceedings of the Intl. Conf. on Fifth Generation
Computer Systems, pages 573-581, 1988.

18. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with
assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming in Logic
Programming, pages 501-522. MIT Press, 1989.

19. G. Ferrand. Error diagnosis in logic programming. J Logic Programming, 4:177-
198, 1987.

20. J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite
Tree Autómata for Set-Based Analysis of Logic Programs. In Fourth International
Symposium on Practica! Aspects of Declarative Languages, number 2257 in LNCS,
pages 243-261. Springer-Verlag, January 2002.

21. J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of
logic programs. In Pascal Van Hentenryck, editor, Proc. of the llth International
Conference on Logic Programming, pages 599-613. MIT Press, 1994.

22. M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs. ACM
Transactions on Programming Languages and Systems, 18(5):564-615, September
1996.

23. M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Interna­
tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages
1345-1361. Springer-Verlag, July 2000.

24. M. Hermenegildo, F. Bueno, G. Puebla, and P. López-García. Program Analy­
sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999
International Conference on Logic Programming, pages 52-66, Cambridge, MA,
November 1999. MIT Press.

25. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De­
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 161-192. Springer-
Verlag, July 1999.

26. P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge
MA, 1994.

27. Y. Lichtenstein and E. Y. Shapiro. Abstract algorithmic debugging. In R. A.
Kowalski and K. A. Bowen, editors, Fifth International Conference and Symposium
on Logic Programming, pages 512-531, Seattle, Washington, August 1988. MIT.

28. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

29. G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number
1870 in LNCS, pages 63-107. Springer-Verlag, September 2000.

30. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programming, number 1870 in
LNCS, pages 23-61. Springer-Verlag, September 2000.

31. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro­
gram Synthesis and Transformation (LOPSTR'99), number 1817 in LNCS, pages
273-292. Springer-Verlag, 2000.

32. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an eíñcient purely declarative logic programming language. JLP, 29(1-3), October
1996.

33. C. Vaucheret and F. Bueno. More precise yet eíñcient type inference for logic
programs. In International Static Analysis Symposium, number 2477 in LNCS,
pages 102-116. Springer-Verlag, September 2002.

34. E. Vetillard. Utilisation de Declarations en Programmation Logique avec Con-
straintes. PhD thesis, U. of Aix-Marseilles II, 1994.

35. E. Yardeni and E. Shapiro. A Type System for Logic Programs. Concurrent Prolog:
Collected Papers, pages 211-244, 1987.

