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Abstract

We have designed, implemented, and proved the correctness of a compiler
generator that accepts action semantic descriptions of imperative program-
ming languages. We have used it to generate compilers for both a toy lan-
guage and a non-trivial subset of Ada. The generated compilers emit absolute
code for an abstract RISC machine language that is assembled into code for
the SPARC and the HP Precision Architecture. The generated code is an
order of magnitude better than that produced by compilers generated by
the classical systems of Mosses, Paulson, and Wand. Our machine language
needs no runtime type-checking and is thus more realistic than those con-
sidered in previous compiler proofs. We use solely algebraic specifications;
proofs are given in the initial model. The use of action semantics makes the
processable language specifications easy to read and pleasant to work with.
We view our compiler generator as a promising first step towards user-friendly
and automatic generation of realistic and provably correct compilers.
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Resumé

Vi har designet, implementeret og bevist korrektheden af en oversætter gen-
erator som tager aktions-semantiske beskrivelser af imperative programmer-
ingssprog som input. Vi har brugt den til at generere oversættere for b̊ade
et legetøjs-sprog og en ikke-triviel delmængde af Ada. De genererede over-
sættere producerer absolut kode for en abstrakt RISC maskine som derefter
oversættes til kode til SPARC og HP Precision arkitekturerne. Den pro-
ducerede kode er en størrelsesorden bedre end hvad der bliver produceret
af oversættere genereret af de klassiske systemer designet af Mosses, Paul-
son og Wand. Vores maskinsprog behøver ikke dynamisk type-check og er
derfor mere realistisk end de som tidligere er blevet betragtet i beviser for
oversætter-korrekthed. Vi bruger udelukkende algebraiske specifikationer;
beviser gives i den initiale model. Brugen af aktions-semantik gør de maskin-
læsbare sprog-specifikationer lette at forst̊a og behagelige at arbejde med.
Vi anser vores oversætter generator for at være et lovende første skridt mod
bruger-venlig og automatisk generering af realistiske og bevisligt korrekte
oversættere.

I det følgende uddybes beskrivelsen af de opnaede resultater.

Det er et langsigtet mål, for de der arbejder med oversætter generering og
korrekthed, at konstruere en sprog-designer’s arbejdsbænk, med henblik p̊a
støtte af sprog-design processen. Hovedkomponterne i s̊adan en arbejdsbænk
er:

• Et specifikations-sprog hvis specifikationer er lette at vedligeholde, og
tilgængelige uden kendskab til den underliggende teori; og

• En oversætter generator som genererer realistiske og bevisligt korrekte
oversættere ud fra s̊adanne specifikationer.
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Med s̊adan en arbejdsbænk kan sprog-designeren:

• Dokumentere design beslutninger;

• Eksperimentere med det nye sprog efter en ændring; og

• Aflevere en oversætter til programmørerne umiddelbart efter designet
er færdigt.

Hidtidigt arbejde har ikke formået at bevise korrektheden af nogen real-
istisk oversætter generator. Derimod er det lykkedes i flere projekter at
generere oversættere, der t̊aler sammenligning med kommercielt tilgængelige
oversætere. Disse projekters’ erfaring eq at det bliver lettere at generere gode
oversætere, hvis:

• En sprog definition ikke indeholder en fuldstændig implementations
model; og

• Specifikations-sproget er rettet mod sprog, som traditionelt implementeres
via en oversætter.

Vi har designet, implementeret og bevist korrektheden af en oversætter gen-
erator, som potentielt kunne blive en komponent i en sprog-designer’s ar-
bejdsbænk. Sum specifikations-sprog benytter vi Mosses’ aktions-notation,
som blev designet netop med henblik p̊a at undg̊a at et sprog-design fastlæg-
ger en implementations model. Den centrale komponent i oversætter gen-
eratoren er en oversætter fra aktions-notation til absolut kode for en ab-
strakt RISC maskine. N̊ar oversætter-generatoren gives en sprog-definition i
aktions-notation, s̊a bliver den sammensat med aktions-oversætteren, hvilket
tilsammen giver en korrekt oversætter for det definerede sprog, idet vi har
bevist, at aktions-oversætteren er korrekt.

Aktions-notation er ikke umiddelbart rettet mod at blive implementeret
via en overs̊atter. Vi har derfor designet en delmængde af notationen, i
hvilken man skal skrive alle sprog-definitioner, der gives som input til over-
sætter generatoren, Denne delmængde er tilstr{aekkelig udtryksfuld til at
tillade beskrivelse af sprog med konstruktioner som komplicerede kontrol-
strukturer, blok struktur, ikke-rekursive abstraktioner, s̊asom procedurer og
funktioner, og et statisk type system.
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Vores semantik af aktions-notationen er en s̊akaldt naturlig semantik,
som vi har specificeret i Mosses’ meta-notation for unified algebras. Denne se-
mantik er direkte afledt fra den strukturelle, operationelle semantik, hvormed
Mosses definerer notationen.

Valget af naturlig semantik som definition af aktions-notationen skyldes
at vi s̊a kan benytte en variation af Despeyroux’s teknik til bevis af oversæt-
ter korrekthed. Denne teknik er blevet anvendt pa en oversætter fra et funk-
tionelt sprog til et idealiseret maskinsprog. I lighed med hvad der benyttes i
andre korrektheds-beviser for oversættere, s̊a behøver Despeyroux’s maskin-
sprog dynamisk type-check. En undtagelse herfra er Joyce’s teknik, som dog
kun er set anvendt p̊a en oversætter af while-programmer.

Det er en alvorlig svaghed ved de tidligere bevis teknikker, at de er
baseret p̊a brug af et idealiseret maskinsprog, som behøver dynamisk type-
check. Dynamisk type-check letter bevisførelsen kraftigt men betyder læn-
gere køretid.

Det er ønskeligt, at ogs̊a implementationen af det idealiserede mask-
insprog bliver bevist korrekt. Det har som konsekvens, at de dynamiske
type-check kan ikke umiddelbart udelades af implementationen af det idealis-
erede maskinsprog, selvom det sprog, der giver anledning til maskinkoden, er
statisk type-checket. Det skyldes, at statisk type analyse af de idealiserede
maskinsprog ikke synes gennemførlig. Istedet må man s̊a bevise, at i hvert
fald de maskinkode programmer, som genereres af den konkrete oversætter, er
korrekte. Dette bevis må nødvendigvis involvere b̊ade oversætteren til mask-
insproget, og implementationen af maskinsproget. Dette er ikke attraktivt,
da det ødelægger modulariseringen af det samlede korrekthedsbevis: korrek-
theden af implementationen af maskinsproget er ikke længere uafhaengigt af
andre oversættere. Det er tænkeligt, at den samlede oversættelse, liges̊a let
kunne bevises korrekt i eet skridt.

De dynamiske type-check kan undg̊as ved at benytte et maskinsprog,
hvis programmer alle er type-korrekte. Vi har benyttet et abstrakt RISC
maskinsprog, hvor den eneste type er “heltal”. Det er s̊aledes umuligt at se
p̊a en given værdi, om man bør opfatte den som en adresse i program teksten,
en lager adresse, eller en repræsentation af en sandhedsværdi, et tal, etc. Vi
indsætter ikke type information i repræsentationen af værdier; der er ingen
type information til stede pa kørselstidspunktet.

Vores maskine er skabt med SPARC arkitekturen som forbillede. Den
indeholder blandt andet globale registre, status bits, register vinduer, og et
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“random-access” lager. Endnu et realistisk aspekt er, at n̊ar maskinen først er
begyndt at køre, s̊a stopper den ikke igen. Bemærk her, at vores semantik af
maskinsproget ikke tillader fejl som “bus error”. Maskinkode i vores maskine
bliver oversat til kode til SPARC og HP Precision arkitekturerne.

Oversættelsen fra aktions-notation til maskinsproget sker i to skridt:

1. Type analyse og beregning af kode størrelse; og

2. Kode generering.

Udviklingen af denne oversætter skete ud fra følgende principper:

• Korrekthed er vigtigere end effektivitet; og

• Specifikation og bevis skal være afsluttet inden systemet implementeres.

Et positivt result er, at implementationen blev hurtigt gennemført, og kun
en h̊andfuld mindre fejl (som var blevet overset i beviset!) skulle rettes,
før systemet virkede. Et negativt resultat er, at de generede oversættere
producerer kode, som kører mindst to størrelsesordener langsommere end
tilsvarende maskinkode programmer produceret af h̊andskrevne oversættere.
Det rammer alts̊a et stykke fra det ideelle mål, nemlig realistiske oversættere.
Det er dog stadig en forbedring i forhold til klassiske systemer designet af
Mosses, Paulson, og Wand, som er endnu en størrelsesorden langsommere.

Korrekthedsbeviset for aktions-oversætteren bruger følgende teknik for
at kunne klare sig uden dynamisk type-check:

Definér relationerne mellem semantiske værdier i kilde-sproget og
maskin-sproget med hensyn til b̊ade en type og en maskintilstand.

Vi definerer s̊aledes en operation som givet en værdi V , en maskintilstand M ,
og en type T , giver den sort af kildeværdier, som har type T og er repræsen-
teret af V og M . For eksempel, s̊a kan et heltal repræsentere en værdi af
type “liste af sandhedsværdier” ved at pege i en “heap”, hvor listen’s kom-
ponenter er repræsenteret. I dette tilfælde vi1 vores operation give en sort
som indeholder netop den list af sandhedsvædier, n̊ar den som argumenter
f̊ar det nævnte heltal, typen “liste af sandhedsværdier”, og heap’en.

Muligheden for at give en sort med flere individer behøves, n̊ar man
abstraherer med hensyn til en “closure” type. Det er fordi, at hvis to aktioner
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er ens p̊anær med hensyn til navngivning af tokens (de er ens med hensyn
til “alpha-conversion”), s̊a vil den oversatte kode for dem blive identificeret.

Hvis man ikke involverer maskintilstanden n̊ar semantiske værdier re-
lateres, s̊a må man kræve, at maskinens værdier er “selvindeholdte”. For
ikke-trivielle sprog er det nødvendigt med flere typer værdier i maskinen, og
dermed bliver dynamisk type-check nødvendigt.

Alle vore specifikationer er i Mosses’ meta-notation. Den tillader kun,
at man udtrykker Horn klausuler. Korrekthedsbeviset er struktureret i en
række lemmaer, hvoraf de fleste bevises ved induktion i det antal gange
“modus ponens” er blevet anvendt.

Sammenfattende kam siges, at vores oversætter generator er et skridt p̊a
vej mod automatisk generering af realistiske og bevisligt korrekte oversæt-
tere.

vi



Contents

1 Compiler Generation and Correctness 1

1.1 Previous Approaches . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Classical Compiler Generation . . . . . . . . . . . . . . 4

1.1.2 Problems with using Denotational Semantics . . . . . . 5

1.1.3 Other Compiler Generators . . . . . . . . . . . . . . . 6

1.1.4 Compiler Correctness Proofs . . . . . . . . . . . . . . . 10

1.1.5 Problems with relying on Run-time Type-checking . . . 14

1.2 A New Approach . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Action Semantics 19

2.1 An Overview of Action Semantics . . . . . . . . . . . . . . . . 19

2.1.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Data and Dependent Data . . . . . . . . . . . . . . . . 21

2.2 A Compilable Subset of Action Notation . . . . . . . . . . . . 21

2.2.1 Design Criteria . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Semantic Entities . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Semantic Funtions . . . . . . . . . . . . . . . . . . . . 25

3 The Cantor System 27

3.1 An Abstract RISC Machine Language . . . . . . . . . . . . . . 27

3.2 Compiling Action Notation . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Compilation Techniques . . . . . . . . . . . . . . . . . 30

3.2.2 Representation of Action Semantic Entities . . . . . . . 33

vii



3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 36

4 The Correctness Proof 44

4.1 The Correctness Theorem . . . . . . . . . . . . . . . . . . . . 44

4.2 The Proof Technique . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Horn Logic . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Example Proof . . . . . . . . . . . . . . . . . . . . . . 49

4.3 An Overview of the Proof . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Compiler Consistency . . . . . . . . . . . . . . . . . . . 53

4.3.2 Correctness of Analysis . . . . . . . . . . . . . . . . . . 54

4.3.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 Code Well-behavedness . . . . . . . . . . . . . . . . . . 57

4.3.5 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusion 58

A A Compilable Subset of Action Notation 61

A.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.2 Semantic Entities . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2.1 Commitments . . . . . . . . . . . . . . . . . . . . . . . 62

A.2.2 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2.3 States . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.3 Semantic Functions . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3.2 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.3.3 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.3.4 Dependent Data . . . . . . . . . . . . . . . . . . . . . 73

A.3.5 Unary Operations . . . . . . . . . . . . . . . . . . . . . 74

A.3.6 Binary Operations . . . . . . . . . . . . . . . . . . . . 74

A.3.7 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B A Pseudo SPARC Mashine Language 77

B.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



B.2 Semantic Entities . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.3 Semantic Functions . . . . . . . . . . . . . . . . . . . . . . . . 79

B.3.1 Programs . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3.2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3.3 Moveables . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.3.4 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.3.5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C Actions to SPARC Compiler 84

C.1 Compile Time Entities . . . . . . . . . . . . . . . . . . . . . . 84

C.1.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C.1.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . 85

C.1.3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C.1.4 Symbol Tables . . . . . . . . . . . . . . . . . . . . . . . 87

C.1.5 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . 87

C.2 Code Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C.2.1 Lists and Tuples . . . . . . . . . . . . . . . . . . . . . 88

C.2.2 Committing . . . . . . . . . . . . . . . . . . . . . . . . 90

C.2.3 Bookkeeping . . . . . . . . . . . . . . . . . . . . . . . . 91

C.2.4 Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.3.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.3.2 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.3.3 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C.3.4 Dependent Data . . . . . . . . . . . . . . . . . . . . . 98

C.3.5 Lookup in Symbol Tables . . . . . . . . . . . . . . . . 101

C.3.6 Unary Operations . . . . . . . . . . . . . . . . . . . . . 102

C.3.7 Binary Operations . . . . . . . . . . . . . . . . . . . . 102

C.3.8 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.4 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.4.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.4.2 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



C.4.3 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.4.4 Dependent Data . . . . . . . . . . . . . . . . . . . . . 117

C.4.5 Lookup in Symbol Tables . . . . . . . . . . . . . . . . 120

C.4.6 Unary Operations . . . . . . . . . . . . . . . . . . . . . 121

C.4.7 Binary Operations . . . . . . . . . . . . . . . . . . . . 121

D Abstraction of Semantic Entities 123

D.1 Auxiliary Notation . . . . . . . . . . . . . . . . . . . . . . . . 123

D.2 Abstraction Functions . . . . . . . . . . . . . . . . . . . . . . 126

E Lemmas 131

E.1 Auxiliary Notation . . . . . . . . . . . . . . . . . . . . . . . . 131

E.1.1 Code Placement . . . . . . . . . . . . . . . . . . . . . . 131

E.1.2 Semantics of Types . . . . . . . . . . . . . . . . . . . . 133

E.1.3 Program Execution . . . . . . . . . . . . . . . . . . . . 135

E.2 Compiler Consistency . . . . . . . . . . . . . . . . . . . . . . . 139

E.3 Correctness of Analysis . . . . . . . . . . . . . . . . . . . . . . 149

E.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

E.5 Code Well-behavedness . . . . . . . . . . . . . . . . . . . . . . 178

E.6 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

F Main Theorem 195

G HypoPL Action Semantics 198

G.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 198

G.2 Semantic Entities . . . . . . . . . . . . . . . . . . . . . . . . . 199

G.2.1 Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

G.2.2 Coercion . . . . . . . . . . . . . . . . . . . . . . . . . . 199

G.3 Semantic Functions . . . . . . . . . . . . . . . . . . . . . . . . 199

G.3.1 Programs . . . . . . . . . . . . . . . . . . . . . . . . . 199

G.3.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . 200

G.3.3 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

G.3.4 Statements . . . . . . . . . . . . . . . . . . . . . . . . 201

x



G.3.5 Expressions . . . . . . . . . . . . . . . . . . . . . . . . 202

G.3.6 Operations . . . . . . . . . . . . . . . . . . . . . . . . . 202

G.3.7 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . 203

G.3.8 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 203

H The HypoPL Bubble-sort Program 204

I Mini-Ada Action Semantics 220

I.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 220

I.2 Semantic Entities . . . . . . . . . . . . . . . . . . . . . . . . . 222

I.2.1 Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

I.2.2 Closures . . . . . . . . . . . . . . . . . . . . . . . . . . 222

I.3 Semantic Functions . . . . . . . . . . . . . . . . . . . . . . . . 223

I.3.1 Program . . . . . . . . . . . . . . . . . . . . . . . . . . 223

I.3.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . 224

I.3.3 Formals . . . . . . . . . . . . . . . . . . . . . . . . . . 226

I.3.4 Formal . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

I.3.5 Formals-In . . . . . . . . . . . . . . . . . . . . . . . . . 226

I.3.6 Formal-In . . . . . . . . . . . . . . . . . . . . . . . . . 226

I.3.7 Nominator . . . . . . . . . . . . . . . . . . . . . . . . . 227

I.3.8 Primitive . . . . . . . . . . . . . . . . . . . . . . . . . 227

I.3.9 Statements . . . . . . . . . . . . . . . . . . . . . . . . 227

I.3.10 Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

I.3.11 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 229

I.3.12 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

I.3.13 Name . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

I.3.14 Expressions . . . . . . . . . . . . . . . . . . . . . . . . 230

I.3.15 Expression . . . . . . . . . . . . . . . . . . . . . . . . . 231

I.3.16 Binary-Operator . . . . . . . . . . . . . . . . . . . . . 231

I.3.17 Control-Operator . . . . . . . . . . . . . . . . . . . . . 232

I.3.18 Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

I.3.19 Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . 233

xi



J Mini-Ada Benchmark Programs 234

K Informal Summary of Action Notation 241

K.1 Basic Action Notation . . . . . . . . . . . . . . . . . . . . . . 241

K.1.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 241

K.1.2 Dependent Data . . . . . . . . . . . . . . . . . . . . . 244

K.1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

K.2 Functional Action Notation . . . . . . . . . . . . . . . . . . . 245

K.2.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 245

K.2.2 Dependent Data . . . . . . . . . . . . . . . . . . . . . 246

K.2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

K.3 Declarative Action Notation . . . . . . . . . . . . . . . . . . . 247

K.3.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 247

K.3.2 Dependent Data . . . . . . . . . . . . . . . . . . . . . 248

K.3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

K.4 Imperative Action Notation . . . . . . . . . . . . . . . . . . . 248

K.4.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 249

K.4.2 Dependent Data . . . . . . . . . . . . . . . . . . . . . 249

K.4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

K.5 Reflective Action Notation . . . . . . . . . . . . . . . . . . . . 250

K.5.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 250

K.5.2 Dependent Data . . . . . . . . . . . . . . . . . . . . . 250

K.5.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

K.6 Hybrid Action Notation . . . . . . . . . . . . . . . . . . . . . 251

K.6.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 251

L Data Notation 253

L.1 Instant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

L.1.1 Distinction . . . . . . . . . . . . . . . . . . . . . . . . . 253

L.1.2 Partial Order . . . . . . . . . . . . . . . . . . . . . . . 253

L.2 Truth-Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

L.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

L.2.2 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . 253

xii



L.3 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

L.3.1 Naturals . . . . . . . . . . . . . . . . . . . . . . . . . . 254

L.3.2 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . 255

L.4 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

L.4.1 Generics . . . . . . . . . . . . . . . . . . . . . . . . . . 255

L.5 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

L.5.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

L.6 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

L.6.1 Generics . . . . . . . . . . . . . . . . . . . . . . . . . . 256

L.6.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

L.6.3 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . 256

L.6.4 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

L.7 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

L.7.1 Generics . . . . . . . . . . . . . . . . . . . . . . . . . . 257

L.7.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

L.7.3 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . 257

L.8 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

L.8.1 Generics . . . . . . . . . . . . . . . . . . . . . . . . . . 258

L.8.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

L.8.3 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . 258

L.9 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

L.9.1 Generics . . . . . . . . . . . . . . . . . . . . . . . . . . 259

L.9.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

L.9.3 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . 260

L.10 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

L.10.1 Generics . . . . . . . . . . . . . . . . . . . . . . . . . . 260

L.10.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

L.10.3 Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . 260

M Informal Summary of Meta Notation 261

M.1 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

M.1.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 262

xiii



M.1.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 262

M.1.3 Titles . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

M.1.4 Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

M.2 Sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

M.2.1 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

M.2.2 Formulae . . . . . . . . . . . . . . . . . . . . . . . . . 264

M.2.3 Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . 264

M.2.4 Functionalities . . . . . . . . . . . . . . . . . . . . . . 264

M.3 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

M.3.1 Basic Specifications . . . . . . . . . . . . . . . . . . . . 266

M.3.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 267

N Summary of Variable Restrictions 268

Index 269

References 276

xiv



Chapter 1

Compiler Generation and
Correctness

A compiler translates programs in a source language to programs in a target
language. It is said to be correct if it translates any source program to a
target program with the same behavior as the source program. This thesis
presents the design, implementation, and proof of correctness of a compiler
generator.

Most software is written in so-called high-level programming languages.
The term high-level refers to the conceptual distance between what can be
expressed in the language, and what can be expressed at the machine level
of a computer. The implementation of such a language is usually provided
by a compiler that translates programs into an executable machine language.
Even though high-level languages may be preferred for their expressiveness
alone, we may also want the compilation process and the generated machine
code to be efficient. This requires sophisticated compilers, and such ones are
difficult and time-consuming to get correct. The compiler generator described
in this thesis puts bits of such sophistication into all generated compilers, and
the associated proof guarantees that the compilers are correct.

Writing a correct compiler requires a definition of the syntax and seman-
tics of the source and target languages. A proof of correctness will be based
on the given language definitions, and the proof technique will be depend
on the style of definition that has been used. Generating a correct compiler
requires a definition of a notation for defining languages. A proof of correct-
ness will be based on the given notation definitions, but not the language

1



definitions. The latter play no part, because any well-formed definition de-
fines some language—it is always “correct”, though it need not be what was
intended.

The problem of compiler generation is usually simplified by choosing a
particular definition of a specific target language [69]. This reduces the task
to merely writing and proving the correctness of a compiler for a notation
for defining source languages. Such a compiler can then be composed with
a language definition to yield a correct compiler for the language, see figure
1. Compiler generators that operate in this way are often called semantics-
directed compiler generators. The compiler generator described in this thesis
is semantics-directed. It accepts language definitions written using action no-
tation, and it outputs compilers that emit code in an abstract RISC machine
language. Both action notation and the abstract RISC machine language are
defined using the unified metanotation of Mosses.

Figure 1.1: Semantics-directed compiler generation.

High-level languages sometimes undergo changes, and new languages
regularly get developed. Language definitions are helpful for recording design
decisions and design changes, and they may also be helpful if a compiler
generator quickly can transform them into implementations. The former
requires a flexible and readable notation for defining languages, such that it
is easy to figure out where the changes must be made. Action notation is
aimed at being flexible and readable, thus hopefully lending a considerable
usefulness to the compiler generator described in this thesis.

Automatic generation of correct compilers eliminates the compiler as a
source of errors in software. This may be in vain, however, if the imple-
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mentation of the target language is erroneous. The more high-level a target
language is, the more levels of compilation may be involved, and the more er-
rors and inefficiency can be introduced. Recent work in hardware verification
indicates that almost realistic machine level architectures can be verified with
respect to a low level of the computer, for example the transistor level. By
generating compilers that emit code for a verified machine level architecture,
a large class of software errors can be eliminated, possibly while retaining
efficiency. The abstract RISC machine language which is used as target lan-
guage in this thesis is not a verified architecture. It is patterned after the
SPARC architecture, however, which is born with a semi-formal definition,
and which seems to be realistic to verify, because of its simplicity.

One of the long-term goals of work with compiler generation and cor-
rectness is the construction of a language designer’s workbench, envisioned
by Pleban [35], for drastically improving the language design process. The
major components in such a workbench are:

• A specification language whose specifications are easily maintainable,
and accessible without knowledge of the underlying theory; and

• A compiler generator that generates realistic and correct compilers
from such specifications.

With such a workbench, the language designer can:

• Document design decisions;

• Experiment with the new language after a change has been made; and

• Ship a compiler to programmers immediately after the design is fin-
ished.

In the following section we examine the major previous approaches to com-
piler generation and compiler correctness proofs. Various deficiencies will be
high-lighted, and criteria for improvements will be expressed. Section 1.2
then gives an overview of the approach taken in this thesis, and it states the
major contributions.

Throughout the thesis, the reader is assumed to be familiar with alge-
braic specification [19], compilation of block structured languages [93], the
notion of a RISC architecture [81], and natural semantics [31]. The reader is
also assumed to familiar with at least the basic principles of action semantics,
see for example the introduction by Mosses [53].
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1.1 Previous Approaches

We will examine each of the previous approaches to compiler generation by
focusing on:

• The accessibility and maintainability of the involved specifications;

• The quality of the generated compilers; and

• Whether correctness has been proved.

These criteria decide whether a system could be useful in a language de-
signer’s workbench.

The previous approaches to compiler correctness proofs will be examined
to see if an existing proof technique could be helpful in this thesis.

1.1.1 Classical Compiler Generation

The traditional approach to compiler generation is based on denotational
semantics [76]. Denotational descriptions are written in lambda notation,
which in its pure form has a grammar with just three productions. In prac-
tice, however, plenty of auxiliary notation is employed, yielding a notation
of considerable complexity [51]. Any lambda expression may be seen as
specifying an element of a Scott-domain. Alternatively, it can be read as a
program which can be executed by repeated use of beta-reduction [3]. Given
an implementation of lambda notation, we can then construct a compiler
generator which composes any denotational semantics with the implemen-
tation of lambda notation. Examples of existing compiler generators based
on this idea include Mosses’ Semantics Implementation System (SIS) [44],
Paulson’s Semantics Processor (PSP) [68, 69], and Wand’s Semantic Proto-
typing System (SPS) [89]. In SIS, the lambda expressions are executed by a
direct implementation of beta-reduction; in PSP and SPS they are compiled
into SECD and Scheme code, respectively. There are no considerations of
the possible correctness of either the implementation of beta-reduction, the
translations to SECD or Scheme code, or the implementation of SECD or
Scheme. The target programs produced by these systems have been reported
to run at least three orders of magnitude slower than corresponding target
programs produced by handwritten compilers [35].
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After these systems were built, several translations of lambda notation
into other abstract machines have been proved correct. Notable instances
are the categorical abstract machine [11] and the abstract machines that can
be derived systematically from an operational semantics of lambda notation,
using Hannan’s method [26, 24, 25]. It remains to be demonstrated, however,
if a compiler which incorporates one of them will be more efficient than the
classical systems. Also, the correctness of implementations of these abstract
machines has not been considered. Hope for improved efficiency may also
come from the implementation techniques based on graph reduction [28].

A major disadvantage of all the abstract machines used as targets for
translating lambda notation is that they perform run-time type-checking.
This may not be significant in comparison with other computational over-
heads in these machines, but, in general, compile-time type-checking is prefer-
able because it allows the generation of more efficient code. It also adds to
the complexity of correctness proofs, however, because now the type-checker
must be proved correct, as well.

1.1.2 Problems with using Denotational Semantics

It appears that the poor performance characteristics of the classical compiler
generators do not simply stem from inefficient implementations of lambda
notation. Mosses observed that denotational semantics intertwine model
details with the underlying conceptual analysis [46]. Pleban and Lee fur-
ther observed that not only a human reader but also an automatic compiler
generator will have difficulty in recovering the underlying analysis from a
denotational semantics [71].

Attempts to recover useful information from lambda expressions include
Schmidt’s work on detecting so-called single-threaded store arguments and
stack single-threaded environment arguments [75, 77]. A successful outcome
of such analysis would allow the generated compilers to emit code that oper-
ates as usual on a store and a stack, and to use a conventional symbol-table
at compile-time. It remains to be seen in practice, though, how much this
approach can improve the classical compiler generators, and how generally
applicable it is.

An other attempt to analyze lambda expressions is the binding time
analysis of Nielson and Nielson [59], currently implemented in the PSI-system
[56]. Such analysis allows the generated compiler to make clever decisions
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about which computations it can carry out at compile-time, and which com-
putations it should generate code for and thus defer to run-time. A code-
generator based in these ideas has been proved correct [57]; the quality of
the generated code, however, seems to be no better than that generated by
compilers generated by the classical systems.

Despite the attempts to compile-time analyze lambda expressions, it
seems unlikely that the performance characteristics of compiler generators
based on denotational semantics soon will be improved beyond that of exist-
ing such systems. Furthermore, denotational semantics is recognized to be
neither flexible nor readable, see for example the discussions by Mosses [46],
and Pleban and Lee [71]. Le us therefore examine some other approaches to
compiler generation.

1.1.3 Other Compiler Generators

The CAT system developed by Schmidt and Völler [78, 79] is aimed at gen-
erating compilers for Pascal, C, Basic, Fortran, and Cobol. The notation,
called CAT, for defining these languages is a simplification of the union of all
their syntactic constructs. This makes CAT itself into a high-level language
which has its applicability as language definition notation limited to only lit-
tle more than the five languages under consideration. The translation of CAT
programs proceeds by first doing some optimizing program transformations,
then translating into a machine-independent machine language, and finally
compiling that into an executable machine language, called CAL. Backends
for a range of machine languages have been implemented, including that of
MC68000. The generated compilers are of good quality; both compilation
and the generated machine code is roughly as good as that of commercially
available compilers. The CAT language does not have a formal definition,
thus making correctness considerations impossible. Its translation into CAL,
however, is formally specified in VDM’s metalanguage, META-IV [6]. The
executable compiler is manually derived from this specification.

The compiler generator of Kelsey and Hudak [32] is another example
of a system that generates compilers of a quality that compares well with
commercially available compilers. The system has been used to generate
compilers for Pascal, Basic, and Scheme; the compilers generate code for the
MC68020 processor. The notation used for defining languages is a call-by-
value lambda notation with data and procedure constants and an implicit
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store. This makes the approach less general that the approaches based on
the pure lambda notation, in that it is biased towards a specific style of
architecture. Compilation proceeds in six steps that all perform transforma-
tion on the intermediate program. After the final step, the program is in
one-to-one correspondence with an executable machine language program.
Although the syntax of the intermediate language doesn’t change during the
transformations, the semantics changes radically along the way. There has
not been given any specification of the semantics, however, and the compila-
tion process has not been formally specified either. This makes correctness
considerations impossible.

A radically different approach to compiler generation is taken by Dam
and Jensen [13]. They consider the use of natural semantics [31] (which they
call “relational semantics”) as the basis of a compiler generator. Giving a nat-
ural semantics of a language amounts to specifying a collection of first-order
Horn clauses. Thus, a compiler for Prolog, or any other implementation of
Horn logic, could be the essential ingredient of a compiler generator. Instead,
they devise an algorithm for transforming a natural semantic definition into
a compiling specification. The algorithm requires a language definition to
satisfy some conditions; it is sufficiently general to apply to a language of
while-programs, but has not been implemented. The generated compilers
emit code for a stack machine; the correctness of these compilers has been
sketched, whereas the implementation of the stack machine is not considered.

It has been known for more than a decade that partial evaluation has an
intimate connection to compilation. Partial evaluation produces a residual
program from a source program and some of its input data. When given
the remaining input data, the residual program yields the same result as the
source program would if it was given all the input data. A partial evaluator
will accomplish compilation, when it is given as input an interpreter for a
language and a program to be compiled, written in that language. The target
code will be in the language in which the interpreter is written. If the partial
evaluator is self-applicable, then we can apply it to itself and an interpreter
for a language. This yields the automatic generation of a compiler. We can
even go further and apply the partial evaluator to itself and itself. This
yields the automatic generation of a compiler generator. The Ceres system
of Jones and Tofte [85] is an early example of this, demonstrating that even
compiler generators can be automatically generated. Ceres uses a language of
flowcharts with an implicit state as the notation for defining source languages.
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Another notable partial evaluator is the Similix of Bondorf and Danvy [7, 8]
which treats a subset of Scheme. Gomard and Jones implemented a self-
applicable partial evaluator, called mix, for an untyped lambda notation
[22]. An essential ingredient is an algorithm for binding time analysis. It
has been used to generate a compiler for a language of while-programs. The
generated compiler emits programs in lambda notation. The correctness of
the compiler generator has been proved; it remains to be seen, however, if this
approach will lead to the generation of compilers for conventional machine
architectures.

The Mess system developed by Pleban and Lee [70, 36, 72, 35] was
created as a reaction to the lack of separation between conceptual analysis
and model details that is found in the classical compiler generators. Instead
of denotational semantics, the approach to defining languages is high-level
semantics. High-level semantics is compositional, but it does not have a
standardized core notation, as does denotational semantics; it is rather a
particular style of specification that is advocated. This style involves a no-
tion of actions, akin to and inspired by the actions found in precursors of
action semantics. A high-level semantic definition involve essentially only
compile-time objects; the run-time objects are then used in the definition of
the notation for actions. This separation is the key to the success of the Mess
system. It has been used to generate a compiler for a non-trivial imperative
language. The compiler emits code for the iAPX80286 processor and com-
pares well with for example the Turbo Pascal compiler. High-level semantics
has been given a denotational semantics, and the translation of actions is
automatically generated from a formal specification. A proof of correctness
of this translation has not been given, however. In any case, it is discour-
aging that such a proof must be given afresh for each new language because
new actions often have to be introduced and defined. Lee expresses the hope
that proofs can be carried out separately for each language construct; the
implementation and the proof of its correctness can then be reused for other
languages. The possibility of reusing language definition modules is a central
ingredient in the notion of a Language Designer’s Workbench, envisioned by
Pleban.

The SAM system developed by Pierre Weis [91] is based on essentially
the same approach as that taken by Pleban and Lee. The notation used
for defining languages is a language of semantic operators. This notation is
compiled into code for an abstract machine which in turn is translated into
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Designer of Specification Quality of Correctness
the system language generated Proof

compilers
Mosses Denotational Semantics Poor No
Paulson Denotational Semantics Poor No
Wand Denotational Semantics Poor No

Schmidt and Amalgamation of Good No
Völler five languages

Kelsey and Lambda notation with Good No
Hudak implicit store, etc.

Pleban and Lee High-level semantics Good No
Gomard and Jones Denotational Semantics Poor Yes

Figure 1.2: Existing Compiler Generators.

machine code. A proof of correctness of this translation has not been given,
however. The system has been used to generate compilers for CAML and
a Pascal-like language. The code emitted by the generated CAML compiler
compares well with that emitted by a handwritten CAML compiler. The code
emitted by the generated “Pascal”-compiler runs four times slower than that
emitted by a handwritten Pascal compiler.

A summary of the examination of the existing compiler generators is
given in figure 1.2. Two things can be concluded, as follows. Firstly, correct-
ness proofs have not been given for any realistic compiler generator. Secondly,
better performance of the generated compilers seems to be obtained when:

• Some model details are omitted from a language definition; and

• The notation for defining languages is biased towards “compilable lan-
guages”.

The lack of correctness proofs limits the confidence we can have in a
generated compiler. The approach to correctness taken in this thesis is to
focus the attention on semantics-directed compiler generation. Then, we can
direct effort to proving the correctness of a compiler from some language
definition notation to a specific target language. We have chosen action
notation as the language definition notation. Action notation was designed
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to avoid model details in language definitions; it is defined by a “Plotkin-
style” operational semantics. A later chapter presents a “compilable subset”
of action notation. Let us now examine the major previous approaches to
compiler correctness proofs, to see if an existing proof technique suits our
purpose.

1.1.4 Compiler Correctness Proofs

The seminal paper by McCarthy and Painter [37] on correctness of a com-
piler for arithmetic expressions established a paradigm for proving compiler
correctness. This paradigm involves, as summarized by Joyce [30]: abstract
syntax; idealized hardware; abstract specification of the compiler; denota-
tional source language semantics; operational target language semantics; cor-
rectness stated as a relationship between the denotation of a program, and
the execution of its compiled form; and finally, proof by induction on the
structure of source language expressions. The correctness statement can be
pictured as a commuting diagram, see figure 1.3. Compiler correctness proofs
within this paradigm includes those of Milne [40], Stoy [82], and Nielson and
Nielson [57].

Figure 1.3: Compiler correctness.

Using algebraic methods, the structural induction can be moved into the
meta-theory; the correctness proof is then modularized into cases based on
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the abstract syntax of the source language, see the papers by Burstall and
Landin [9], Morris [43], Thatcher, Wagner, and Wright [84], Berghammer,
Ehler, and Zierer [4], and also the paper by Mosses [45] where a compiler for
an algebraically specified precursor of action notation is proved correct.

It was soon realized that structural induction is not sufficiently powerful
if the source language contains for example while loops where the same code
may be executed several times. Various improvements have been suggested;
they all amount to introducing a times. notion of proof by induction in the
length of a computation.

Polak [74] demonstrated that the use of abstract syntax and an abstract
compiling algorithm is an unnecessary simplification. He verified a complete
compiler implemented in Pascal for a Pascal-like language. This included
the verification of a scanner, parser, and static checker, in addition to a
code-generator. Part of the verification was automatically performed by the
Stanford Verifier.

It has later been demonstrated that complete proofs of compiler correct-
ness can be automatically checked. Two significant instances are Young’s [95]
work, using the Boyer-Moore theorem prover, and Joyce’s [30, 29] work using
the HOL system. In both cases, the target code of the translation is a non-
idealized machine-level architecture whose implementation has been verified
with respect to a low level of the computer, see for example [27, 42]. The ver-
ification of both architectures has even been automatically checked. These
examples of systems verification [5] are important: they minimize the amount
of distrust one need have to such a verified system. Of course, one can still
suspect errors in the implementation of the gate-level of the computer, or in
the implementation of the theorem prover, but many other sources of errors
have been eliminated.

The language considered by Young contains boolean-, integer-, char-
acter-, and one dimensional array-types. It has “if” and “loop” control-
structures, and procedures. The semantics of the language is given in Boyer-
Moore logic. It contains a major cheat: it employs a clock argument to
ensure that all computations terminate. This is an artifact that is only
present for the purpose of proving correctness, and indeed Young explains
that calculating an appropriate lower bound of this clock argument is one of
the most difficult aspects of the correctness theorem. The key to why the
proof technique works is that programs cannot receive input at run-time. If
that is possible, as it is in the action notation considered in this thesis, then
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the proof strategy employed by Young is useless.

The language considered by Joyce is much simpler; it is a language
of while-programs. The semantics is essentially a denotational semantics
(without cheats!), presented in higher-order logic. It is not clear, however,
if his proof technique would generalize to a language with for example block
structure, abstractions, or static typing.

The use of denotational semantics renders difficult the specification of
languages with non-determinism and parallelism. Such features can be spec-
ified easily, however, by adopting the framework of structural operational
semantics [73]. For a survey of recent work on proving the correctness of
compilers for such languages, see the paper by Gammelgaard and Nielson
[17], which also contains a detailed account of the approach taken in the
ProCoS project, where the language considered is occam2. In this thesis,
we will simply avoid non-determinism and parallelism, and focus on other
constructs.

Action notation is defined by a structural operational semantics [54]. In
a later chapter we present a subset of action notation without non-determi/-
nism and parallelism, and we can then give this subset a special form of
structural operational semantics, called natural semantics [31]. In natural
semantics, one considers only steps from configuration to final states. When
both the source and target languages have a natural semantics, then there
is hope for proving the correctness of a compiler using the proof technique
of Despeyroux [14]. As with the proof techniques used when dealing with
denotational semantics, Despeyroux’ technique amounts to giving a proof by
induction on the length of a computation.

Despeyroux considers an applicative subset of ML, called Mini-ML. The
target language is the categorical abstract machine, abbreviated CAM [11].
To give an introduction to the style of specification and proof used by De-
speyroux, we will go into a few details of her approach.

The natural semantics of Mini-ML is expressed as ρ �sem e : α. It should
be read as “the expression e evaluates to the value α in the environment ρ”.
The natural semantics of CAM is expressed as s �cam c : s′. It should be read
as “the code c transforms the stack s into s′”. The translation from Mini-ML
to CAM is expressed as ρ̄ �comp e → c. It should be read as “the expression
e is translated to the code c, using the symbol-table ρ̄”. The symbol-table
ρ̄ is obtained from the environment ρ by removing all values, leaving only
names. The values used in the semantics of Mini-ML and those used on the
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Figure 1.4: Despeyroux’s version of compiler correctness.

stack of CAM are different; the transition system �t t(α) = β defines how a
Mini-ML value α is represented by a CAM value β.

This setup matches that used in the denotational approaches, see figure
3. Correctness of the compiler is stated differently, though, see figure 1.1.4.
In this figure, solid arrows indicate the given facts, and dotted arrows indicate
what is to be proved. Both diagrams in figure 4 assume that an expression e
has been translated to the code c. The first diagram can be read as follows.
If e evaluates to a value α which is represented by a value β, then c produces
β on top of the stack. This property is called “completeness”:

• Completeness: if the source program terminates, then so does the
target program, and with the same result.

The second diagram can be read as follows. If c produces a value β on top
of the stack, then there exists a value α which is represented by β, such that
e evaluates to α. This property is called “soundness” :

• Soundness: if the target program terminates, then so does the source
program, and with the same result.

Despeyroux proves the correctness statement by induction in the length of
those inferences that are assumed to hold in the two diagrams. A central
lemma states that the code c for an expression behaves in a disciplined way:
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if c terminates, then it produces a value on top of the stack. We call this prop-
erty “code well-behavedness”. We defer to the following chapter a discussion
of the treatment of recursion.

We will use a variation of Despeyroux’s technique, adapted to the frame-
work of unified algebras.

1.1.5 Problems with relying on Run-time Type-check-
ing

A major deficiency of all the previous approaches to compiler correctness,
except that of Joyce, is their using a target language that performs run-
time type-checking. The following semantic rule is typical for these target
languages:

(FIRST , 〈v1, v2〉 : S) → v1 : S

The rule describes the semantics of an instruction that extracts the first
component of the top-element of the stack, provided that the top-element is
a pair. If not, then it is implicit that the executor of the target language
halts the execution. Hence, the executor has to do run-time type-checking.

Relying on run-time type-checking vastly simplifies the proof task. The
reason is that the assertion “if the target program terminates” (which for
example Despeyroux used in the statements of “soundness” and “code well-
behavedness”) then implies “there has been no type errors”.

For example, if the instruction FIRST is known to terminate, then it is
certain that its execution started in a configuration where the top-element
of the stack indeed was a pair. This is in marked contrast to a non-idealized
machine, where code may by accident execute fine in spite of “logical type
errors” and reach the end of the code as if nothing wrong had happened.
In other words, the assertion “if the target program terminates” is true too
often, making the naive “soundness” and “code well-behavedness” statements
false, hence useless.

Run-time type-checking also imposes an unwelcome penalty on execu-
tion time because more work has to be done by the executor of the target
language. It may be argued, though, that the executor can rely on the
source language being statically type-checked, and thus avoid the run-time
type-checks. This, however, presents problems for proving correctness of the
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executor’s implementation in a non-idealized machine, as explained in the
following.

If the executor of the target language does not perform run-time type-
checking, then its correctness can only be assured for those target programs
that statically are deemed correct. Unfortunately, static type-analysis seems
to be difficult for most of the target languages used in previous compiler
proofs.

One possibility then is to prove that the executor is correct only for pro-
grams obtained by compiling a type-correct program in the source language.
This, however, means that we would obtain an unwelcome coupling of the
source and target languages, preventing in practice the target language from
being an independent product, for general use. It also means that the cor-
rectness proof for the executor has to involve the compilation of the source
language. Then the modularity of the correctness proof is broken: the cor-
rectness proof of the executor is not independent of other compilers. In that
case it may be as easy to prove in one step the correctness of the combined
translation.

A better possibility is to choose a target language where all programs are
type-correct. Such languages include those with just one type, for example
“lambda term”, as in the pure lambda notation, or “32 bit word”, as in
many commercially available machines. They need no type information in
their semantics and no run-time type-checking.

In our opinion, it is important that a proof of compiler correctness has
the potential of being used as a lemma in the verification of a language
implementation with respect to a low level of the computer. To us, this
implies that compilation of a statically typed language should be to a target
language where it is manageable to specify which programs are type correct,
unless run-time type-checking is acceptable.

This thesis addresses the use of independent, realistic target languages
without type information in the semantics. Our concern can be sloganized
as follows:

If “well-typed programs don’t go wrong”, then it should be possi-
ble to generate correct code for an independent, realistic machine
language that does not perform run-time type-checking.

Note that although Joyce manages without run-time type-checking, he con-
siders only a language of while-programs, and it is not clear how to generalize
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his approach, as mentioned before. This thesis demonstrates how to state
and prove correctness of a compiler to a realistic target language.

Finally note that, in general, run-time type-checking decreases the amo-
unt of trust we can have to a system. If the program is used in a safety-critical
application, such as a nuclear power-station or medical equipment, then we
may want to avoid the possibility of run-time type errors altogether. This
thesis considers a target language where no run-time checks are performed.

1.2 A New Approach

The previous approaches to compiler generation lack correctness proofs. As-
sistance is available from work on compiler correctness, but only if one accepts
a target language with run-time type-checking or a source language of little
more than while-programs.

This thesis overcomes these problems. We have designed, implemented,
and proved the correctness of a compiler generator, called Cantor, that ac-
cepts action semantic descriptions of programming languages. The generated
compilers emit absolute code for an abstract RISC [81] machine language
without run-time type-checking. The considered subset of action notation is
suitable for describing imperative programming languages featuring:

• Complicated control flow;

• Block structure;

• Non-recursive abstractions, such as procedures and functions; and

• Static typing.

For examples of language descriptions that have been processed by Cantor,
see appendices G and I. The abstract RISC machine language can easily
be assembled into code for existing RISC processors. Currently, there are
assemblers to the SPARC [39] and the HP Precision Architecture [61].

The technique needed for managing without run-time type-checking in
the target language is the following:

Define the relationships between semantic values in the source
and target languages with respect to both a type and a machine
state.
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Thus, we define an operation which given a target value V , a machine state
M , and a type T will yield the sort of source values which have type T and
are represented by V and M . For example, an integer can represent a value
of type truth-value-list by pointing to a heap where the list components are
represented. In this case, our operation will yield a sort containing precisely
that truth-value-list, when given the integer, the type “truth-value-list”, and
the heap.

The possibility of yielding a sort containing several individuals is needed
when abstracting with respect to a closure type. This is because if two actions
differs only in the naming of tokens (they are equal with respect to “alpha-
conversion”), then the compiled code for them will be identical.

In contrast to our approach, for example Nielson and Nielson [58] do
not involve the machine state when relating semantic values. Instead, they
require target values to be “self-contained”. Hence, they need to have several
types of target values and a target machine that does run-time type checking.

With our approach we can make do with just one type of target values,
namely integer, thus avoiding run-time type-checking and getting close to
the 32-bit words used in the SPARC. Note that we do not insert type tags in
the run-time representations of source values; no type information is present
at run-time.

The relationship between semantic values allows the proof of a lemma
expressing “code well-behavedness” which is essential when reasoning about
executions of compiled code. The required type information is useful during
compilation, too; it is collected by the compiler in a separate pass before the
code generation. This pass also collects the information needed for generating
absolute, rather than relative, code.

The development of Cantor was guided by the following principles:

• Correctness is more important than efficiency; and

• Specification and proof must be completed before implementation be-
gins.

As a result, on the positive side, the Cantor implementation was quickly pro-
duced, and only a handful of minor errors (that had been overlooked in the
proof!) had to be corrected before the system worked. On the negative side,
the generated compilers emit code that run at least two orders of magnitude
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slower than corresponding target programs produced by handwritten compil-
ers. This is somewhat far from the goal of generating realistic compilers, but
is still an improvement compared to the classical systems of Mosses, Paulson,
and Wand where a slow-down of three orders of magnitude has been reported
[35].

The specification and proof of correctness of the Cantor system is an
experiment in using the framework of unified algebras, developed by Mosses
[50, 43, 49]. Unified algebras allows the algebraic specification of both ab-
stract data types and operational semantics in a way such that initial models
of the specified Horn clauses are guaranteed to exists. So-called constraints
can be used to restrict models to the initials ones (and more generally, which
we do not exploit).

This thesis demonstrates that also a non-trivial compiler can be elegantly
specified using unified algebras. In comparison with structural operational
semantics and natural semantics, we replace inference rules by Horn clauses.
The notational difference is minor, and only superficial differences appear
in the proof of theorems about unified specifications. Where Despeyroux
[14] could prove lemmas by induction in the length of inference, we instead
adopt an axiomatization of Horn logic and prove lemmas by induction in the
number of occurrences of “modus ponens” in the proof in the initial model.

In the following chapter we give an overview of action semantics and
the subset of action notation that we compile. In chapter 3 we present the
Cantor system, including performance measurements. In chapter 4 we state
the correctness theorem of the Cantor system, and we survey the proof.
Finally, in chapter 5 we conclude.
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Chapter 2

Action Semantics

Action semantics is a framework for formal semantics of programming lan-
guages, developed by Mosses [46, 47, 48, 53, 54] and Watt [55, 90]. It is
intended to allow useful semantic descriptions of realistic programming lan-
guages. This thesis assesses its usefulness for provably correct compiler gen-
eration. The following section gives a brief overview of action semantics,
taken from Mosses’ book [54]. A subsequent section then presents the subset
of action notation that can be used in the Cantor system.

2.1 An Overview of Action Semantics

Action semantics is compositional, like denotational semantics. It differs from
denotational semantics, however, in using semantic entities called actions,
rather than higher-order functions. The action notation is designed to allow
comprehensible and accessible descriptions. Action semantic descriptions
scale up smoothly from small example languages to realistic languages, and
they can make widespread reuse of action semantic descriptions of related
languages.

2.1.1 Actions

Actions reflect the gradual, stepwise nature of computation. A performance
of an action, which may be part of an enclosing action, either

• completes, corresponding to normal termination (the performance of
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the enclosing action proceeds normally); or

• escapes, corresponding to exceptional termination (the enclosing action
is skipped until the escape is trapped); or

• fails, corresponding to abandoning the performance of an action (the
enclosing action performs an alternative action, if there is one, other-
wise it fails too); or

• diverges, corresponding to nontermination (the enclosing action also
diverges).

The information processed by action performance may be classified according
to how far it tends to be propagated, as follows:

• transient : tuples of data, corresponding to intermediate results;

• scoped : bindings of tokens to data, corresponding to symbol tables;

• stable: data stored in cells, corresponding to the values assigned to
variables;

• permanent : data communicated between distributed actions.

Transient information is made available to an action for immediate use.
Scoped information, in contrast, may generally be referred to throughout
an entire action, although it may also be hidden temporarily. Stable infor-
mation can be changed, but not hidden, in the action, and it persists until
explicitly destroyed. Permanent information cannot even be changed, merely
augmented.

When an action is performed, transient information is given only on
completion or escape, and scoped information is produced only on comple-
tion. In contrast, changes to stable information and extensions to permanent
information are made during action performance, and are unaffected by sub-
sequent divergence, failure, or escape.

The different kinds of information give rise to so-called facets of actions,
focusing on the processing of at most one kind of information at a time:

• the basic facet, processing independently of information;
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• the functional facet, processing transient information (actions are given
and give data);

• the declarative facet, processing scoped information (actions receive
and produce bindings);

• the imperative facet, processing stable information (actions reserve and
unreserve cells of storage, and change the data stored in cells); and

• the communicative facet, processing permanent information (actions
send and receive messages, and offer contracts to agents).

The various facets of an action are independent. For instance, changing
the data stored in a cell—or even unreserving the cell—does not affect any
bindings. An action may also process finite representations of self-referential
bindings, and it can be non-deterministic.

2.1.2 Data and Dependent Data

The information processed by actions consist of items of data, organized in
structures that give access to the individual items. Data can include various
familiar mathematical entities, such as truth-values, numbers, characters,
strings, lists, sets, and maps. It can also include entities such as tokens
and cells, used for accessing other items. Actions themselves are not data,
but they can be incorporated in so-called abstractions, which are data, and
subsequently ‘enacted’ back into actions.

Dependent data are entities that can be evaluated to yield data during
action performance. The data yielded may depend on the current informa-
tion, i.e., the given transients, the received bindings, and the current state
of the storage and buffer. Evaluation cannot affect the current information.
Data are a special case of dependent data, and they always yield themselves
when evaluated.

2.2 A Compilable Subset of Action Notation

For the purposes of this thesis, we have designed a subset of action notation
which is amenable to compilation. The syntax and semantics are presented
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in appendix A. This section explains the details and discusses some design
decisions.

2.2.1 Design Criteria

The development of our subset of action notation was guided by the following
criteria:

• It must be given a natural semantics, to make the chosen proof tech-
nique applicable;

• It must be monomorphically and statically typed, to avoid type infer-
ence and to make code generation simple; and

• It must have a simple semantics, to make definitions and proofs man-
ageable.

These decisions have some immediate consequences:

• Constructs for interleaving and parallelism have to be left out: they
cannot be easily described with natural semantics.

• Polymorphic constants must be avoided. Instead, we explicitly con-
strain the hype of otherwise polymorphic constants; for example we
write ‘empty-list & [integer] list’ instead of just ‘empty-list’. The notion
of type is added on top of the otherwise untyped language of actions.
This development parallels moving from an untyped to a typed lambda
notation.

• Actions must be what corresponds to “stack single-threaded” in Schmidt’s
terminology. We choose an “almost” context-free subset of those, for
simplicity of description.

• The construct for unfolding actions must be tail-recursive, to allow
simple type analysis and code generation.

We furthermore have to avoid self-referential bindings, needed for example in
the description of recursive procedures. The reason for this is rather subtle;
it hinges on the expressiveness of the unified meta-notation, as explained in
the following.
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A self-referential binding is a cyclic structure; the run-time representa-
tion will obviously also be cyclic. In Despeyroux’ paper, such cyclic structures
are represented as graphs with self-loops—both in the source and target lan-
guages. This allows her to uniquely determine the run-time representation
of a self-referential environment.

Compared to Despeyroux, this thesis uses a much more low-level target
language where values can be placed in more than one place in the memory.
This means that not only can one target value represent more than one source
value, as in Despeyroux’ paper, but also is it possible for one source value
to be represented by different parts of the memory. In other words, there is
no functional connection between source and target values; there is only a
relation stating which source values are represented by a given part of the
memory.

In the case of cyclic structures, the relation between semantic values
seems to be impossible to define in the unified meta-notation. This is because
the meta-notation only allows the expression of Horn clauses. Evidence for
this is found in Amadio and Cardelli’s paper on subtyping recursive types
[2]. They axiomatize several relationships between cyclic structures, and it
seems that a rule of the following non-Horn kind cannot be avoided:

( x R y ⇒ α R β ) ⇒ µx.α R µy.β

Since we want to apply the unified meta-notation exclusively in all speci-
fications, we avoid self-referential bindings. Later, the theorems about our
specifications will be stated in a more expressive notation, namely first-order
logic.

A summary of how our subset of action notation relates to full action
notation is given in figure 2.1. The subset is sufficiently expressive to describe
imperative programming languages featuring complicated control flow, block
structure, non-recursive abstractions, such as procedures and functions, and
static typing. For examples of language descriptions, see appendices G and
I.

The subset is not sufficiently expressive to allow the easy description of
for example functional and object-oriented languages, as discussed in chapter
5.
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Omissions: Interleaving, parallelism, communication, polymorphic
constants, and self-referential bindings.

Basic restrictions:

• Unfoldings must be tail-recursive.

• In ‘A or A′’, the alternative A is performed first.

Restrictions of the functional facet:

• The types available are truth-values, integers, cells, abstractions, and
lists.

• If an action can complete in more than one way then the respective
types of the produced data must correspond.

• If an action can escape in more than one way then the respective
types of the produced data must correspond.

• The type of the data received by an unfolding must correspond to
the type of the data received by the enclosed unfold.

• If ‘A and then unfold’ occurs in the body of an ‘unfolding’, then A

must not produce data.

Restrictions of the declarative facet:

• If an action can complete in more than one way then the token, type,
and order of produced bindings must correspond.

• Actions must be stack single threaded.

• Abstractions can only be closures, must not produce bindings, and
cannot be sent out of their defining scopes.

Restriction of the imperative facet:

• Only truth-values and integers are storable.

Figure 2.1: A compilable subset of action notation.
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2.2.2 Abstract Syntax

The abstract syntax in appendix A.1 covers roughly half of the full action
notation, some of the constructs not in their full generality, though. Two
constructs, ‘batch-send’ and ‘batch-receive’, are even not standard actions.
They allow a primitive form of communication with batch-files, as in stan-
dard Pascal [92], and could of course be encoded in action notation, if desired.
It would be straight-forward to allow more data-types, such as sets and maps,
but we have not bothered to do so. For examples of language descriptions
using this subset of action notation, see appendices G and I. For an infor-
mal summary of action notation and the accompanying data notation, see
appendices K and L. For an informal summary of the meta-notation used
throughout, see appendix M. The appendices K, L, M are taken from a draft
of Mosses’ book [52]. (Appendix L is only an outline; for full details, see
[52]).

2.2.3 Semantic Entities

The semantic entities in appendix A.2 differ somewhat from those used by
Mosses in his semantics of full action notation. The notion of a final state of
an action performance is modeled by a ‘state’ which can be either ‘completed’,
‘escaped’, or ‘failed’. Such a state may contain ‘data’, ‘bindings’, ‘storage’,
‘input-output’, and ‘commitment’. The storage component is a mapping
from cells to either truth-values, integers, or the special value ‘uninitialized’.
The commitment component is a truth-value which will be used to express
whether the action has committed to the current alternative. If an action
has committed to the current alternative, then a subsequent failure does not
lead to trying some other alternative, i.e., back-tracking.

Note that we use the data notation for truth-values, integers, and lists,
defined in Mosses’ book. All components in our lists must have the same
type, though3 as in functional languages like ML [41] and Miranda [86].

2.2.4 Semantic Funtions

The semantic functions in appendix A.3 differ from those given by Mosses by
being in a natural semantics style [31], rather than a structural operational
semantics style [73]. Our semantics has been systematically derived from that
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of Mosses [54]. In Mosses’ definitions the semantics of actions is specified by
a function ‘run ’. Any combination of arguments to our semantic function
final ’ can easily be transformed into an argument to ‘run ’, by, say, an
operation ‘transform ’. Similarly, any result of ‘run ’ can be projected
into a result of ‘final ’, by, say, an operation ‘project ’. We can then
state consistency of the two semantics as follows:

(1) (1) transform A t b s io = arg : arg ;

(2) run arg = fin : fin

⇒ ∃m : state

(3) final A:Act t:data b:bindings s:storage io:input-output = m ;

(4) project fin = m

(2) (1) transform A t b s io = arg : arg ;

(2) final A:Act t:data b:bindings s:storage io:input-output = m:state

⇒ ∃fin : fin

(3) run arg = fin ;

(4) project fin = m

The proof would be by induction in the length of inference, using the tech-
nique explained by Nielson and Nielson [60]. We do not give the proof,
though.

The occurrence of ’arg :arg ’ merely restricts ‘arg ’ to individuals.

Note that the use of commitments builds in a notion of single-threaded-
ness. This is because the specification satisfies the property (proved later)
that if the performance of an action does not commit, then the storage and
input-output are unchanged.

Note also that the unfolding of actions is described without the use of
cyclic structures, for example self-referential bindings. This makes it possible
to prove correctness of the compilation of unfolding of actions.
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Chapter 3

The Cantor System

Our compiler generator accepts action semantic descriptions. It is called
Cantor because its main component “Compiles Action N otation TO Risc
code”. This chapter presents the machine language, the compiler, and some
performance measurements of the implementation.

3.1 An Abstract RISC Machine Language

The machine language is patterned after the SPARC architecture; it is called
Pseudo SPARC. The syntax and semantics are presented in appendix B. The
syntax is not presented as a set of strings, because we do not want to parse
machine language programs. Rather, we specify instructions as operations.
The syntax differs somewhat from the real SPARC syntax. This is because we
want to emphasize that the semantics of some instructions has been simplified
compared to the real counterparts. The Pseudo SPARC machine language
contains 14 instructions that operate on the following machine state:

sparc-state = (program, program-counter, was-zero, was-negative, globals,
windows, memory)

‘program’ is a mapping from linenumbers to instructions. Alternatively, we
could have used a tuple of instructions, but the resulting specifications get less
readable in our opinion. ‘program-counter’ is a linenumber, and ‘was-zero’ and
‘was-negative’ are status-bits (truth-values). ‘globals’ models the global regis-
ters, and ‘windows’ models a non-overlapping version of the SPARC register-
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windows. Finally, ‘memory’ models six separate “pages” of the main memory,
as a mapping from page-identifications to pages. A page is a mapping from
addresses (natural numbers) to integers. For example, one of the pages is
used as a stack, another as a heap.

The only data manipulated by this language are integers. This means
that it is impossible to see from a given data value if it should be thought of
as a pointer to an instruction in the program, as an address in the memory,
or as modeling a truth-value, an integer, etc.

The uniformity of the data values makes the Pseudo SPARC language
more realistic than those considered in previous compiler proofs. It contains
two major idealizations, however, as follows:

• Unbounded word and memory size: The data values are un-
bounded integers and this requires unbounded word size. We also as-
sume that the program and memory sizes, the number of of registers in
a register window, and the number of register windows are unbounded.

• Read-only code: The program is plated separately, not in ‘memory’.
This implies that code will not be overwritten, and that data will not
be “executed”.

These idealizations simplify the correctness proof considerably, without re-
moving any of the difficulties that we address.

Figure 3.1 shows the 14 Pseudo SPARC instructions and how they (ap-
proximately) can be expanded to real SPARC instructions. In practice, the
expansion has to take care of fitting instructions using large integers into
several real SPARC instructions. It also has to insert additional “nop” in-
structions into so-called “delay slots”. Pseudo SPARC instructions can also
be expanded to instructions for the HP Precision Architecture, though with
a little more difficulty.

The function that models one step of computation is defined as follows:

• step :: sparc-state → spare-state (total) .

• step m= next ((program of m) at (program-counter of m) default skip)
m .

‘step ’ models the loading of the current instruction, followed by its execu-
tion. The operation ‘next ’ is defined in the following style (we give only
a single example):
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Pseudo SPARC Real SPARC

skip sub %g0, %g0, %g0

jump Z jmpl Z, %g0
branchequal Z be Z
branchlessthan Z bneg Z
call jmpl global, %r8

return jmpl %r8 + 8, %g0

store R1 in R2 Z P st R1, R2 + Z + P
load R1 Z P into R2 ld R1 + Z + P , R2
storeregisters save

loadregisters restore

move RI to R or %g0, RI, R

move sum R1 RI to R2 add R1, RI, R2
move difference R1 RI to R2 sub R1, RI, R2
compare R with RI subcc R, RI, %g0

Figure 3.1: The Pseudo SPARC machine language.

• next :: instruction , spare-state → spare-state (total) .

• next call (p, pc, cz, cn, g, w, q) =
(p, g at global default 0, cz, cn, g, update w (map of return-address to pc),
q) .

Here, ‘global’ is one of the global registers, and ‘return-address’ is a user-
inaccessible register in the register-window. The use of ‘default’ models that
all registers and memury addresses are initialized to 0 before execution starts.
Likewise, the program area contains ‘skip’ instructions everywhere before the
program is loaded.

Note that ‘step ’ and ‘next ’ are total functions. This emphasizes
that computation continues infinitely, once started. For example, the ‘call’
instruction will be executed even though the global register contained a value
that we thought of as a truth-value! It also means that we have avoided
alignment problems, etc., so that a typical run-time error such as “bus error”
will not occur. This is accomplished by having a word- rather than byte-
oriented definition of the Pseudo SPARC machine.
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3.2 Compiling Action Notation

The compiler from action notation to Pseudo SPARC machine code is speci-
fied in appendix C. This section explains the compilation techniques and the
representation of action semantic entities.

3.2.1 Compilation Techniques

The compiler proceeds in two passes:

1. Type analysis and calculation of code size; and

2. Code generation.

For each pass there is a function defined for every syntactic category. Those
defined for ‘Act’ have the following signatures (we simplify a little bit here,
to improve the readability):

(1) a-count :: ACT, data-type, symboltable →
(natural, truth-value, data-type, truth-value, data-type, block)

(2) perform ::
Act, data-types, general-register, frozen, symbol-table,
cleanup, cleanup, cleanup, linenumber,
linenumber-complete, linenumber-escape, linenumber-fail →
(program, general-register, general-register) .

Action notation contains constructs, e.g., ‘escape’, ‘fail’, that are at a slightly
lower conceptual level than those found in the high-level programming lan-
guages that action notation is suitable to describe. Thus, the definition of
the type analysis and code generation employ unusual techniques, though not
very difficult. For example, the definition of ‘perform’ requires as argument
both the desired start-address (‘linenumber’) of the code to be generated,
but also addresses of where to jump to, should the performance complete
(‘linenumber-complete’), escape (‘linenumber-escape’), or fail (‘linenumber-fail’).
These addresses are calculated using ‘a-count’ which, in addition to type anal-
ysis, calculates the size of the code to be generated.

The function ‘a-count’ is defined as a forwards abstract interpretation,
computing with types of tuples of data (‘data-type’), types of bindings (‘symbol-
table’), and code sizes (‘natural’). The first ‘truth-value’ component tells if
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the action being analyzed has a chance of completing. If it does, then the
following ‘data-type’ component tells the type of the tuple of data that will
produced. The next two components give similar information about escaping.

The type checking of an action is performed using the operations ‘compare-
data-types ’ and ‘compare-blocks ’ which ensure that the types of
data and bindings produced by two branches of an action such as ‘ or ’ are
equal.

We mentioned in an earlier chapter that our context-free syntax for
actions is not completely “stack single-threaded”. We need a compile-time
check that ensures that closures are not sent out of their defining scopes as
components of data. This check is performed by the operation ‘abstraction-
free ’ and is inserted in the analysis of the constructs ‘[[ [[“furthermore” A ]]
“hence” A′ ]]’ no and ‘[[ [[“furthermore” A ]] “thence” A′ ]]’.

Note that ‘[[’ and ’]]’ are syntactic node-constructing brackets; nesting
indicates tree structure.

The analysis of unfolding of actions requires the computation of a fixed
point. This is because the data-type and symbol-table produced by the
analysis of an unfolding depend on themselves. Fortunately, we can compute
this fixed point in one step, because the unfoldings in our subset of action
notation are tail-recursive.

The function ‘perform’ takes as arguments the ‘data-type’ and ‘symbol-
table’ that are also supplied to ‘a-count’. In addition, it takes a ‘general-
register’ which at run-time will contain a pointer to a representation of the
tuples of data that will be received when executing the code. The set ‘frozen’
contains those registers that the code to be produced must not modify, and
the three ‘cleanup’ values are natural numbers that indicate how much to
pop from the stack, should the performance complete, escape, or fail.

The calculation of whether an action can complete or not, and whether
it can escape or not, are examples of the compile time analyses that are built
into the compiler. They are used to generate better code, and they are fully
integrated in the proof of correctness, see later.

It is not the case that “if the type analysis succeeds, then so does the
code generation”. The reason is the checks of the form ‘either( e is empty-list,
un is 0) = true’, see for example C.4.1.(17.8). If the information ‘un is 0’
was made available to the type analysis, then we could move the checks to
the type analysis, and the the above property would be truce We have not

31



bothered to do so, however, because it has no impact on stating and proving
correctness.

As an example of how the compiler works, see the following excerpt from
the compiling specification.

(1) (1) d-count D h d =(n: natural, truth-value-type)

⇒ a-count [[ “check” D:Department ]]h d =
ac-state sum(n, 2, e-size, 12) true () false () empty-list .

(2) (1) d-count D h d = (n: natural, truth-value-type) ;

(2) l′ = sum(l, n)

(3) l′′ = sum(l′, 2, e-size) ;

(4) evaluate D h a f d l sum(l′′, 6) = (p:program, r:general-register)

⇒ perform [[ “check” D: Department ]] h a f d un ue uf l ln le lf =
a-state overlay(

p,
map of sum(l′, 0) to ( compare r with 0 ) ,
map of sum(l′, 1) to ( branchequal sum(l′′, 6) ) ,
empty-list-code r sum(l′, 2)
putcommit l′′ 0 ,
finalize sum(l′′, 3) un 0 ln
putcommit sum(l′′, 6) 0 ,
finalize sum(l′′, 9) uf 2 lf )

r a .

The first definition calculates the size of the code generated by the second
definition. It also does the type-checking. The meaning of the action ‘check
D’ is to check whether D evaluates to true or false, and it should then
“complete” or “fail”, accordingly. The generated code first computes the
result of D, and then it does a branchequal, as expected. (We represent true
as 1 and false as 0.) This is not all, however. Because of the generality of
action notation a lot of additional code is also generated. For example, a
commonly found action such as ‘check (it is true)’ yields 37 lines of code. It
should be noted, though, that it is this clear structure of the code that made
the correctness proof manageable. Section 3.3 includes a discussion of the
possibilities for optimizing the code. The operation ‘overlay ’ concatenates
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the pieces of code given as arguments.

The operations ‘empty-list-code ’, ‘finalize ’, and ‘putcommit ’
are code macros. Their purpose is connected to the chosen representation of
action semantic entities which we consider next.

3.2.2 Representation of Action Semantic Entities

The semantic entities manipulated by actions are ‘data’, ‘bindings’, ‘stor-
age’, ‘input-output’, and ‘commitment’. Their representation in the Pseudo
SPARC machine is specified in appendix D. The eleven abstraction functions
are defined using the technique explained earlier:

Define the relationships between semantic values in the source
and target languages with respect to both a type and a machine
state.

For example, the abstraction function for data ‘t-abs n q p h’ takes an address
n of a data-representation, a machine state q, a machine language program
p and a data-type h as arguments. It yields the sort of data which have type
h and are represented at the address n in q and p.

The other ten abstraction functions specify the representation of bind-
ings (‘b-abs ’ and ‘e-abs ’), storage (‘store-abs ’, ‘s-abs ’, and
‘storable-abs ’), input-output (‘i-abs ’ and ‘o-abs ’), commitment (‘c-abs
’), states (‘m-abs ’), and individuals of sort datum (‘v-abs

’).

Informally, the represent at ions are as follows:

• Data tuples are represented as a pointer to a linked list;

• Bindings are represented as a stack in the memory page ‘stack’, with
the stack pointer in the global register ‘sp’ and the static link pointer
in the register ‘static-link’. The first element in a stack frame is the
static link. The type of an entire stack is a ‘symbol-table’, that of an
individual stack frame is a ‘block’;

• Storage is represented in the memory page ‘storage’, with the address
of the first free dell represented in the global register ‘firstfree’;
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• The input and output files are represented in the memory pages ‘input’
and ‘output’, in both cases with the length of the file stored at address
0; and

• Keeping track of the current alternatives requires a stack of individual
commitments. This stack is represented in the memory page ’commits’,
with the stack pointer in the global register ‘cp’. The code for an action
is required to place on top of the commitment stack a value represent-
ing the commitment component of the final state of the performance
of the action.

The stack of commitments is managed by the three code macros ‘putcommit’,
‘combine-commit’, and ‘combine’, see C.2.2. The first places a commitment
on top of the stack. The second performes a logical disjunction on the two
top-elements of the stack, removes them, and places the result on top of the
stack. The third is used when generating code for the action combinators,
as follows.

Consider for example the action combinator ‘A then A′’, and suppose
that the performance of A completes and that the performance of A′ either
completes, escapes, or fails. The commitment value of the final state of
the performance of A must now be combined with that of the final state of
the performance of A′. To do this we want to use the code macro ‘combine-
commit’, and afterwards be able to jump to the right code address, depending
on whether A′ completed, escaped, or failed.

To be able to do the combination of commitments in a simple way, the
code macro ‘combine’ contains three copies of ‘combine-commit’. If the per-
formance of A′ for example completes, then it jumps to the first copy of
‘combine-commit’ and then jumps to the address corresponding to comple-
tion. Should the performance of A′ escape, then it jumps to the second copy
of ‘combine-commit’ and then jumps to the address corresponding to escape.
The pattern is similar if A′ fails.

To summarize: at most one of the three copies of ‘combine-commit’ in
‘combine’ will be executed because they are all followed by a jump instruction.

Individuals of sort datum are represented as follows:

• True as 1 and false as 0;

• Natural numbers as themselves;
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• Cells as the cell number;

• Closures as a pair of a code address and a static link pointer; and

• Lists as a pointer to a linked list (the same representation as that of
data tuples).

The pairs and linked lists are represented in the memory page ‘heap’, with
the heap pointer in the global register ‘hp’. Note that we do not do garbage
collection in the heap and storage; that would significantly complicate the
correctness theorem and proof.

The manipulation of representations of lists and data tuples is man-
aged by the six code macros ‘empty-list-code’, ‘single-list-code’, ‘concatenation-
code’, ‘head-code’, ‘tail-code’, and ‘at-code’, see C.2.1.

The enaction of a closure can lead to completion, escape, and failure, and
it is in general undecidable which one will occur. To make things simple we
require all code for actions to store a value in the general register ‘cef’ which
tells if the action has completed, escaped, or failed. One of the purposes of
the code macro ‘finalize’ is to take care of this. It is then straightforward
to generate code at closure enaction points. Note that the ‘cef’ register
dynamically contains which subsort of ‘state’ (either ‘completed’, ‘escaped’,
or ‘failed’) the machine currently represents.

The code for closure enaction (‘call-sequence’) is simple because we use
a RISC architecture. We need not represent a dynamic chain on the stack
because we can instead shift the register window to obtain a fresh register
for the static link pointer, a fresh register for storing the return address, and
also fresh general registers. When returning from a closure we simply shift
the register window back.

Allocation of general registers are handled using the operation ‘free-
register ’. Given a set f of “frozen” general registers, ‘free-register f ’ yields
the register with the lowest possible number that is not in f . A register gets
frozen for example if it represents data that can be accessed by both branches
of an action, typically ‘ and then ’.

The code generation for unfolding of actions, see C.4.1.(16), starts with
allocating a fresh register a′ and copying to it the representation of the re-
ceived data, contained in the register a. The register a is then frozen so that
the unfolding does not destroy the data it represents—it might be needed
later. We can now use the register a′ to represent data to be passed to an
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unfold. This data need not be the same each time the unfold is encountered,
hence the need for the extra register a′.

3.3 Performance Evaluation

Figure 3.2: The Cantor system.

The Cantor system has the structure shown in figure 3.3. In practice, a
session with Cantor looks as follows on the screen:

cantor syntax semantics compiler

compiler program code

code input output

The compiler generator cantor is written in Perl [88], and the generated
compilers are written in Scheme [1]. Examples of a syntax and a semantics
are given in appendix G and I; it is the LATEX sources of the appendices that
are processed by cantor. Any generated compiler contains a syntax checker,
a program-to-action transformer, the action compiler described above, and fi-
nally a Pseudo SPARC assembler that currently can emit code for the SPARC
and the HP Precision Architecture. The input file is a sequence of integers,
as is the output file.

The HypoPL language, defined in appendix G, is taken from Lee’s book
on realistic compiler generation [35], with the difference that we treat nesting
of procedures in its full generality but do not allow recursion.

• Generating a compiler for HypoPL takes 3 seconds.

We have used this compiler to translate Lee’s bubblesort program (50 lines),
see appendix H.
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• Compile time: 486 seconds;

• Object code size: 114688 bytes; and

• Object code execution time (for sorting 10 integers): 0.1 seconds.

These figures indicate that the system is rather tedious to work with in
practice. Appendix H also presents excerpts from the action and assembly
code generated from the bubblesort program.

The Mini-Ada action semantics in appendix I has been the primary
benchmark in our experiments with the Cantor system. Mini-Ada is a sub-
set of Ada [15] featuring static typing, constants, variables, one-dimensional
array-types, functions and procedures with in and in out (reference) param-
eters, various control structures, and the usual expressions. Note that the
select construct in Mini-Ada can be used as a “case”-statement, and that
also the input-output statements (read and write) are non-standard Ada.
Otherwise, the Mini-Ada specification is a subset of one given by Mosses in
his book [54].

• Generating the Mini-Ada compiler takes 9 seconds.

We have used this compiler to translate a number of benchmark programs,
see appendix J and the overview described in figure 3.3. The sieve, euclid,
and fib programs contain a main loop that allows iterating the computation.
This will be practical when we later compare the object code emitted by the
Mini-Ada compiler with that emitted by handwritten compilers.

bubble: Bubblesorts a number of integers (50 lines).

sieve: Performs the sieve of Erathosthenes prime number generator
(30 lines).

euclid: Computes the greatest common divisor of two numbers using
Euclid’s algorithm (20 lines).

fib: Computes the 56’th Fibonacci number (30 lines).

Figure 3.3: The Mini-Ada benchmark programs.
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The number of Pseudo SPARC instructions emitted for each benchmark
program is given in figure 3.4. When the Pseudo SPARC code is compiled
to code for the SPARC, then the size is approximately doubled. A slightly
worse blow-up is obtained when compiling to the HP Precision Architecture.

Number of Pseudo SPARC instructions generated:

bubble: 16697
sieve: 12096
euclid: 7386
fib: 9095

Figure 3.4: Object code size.

Unfortunately, we have no access to an Ada compiler that generates code
for either of the two architectures that we consider Instead, we have made
comparison with the standard C [33] compiler for those architectures. It is
perhaps unfair to compare Ada and C, but we still believe that using the C
compiler gives a good indication of the capabilities of Cantor. We expect that
the C compilers generate better code than potential Ada compilers. Hence,
when we compute the slow-down compared to C, we will take it as an upper
bound of the slow-down compared to Ada. We of course had to rewrite
the Mini-Ada programs slightly to get them accepted by the C compilers.
Since the constructs in C are less general than those in Ada, we expect a
significantly better performance of the C-generated code, than what could
be expected from Ada-generated code.

C Copt Mini-Ada
bubble: 1.0 2.2 542
sieve: 1.2 2.1 377
euclid: 1.1 1.6 136
fib: 1.1 1.7 210

Figure 3.5: Compile times.

Figure 3.5 shows the compile time in seconds when using the C compiler,
the C compiler with maximal optimization switched on, and the Cantor-
generated Mini-Ada compiler. The timings in this figure were recorded on
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the SPARC; the compilers run almost equally fast on the HP as on the
SPARC.

C Copt Mini-Ada Slow-down
bubble: 4.4 2.1 0.9 149

(1000 numbers) (1000 numbers) (37 numbers)
sieve: 1.3 0.4 1.2 369

(400 itera.) (400 itera.) (1 itera.)
euclid: 5.4 0.9 0.8 148

(30000 itera.) (30000 itera.) (30 itera.)
fib: 1.2 0.2 0.8 185

(10000 itera.) (10000 itera.) (36 itera.)

Figure 3.6: Object code execution time on the SPARC.

C Copt Mini-Ada Slow-down
bubble: 7.2 4.7 4.3 436

(1000 numbers) (1000 numbers) (37 numbers)
sieve: 1.2 0.4 4.5 1500

(400 itera.) (400 itera.) (1 itera.)
euclid: 4.5 4.4 2.7 600

(30000 itera.) (30000 itera.) (30 itera.)
fib: 1.1 0.5 3.9 985

(10000 itera.) (10000 itera.) (36 itera.)

Figure 3.7: Object code execution time on the HP Precision Architecture.

Figures 3.6 and 3.7 show the object code execution time in seconds for
the benchmark programs. They also show the estimated slow-down when
using the Mini-Ada compiler, compared to the C compiler without optimiza-
tion. The slow-down factors were computed by simple extrapolation. The
figures indicate, unsurprisingly, that the Mini-Ada-generated code runs faster
on the SPARC than on the HP. This is because the Pseudo SPARC machine
language was designed to match the SPARC instructions, not the HP instruc-
tions. Thus, more code is generated for each Pseudo SPARC instruction when
compiling to the HP.
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The performance of the object code is most fairly compared on the
SPARC. Taking the differences of C and Ada into account, we conclude that
the object code run at least two orders of magnitude slower than correspond-
ing code produced by handwritten Ada compilers.

This is somewhat disappointing but still an improvement compared to
the classical systems of Mosses, Paulson, and Wand where a slow-down of
three orders of magnitude has been reported [35].

Inspection of the code emitted by Cantor-generated compilers reveals
that the inefficiency mainly stems from three sources:

• Lack of compile time constant propagation;

• Poor register allocation; and

• Naive representation of bindings, closures, and lists.

(Constant propagation covers possible attempts to follow the flow of com-
mitments). To illustrate this and to explain further details of the action
compiler, we will analyze the code generated for a particular action. The
action to be considered, see below, is part of the semantics of the HypoPL
bubble-sort program, see appendix H.

• execute [[ “write′′ [[ “ −′′ 999 ]] ]] =

give negation 999
then
give the given (truth-value | integer) #1 or
give the (truth-value | integer) stored in the given cell #1

then
batch-send it

Appendix H also contains the seven(!) pages of code generated for this action:
they will be analyzed below.

First note the occurrence of the following subaction.

• give negation 999
then
give the given (truth-value | integer) #1 or
give the (truth-value | integer) stored in the given cell #1
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The part following ‘then’ appears because the semantics of the HypoPL state-
ment ‘write E’ uses the auxiliary action combinator ‘coercively ’ when eval-
uating the expression E. This is just one possible style for writing the se-
mantics, however, another is used in the semantics of Mini-Ada, without
‘coercively ’. The latter style would not yield the second part of the above
action, and would thus be an optimization in itself.

A further example that illustrates the superiority of the style used in the
Mini-Ada semantics (efficiency-wise at least) is shown in appendix H. It is
the action generated for the printNums procedure of the HypoPL bubble-sort
program. In that action, the second part of the above action appears nine
times. If we had used the style from the Mini-Ada semantics, then five of
the nine copies would be avoided.

Note also that if the compiler could perform constant propagation, then
code need only be generated for an action corresponding to ‘batch-send nega-
tion 999’.

Consider now the Pseudo SPARC code generated for [[ “write” [[ “-” 999
]] ]]. First appears the code for ‘negation 999’. This involves placing the value
999 in a general register, and then computing the negation of it by placing
the value 0 in a global register and finally computing the difference of the
contents of the two registers.

Then appears the code for giving that value. This involves inserting it
into a list (six instructions), placing on top of the commitment stack the
value 0, representing ‘uncommitted’ (three instructions), removing no values
from the stack, since the performance is not leaving a scope of bindings (one
instruction that could be dropped), placing in the global register ‘cef’ the
value 0, representing completion (one instruction), and finally jumping to
the start address of the code for the action following ‘then’.

Actually, six more instructions are generated for ‘give D’. They are used
in case D evaluates to ‘nothing’ so that the performance fails. If the compiler
could analyze that for some occurrences of ‘give D’, it is certain that D yields
‘nothing’, then the code could be optimized, and similarly if it certain that it
does not yield ‘nothing’. In the specific case we are considering, the last six
instructions could be dropped.

After the code for ‘give’ follow two instructions, generated from ‘then’,
that are used if performance of ‘give’ escapes. The first instruction moves
the contents of the register which represents the data produced on escape to
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another register. The latter register is the same as the one where data will be
placed if the action following ‘then’ escapes. In other words, if the combined
action escapes, then data produced are placed in that register. The second
instruction jumps to the place in the code where the second occurrence of
‘then’ handles escapes.

Note that if the compiler could analyze that the first argument to ‘then’
cannot escape, then the two instructions could be dropped.

Combining the optimizations for ‘give’ and ‘then’ would enable a further
optimization. This is because the instruction that jumps to the start of
address of the code for the action following ‘then’ in that case would be a
jump to the following line of code!

The code for the action following the first occurrence of ‘then’ starts with
the code for ‘the given (truth-value ||| integer) #1′. The type-check has occurred
at compile time, so the code merely has to extract the first component of the
representation of the received tuple of data, and place it in a register. This
is done by placing the value 1 in a generalregister, and then using one of the
general code macros (twelve instructions) for accessing a linked list. This
could of course be optimized, and further optimization was possible if the
represent ations of the components of the received data tuple was placed
directly in registers.

After the code for ‘give’ follows the code generated from ‘A or A′’ that is
used to check whether A has completed, escaped, or failed, and, in the first
two cases, move data representations to other registers before jumping to
appropriate code addresses. If the performance of A fails, then the following
code checks whether the performance has committed or not. If so, it jumps
to the next occurrence of ‘or’ (where something similar will happen). If
the performance has not committed, then performance of A′ begins. If the
compiler could analyze that in this case A cannot commit, then we could
optimize the code.

The code for the action following ‘or’ has benefited from a compile-time
analysis. The compiler has type-checked ‘the given cell #1’ and found out
that it must yield ‘nothing’. Hence, the whole actions must fail, so only six
instructions need to be generated, namely those to which the code macros
‘putcommit’ and ‘finalize’ expand. If the compiler could analyze that the
action before ‘or’ cannot fail, then the code for the action following ‘or’ could
be omitted altogether.
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After the code for the second argument to ‘or’ appear 18 instructions to
which the code macro ‘combine’ expand. Again, if the compiler could analyze
the value of commitments, then this code could be omitted.

We will not analyze the seven pages of code further. We have indi-
cated several possibilities for compile-time analyzing actions and for using
the computed information to improve the code generator. Improving the
action compiler in this way, however, would significantly complicate the cor-
rectness theorem, which we consider next.
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Chapter 4

The Correctness Proof

This chapter states the correctness theorem of the Cantor system, outlines
the proof technique to be used, and gives an overview of the proof.

4.1 The Correctness Theorem

To give an overview of the correctness theorem, see appendix F, we will
introduce a bit of notation as follows (we simplify a little bit, to improve the
readability):

(1) run :: Act, [integer] list → state

(2) sparc-run :: program, natural, page → sparc-state .

(3) compile :: Act →
(program,truth-value, data-type,
truth-value, data-type,
general-register, general-register) .

(4) abstract :: spare-state, truth-value, data-type, truth-value,
data-type, general-register, general-register → state .

(5) ibs :: natural, page → [integer] list .

(6) (1) a-count A () (list of empty-list) = ac-state n zn hn ze he empty-list ;

(2) perform A () (reg 0) empty-set (list of empty-list) 0 0 0 0 n n n =
a-state p an ae

⇒ compile A:Act = result p zn hn ze he an ae .
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We have only given the definition of ‘compile ’, in terms of ‘a-count’ and
‘perform’. The operations have the following informal meaning:

1. The operation ‘run A il’ specifies the performance of an action A which
is given the empty tuple of data, no bindings, an empty-storage, an
empty output-file, and the input-file il (an integer-list). If the perfor-
mance terminates, then that will result in a final state (‘state’) which
can be either completed, escaped, or failed.

2. The operation ‘spare-run p n se’ specifies loading the program p into the
program area, and then taking n steps starting in line 0. It also records
if the execution at any point “jumps outside the code”. The memory,
registers, status bits, and output file are initialized appropriately, the
input file is initialized to se. ‘spare-run’ is defined in terms of ‘step’,
described in chapter 3.

3. The operation ‘compile A’ translates the action A into a machine lan-
guage program p and it also gives type information about what will be
produced when performing A. The program p will start in line 0.

4. The operation ‘abstract mp hn ze he an ae’ will give a sort includ-
ing all those states (from the action-level) that are represented by the
spare-state mp, and that have the type expressed by the following four
arguments. The last two arguments are those registers which will con-
tain pointers to the representations of the data produced, should the
action complete or escape.

5. The operation ‘i-abs n se’ will give the input-file (‘[integer] list’) which
is represented by the natural number n and the page se.

The use of both type information and a machine state in the definition of
‘abstract’ makes it possible to make do without type information in the se-
mantics of Pseudo SPARC.

None of the above five operations are total. The performance of an
action may diverge; the execution of a machine program may “jump outside
the code”; the compilation of an action may find a type error; the machine
state may represent no state at all from the action-level; and the page for
input-files may contain something without the right format.

The meta-notation for unified algebras makes it particularly easy to spec-
ify such partial operations. This is because it supports a unified treatment
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of sorts and individuals: an individual is treated as a special case of a sort.
Thus operations can be applied to sorts as well as individuals. A vacuous
sort represents the lack of an individual, in particular the ‘undefined’ result
of a partial operation. For example, if the performance of the action A with
input-file il terminates, then ‘run A il’ will be an individual, otherwise it will
be a vacuous sort. We need not specify explicitly that such sorts are vacuous;
if it does not follow from the specification that they contain an individual,
then they will automatically be vacuous.

The operations ‘run’, ‘sparc-run’, ‘compile’, and ‘i-abs’ will all yield either
an individual or a vacuous sort. In contrast, ‘abstract’ may yield a sort
containing several individuals, and it may also yield a vacuous sort. The
possibility of yielding a sort containing several individuals is needed when
abstracting with respect to a closure type. This is because if two actions
differs only in the naming of tokens (they are equal with respect to “alpha-
conversion”), then the compiled code for them will be identical.

We can now state the correctness theorem. Note that ‘t :- s’ is merely
another syntax for ‘t : s’.

Theorem:

(1) compile A: Act = (p:program zn:truth-value hn:data-type ze:truth-value
he:data-type an:general-register ae:general-register) ;

(2) i-abs (se at 0) se:page = il:[integer] list

⇒ (1) run A il = ma:state ⇒
( ∃ mp:sparc-state ∃ n:natural .
sparc-run P n se = mp

abstract mp zn hn he an ae :- ma) ;

(2) sparc-run p n se = mp:sparc-state ⇒
(∃ ma:state .
run A il = ma

abstract mp zn hn he an ae :- ma) ;

The structure of the theorem resembles the correctness statement of Despey-
roux. Informally:

If the action A is compiled into a machine language program
p (and some additional type information, etc., is produced), and
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the input-file il is represented properly in the machine as se, then
two properties hold:

1. Completeness: If the performance of the action A (with
input-file il) terminates in state ma, then there exists a
spare-state mp and a number n such that an n-step exe-
cution of p will reach mp, and mp represents ma (and the
program-counter points to the last line of p).

2. Soundness: If an n-step execution of p (with input se)
reaches mp (and the program-counter points to the last line
of p), then there exists a state ma, represented by mp, such
that a performance of A (with input il) will terminate in
ma.

Notice that it is built into the definition of ‘sparc-run’, and hence the cor-
rectness theorem, that the execution of the machine language program never
“jumps outside the code”.

4.2 The Proof Technique

Our approach to correctness can be summarized as follows:

1. Give a natural semantics to both action notation and the abstract RISC
machine language;

2. Make the compiling of action notation simple; and

3. Use a variation of Despeyroux’s proof technique [14].

This section explains how to adapt Despeyroux’s proof technique to the
framework of unified algebras. In outline, we adopt an axiomatization of
Horn logic and can then prove lemmas in the initial model by induction in
the number of occurrences of “modus ponens”. As an example, we prove
that the semantics of our subset of action notation is singlethreaded.

4.2.1 Horn Logic

Despeyroux expresses natural semantics in the Gentzen’s system style, with
axioms and inference rules. In such a system one can make natural deduction,
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and can then prove lemmas about the system by induction in the length of
such deductions. In contrast, the framework of unified algebras provides
Horn clauses. We can of course simulate Gentzen style axioms with Horn
clause axioms, and we can mimic the use of an inference rule

A

B

with A′ ⇒ B′, where A′ simulates A, and B′ simulates B. To be able to do
deduction, we adopt an axiomatization of Horn logic, see for example [80],
as follows.

All specifications in the meta-notation for unified algebras can be trans-
formed into a core notation which is outlined in the following. Let Ω be a
so-called homogeneous first-order signature, that is, a pair 〈Σ, Π〉 where Σ is
a set of operation symbols and Π is a set of predicate symbols. In the setting
of unified algebras, it is required that

Σ ⊇ {nothing, ||| , & }

and

Π = { = , ≤ , : }

Further, let Γ be a set of Horn clauses built up from Ω as explained in
appendix M.2. Any specification Γ of such Horn clauses will be augmented
with some basic Horn clauses, stating for example the reflexivity of ‘ ≤ ’,
see [49]. Finally, let F be a formula built up from Ω. We will then write

(Ω, Γ) � F

(read F is (Ω, Γ)-deducible) if (Ω, Γ) � F can be obtained by finitely many
applications of the following deduction rules:
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(Ω, Γ) � t = t
(Reflexivity)

(Ω, Γ) � s = t (Ω, Γ) � t = u
(Ω, Γ) � s = u

(Transitivity)

{(Ω, Γ) � si = ti}n
i=1

(Ω, Γ) � f(s1, . . . , sn) = f(t1, . . . , tn)
if f ∈ Σ (Functional

Congruence)

{(Ω, Γ) � si = ti}2
i=1 (Ω, Γ) � p(s1, s2)

(Ω, Γ) � p(t1, t2)
if p ∈ { ≤ , : } (Predicative

Congruence)

{(Ω, Γ) � Fi}n
i=1

(Ω, Γ) � F
if (F1; . . . Fn ⇒ F ) ∈ Γ (Modus Ponens)

A deduction rule consists of a conclusion (given beneath the line), none, one,
or several premises (given above the line), and possibly a condition (given at
the right-hand side of the line). A deduction rule stands for the statement:

If all premises are deducible, the condition is satisfied, and F is
a formula built up from Ω, then the conclusion (Ω, Γ) � F is
deducible.

With these deduction rules, we can do proof by induction in the length of
deduction. Throughout, however, we will do the inductions in the number of
occurrences of only “modus ponens”. We will call this “proof by induction in
the length of inference”, to avoid confusion. Note that a single application of
modus ponens corresponds closely to a natural deduction step. This makes
our proof strategy close to Despeyroux’s.

All lemmas proved by induction in the length of deduction are satisfied
by the initial model of the specification. The key property of an initial model
needed here is that it only contains entities that are values of ground terms
(it contains “no junk”). This property makes it possible to exhaust all cases
in a proof, as exemplified in the following section.

4.2.2 Example Proof

To illustrate the proof technique, we will prove a fundamental property of
our semantics of actions. It is the singlethreadedness lemma in appendix E.4.
This lemma states that if an action does not commit, then the storage and
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input-output are unchanged.
Lemma: (Singlethreadedness of Actions)

t : data ;
b : bindings ;
s : storage ;
io : input-output

⇒
(1) (1) final A: Act t b s io = ma: state

⇒ either(both((storage of ma) is s, (input-output of ma) is io),
(commitment of ma) is committed) = true ;

(2) (1) unf-final U : Unf [[ “unfolding” U ′: Unf ]] tb s io = ma: state

⇒ either(both((storage of ma) is s, (input-output of ma) is io),
(commitment of ma) is committed) = true .

Proof: We need to prove the conjunction of (1) and (2) because the semantic
functions for Act and Unf (‘final’ and ‘unf-final’) are mutually recursive. We
will prove the lemma by induction on the length of inference of formulas of
the form (1.1) and (2.1). (Notice that “(1.1)” is a short form of “(1) (1)”).
The proof is given in the initial model. This model satisfies a formula if and
only if the formula can be deduced. Such a deduction can involve only the
finitely many Horn clauses in appendix A, so in the following we can exhaust
all cases.

In the base case, we consider inferences that involve only one application
of a clause for either final or unf-final. Such inferences exist only for the
formula (1.1). They use the clauses A.3.1.(1)—(14),(39)—(40), respectively.
We will only give the details of two of the cases, the others are similar.

Firstly, consider the clause for “complete”, in A.3.1.(1), that is

• final “complete” t b s io = completed () empty-map s io uncommitted .

Here, ma = completed () empty-map s io uncommitted. It follows from the
totality of ‘completed ’ in A.2.3.(7) and the lemma’s assumptions
about s and io being individuals, that ma is an individual. The conclusion
of (1) now follows since both (storage of ma) is s and (input-output of ma) is
io are true.
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Secondly, consider the first clause for [[ “give” D:Dependent]], in A.3.1.(6),
that is

• (1) evaluated D t b s = v: datum

⇒ final [[ “give” D:Dependent t b s io =
completed v empty-map s io uncommitted .

Here, ma = completed v empty-map s io uncommitted. This holds because
evaluated D t b s = v: datum. Since v is an individual we also in this case get
that ma is an individual. The conclusion of (1) follows as in the first case.

In the induction step, we consider the remaining clauses for ‘final’ and
‘unf-final’. We will give the details of only four of the cases, the others are
similar.

Firstly, consider the first clause for [[ “enact” “application” D:Dependent
“to” D′:Tuple ]], in A.3.1.(15), that is

• (1) evaluated D t b s = closure-abstraction A:Act D′′:Data b′:bindings ;

(2) multi-evaluated D′ t b s = t′: data
⇒ final [[ “enact” “application” D:Dependent “to” D′:Tuple ]] t b s

io = final A t′ b′ s io .

Here, also final A t′ b′ s io = ma, using transitivity. Since A, t′, and b′ are
individuals, we can apply the induction hypothesis (1). This immediately
yields the conclusion.

Secondly, consider the clause for [[ “unfolding” U :Unf ]], in A.3.1.(17),
that is

• final [[ “unfolding” U :Unf ]] t b s io = unf-final U [[ “unfolding” U ]] t b s
io .

Here, also unf-final U [[ “unfolding” U ]] t b s io = ma, using transitivity.
Since U is an individual we can apply the induction hypothesis (2). This
immediately yields the conclusion.

Thirdly, consider the first clause for [[ A:Act “then” A′:Act ]], in A.3.1.(21),
that is

• (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;
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(2) final A′ t′ b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act “then” A′:Act]]tbsio:= completedt”b′′ s′′ io′′

either(c′, c′′)

Since t′, s′, and io′ are assumed to be individuals we can apply the induction
hypothesis (1) to the assumptions. If either c′ or c′′ are true, then so is
either(c′, c′′) and then the conclusion is immediate. If both ′ and c′′ are false,
then from the induction hypothesis we get that s is s′, io is io′, s′ is s′′, and
io′ is io′′ all are true. The conclusion follows.

Fourthly, consider the clause for “unfold”, in A.3.2.(13), that is

• unf-final “unfold” [[ “unfolding” U :Unf ]] t b s io = final U [[ “unfolding”
U ]] t b s io .

Here, also final [[ “unfolding” U ]] t b s io = ma, using transitivity. Since U is
an individual we can apply the induction hypothesis (1). This immediately
yields the conclusion. ✷

In the proof of the lemma we considered explicitly only six cases, namely
those of:

A.3.1.(1) : “complete” ;
A.3.1.(6) : [[ “give” D:Dependent]] ;
A.3.1.(15): [[ “enact” “application” D:Dependent “to” D′:Tuple ]] ;
A.3.1.(17): [[ “unfolding” U :Unf ]] ;
A.3.1.(21): [[ A:Act “then” A′:Act ]] ; and
A.3.2.(13): “unfold” .

The remaining cases could be treated similarly. In appendix E we prove other
lemmas, most of them using the same proof technique as in the proof just
given. In these proofs we also consider only a few of the cases, the others are
similar.

4.3 An Overview of the Proof

The proof of the correctness theorem is structured into a sequence of lemmas.
These lemmas are stated and proved correct in appendix E. The appendix
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also contains some auxiliary notation that is used in the lemmas. This section
explains the lemmas and it emphasizes the difficulties that we meet in the
proofs because we deal with a realistic target machine. The validity of the
main theorem, see appendix F, is an immediate consequence of the lemmas.

4.3.1 Compiler Consistency

The six lemmas in appendix E.2 state properties of the compiler without
reference to the semantics of either action notation or the Pseudo SPARC
machine code. Instead, they concern the algorithm for allocating free regis-
ters, the consistency between the analysis and code generation parts of the
compiler, and the type analysis of unfoldings of actions. Here is an overview
of the lemmas.

• Calculation of Free Registers: This lemma states that the algo-
rithm for allocating free registers behaves as expected: when given a
set of “frozen” registers, it yields one which is not in that set.

• Code Macro Size: This lemma states that the twelve code macros
are “well-placed”. This means that each of them starts in the desired
line, that the instructions are placed consecutively, and that they have
the expected size.

• Compiler Consistency: This lemma states that the calculation of
the size of the code for actions is correct and that the code is “well-
placed”. It also states part of the “stack single-threadedness” require-
ment: bindings cannot be produced if the performance immediately
afterwards leaves the current scope of bindings.

• Consistent use of Symbol-tables: This lemma states that the calcu-
lation of the size of the code for accessing the representation of bindings
is correct and that the code is well-placed. The size of the code depends
on the contents of the symbol-table.

The last three of these lemmas use the auxiliary notation in appendix E.1.1.
For example, the notion of “well-placedness” is captured by the predicate
‘well-placed ’. If we had represented machine language programs as tuples
of instructions, then the well-placedness predicate could have been slightly
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simplified, since the instructions then “automatically” are placed consecu-
tively.

The two remaining lemmas concern the type analysis of unfoldings of
actions. They use the predicate ‘ac-less’, see appendix E.1.2, which defines
an ordering on the types of final states of actions. The type analysis works
by assuming an ‘ac-less’-minimal type of the final state of a performance of
the unfolding, and then computing a greater type. It thus maps types to
types. The lemmas state key properties of this computation.

• Increasing Type Analysis of Unfoldings: This lemmas states that
if the type analysis of an unfolding succeeds, then it yields a greater
type of the final state than the one that it assumed to begin with. This
property is exploited in the proof of the following lemma.

• Type Analysis of Unfoldings computes a Fixed Point: This
lemma states that the type analysis is “idempotent”: when it has been
successfully performed it has computed a fixed point.

The first four lemmas mentioned in this section are used repeatedly in
the proof of several of the remaining lemmas in appendix E. The last two
lemmas justify why we do not perform an iterative type analysis of unfoldings.

4.3.2 Correctness of Analysis

The lemma in appendix E.3 states that the type analysis asserts correct
typings, relative to the semantics of actions. In particular, the type analysis
of unfoldings computes a correct type. The lemma does not refer to the
semantics of the Pseudo SPARC machine code. It uses the auxiliary notation
in appendix E.l.2. For example, given a ‘type’, the operation ‘vc-a bs ’ yields
the sort of individuals contained in ‘datum’ that has that type.

The lemma is not needed in other proofs, but its proof may serve as a
gentle introduction to the more complicated proofs later on.

4.3.3 Completeness

The main lemma in appendix E.4 is a strengthened version of the complete-
ness statement used in the main theorem. Moreover, appendix E.4 contains
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two other lemmas concerning the correspondence between types and repre-
sentations of action semantic entities, and concerning the single-threadedness
of actions. Here is an overview of the lemmas.

• Sound Semantics of Types: This lemma states that if a value is
represented by a given integer with respect to a type and a memory,
then the semantics of the type contains that value.

• Single-threadedness of Actions: This lemma states that if the per-
formance of an action does not commit, then the storage and input-
output are unchanged.

• Completeness: This lemma states that if the source program com-
piles to a target program, and if the target program starts in a state
which represents the arguments to the source program, and if the source
program terminates, then an execution of the target program will reach
“the end” of the code, and with a result which represents the result of
the source program.

The first lemma uses the auxiliary notation in appendix E.1.2, and the third
lemma uses the definition of ‘spare-final ’ in appendix B and the auxiliary
notation in appendix E.1.3. The auxiliary notation used by the completeness
lemma concerns the execution of Pseudo SPARC machine language programs,
here is an overview.

• The operation ‘spare-final n mp lt nw ’ specifies the execution of n ma-
chine program steps starting in the state mp. If the execution in any
step, except the last, jumps outside the code contained in mp, then the
result is ‘nothing’. This property means that only a finite code area
needs to be used in correct implementations of actions. The execution
is required to be such that the program-counter assumes one of the
linenumbers in lt only in the last step; otherwise the result is ‘nothing’.
This property imposes a correspondence between n and lt : the execu-
tion reaches “the end of the code” (lt) in exactly n steps. Furthermore,
the result state needs to be at a certain register window level, indicated
by nw, otherwise the result is ‘nothing’. This property means that when
a machine program is terminated, then we can return to the operating
system via an address in the ‘return-address’ register (provided that this
register has not been overwritten).
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• The binary predicate ‘n leq nt ’ specifies that the natural number n is
less than all the natural numbers in the tuple nt. This predicate is used
to assert that the program-counter has not reached or passed certain
points in the program text.

• The operation ‘cleaned-up sp cef n un ue uf ’ maps an old stack pointer
sp to a new one. This computation takes place when an action has
terminated. There we need to assert that the machine program has
cleaned up the stack correctly. Depending on whether the action has
completed, escaped, or failed (recorded in cef ), there should be popped
either difference(un, n), ue, or uf elements, respectively. Here, n is the
number of bindings that the action has produced. This number can
only be non-zero for completing actions.

• The operation ‘up-to n’ maps a natural number n to the set of natural
numbers that are strictly smaller than n. This is useful in assertions
about initial segments of memory pages.

• The predicate ‘q-earlier n n′ q q′’ asserts that the two memories q and q′

differs only in the stack and heap pages. Furthermore, these two pages
have identical initial segments, up to the natural numbers n and n′,
respectively. The predicate is symmetrical, but we have used the name
‘q-earlier’ to indicate that the predicate is used to compare memories
that occur at two different points of the same program execution.

• The predicate ‘m-earlier mp m′
p’ asserts that the two memories mp and

m′
p are identical, except that the former’s memory is ‘q-earlier’ the lat-

ter’s. Similarly, the predicate ’mq-earlier mp q’ asserts that the memory
of mp is ‘q-earlier’ than q.

The remaining ten predicates are used as pre- and post-conditions in the
statement of the completeness lemma (and also in the later lemmas on code
well-behavedness and soundness). The major reason why they are rather
complicated is that because we are dealing with a realistic random-access
memory, a single update of the memory can destroy the represent ation
of some source value. To handle this, we formulate the assumptions of the
lemma such that values are not only assumed to be represented by the current
memory, but also by any other memory that the current one is ’q-earlier’
than. Correspondingly, the conclusions of the lemma state that the result
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is represented by not only the current memory, but also by those that the
current one is ’q-earlier’ than.

4.3.4 Code Well-behavedness

The first lemma in appendix E.5 states the program in a machine state is
never modified during its execution.

The second lemma states the well-behavedness of code generated from
actions; it is used repeatedly during the proof of soundness. The key com-
plication handled by this lemma is that the execution of a machine program
does not stop by itself, as explained in the following.

Consider an action A which is compiled to code p′, and suppose that A
is a subaction of some larger action which is compiled to code p. Suppose
further that at some point of the execution of p, the program counter has
assumed the start-address of p′. To reason about the execution of p′ we need
to express what happens when the execution reaches “the end”, of p′. But
since the execution does not stop at this point, it is not immediate that if it
has passed this point, then at some earlier step it actually reached this point
(it might “jump over”). The code well-behavedness lemma states that indeed
it did, and moreover, it has used the memory and registers in a disciplined
fashion, and the machine state will represent an abstract state (with the type
given by the compiler).

The code well-behavedness lemma does not refer to the semantics of
actions.

4.3.5 Soundness

The soundness lemma in appendix E.6 is a strengthened version of the sound-
ness statement used in the main theorem. It states that if the source program
compiles to a target program, and if the target program starts in a state which
represents the arguments to the source program, and if an execution of the
target program reaches “the end” of the code, then the source program will
terminate, and with a result which is represented by the result of the target
program.
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Chapter 5

Conclusion

Our compiler generator is specified and proved correct solely in an algebraic
framework. To our knowledge, it is the first time that this has been accom-
plished.

The generated compilers emit realistic, albeit poor, machine code. Still,
it is significantly better than that produced by the classical systems of Mosses,
Paulson, and Wand. Furthermore, the code is absolute, rather than relative.
To handle that in the correctness proof, we prove lemmas expressing “com-
piler consistency”.

The proof of correctness demonstrates how to deal with a realistic ma-
chine language without type information in the semantics. Our machine lan-
guage has a random-access memory, and computation continues infinitely,
once started. Given an implementation of our machine language, and a cor-
rectness proof for it, one could compose both the implementations and the
correctness proofs.

Our proof technique is an improvement over the previous ones. The
technique of Joyce handles a non-idealized target language, but it has only
been shown to apply to a compiler of while-programs. The other proof tech-
niques either rely on the target language being run-time type-checked, or face
increased, and to our knowledge unsolved, difficulties in proving the correct-
ness of a target language executor which avoid the run-time type-checks.

The use of action semantics makes the processable specifications easy
to read and pleasant to work with. We believe that the Cantor system
is a promising first step towards user-friendly and automatic generation of
realistic and correct compilers. We also consider it to be a step towards a
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provably correct implementation of a practically useful language designer’s
workbench. We have illustrated our approach on a non-trivial subset of Ada,
hoping to indicate that such a workbench could have been a helpful tool
during the design of Ada.

The Cantor system is based on a subset of action notation. Even without
changing this subset, future work may take several directions.

• Better object code: More compile time analysis should be employed,
to improve the code generator.

• Completely realistic target language: A target language without
the idealizations discussed in this thesis should be used.

• Faster compiler: The action compiler should be rewritten in a less
functional style than the current one, to get acceptable compile times.

• Automatic proof check: The recent advances in automatic proof
checking should be exploited, to obtain a very trustworthy system.

• Polymorphic type inference: The polymorphic type inference of
Even and Schmidt [16] should be used, to avoid the explicit type infor-
mation in our subset of action notation.

To summarize, we believe that a provably correct and practically useful lan-
guage designer’s workbench is a realistic possibility.

Future work may also attempt to improve the Cantor system by enlarg-
ing the used subset of action notation. This may require a more expres-
sive meta notation and a more powerful proof technique. For example, the
specification of self-referential bindings seems to require more expressiveness
than what is offered by Horn clauses. Also, the specification of parallelism
and communication seems to require a structural operational semantics style
rather than the natural semantics style that we have used, thus demanding
a different proof technique.

Another possibility is to drop the stack single-threadedness requirement,
to be able to describe higher-order functions.

We will conclude with a discussion of how much improvement of Can-
tor is needed to allow the treatment of an increasingly important class of
languages: the object-oriented languages.
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Major examples of object-oriented languages are Simula [12], Smalltalk,
[21], C++ [83], Beta [34], Eiffel [38], and Self [87]. They have four significant
commonalities: assignments, objects, inheritance, and late binding. They
may thus be understood as being imperative languages with three additional
constructs.

An object groups together variables and procedures, and is thus akin to a
module in Modula-2 [94]. Object-oriented languages, in contrast to Modula-
2, allow objects to be stored in variables and to be passed as arguments and
returned as results. The semantic treatment of objects, inheritance, and late
binding goes beyond the capabilities of the Cantor system, see below.

An object could in the full action notation be represented as a pair of
maps: one for the variables and one for the procedures. This would require
more data structures than what is present in the Cantor system, and it would
also require that we were allowed to store (values containing) abstractions.
Finally, the procedures in an object are typically mutually recursive, thus
requiring self-referential bindings.

Inheritance may be understood as a mechanism for deriving modified
versions of recursive structures. It is thus not surprising that its denotational
semantics requires an involved manipulation of fixed points, see the paper
by Cook and the author [10] for details. An action semantics of inheritance
would require much of the generality of self-referential bindings that is found
in the full action notation, but not in the subset that we have used.

Late binding means that a procedure call is dynamically bound to an
implementation. This makes static typing a challenging problem that cur-
rently is the subject of much research, see for examples the papers by the
author and Schwartzbach [64, 66, 65, 67]. A treatment of late binding would
require the Cantor system to have a more complicated type system.
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Appendix A

A Compilable Subset of Action
Notation

A.1 Abstract Syntax

needs: Data Notation/Numbers/Naturals .
introduces: token .
grammar:

(1) Act = “complete” ||| “escape” ||| “fail” |||
“commit” ||| “diverge” ||| “regive” |||
[[“give” Dependent ]] ||| [[ “check” Dedendent ]] |||
[[“bind” token “to” Dependent]] |||
[[“store” Dependent “in” Dependent]] |||
[[“allocate” ( “truth-value” ||| “integer” ) “cell”]] |||
[[“batch-send” Dependent ]] ||| [[ “batch-receive” “an” “integer”]] |||
[[“enact” “application” Dependent “to” Tuple”]] |||
[[“indivisibly” Act ]] ||| [[ “unfolding” Unf ]] ||| [[ Act Infix Act ]] |||
[[[[“furthermore” Act ]] ( “hence” ||| “thence” ) Act ]] .

(2) Unf = [[ Act Infix Unf ]] ||| [[ Unf “or” Act ]] ||| “unfold” .

(3) Tuple = “()” ||| Dependent ||| [[ Tuple “,” Tuple ]] ||| “them” .

(4) Dependent = “true” ||| “false” ||| natural |||
[[“empty-list” “ & ” “[” Type “]” “list” ]] |||
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[[“closure” “abstraction” “of” Act “ & ”
“[” “perhaps” “using” Data “]” “act” ]] |||
[[ Unary Dependent ]] ||| [[ Binary “(” Dependent “,” Dependent “)” ]] |||
[[ Dependent ( “is” ||| [[ “is” “less” “than” ]] ) Dependent ]] |||
[[“component#” Dependent “items” Dependent ]] |||
“it” ||| [[ “the” “given” Datum “#” natural ]] |||
[[“the” Datum “bound” “to” token ]] |||
[[“the” Datum “stored” “in” Dependent ]] |||
[[“(” Dependent “)” ]] .

(5) Infix = [[“and” “then”]] ||| “then” ||| “before” ||| “trap” ||| “or” .

(6) Unary = “not” ||| “negation” ||| [[“list” “of” ]] ||| “head” ||| “tail” .

(7) Binary = “both” ||| “either” ||| “sum” ||| “difference” ||| “concatenation ” .

(8) Datum = “datum” ||| “cell” ||| “abstraction” ||| “list” |||
[[ Datum ” ||| “ Datum ]] ||| Type .

(9) Data = “()” ||| Type ||| [[ Data “,” Data ]] .

(10) Type = “truth-value” ||| “integer” |||
[[“truth-value” “cell” ]] ||| [[ “integer” “cell” ]] |||
[[“ [” Type “]” “list” ]] .

A.2 Semantic Entities

includes: Data Notation .
needs: Abstract Syntax .

A.2.1 Commitments

introduces: commitment , uncommitted , committed .

(1) commitment = truth-value .

(2) uncommitted = false

(3) committed = true .
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A.2.2 Storage

introduces: storage , storage-map ,
cell , truth-value-cell , integer-cell , truth-value-cell , integercell ,
storable , uninitialized ,
storable in , empty-storage .

(1) storage = (storage-map, natural) .

(2) storage-map = [cell to storable ||| uninitialized] map .

(3) cell = truth-value-cell ||| integer-cell (disjoint) .

(4) truth-value-cell :: natural + truth-value-cell (Ma/) .

(5) integer-cell :: natural → integer-cell (total) .

(6) storable = truth-value ||| integer .

(7) uninitialized : uninitialized .

(8) uninitialized & storable = nothing .

(9) storable in :: cell → storable (strict, linear) .

(10) storable in ct:truth-value-cell = truth-value .

(11) storable in ci:integer-cell = integer .

(12) (1) s :storage = (m:storage-map, n:natural) ;

(2) ce:cell is in mapped-set m = true ;

⇒ (m at ce) : (storable in ce) ||| uninitialized .

(13) empty-storage = (empty-map, 0) .

(14) (truth-value-cell n:natural) is (truth-value-cell n′:natural) = n is n′ .

(15) (integer-cell n:natural) is (integer-cell n′:natural) = n is n′ .

(16) ct:truth-value-cell is ci:integer-cell = false .
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A.2.3 States

needs: Commitments , Storage .

introduces: abstraction , closure-abstraction ,
datum , data , bindings , input-output ,
state , completed , escaped , failed ,
completed , escaped , failed ,
storage , input-output , commitment .

t : data ;
b : bindings ;
s : storage ;
io : input-output ;
c : commitment

⇒

(1) closure-abstraction :: Act, Data, bindings → abstraction (total) ;

(2) datum = truth-value ||| integer ||| cell ||| abstraction ||| [datum] list (disjoint) ;

(3) data = datum∗ ;

(4) bindings = [token to datum] map ;

(5) input-output = ([integer] list, [integer] list) ;

(6) state = completed ||| escaped ||| failed (disjoint) ;

(7) completed ::
data, bindings, storage, input-output, commitment → completed (total) ;

(8) escaped :: data, storage, input-output, commitment → escaped (total) ;

(9) failed :: storage, input-output, commitment → failed (total) ;

(10) storage :: state → storage (total) ;

(11) input-output :: state → input-output (total) ;

(12) commitment :: state → commitment (total) ;

(13) storage (completed t b s io c) = s ;

(14) storage (escaped t s io c) = s ;
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(15) storage (failed s io c) = s ;

(16) input-output (completed t b s io c) = io ;

(17) input-output (escaped t s io c) = io ;

(18) input-output (failed s io c) = io ;

(19) commitment (completed t b s io c) = c ;

(20) commitment (escaped t s io c) = c ;

(21) commitment (failed s io c) = c .

A.3 Semantic Functions

needs: Abstract Syntax , Semantic Entities .

A.3.1 Actions

needs: Unfolding , Tuples , Dependent Data .

introduces: final .

• final :: Act, data, bindings, storage, input-output → state .

t , t’ , t” : data ;
b , b’ , b” : bindings ;
s , s’ , s” : storage ;
io , io’ , io” : input-output ;
ma : state ;
c’ , c” : commitment

⇒
(1) final “complete” t b s io = completed () empty-map s io uncommitted ;

(2) final “escape” t b s io = escaped t s io uncommitted ;

(3) final “fail” t b s io = failed s io uncommitted ;

(4) final “commit” t b s io = completed () empty-map s io committed ;

(5) final “regive” t b s io = completed t empty-map s io uncommitted ;
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(6) (1) (evaluated D t b s = v : datum

⇒ final [[ “give” D:Dependent ]] t b s io =
completed v empty-map s io uncommitted ;

(7) (1) evaluated D t b s = true
⇒ final [[ “check” D:Dependent ]] t b s io =

completed () empty-map s io uncommitted ;

(8) (1) evaluated D t b s = false
⇒ final [[ “check” D:Dependent ]] t b s io = failed s io uncommitted ;

(9) (1) evaluated D t b s = v : datum
⇒ final [[ “bind” k:token “to” D:Dependent ]] t b s io =

completed () (map of k to v) s io uncommitted ;

(10) (1) evaluated D t b s = x : (storable in ce) ;

(2) evaluated D′ t b s = ce:cell ;

(3) s:storage = (m:storage-map, n:natural)

⇒ final [[ “store” D:Dependent “in” D′:Dependent ]] t b s io =
completed () empty-map (overlay(map of ce to x, m), n) io committed ;

(11) final [[ “allocate” “truth-value” “cell” ]] t b (m:storage-map, n:natural) io =
completed (truth-value-cell n) empty-map
(overlay(map of n to uninitialized, m), successor n) io committed ;

(12) final [[ “allocate” “integer” “cell” ]] t b (m:storage-map, n:natural) io =
completed (integer-cell n) empty-map
(overlay(map of n to uninitialized, m), successor n) io committed ;

(13) (1) evaluated D t b s = i integer ;

(2) io :input-output = (il : [integer] list, ol : [integer] list)
⇒ final [[ “batch-send” D:Dependent ]] t b s io =

completed () empty-map s (il, concatenation(list of i, ol) committed ;

(14) (1) io = (concatenation(list of i:integer, il : [integer] list), ol : [integer] list)
⇒ final [[ “batch-receive” “an” “integer” ]] t b s io =

completed i empty-map s (il, ol) committed ;

(15) (1) evaluated D t b s = closure-abstraction A:Act D′′:Data b′:bindings ;

(2) multi-evaluated D′ t b s = t′ : data
⇒ final [[ “enact” “application” D:Dependent “to” D′:Tuple ]] t b s io =
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final A t′ b′ s io ;

(16) final [[ “indivisibly” A:Act ]] t b s io = final A t b s io ;

(17) final [[ “unfolding” U :Unf ]] t b s io = unf-final U [[ “unfolding” U ]] t b s io;

(18) (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) final A′ t b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act [[ “and” “then” ]] A′:Act ]] t b s io =
completed (t′, t′′) b′′ s′′ io′′ either(c′, c′′) ;

(19) (1) final A t b s io = completed t′ empty-map s′ io′ c′;

(2) final A′ t b s′ io′ = escaped t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act [[ “and” “then” ]] A′:Act ]] t b s io = escaped t′′ s′′ io′′ either(c′, c′′) ;

(20) (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) final A′ t b s′ io′ = failed s′′ io′′ c′′

⇒ final [[ A:Act [[ “and” “then” ]] A′:Act ]] t b s io = failed s′′ io′′ either(c′, c′′) ;

(21) (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) final A′ t b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act “then” A′:Act ]] t b s io = completed t′′ b′′ s′′ io′′ either(c′, c′′) ;

(22) (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) final A′ t′ b′ s′ io′ = escaped t′′ s′′ io′′ c′′

⇒ final [[ A:Act “then” A′:Act ]] t b s io = escaped t′′ s′′ io′′ either(c′, c′′) ;

(23) (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) final A′ t′ b s′ io′ = failed s′′ io′′ c′′

⇒ final [[ A:Act “then” A′:Act ]] t b s io = failed s′′ io′′ either(c′, c′′) ;

(24) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;

(2) final A′ t overlay(b′, b) s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act “before” A′:Act ]] t b s io =

completed (t′, t′′) overlay(b′′, b) s′′ io′′ either(c′, c′′) ;

(25) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;

(2) final A′ t overlay(b′, b) s′ io′ = escaped t′′ s′′ io′′ c′′

⇒ final [[ A:Act “before” A′:Act ]] t b s io = escaped t′′ s′′ io′′ either(c′, c′′) ;

(26) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;
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(2) final A′ t′ overlay(b′, b) s′ io′ = failed s′′ io′′ c′′

⇒ final [[ A:Act “before” A′:Act ]] t b s io = failed s′′ io′′ either(c′, c′′) ;

(27) (1) final A t b s io = escaped t′ s′ io′ c′ ;

(2) final A′ t′ b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act “trap” A′:Act ]] t b s io = completed t′′ b′′ s′′ io′′ either(c′, c′′) ;

(28) (1) final A t b s io = escaped t′ s′ io′ c′ ;

(2) final A′ t′ b s′ io′ = escaped t′′ s′′ io′′ c′′

⇒ final [[ A:Act “trap” A′:Act ]] t b s io = escaped t′′ s′′ io′′ either(c′, c′′) ;

(29) (1) final A t b s io = escaped t′ s′ io′ c′ ;

(2) final A′ t′ b s′ io′ = failed s′′ io′′ c′′

⇒ final [[ A:Act “trap” A′:Act ]] t b s io = failed s′′ io′′ either(c′, c′′) ;

(30) (1) final A t b s io = failed s′ io′ uncommitted
⇒ final [[ A:Act “or” A′:Act ]] t b s io = final A′ t s io ;

(31) (1) final A t b s io = failed s′ io′ committed
⇒ final [[ A:Act “or” A′:Act ]] t b s io = failed s′ io′ committed ;

(32) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;

(2) final A′ t′ overlay(b′, b) s′ io′ = completed t′′ empty-map s′′ io′′ c′′

⇒ final [[ [[ “furthermore” A:Act ]] “hence” A′:Act ]] t b s io =
completed (t′, t′′) empty-map s′′ io′′ either(c′, c′′) ;

(33) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;

(2) final A′ t′ overlay(b′, b) s′ io′ = escaped t′′ s′′ io′′ c′′

⇒ final [[ [[ “furthermore” A:Act ]] “hence” A′:Act ]] t b s io =
escaped t′′ s′′ either(c′, c′′) ;

(34) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;

(2) final A′ t′ overlay(b′, b) s′ io′ = failed s′′ io′′ c′′

⇒ final [[ [[ “furthermore” A:Act ]] “hence” A′:Act ]] t b s io =
failed s′′ either(c′, c′′) ;

(35) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;

(2) final A′ t′ overlay(b′, b) s′ io′ = completed t′′ empty-map s′′ io′′ c′′

⇒ final [[ [[ “furthermore” A:Act ]] “thence” A′:Act ]] t b s io =
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completed t′′ empty-map s′′ io′′ either(c′, c′′) ;

(36) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;

(2) final A′ t′ overlay(b′, b) s′ io′ = escaped t′′ s′′ io′′ c′′

⇒ final [[ [[ “furthermore” A:Act ]] “thence” A′:Act ]] t b s io =
escaped t′′ s′′ either(c′, c′′) ;

(37) (1) final A t b s io = completed t′ b′ s′ io′ c′ ;

(2) final A′ t′ overlay(b′, b) s′ io′ = failed s′′ io′′ c′′

⇒ final [[ [[ “furthermore” A:Act ]] “thence” A′:Act ]] t b s io =
failed s′′ io′′ either(c′, c′′ ;

(38) (1) final A t b s io = ma

⇒
(2) (1) ma : escaped ||| failed

⇒
(2) final [[ A:Act O:( [[ “and” “then” ]] ||| “then” ||| “before”) A′:Act ]]

t b s io = ma ;

(3) final [[ [[ “furthermore” A:Act ]] O:( “hence” ||| “thence” ) A′:Act ]]
t b s io = ma ;

(3) (1) ma : completed ||| failed
⇒ final [[ A: Act “trap” A′:Act ]] t b s io = ma ;

(4) (1) ma : completed ||| escaped
⇒ final [[ A: Act “or” A′:Act ]] t b s io = ma ;

(39) (1) multi-evaluated D′ t b s = nothing
⇒ final [[ “enact” “application” D:Dependent “to” D′:Tuple ]] t b s io =

failed s io uncommitted ;

(40) (1) evaluated D t b s = nothing

⇒
(2) final [[ “give” D:Dependent ]] t b s io = failed s io uncommitted ;

(3) final [[ “check” D:Dependent ]] t b s io = failed s io uncommitted ;

(4) final [[ “bind” k:token “to” D:Dependent ]] t b s io = failed s io uncommitted ;

(5) final [[ “store” D:Dependent “in” D′:Dependent ]] t b s io =
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failed s io uncommitted ;

(6) final [[ “store” D′:Dependent “in” D:Dependent ]] t b s io =
failed s io uncommitted ;

(7) final [[ “batch-send” D:Dependent ]] t b s io = failed s io uncommitted ;
failed s io uncommitted ;

(8) [[ “enact” “application” D:Dependent ]] t b s io = failed s io uncommitted ;
failed s io uncommitted ;

A.3.2 Unfolding

needs: Actions .

introduces: unf-final .

• unfinal :
Unf, [[ “unfolding” Unf ]], data, bindings, storage, input-output → state .

t, t′, t′′ : data ;
b, b′′ : bindings ;
s, s′, s′′ : storage ;
io, io′, io′′ : input-output ;
ma : state ;
c′, c′′ : commitment

⇒
(1) (1) final A t b s io = completed () empty-map s′ io′ c′ ;

(2) unf-final U [[ “unfolding” U ′ ]] t b s′ io′ = completed t′′ b′′ s′′ io′′ c′′ ;

(3) O: [[ “and” “then” ]] ||| “before”

⇒ unf-final [[ A: Act O U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
completed t′′ b′′ s′′ io′′ either(c′, c′′) ;

(2) (1) final A t b s io = completed () empty-map s′ io′ c′ ;

(2) unf-final U [[ “unfolding” U ′ ]] t b s′ io′ = escaped t′′ s′′ io′′ c′′;

(3) O: [[ “and” “then” ]] ||| “before”

⇒ unf-final [[ A: Act O U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
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escaped t′′ s′′ io′′ either(c′, c′′) ;

(3) (1) final A t b s io = completed () empty-map s′ io′ c′ ;

(2) unf-final U [[ “unfolding” U ′ ]] t b s′ io′ = failed s′′ io′′ c′′;

(3) O: [[ “and” “then” ]] ||| “before”

⇒ unf-final [[ A: Act O U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
failed s′′ io′′ either(c′, c′′) ;

(4) (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) unf-final U [[ “unfolding” U ′ ]] t′ b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ unf-final [[ A: Act “then” U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
completed t′′ b′′ s′′ io′′ either(c′, c′′) ;

(5) (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) unf-final U [[ “unfolding” U ′ ]] t′ b s′ io′ = escaped t′′ s′′ io′′ c′′

⇒ unf-final [[ A: Act “then” U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
escaped t′′ s′′ io′′ either(c′, c′′) ;

(6) (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) unf-final U [[ “unfolding” U ′ ]] t′ b s′ io′ = failed s′′ io′′ c′′

⇒ unf-final [[ A: Act “then” U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
failed s′′ io′′ either(c′, c′′) ;

(7) (1) final A t b s io = escaped t′ s′ io′ c′ ;

(2) unf-final U [[ “unfolding” U ′ ]] t′ b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ unf-final [[ A: Act “trap” U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
completed t′′ b′′ s′′ io′′ either(c′, c′′) ;

(8) (1) final A t b s io = escaped t′ s′ io′ c′

(2) unf-final U [[ “unfolding” U ′ ]] t′ b s′ io′ = escaped t′′ s′′ io′′ c′′;

⇒ unf-final [[ A: Act “trap” U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
escaped t′′ s′′ io′′ either(c′, c′′) ;

(9) (1) final A t b s io = escaped t′ s′ io′ c′ ;

(2) unf-final U [[ “unfolding” U ′ ]] t′ b s′ io′ = failed s′′ io′′ c′′

⇒ unf-final [[ A: Act “trap” U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
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failed s′′ io′′ either(c′, c′′) ;

(10) (1) final A t b s io = failed s′ io′ uncomitted

⇒ unf-final [[ A: Act “or” U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
unf-final U [[ “unfolding” U ′ ]] t b s io ;

(11) (1) final A t b s io = failed s′ io′ committed

⇒ unf-final [[ A: Act “or” U : Unf ]] [[ “unfolding” U ′ : Unf ]] t b s io =
failed s′ io′ committed ;

(12) unf-final [[ U : Unf “or” A: Act ]] [[ “unfolding” U ′ : Unf ]] t b s io =

unf-final [[ A “or” U ]] [[ “unfolding” U ′ ]] t b s io ;

(13) unf-final “unfold” [[ “unfolding” U : Unf ]] t b s io = final [[ “unfoldings” ]] t b s io ;

(14) (1) final A t b s io = ma

⇒
(2) (1) ma : escaped ||| failed

⇒ unf-final [[ A: Act O: ( [[ “and” “then” ]] ||| “then” ||| “before” ) U : Unf ]]

[[ “unfolding” U ′: Unf ]] t b s io = ma ;

(3) (1) ma completed ||| failed
⇒ unf-final [[ A: Act “trap” U : Unf ]] [[ “unfolding” U ′: Unf ]] t b s io = ma ;

(4) (1) ma completed ||| escaped
⇒ unf-final [[ A: Act “or” U : Unf ]] [[ “unfolding” U ′: Unf ]] t b s io = ma .

A.3.3 Tuples

needs: Dependent Data .

introduces: multi-evaluated .

• multi-evaluated :: Tuple, data, bindings, storage → data (partial .

t : data ;
b : bindings ;
s : storage ;

⇒
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(1) multi-evaluated “()” t b s = () ;

(2) multi-evaluated D:Dependent t b s = evaluated D t b s ;

(3) multi-evaluated [[ D: Tuple “,” D′ Tuple ]] t b s =
multi-evaluated D t b s, multi-evaluated D′ t b s ;

(4) multi-evaluated “them” t b s = t .

A.3.4 Dependent Data

needs: Unary Operations , Binary Operations , Data .

introduces: evaluated .

• evaluated :: Dependent, data, bindings, storage → datum (partial .

t : data ;
b : bindings ;
s : storage ;

⇒
(1) evaluated “true” t b s = true ;

(2) evaluated “false” t b s = false ;

(3) evaluated n: natural t b s = n

(4) evaluated [[ “empty-list” “&” “[” T :Type “]” “list” ]] t b s = empty-list ;

(5) evaluated [[ “closure” “abstraction” “of” A: Act “&” “[” “perhaps” “using”
D: Data “]” “act” ]] t b s = closure-abstraction A D b ;

(6) evaluated [[ O: Unary D: Dependent ]] t b s = unary-operation O (evaluated D t b s) ;

(7) evaluated [[ O: Binary “(” D: Dependent “,” D′: Dependent “)” ]] t b s =
binary-operation O: (evaluated D t b s) (evaluated D′ t b s ;

(8) evaluated [[ D: Dependent O:( “is” ||| [[ “is” “less” “than” ]] ) D′: Dependent]] t b s =
binary-operation O: (evaluated D t b s) (evaluated D′ t b s) ;

(9) evaluated [[ “Component#” O: Dependent “items” D′: Dependent ]] t b s =
binary-operation “at” (evaluated D t b s) (evaluated D′ t b s) ;

(10) evaluated “it” t b s = t & datum ;
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(11) evaluated [[ “the” “given” D: Datum “#” n: natural ]] t b s =
(datum D) & (component# n t) ;

(12) evaluated [[ “the” D = Datum “bound” “to” k:token ]] t b s = (datum D) & (b at k) ;

(13) evaluated [[ “the” D: Datum “stored” “in” D′: Dependent ]]
t b (m: storage-map, n: natural) =

(datum D) & (m at ((evaluated D t b (m, n)) & cell)) ;

(14) evaluated [[ “(” D = Dependent ‘)” ]] t b s = evaluated D t b s .

A.3.5 Unary Operations

introduces: unary-operation .

• unary-operation :: Unary, datum → datum (partial).

v : datum ;

⇒
(1) unary-operation “not” v = not v ;

(2) unary-operation “negation” v = negation v ;

(3) unary-operation [[ “list” “of” ]] v = list of v :

(4) unary-operation “head” v = head of v

(5) unary-operation “tail” v = tail of v

A.3.6 Binary Operations

introduces: binary-operation .

• binary-operation ::
Binary ||| “is” ||| [[ ‘is” “less” “than” ]] ||| “at”, datum, datum → datum (partial) .

v, v′: datum ;

⇒
(1) binary-operation “both” v v′ = both (v, v′) ;
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(2) binary-operation “either” v v′ = either (v, v′) ;

(3) binary-operation “sum” v v′ = sum(v, v′) ;

(4) binary-operation “difference” v v′ = difference(v, v′) ;

(5) binary-operation “concatenation” v v′ = concatenation(v, v′) ;

(6) binary-operation “is” v v′ = v is v′ ;

(7) binary-operation [[ “is” “less” “than” ]] v v′ = v is less than v′ ;

(8) binary-operation “at” v v′ = component # v (items v′) .

A.3.7 Data

introduces: datum , data , small-datum .

• datum :: Datum → datum .
• data :: Data → data .
• small-datum :: Type → datum .

(1) datum “datum” = datum .

(2) datum “cell” = cell .

(3) datum “abstraction” = abstraction .

(4) datum “list” = [datum] list .

(5) datum [[ S ′: “Datum” “|||” S ′′ = Datum ]] = (datum S ′) ||| (datum S ′′) .

(6) datum T : Type = small-datum T .

(7) data () = () .

(8) data T : Type = small-datum T .

(9) data [[ D : Data “,” D′ : Data ]] = (data D, data D′) .

(10) small-datum “truth-value” = truth-value .

(11) small-datum “integer” = integer .

(12) small-datum [[ “truth-value” “cell”]] = truth-value-cell .

(13) small-datum [[ “integer” “cell”]] = integer-cell .

(14) small-datum [[ “[” T : Type “]” “list”]] = [small-datum T ] list .
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Appendix B

A Pseudo SPARC Mashine
Language

B.1 Abstract Syntax

needs: Data Notation/Numbers/Integers .

introduces: instruction , movable , argument , register , page-id ,
skip , call , return , storeregisters , loadregisters ,
jump , branchequal , branchlessthan ,
store in , load into , move to , compare with ,
sum , difference ,
global-register , firstfree , sp , hp , cp , cef , global , arg ,
return-address , staticlink , general-register , reg ,
stack , store , heap , commits , input , output .

(1) skip , call , return , storeregisters , loadregisters : instruction .

(2) jump , branchequal , branchlessthan :: integer → instruction (total) .

(3) store in :: register, register, integer, page-id → instruction (total) .

(4) load into :: register, integer, page-id, register → instruction (total) .

(5) move to :: movable, register → instruction (total) .

(6) compare with :: register, argument → instruction (total) .

(7) argument ≤ movable .
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(8) sum , difference :: register, argument → movable (total) .

(9) argument = register ||| integer .

(10) register = global-register ||| staticlink ||| general-register .

(11) global-register = firstfree ||| sp ||| hp ||| cp ||| cef ||| global ||| arg (individual) .

(12) reg :: natural → general-register (total) .

(13) page-id = stack ||| store ||| heap ||| commits ||| input ||| output (individual) .

B.2 Semantic Entities

includes: Data Notation .

needs: Abstract Syntax .

introduces: program , linenumber , program-counter , was-zero , was-negative ,
globals , windows , registers , memory , page , update , sparc-state ,
program , program-counter , globals , windows , memory ,
finished , out-of-bound , is in , at default .

(1) program = [linenumber to instruction] map .

(2) linenumber = natural .

(3) program-counter = linenumber .

(4) was-zero = truth-value .

(5) was-negative = truth-value .

(6) globals = [global-registers to integer] map .

(7) windows = [registers+] list .

(8) registers = [return-address ||| staticlink ||| general-register to integer] map .

(9) memory = [page-id to page] map .

(10) page = [natural to integer] map .

(11) update :: windows, registers → windows (total) .

(12) update w:windows x:registers = concatenation(list of overlay(x, head of w), tail of w) .

(13) sparc-state =
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(program, program-counter, was-zero, was-negative, globals, windows, memory) .

(14) program :: sparc-state → program (total) .

(15) program-counter :: sparc-state → program-counter (total) .

(16) globals :: sparc-state → globals (total) .

(17) windows :: sparc-state → windows (total) .

(18) memory :: sparc-state → memory (total) .

(19) program mp:sparc-state = component#1 of mp .

(20) program-counter mp:sparc-state = component#2 of mp .

(21) globals mp:sparc-state = component#5 of mp .

(22) windows mp:sparc-state = component#6 of mp .

(23) memory mp:sparc-state = component#7 of mp .

(24) finished :: sparc-state, linenumber∗, natural → truth-value (total) .

(25) finished mp:sparc-state lt:linenumber∗ nw:natural =
both((program-mounter of mp) is in lt, (count of items of windows of mp) is nw) .

(26) out-of-bound :: sparc-state → truth-value (total) .

(27) out-of-bound mp:sparc-state =
(maximum of mapped-set of program of mp) is less than (program-counter of mp) .

(28) is in :: natural, natural∗ → truth-value (total) .

(29) n: natural is in () = false .

(30) n: natural is in n′: natural = n is n′ .

(31) n: natural is in (nt: natural∗,nt′: natural∗) = either(n is in nt, n is in nt′) .

(32) at default :: [X to Y ] map , x: X, y: Y → Y (total) .

(33) (M : [X to Y ] map) at x: X default y: Y =

if X is in mapped-set of M then M at x else y .

B.3 Semantic Functions

needs: Abstract Syntax , Semantic Entities .
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B.3.1 Programs

needs: Instructions .

introduces: sparc-final , step .
• sparc-final :: natural, sparc-state, linenumber∗, natural → sparc-state (partial) .

• step :: sparc-state → sparc-state (total) .

(1) sparc-final n:natural mp:sparc-state il:linenumber∗ nw:natural =
if both(n is 0, finished mp lt nw)
then mp,
else if not any( n is 0, finished mp , lt nw, out-of-bound mp)

then sparc-final predecessor(n) step(mp) lt nw
else nothing .

(2) step mp:sparc-state =
next ((program of mp) at (program-counter of mp) default skip) mp .

B.3.2 Instructions

needs: Moveables , Arguments , Registers .

introduces: next .

• next :: instruction , sparc-state → sparc-state (total) .
p : program ;
pc : program-counter ;
cz : was-zero ;
cn : was-negative ;
g : globals ;
w : windows ;
q : memory

⇒
(1) next skip (p, pc, cz, cn, g, w, q) = (p, sum(pc, 1), cz, cn, g, w, q);

(2) next call (p, pc, cz, cn, g, w, q) =
(p, g at global default 0, cz, cn, g, update w (map of return-address to pc), q) ;

(3) next return (p, pc, cz, cn, g, w, q) =
(p, sum((head of w) at return-address default 0, 1), cz, cn, g, w, q) ;
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(4) next storeregisters (p, pc, cz, cn, g, w, q) =
(p, sum(pc,1), cz, cn, g, concatenation(list of empty-map, w), q) ;

(5) next loadregisters (p, pc, cz, cn, g, w, q) = (p, sum(pc,1), cz, cn, g,
(if (tail of w) is (empty-list) then w else (tail of w)), q) ;

(6) next (jump i:integer) (p, pc, cz, cn, g, w, q) = (p, i, cz, cn, g, w, q) ;

(7) next (branchequal i:integer) (p, pc, true, cn, g, w, q) = (p, i, true, cn, g, w, q) ;

(8) next (branchequal i:integer) (p, pc, false, cn, g, w, q) =
(p, sum(pc, 1), false, cn, g, w q) ;

(9) next (branchlessthan i:integer) (p, pc, cz, true, g, w, q) = (p, i, cz, true, g, w, q) ;

(10) next (branchlessthan i:integer) (p, pc, cz, false, g, w, q) =
(p, sum(pc, 1), cz false g, w q) ;

(11) next (store R′:register in R′′:register i:integer P :page-id) (p, pc, cz, cn, g, w, q) =
(p, sum(pc, 1), cz, cn, g, w,
overlay(map of p to overlay(map of sum(fetch R′′ g w, i) to
fetch R′ g w, q at P default empty-map), q)) ;

(12) (1) (q at P default empty-map) at sum(fetch R g w, i) default 0 = i′:integer
⇒
(2) next (load R:register i:integer P :page-id into G:global-register)

(p, pc, cz, cn, g, w, q) =
(p, sum(pc, 1), cz, cn, overlay(map of G to i′, g), w, q) ;

(3) next (load R:register i:integer P :page-id into x:(staticlink ||| general-register))
(p, pc, cz, cn, g, w, q) =
(p, sum(pc, 1), cz, cn, g, update w (map of x to i′), q) ;

(13) (1) evaluate-movable M g w = i:integer
⇒
(2) next (move M :movable to G:global-register)

(p, pc, cz, cn, g, w, q) =
(p, sum(pc, 1), cz, cn, overlay(map of G to i, g), w, q) ;

(3) next (move M :movable to x:(staticlink ||| general-register))
(p, pc, cz, cn, g, w, q) =
(p, sum(pc, 1), cz, cn, g, update w (map of x to i), q) ;

(14) (1) fetch R g w = i′:integer ;
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(2) evaluate-argument A g w = i′:integer
⇒ next (compare R:register with A:argument) (p, pc, cz, cn, g, w, q) =

(p, sum(pc, 1), i′ is i′′, i′ is less than i′′, g, w, q) .

B.3.3 Moveables

needs: Arguments , Registers .

introduces: evaluate-movable .
• evaluate-movable :: movable, globals, windows → integer (total) .

g : globals ;
w : windows

⇒
(1) evaluate-movable A:argument g w = evaluate-argument A g w ;

(2) (1) fetch R g w = i′:integer ;

(2) evaluate-argument A g w = i′′:integer
⇒
(3) evaluate-movable (sum R:register A:argument) g w = sum(i′, i′′) ;

(4) evaluate-movable (difference R:register A:argument) g w = difference(i′, i′′) .

B.3.4 Arguments

needs: Registers .

introduces: evaluate-argument .
• evaluate-argument :: argument, globals, windows → integer (total) .

g : globals ;
w : windows

⇒
(1) evaluate-argument R:register g w = fetch R g w ;

(2) evauate-argument i:integer g w = i .

B.3.5 Registers

introduces: fetch .
• fetch :: register, globals, windows → integer (total) .
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g : globals ;
w : windows

⇒
(1) fetch G:global-register g w = g at G default 0 ;

(2) fetch staticlink g w = (head of w) at staticlink default 0 ;

(3) fetch r:general-register g w = (head of w) at r default 0 .
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Appendix C

Actions to SPARC Compiler

needs: Data Notation ,
A Compilable Subset of Action Notation/Abstract Syntax ,
A Pseudo SPARC Machine Language/Abstract Syntax .

C.1 Compile Time Entities

C.1.1 Types

needs: Data Types , Symbol Tables .

introduces: type , truth-value-type , integer-type , cell-type ,
truth-value-cell-type , integer-cell-type , abstraction-type ,
list-type , abstraction-type , list-type , storable-type .

(1) type = truth-value-type ||| integer-type ||| cell-type ||| abstraction-type ||| list-type (disjoint) .

(2) cell-type = truth-value-cell-type ||| integer-cell-type (individual) .

(3) truth-value-type , integer-type : type .

(4) abstraction-type :: data-type, truth-value, data-type,
truth-value, data-type, symbol-table → abstraction-type (total) .

(5) list-type :: type → list-type (total) .

(6) is :: type, type → truth-value (total, commutative) .

(7) truth-value-type is S:(integer-type ||| cell-type ||| abstaction-type ||| list-type) = false .

84



(8) integer-type is S:(cell-type ||| abstraction-type ||| list-type) = false .

(9) truth-value-cell-type is S:(integer-cell-type ||| abstraction-type ||| list-type) = false .

(10) integer-cell-type is S:(abstraction-type ||| list-type) = false .

(11) (1) h, h′, hn, h′
n, he, h′

e : data-type ;

(2) zn , z′n , ze , z′e : truth-value ;

(3) d , d′ : symbol-table

⇒ (abstraction-type h zn hn ze he d) is (abstraction-type h′ z′n h′
n z′e h′

e d′) =
all(h is h′, either(not(zn is z′n), hn is h′

n),
either(not(ze is z′e), he is h′

e), d is d′) .

(12) S:abstraction-type is S ′:list-type = false .

(13) (list-type S:type) is (list-type S ′:type) = S is S .

(14) storable-type :: cell-type → truth-value-type ||| integer-type (total) .

(15) storable-type truth-value-cell-type = truth-value-type .

(16) storable-type integer-cell-type = integer-type .

C.1.2 Data Types

needs: Types .

introduces: data-type , abstraction-free , compare-data-types .

h , h′ : data-type
⇒
(1) data-type = type∗ ;

(2) abstraction-free :: type∗ → truth-value (total) ;

(3) abstraction-free () = true ;

(4) abstraction-free S:abstraction-type = false ;

(5) abstraction-free S(truth-value-type ||| integer-type ||| cell-type ||| list-type) = true ;

(6) abstraction-free S:type , S ′:type) = both(abstraction-free S, abstraction-free S ′) ;

(7) compare-data-types ::
truth-value, data-type, truth-value, data-type → data-type (partial) ;

(8) compare-data-types z h z′ h′ =
if z′ is false then h else
if both(z is false, z′ is true) then h′ else
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if all(z is true, z′ is true, h is h′) then h else nothing .

C.1.3 Registers

introduces: frozen , is less than , successor , minimum of , maximum of ,
free-register , registers up to .

(1) frozen = [general-register] set .

(2) is less than :: general-register, general-register → truth-value (total) .

(3) (reg n:natural) is less than (reg n′:natural) = n is less than n′ .

(4) successor :: general-register → general-register (total) .

(5) successor reg n:natural = reg successor n .

(6) minimum of :: set → natural (partial) .
set of element+ → natural(partial) .

(7) maximum of :: set → natural (partial) .
set of element+ → natural(partial) ;

(8) minimum of empty-set = nothing .

(9) minimum of set of x:element = x .

(10) minimum of union(x:set, y:set) = if (minimum of x) is
less than (minimum of y) then minimum of x else minimum of y .

(11) maximum of empty-set = nothing .

(12) maximum of set of x:element = x .

(13) maximum of union(x:set, y:set) = if (maximum of x) is
less than (maximum of y) then maximum of y else maximum of x .

(14) free-register :: frozen → general-register (total) .

(15) free-register f :frozen = if f is empty-set then reg 0 else
minimum of difference(registers up to successor(maximum of f), f) .

(16) registers up to :: general-register → set of general-registers+ (total) .

(17) registers up to (reg 0) = set of (reg 0) .

(18) registers up to (successor r:general-register) =
union(registers up to r, successor(r)) .
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C.1.4 Symbol Tables

needs: Types .

introduces: symbol-table , block , entry , entry ,
cleanup , compare-blocks , insert .

d : symbol-table ;
e, e′ : block

⇒
(1) symbol-table = [block] list ;

(2) block = [entry] list ;

(3) entry :: token, type → entry (total) ;

(4) cleanup = natural ;

(5) compare-blocks :: truth-value, block, truth-value, block → block (total) ;

(6) compare-blocks z e z′ e′ =
if z′ is false then e else
if both(z is false, z′ is true) then e′ else
if all(z is true, z′ is true, e is e′) then e else nothing .

(7) insert :: symbol-table, block → symbol-table (total) ;

(8) insert d e = concatenation(list of(concatenation(e, head of d)), tail of d) .

C.1.5 Miscellaneous

needs: Data Types , Symbol Tables .

introduces: ac-state , ac-state , a-state , a-state ,
wc-state , wc-state , code-size ,
linenumber-complete , linenumber-escape , linenumber-fail ,
linenumber-unfold , error .

(1) ac-state :: natural, truth-value, data-type,
truth-value, data-type, block → ac-state (total) .

(2) a-state :: program, general-register, general-register → a-state (total) .

(3) wc-state :: natural, data-type → wc-state (total) .

(4) code-size : : wc-state → natural (total) .
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(5) code-size (wc-state n: natural h:data-type() = n .

(6) linenumber-complete = linenumber .

(7) linenumber-escape = linenumber .

(8) linenumber-fail = linenumber .

(9) linenumber-unfold = linenumber .

(10) error : error .

(11) error is x:tuple = false .

(12) error is x:wc-state = false .

C.2 Code Macros

needs: Compile Time Entities/Miscellaneous .

C.2.1 Lists and Tuples

introduces: empty-list-code , single-list-code , concatenation-code ,
head-code , tail-code , at-code ,
e-size , s-size , c-size , h-size , t-size , a-size .

• empty-list-code :: general-register, linenumber → program (total) .

• single-list-code :: general-register, general-register, linenumber → program (total) .

• concatenation-code ::
general-register, general-register, general-register, linenumber → program (total) .

• head-code ::
general-register, general-register, linenumber, linenumber → program (total) .

• tail-code ::
general-register, general-register, linenumber, linenumber → program (total) .

• at-code :: general-register, general-register, general-register,
linenumber, linenumber → program (total) .

r , r′ , r′′ : general-register ;
l : linenumber ;
lf : linenumber-fail
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⇒
(1) empty-list-code r l = overlay(

map of sum(l,0) to ( move -1 to global ) ,
map of sum(l,1) to ( store global in hp 1 heap ) ,
map of sum(l,2) to ( move hp to r ) ,
map of sum(l,3) to ( move sum hp 2 to hp )) ;

(2) single-list-code r r′ l = overlay(
map of sum(l,0) to ( store r in hp 2 heap ) ,
map of sum(l,1) to ( move -1 to global ) ,
map of sum(l,2) to ( store global in hp 1 heap ) ,
map of sum(l,3) to ( store hp in hp 3 heap ) ,
map of sum(l,4) to ( move sum hp 2 to r′ ) ,
map of sum(l,5) to ( move sum hp 4 to hp )) ;

(3) concatenation-code r r′ r′′ l = overlay(
map of sum(l,0) to ( load r 1 heap into global ) ,
map of sum(l,1) to ( compare global with -1 ) ,
map of sum(l,2) to ( branchequal sum(l,4) ) ,
map of sum(l,3) to ( jump sum(l,6) ) ,
map of sum(l,4) to ( move r to r′′ ) ,
map of sum(l,5) to ( jump sum(l,18) ) ,
map of sum(l,6) to ( move hp to r′′ ) ,
map of sum(l,7) to ( move r to global ) ,
map of sum(l,8) to ( load global 0 heap into arg ) ,
map of sum(l,9) to ( store arg in hp 0 heap ) ,
map of sum(l,10) to ( load global 1 heap into global ) ,
map of sum(l,11) to ( load global 1 heap into arg ) ,
map of sum(l,12) to ( move sum hp 2 to hp ) ,
map of sum(l,13) to ( store hp in hp -1 heap ) ,
map of sum(l,14) to ( compare arg with -1 ) ,
map of sum(l,15) to ( branchequal sum(l,17) ) ,
map of sum(l,16) to ( jump sum(l,8) ) ,
map of sum(l,17) to ( store r′ in hp -1 heap )) ;

(4) head-code r r′ l lf = overlay(
map of sum(l,0) to ( load r 1 heap into global ) ,
map of sum(l,1) to ( compare global with -1 ) ,
map of sum(l,2) to ( branchequal lf ) ,
map of sum(l,3) to ( load r 0 heap into r′ )) ;
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(5) tail-code r r′ l lf = overlay(
map of sum(l,0) to ( load r 1 heap into r′ ) ,
map of sum(l,1) to ( compare r′ with -1 ) ,
map of sum(l,2) to ( branchequal lf ) ,

(6) at-code r r′ r′′ l lf= overlay(
map of sum(l,0) to ( compare r′ with 1 ) ,
map of sum(l,1) to ( branchlessthan lf ) ,
map of sum(l,2) to ( move r to global ) ,
map of sum(l,3) to ( move r′ to arg ) ,
map of sum(l,4) to ( compare arg with 1 ) ,
map of sum(l,5) to ( branchequal sum(l,11) ) ,
map of sum(l,6) to ( load global 1 heap into global ) ,
map of sum(l,7) to ( compare global with -1 ) ,
map of sum(l,8) to ( branchequal lf ) ,
map of sum(l,9) to ( move difference arg 1 to arg ) ,
map of sum(l,10) to ( jump sum(l,4) ) ,
map of sum(l,11) to ( load global 0 heap into r′′ ) ,

(7) e-size = 4 ;

(8) s-size = 6 ;

(9) c-size = 18 ;

(10) h-size = 4 ;

(11) t-size = 3 ;

(12) a-size = 12 .

C.2.2 Committing

introduces: putcommit , combinecommit , combine .

• putcommit :: linenumber, 0 ||| 1 → program (total) .

• combinecommit :: linenumber → program (total) .

• combine :: linenumber,
linenumber-complete, linenumber-escape, linenumber-fail → program (total) .

i : 0 ||| 1 ;
l : linenumber ;
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ln : linenumber-complete ;
le : linenumber-escape ;
lf : linenumber-fail

⇒
(1) putcommit l i = overlay(

map of sum(l,0) to ( move i to global ) ,
map of sum(l,1) to ( store global in cp 0 commits ) ,
map of sum(l,2) to ( move sum cp 1 to cp) ,

(2) combinecommit l = overlay(
map of sum(l,0) to ( move difference cp 1 to cp ) ,
map of sum(l,1) to ( load cp 0 commits into global) ,
map of sum(l,2) to ( compare global with 0 ) ,
map of sum(l,3) to ( branchequal sum(l,5) ) ,
map of sum(l,4) to ( store global in cp -1 commits )) ,

(3) combine l ln le lf = overlay(
map of sum(l,5) to ( jump ln ) ,
combinecommit sum(l,6) ,
map of sum(l,11) to ( jump le) ,
combinecommit sum(l,12) ,
map of sum(l,17) to ( jump lf ) ,

C.2.3 Bookkeeping

introduces: finalize .

• finalize :: linenumber, cleanup 0 ||| 1 ||| 2, linenumber → program (total) .

l, l′ : linenumber-complete
u : cleanup
i : 0 ||| 1 ||| 2

⇒
(1) finalize l u i l′ = overlay(

map of sum(l,0) to ( move difference sp u to sp ) ,
map of sum(l,1) to ( move i to cef ) ,
map of sum(l,2) to ( jump l′ ) ) .
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C.2.4 Call

introduces: call-sequence , return-sequence .

• call-sequence ::
linenumber, general-register, general-register, cleanup, cleanup, cleanup,
linenumber-complete, linenumber-escape, linenumber-fail → program (total) .

• return-sequence ::
general-register, general-register, linenumber → (total) .

l: linenumber ;
ln : linenumber-complete ;
le : linenumber-escape ;
lef : linenumber-fail ;
r , r′ , an , ae : general-register ;
un , ue , uf : cleanup

⇒
(1) call-sequence l r r′ un ue uf ln le lf = overlay(

map of sum(l,0) to ( move sum sp 1 to sp ) ,
map of sum(l,1) to ( load r 1 heap into global ) ,
map of sum(l,2) to ( store global in sp 0 stack) ) ,
map of sum(l,3) to ( load r 0 heap into global ) ,
map of sum(l,4) to ( move r′ to arg ) ,
map of sum(l,5) to ( storeregisters ) ,
map of sum(l,6) to ( move sp to staticlink ) ,
map of sum(l,7) to ( move arg to reg 0 ) ,
map of sum(l,8) to ( call ) ,
map of sum(l,9) to ( loadregisters ) ,
map of sum(l,10) to ( move arg to r ) ,
map of sum(l,11) to ( compare cef with 0 ) .
map of sum(l,12) to ( branchequal sum(l, 17) ) ,
map of sum(l,13) to ( compare cef with 1 ) ,
map of sum(l,14) to ( branchequal sum(l,19) ) .
map of sum(l,15) to ( move difference sp sum(uf , 1) to sp ) ,
map of sum(l,16) to ( jump lf ) ,
map of sum(l,17) to ( move difference sp sum(un, 1) tp sp ) .
map of sum(l,18) to ( jump ln ) ,
map of sum(l,19) to ( move difference sp sumue, 1) tp sp ) ,
map of sum(l,20) to ( jump le ) ) .
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putcommit sum(l,21) 0 ,
finalize sum(l,24) uf 2 lf ) ,

(2) return-sequence an ae l = overlay(
map of sum(l,0) to ( move an to arg ) ,
map of sum(l,1) to ( jump sum(l, 3) ) ,
map of sum(l,2) to ( move ae to arg ) ,
map of sum(l,3) to ( return )) .

C.3 Analysis

needs: Compile Time Entities .

C.3.1 Actions

needs: Unfolding , Tuples , Dependent Data .

introduces: a-count .

• a-count :: Act, data-type, symbol-table → ac-state (partial) .

h, h′
n, h′′

n, h′
e, h′′

e : data-type ;
d : symbol-table ;
le : linenumber-escape ;
z′n , z′′n , z′e z′′e : truth-value ;
e , e′ , e′′ : block
n′ , n′′ : natural

⇒
(1) a-count “complete” h d = ac-state sum(e-size,6) true () false () empty-list ;

(2) a-count “escape” h d = ac-state 6 false () true h empty-list ;

(3) a-count “fail” h d = ac-state 6 false () false () empty-list ;

(4) a-count “commit” h d = ac-state sum(e-size,6) true () false () empty-list ;

(5) a-count “diverge” h d = ac-state 1 false () false () empty-list ;

(6) a-count “regive” h d =
ac-state 6 true h false () empty-list ;
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(7) (1) d-count D h d = ( n:natural, S:type)
⇒ a-count [[ “give” D:Dependent ]] h d =

ac-state sum(n,s-size,12) true S false () emptylist ;

(8) (1) d-count D h d = ( n:natural, truth-value-type)
⇒ a-count [[ “check” D:Dependent ]] h d =

ac-state sum(n,2,e-size,12) true () false () emptylist ;

(9) (1) d-count D h d = ( n:natural, S:type)
⇒ a-count [[ “bind” k:token “to” D:Dependent ]] h d =

ac-state sum(n,2,e-size,11) true () false () (list of entry k S) ;

(10) (1) d-count D h d = ( n′:natural, S ′:(storable-type S ′′)
(2) d-count D′ h d = ( n′′:natural, S ′′:(cell-type)
⇒ a-count [[ “store” D:Dependent “in” D′:Dependent ]] h d =

ac-state sum(n′, n′′,3,e-size,12) true () false () emptylist ;

(11) a-count [[ “allocate” “truth-value” “cell” ]] h d =
ac-state sum(1,s-size,9) true truth-value-cell-type false () empty-list ;

(12) a-count [[ “allocate” “integer” “cell” ]] h d =
ac-state sum(1,s-size,9) true integer-cell-type false () empty-list ;

(13) (1) d-count D h d = ( n:natural, integer-type)
⇒ a-count [[ “batch-send” D:Dependent ]] h d =

ac-state sum(n,5,e-size,12) true () false () emptylist ;

(14) a-count [[ “batch-receive” “an” “integer” ]] h d =
ac-state sum(5,s-size,9) true integer false () empty-list ;

(15) (1) d-count D h d = ( n:natural,
abstraction-type h′:data-type zn:truth-value hn:data-type
ze:truth-value he:data-type d′:symbol-table) ;

(2) w-count D′ h d = wc-state n′:natural h′:data-type ;
⇒ a-count [[ “enact” “application” D:Dependent “to” D′:Tuple ]] h d =

ac-state sum(n,n′,27) zn hn ze he emptylist ;

(16) a-count [[ “indivisibly” A:Act ]] h d = a-count A h d ;

(17) (1) u-count U h d false () false () empty-list = ac-state n zn hn ze he e
⇒ a-count [[ “unfolding” U :Unf ]] h d = ac-state sum (4,n,18) zn hn ze he e ;

(18) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;
(2) a-count A′ h d = ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) compare-data-types z′e h′
e z′′e h′′

e = he:data-type
⇒ a-count [[ A:Act [[“and” “then”]] A′:Act ]] h d = ac-state sum(n′,2,n′′,c-size, 18)
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both(z′n, z′′n) (h′
n, h′′

n) either(z′e, z′′e ) he e ;

(19) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;
(2) a-count A′ h′

n d = ac-state n′′ z′′n h′′
n z′′e h′′

e e ;
(3) compare-data-types z′e h′

e z′′e h′′
e = he:data-type

⇒ a-count [[ A:Act “then” A′:Act ]] h d = ac-state sum(n′,2,n′′, 18)
both(z′n, z

′′
n) h′′

n either(z′e, z
′′
e ) he e ;

(20) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h insert (d, e′) = ac-state n′′ z′′n h′′

n z′′e h′′
e e′′ ;

(3) compare-data-types z′e h′
e z′′e h′′

e = he:data-type
⇒ a-count [[ A:Act “before” A′:Act ]] h d = ac-state sum(n′,2,n′′,c-size, 18)

both(z′n, z′′n) (h′
n, h′′

n) either(z′e, z′′e ) he concatenation(e′′,, e′);

(21) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h′

e d = ac-state n′′ z′′n h′′
n z′′e h′′

e e′′ ;
(3) compare-data-types z′n h′

n z′′n h′′
n = hn:data-type

(4) compare-blocks z′n e′ z′′n e′′ = e:block
⇒ a-count [[ A:Act “trap” A′:Act ]] = ac-state sum(n′,2,n′′,18)

either(z′n,z′′n) hnboth(z′e,z
′′
e ) h′′

e e ;

(22) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h d = ac-state n′′ z′′n h′′

n z′′e h′′
e ;

(3) compare-data-types z′n h′
n z′′n h′′

n = hn:data-type ;
(4) compare-data-types z′e h′

e z′′e h′′
e = he:data-type ;

(5) compare-blocks z′n e′ z′′n e′′ = e:block ;
⇒ a-count [[ A:Act “or” A′:Act ]] =

ac-state sum(n′,7,n′′,18)
either(z′n,z′′n) (z′e,z

′′
e ) he e ;

(23) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h insert(d,e′) = ac-state n′′ z′′n h′′

n z′′e h′′
e empty-list ;

(3) compare-data-types z′e h′
e z′′e h′′

e = he:data-type ;
(4) abstraction-free (h′

n h′
e h′′

n h′′
e) = true

⇒ a-count [[ [[ “furthermore” A′:Act ]] “hence” A′: Act ]] h d =
ac-state sum(n′,2,n′′,c-size,18) both(z′n,z′′n) (h′

n,h′′
n)

either(z′e,z
′′
e ) he empty-list ;

(24) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h′

n insert(d,e′) = ac-state n′′ z′′n h′′
n z′′e h′′

e empty-list ;
(3) compare-data-types z′e h′

e z′′e h′′
e = he:data-type ;

(4) abstraction-free (h′
e h′′

n h′′
e) = true
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⇒ a-count [[ [[ “furthermore” A′:Act ]] “hence” A′: Act ]] h d =
ac-state sum(n′,2,n′′,18) both(z′n,z′′n) h′′

n either(z′e,z
′′
e ) he emptylist :

(25) (1) w-count D′ h d = error
⇒ a-count [[ “enact” “application” D:Dependent “to” D′:Tuple ]] h d =

ac-state 6 false() false () empty-list ;

(26) (1) d-count D h d = error
⇒
(2) a-count [[ “give” D:Dependent ]] h d = ac-state 6 false () false () empty-list ;
(3) a-count [[ “check” D:Dependent ]] h d = ac-state 6 false () false () empty-list ;
(4) a-count [[ “bind” k:token “to” D:Dependent ]] h d =

ac-state 6 false () false () empty-list ;

(5) a-count [[ “store” D:Dependent “in” D′:Dependent ]] h d =
ac-state 6 false () false () empty-list ;

(6) a-count [[ “store” D′:Dependent “in” D:Dependent ]] h d =
ac-state 6 false () false () empty-list ;

(7) a-count [[ “batch-send” D:Dependent ]] h d =
ac-state 6 false () false () empty-list ;

(8) a-count [[ “enact” “application” D:Dependent “to” D′:Tuple ]] h d =
ac-state 6 false () false () empty-list ;

C.3.2 Unfolding

needs: Actions .

introduces: u-count .

• u-count :: Unf, data-type, symbol-table, truth-value,
data-type, truth-value, data-type, block → ac-state (partial) .

h, hn, h′
n, h′′

n, he, h′
e, h′′

e : data-type ;
d : symbol-table ;
zn, z′n, z′′n, ze, z′e z′′e : truth-value ;
e , e′ , e′′ : block
n′ , n′′ : natural

⇒
(1) (1) a-count A h d = ac-state n′ z′n () z′e h′

e empty-list ;
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(2) compare-data-types ze he z′e h′
e = h′′′

e :data-type ;
(3) u-count U h d zn hn either(ze,z

′
e) h′′′

e e = ac-state n′′ z′′n h′′
n z′′e h′′

e e′′

⇒ u-count [[ A:Act O:( [[ “and” “then” ]] ||| “before”) U :Unf ]] h d zn hn ze he e
= ac-state sum(n′,7,n′′) z′′n h′′

n z′′e h′′
e e′′ ;

(2) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;
(2) compare-data-types ze he z′e h′

e = h′′′
e :data-type ;

(3) u-count U h′
n d zn hn either(ze,z

′
e) h′′′

e e = ac-state n′′ z′′n h′′
n z′′e h′′

e e′′

⇒ u-count [[ A:Act “then” U :Unf ]] h d zn hn ze he e =
ac-state sum(n′,7,n′′) z′′n h′′

n z′′e h′′
e e′′ ;

(3) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) compare-data-types zn hn z′n h′

n = h′′′
n :data-type ;

(3) compare-blocks zn e z′n e′ = e′′′:block ;
(4) u-count U h′

e d either(zn,z′n) h′′′
n ze he e′′′ = ac-state n′′ z′′n h′′

n z′′e h′′
e e′′

⇒ u-count [[ A:Act “trap” U :Unf ]] h d zn hn ze he e =
ac-state sum(n′,7,n′′) z′′n h′′

n z′′e h′′
e e′′ ;

(4) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) compare-data-types zn hn z′n h′

n = h′′′
n :data-type ;

(3) compare-data-types ze he z′e h′
e = h′′′

e :data-type ;
(4) compare-blocks zn e z′n e′ = e′′′:block ;
(5) u-count U h d either(zn,z′n) h′′′

n either(ze,z
′
e) h′′′

e e′′′ =
ac-state n′′ z′′n h′′

n z′′e h′′
e e′′

⇒ u-count [[ A:Act “or” U :Unf ]] h d zn hn ze he e =
ac-state sum (n′,12,n′′) z′′n h′′

n z′′e h′′
e e′′ ;

(5) u-count [[ U :Unf “or” A:Act ]] h d zn hn ze he e =
u-count [[ A “or” U ]] h d zn hn ze he e ;

(6) u-count “unfold” h d zn hn ze he e = ac-state 2 zn hn ze he e .

C.3.3 Tuples

needs: Dependent Data .

introduces: w-count

• w-count ::
Tuples, data-type, symbol-table → (natural, data-type) ||| error (partial) .

h : data-type ;
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d : symbol-table ;
⇒
(1) w-count “()” h d = wc-state e-size () ;

(2) (1) d-count D h d = ( n:natural, S:type)
⇒ w-count D:Dependent h d = wc-state sum(n,s-size) S ;

(3) (1) d-count D h d = error
⇒ w-count D:Dependent h d = error ;

(4) (1) w-count T h d = wc-state n:natural h′:datatype ;
(2) w-count T ′ h d = wc-state n:natural h′′:datatype
⇒ w-count [[T :Tuple “,” T ′:Tuple ]] h d = wc-state sum(n,n′,c-size) (h′,h′′) ;

(5) (1) d-count D h d = error
⇒
(2) w-count [[T :Tuple “,” T ′:Tuple ]] h d = error ;
(3) w-count [[T ′:Tuple “,” T ′:Tuple ]] h d = error ;

(6) w-count “them” h d = wc-state 0 h .

C.3.4 Dependent Data

needs: Actions , Lookup in Symbol Tables,
Unary Operations , Binary Operations , Data .

introduces: d-count .

• d-count ::
Dependent, data-type, symbol-table → (natural, type) ||| error (partial) .

h , h′ , hn , he : data-type ;
d : symbol-table ;
zn , ze : truth-value ;
n : natural

⇒
(1) d-count “true” h d = (1, truth-value-type) ;

(2) d-count “false” h d = (1, truth-value-type) ;

(3) d-count n:natural h d = (1, integer-type) ;

(4) d-count [[ “empty-list” “&” “[” T :Type “]” “list” ]] h d = (e-size, list-type, type T ) ;
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(5) (1) data-type D = h′ ;

(2) a-count A h′ concatenation(list of empty-list d) = ac-state zn hn ze he empty-list
⇒ d-count [[ “closure” “abstraction” “of” A:Act “&” “[” “perhaps” “using”

D:Data “]” “act” ]] h d =
(sum(n, 10), abstraction-type h′ zn hn ze he d) ;

(6) (1) data-type D h d = (n:natural, S:type);
(2) unary-count O S = ( n′:natural, S:type)
⇒ d-count [[ O:Unary D:Dependent ]] h d = (sum(n, n′), s′) ;

(7) (1) data-type D h d = (n:natural, S:type);
(2) unary-count O S = error
⇒ d-count [[ O:Unary D:Dependent ]] h d = error ;

(8) (1) d-count D h d = = error
⇒ d-count [[ O:Unary D:Dependent ]] h d = error ;

(9) (1) d-count D h d = (n:natural, S:type) ;
(2) d-count D′ h d = ( n′natural, S ′:type) ;
(3) binary-count O S S ′ =( n′′:natural, S ′′:type)
⇒
(4) d-count [[ O:Binary “(” D:Dependent “,” D′:Dependent “)” ]] h d =

(sum( n,n′,n′′), S ′′) ;
(5) d-count [[ D:Dependent O:( “is” ||| [[ “is” “less” “than” ]] ) D′:Dependent ]]

h d = (sum( n,n′,n′′), S ′′) ;

(10) (1) d-count D h d = (n:natural, S:type) ;

(2) d-count D′ h d = ( n′natural, S ′:type) ;

(3) binary-count O S S ′ =error
⇒
(4) d-count [[ O:Binary “(” D:Dependent “,” D′:Dependent “)” ]] h d = error ;

(5) d-count [[ D:Dependent O:( “is” ||| [[ “is” “less” “than” ]] ) D′:Dependent ]]
h d = error ;

(11) (1) d-count D h d = error

⇒
(2) d-count [[ D:Dependent O:( “is” ||| [[ “is” “less” “than” ]] ) D′:Dependent ]]

h d = error ;
(3) d-count [[ D′:Dependent O:( “is” ||| [[ “is” “less” “than” ]] ) D:Dependent ]]

h d = error ;
(4) d-count [[ O:Binary “(” D:Dependent “,” D′:Dependent “)” ]] h d = error ;
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(5) d-count [[ O:Binary “(” D′:Dependent “,” D:Dependent “)” ]] h d = error ;
(6) d-count [[ “component#” D:Dependent “items” D′:Dependent “)” ]] h d = error ;
(7) d-count [[ “component#” D′:Dependent “items” D:Dependent “)” ]] h d = error ;

(12) (1) d-count D h d = (n:natural, S:type) ;
(2) d-count D′ h d = ( n′natural, S ′:type) ;
(3) binary-count “at” S S ′ =(n′′:natural, S ′′:type)
⇒ d-count [[“component#” D′:Dependent “items” D:Dependent ]] h d =

(sum(n, n′ n′′), S ′′) ;

(13) (1) d-count D h d = (n:natural, S:type) ;
(2) d-count D′ h d = (n′:natural, S ′:type) ;
(3) binary-count “at” S S ′ = error
⇒ d-count [[“component#” D′:Dependent “items” D:Dependent ]] h d = error ;

(14) (1) h:type) ;
⇒ d-count “it” h d = (sum(1,a-size,h) ;

(15) (1) h & type = nothing ;
⇒ d-count “it” h d = error ;

(16) (1) component # n of h) : (datum-type S)

⇒ d-count [[“the” “given” S:Datum “#” n:natural ]] h d =
(sum(1, a-size), component #n of h) ;

(17) (1) (component # n of h) & (datum-type S) = nothing
⇒ d-count [[“the” “given” S:Datum “#” n:natural ]] h d = error ;

(18) (1) find-count k d = (n:natural, S ′:type, j:natural) ;
(2) S ′ : (datum-type S)
⇒ d-count [[“the” S:Datum “bound” “to” k:token ]] h d = (sum(n,2),s′) ;

(19) (1) find-count k d = (n:natural, S ′:type, j:natural) ;
(2) S ′ & (datum-type S) = nothing
⇒ d-count [[“the” S:Datum “bound” “to” k:token ]] h d = error ;

(20) (1) find-count k d = error
⇒ d-count [[“the” S:Datum “bound” “to” k:token ]] h d = error ;

(21) (1) d-count D h d = (n:natural, S ′:cell-type) ;
(2) storable-type S ′ = S ;
(3) S ′ : (datum-type S)
⇒ d-count [[“the” S:Datum “stored” “in” D:Dependent ]] h d = (sum(n,4), S ′′) ;

(22) (1) d-count D h d = (n:natural, S ′:cell-type) ;
(2) storable-type S ′ = S ′′ ;
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(3) S ′′ & (datum-type S) = nothing
⇒ d-count [[“the” S:Datum “stored” “in” D:Dependent ]] h d = error ;

(23) (1) d-count D h d = (n:natural, S ′:cell-type) ;
(2) S ′ & cell-type = nothing
⇒ d-count [[“the” S:Datum “stored” “in” D:Dependent ]] h d = error ;

(24) (1) d-count D h d = error ;
⇒ d-count [[“the” S:Datum “stored” “in” D:Dependent ]] h d = error ;

(25) d-count [[“(” D:Dependent “)” ]] h d = d-count D h d .

C.3.5 Lookup in Symbol Tables

introduces: find-count , block-find-count .

• find-count :: token, symbol-table → (natural, type, natural) ||| error (total) .

• block-find-count :: token, block → (type, natural) ||| error (total) .

(1) find-count k:token empty-list = error .

(2) (1) block-find–count k e = (S:type, j:natural)
⇒ find-count k:token concatenation(list of e:block, d:symbol-table) =(0 S j) .

(3) (1) block-find–count k e = error ;
(2) find–count k d = (n:natural, S:type, j:natural)
⇒ find-count k:token concatenation(list of e:block, d:symbol-table)

(sum(n, 1), S, j) .

(4) (1) block-find–count k e = error ;
(2) find–count k d = error
⇒ find-count k:token concatenation(list of e:block, d:symbol-table) = error .

(5) block-find–count k:token empty-list = error .

(6) block-find-count k:token concatenation(list of entry k′:token S:type, e:block) =
if k is k′

then (S, sum(count of items of e,1))
else block-find-count k e .
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C.3.6 Unary Operations

introduces: unary-count

• unary-count :: Unary, type → (natural, type) ||| error (total) .
(1) unary-count “not” S:type =

if S is truth-value-type then (2, truth-value-type) else error .

(2) unary-count “negation” S:type = if S is integer-type then (2, integer-type) else error .

(3) unary-count [[ “list” “of” ]] S:type = (s-size, list-type S) .

(4) unary-count “head” (list-type S:type) = (h-size, S) .

(5) unary-count “tail” S:list-type = (t-size, S) .

(6) (1) S & list-type = nothing
⇒
(2) unary-count “head” S:type = error ;
(3) unary-count “tail” S:type = error .

C.3.7 Binary Operations

introduces: binary-count

• binary-count :: Binary ||| “is” ||| [[ “is” “less” “than” ]] ||| “at”, type, type →
(natural, type) ||| error (total) .

(1) binary-count O:(both” ||| “either”) S:type S ′:type =
if both(S is S ′, S is truth-value-type) then (7, truth-value-type) else error .

(2) binary-count O: (”sum ||| “difference”) S:type S ′:type =
if both(S is S ′, S is integer-type) then (1, integer-type) else error .

(3) binary-count “concatenation” S:list-type S ′:list-type =
if S is S ′, S then (c-size, S) else nothing .

(4) (1) S & list-type = nothing
⇒
(2) binary-count “concatenation” S:type S ′:type = error ;
(3) binary-count “concatenation” S ′:type S:type = error .

(5) binary-count “is” S:type S ′:type =
if both(S is S ′, either(S is truth-value-type, S is integer-type,
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S is truth-value-cell-type, S is integer-cell-type))
then (5, truth-value-type) else error .

(6) binary-count [[“is” “less” “than”]] S:type S ′:type =
if both( S is S ′, S is integer-type) then (5, truth-value-type) else error .

(7) binary-count “at” (list-type S:type) S ′:type =
if S ′ is integer-type then (a-size, S) else error .

(8) (1) S & list-type = nothing
⇒ binary-count “at” S:type S ′:type = error ;

C.3.8 Data

introduces: datum-type , data-type , type .

• datum-type :: Datum → type .
• data-type :: Data → data-type (total) .
• type :: Type → type (total) .

(1) datum-type “datum” = type .

(2) datum-type “cell” = cell-type .

(3) datum-type “abstraction” = abstraction-type .

(4) datum-type “list” = list-type .

(5) datum-type [[ S:Datum “|||” S ′:Datum ]] = (datum-type S) ||| (datum-type S ′) .

(6) datum-type T :Type = type T .

(7) data-type “()” = () .

(8) data-type T :Type = type T .

(9) data-type [[ D:Data “,” D′:Data ]] = (data-type D, data-type D′) .

(10) type “truth-value” = truth-vale-type .

(11) type “integer” = integer-type .

(12) type [[ “truth-value” “cell” ]] = truth-vale-cell-type .

(13) type [[ “integer” “cell” ]] = integer-cell-type .

(14) type [[ “[” T :Type “]” “list” ]] = list-type (type T ) .
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C.4 Code Generation

needs: Compile Time Entities , Code Macros , Analysis .

C.4.1 Actions

needs: Unfolding , Thples , Dependent Data .

introduces: perform .

• perform ::
Act, data-type, general-register, frozen, symbol-table,
cleanup, cleanup, cleanup, linenumber, linenumber-complete,
linenumber-escape, linenumber-fail → a-state (partial) .

h , hn , h′
n , h′′

n , he , h′
e , h′′

e : data-type ;
a , a′ , an , a′

n , a′′
n , ae , a′

e , a′′
e , r , r′ : general-register ;

f , f ′ : frozen ;
d : symbol-table ;
un , ue , uf : cleanup ;
l , l′ , l′′, l′′′ : linenumber ;
ln : linenumber-complete ;
le : linenumber-escape ;
lf : linenumber-fail ;
j , n , n′ , n′′ : natural ;
zn , z′n , z′′n , ze , z′e , z′′e : truth-value ;
e , e′ , e′′ : block ;
p , p′ , p′′ : program

⇒
(1) (1) r = free-register f

⇒ perform “complete” h a f d un ue uf l ln le lf = a-state overlay(
empty-list-code r l , putcommit sum(l,3) 0, finalize sum(l,6) un 0 ln) r a ;

(2) perform “escape” h a f d un ue uf l ln le lf = a-state overlay(
putcommit l 0, finalize sum(l,3) ue 1 le) a a ;

(3) perform “fail” h a f d h un ue uf l ln le lf = a-state overlay(
putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;

(4) (1) r = free-register f
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⇒ perform “complete” h a f d un ue uf l ln le lf = a-state overlay(
empty-list-code r l , putcommit sum(l,3) 1, finalize sum(l,6) un 0 ln) r a ;

(5) perform “diverge” h a f d un ue uf l ln le lf = a-state (map of l to (jump l )) a a ;

(6) perform “regive” h a f d un ue uf l ln le lf = a-state overlay(
putcommit l 0, finalize sum(l,3) un 2 ln) a a ;

(7) (1) d-count D h d = (n:natural, S:type) ;
(2) l′ = sum(l, n) ;
(3) l′′ = sum(l′,s-size) ;
(4) evaluate D h a f d l sum(l′′,6) = (p:program, r:general-register) ;
(5) r′ = free-register union(f,set of r) ;
⇒
(6) perform [[ “give” D:Dependent ]] h a f d un ue uf l ln le lf = a-state overlay(

p ,
single-list-code r r′ l′ ,
putcommit l′′ 0 ,
finalize sum(l′′,3) un 0 ln ,
putcommit sum(l′′,6) 0 ,
finalize sum(l′′,9) uf 2 lf )

r′ a ;

(8) (1) d-count D h d = (n:natural, truth-value-type) ;
(2) l′ = sum(l, n) ;
(3) l′′ = sum(l′,2,e-size) ;
(4) evaluate D h a f d l sum(l′′,6) = (p:program, r:general-register) ;
⇒ perform [[ “check” D:Dependent ]] h a f d un ue uf l ln le lf = a-state overlay(

p ,
map of sum(l′,0) to ( compare r with 0 ) ,
map of sum(l′,1) to ( branchequal sum(l′′,6) ) ,
empty-list-code r sum(l′,2) ,
putcommit l′′0 ,
finalize sum(l′′,3) un 0 ln
putcommit sum(l′′,6) 0 ,
finalize sum(l′′,9) uf 2 lf )

r a ;

(9) (1) d-count D h d = (n:natural, S:type) ;
(2) l′ = sum(l, n) ;
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(3) l′′ = sum(l′,2,e-size) ;
(4) evaluate D h a f d l sum(l′′,5) = (p:program, r:general-register) ;
(5) un is 0 = true
⇒ perform [[ “bind” k:token “to” D:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(
p ,
map of sum(l′,0) to ( move sum sp 1 to sp ),
map of sum(l′,1) to ( store r in sp 0 stack ) ,
empty-list-code r sum(l′,2) ,
putcommit l′′ 0 ,
putcommit l′′ 0 ,
map of sum(l′′,3) to ( move 0 to cef ) ,
map of sum(l′′,4) to ( jump ln ) ,
putcommit sum(l′′,5) 0 ,
finalize sum(l′′,8) uf 2 lf )

r a ;

(10) (1) d-count D h d = (n′:natural, S ′:type) ;
(2) d-count D′ h d = (n′′:natural, S ′′:type) ;
(3) l′ = sum(l, n′) ;
(4) l′′ = sum(l′, n′′) ;
(5) l′′′ = sum(l′,3,e-size) ;
(6) evaluate D h a union(f , set of a) d l sum(l′′′,6) =

(p:program, r:general-register) ;
(7) f ′ = union(f , set of r′) ;
(8) evaluate D′ h a f ′ d l′ sum(l′′′,6) = (p′′:program, r′′:general-register)
⇒ perform [[ “store” D:Dependent “in” D′:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(
p′ ,
p′′ ,
map of sum(l′′,0) to ( move 1 to global ),
map of sum(l′′,1) to ( store global in r′′ 0 store ) ,
map of sum(l′′,2) to ( store r′ in r′′ 1 store )) ,
empty-list-code r′ sum(l′′,3) ,
putcommit l′′′ 1 ),
finalize sum( l′′′ ,3) un 0 ln ) ,
putcommit sum(l′′′,6) 0 ),
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finalize sum(l′′′,9) uf 2 lf )

r′ a ;

(11) (1) r = free-register f
(2) r′ = free-register union(f , set of r) ;
(3) l′ = sum(l,1,s-size)
⇒ perform [[ “allocate” x:(“truth-value” ||| “integer”) “cell” ]]

h a f d un ue uf l ln le lf = a-state overlay(
map of sum(l,0) to ( move firstfree to r ),
single-list-code r r′ sum(l,1) ,
map of l′ to ( move 0 to global ) ,
map of sum(l′,1) to ( store global in r 0 store )) ,
map of sum(l′,2) to ( move sum fristfree 2 to firstfree )) ,
putcommit sum(l′,3) 1 ,
finalize sum(l′′′,6) un 0 ln ))

r′ a ;

(12) (1) d-count D h d = (n:natural,integer-type) ;
(2) l′ = sum(l, n) ;
(3) l′′ = sum(l′,5,e-size) ;
(4) evaluate D h a f d l sum(l′′,6) = (p:program, r:general-register) ;
(5) r′ = free-register uinon(f , set of r)
⇒ perform [[ “batch-send” D:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(
p ,
map of sum(l′,0) to ( move 0 to global ),
map of sum(l′,1) to ( load global 0 output into arg ) ,
map of sum(l′,2) to ( move sum arg 1 to arg ) ,
map of sum(l′,3) to ( store arg in global 0 output ) ,
map of sum(l′,4) to ( store r in arg 0 output ) ,
empty-list-code r′ sum(l′,5) ,
putcommit l′′ 1 ,
finalize sum( l′′ ,3) un 0 ln ,
putcommit sum(l′′,6) 0 ,
finalize sum(l′′,9) uf 2 lf )

r′ r′ ;
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(13) (1) r = free-register f ;
(2) r′ = free-register union(f , set of r) ;
(3) l′ = sum(l,7) ;
(4) l′′ = sum(l′,s-size) ;
⇒ perform [[ “batch-receive” “an” “integer” ]] h a f d un ue uf l ln le lf =

a-state overlay(
map of sum(l′,0) to ( move 0 to global ),
map of sum(l′,1) to ( load global 0 output into arg ) ,
map of sum(l′,2) to ( compare arg with 0 ) ,
map of sum(l′,3) to ( branchequal sum(l′′,6) ) ,
map of sum(l′,4) to ( load arg 0 input into r ) ,
map of sum(l′,5) to ( move difference arg 1 to arg ) ,
map of sum(l′,6) to ( store arg into global 0 input ) ,
single-list-code r r′ l′ ,
putcommit l′′ 1 ,
finalize sum( l′′ ,3) un 0 ln ,
map of sum(l′′,6) to ( jump sum(l′′,6) ) ,

r′ r′ ;

(14) (1) d-count D h d = (n:natural, abstraction-type h′:data-type zn:truth-value
hn:data-type ze:truth-value he:data-type d′:symbol-table) ;

(2) w-count D′ h d = wc-state n′natural h′data-type ;
(3) l′ = sum(l, n) ;
(4) l′′ = sum(l′, n′) ;
(5) evaluate D h a union(f , set of a) d l sum(l′′,21) =

(p:program, r:general-register) ;
(6) with D′ h a union(f , set of r) d l′ sum(l′′,21) =

(p′:program, r′:general-register) ;
⇒ perform [[ “enact” “application” D:Dependent “to” D′:Tuple ]]

h a f d un ue uf l ln le lf =
a-state overlay( p, p′, call-sequence l′′ r r′ un ue uf ln le lf ) r r ;

(15) perform [[ “indivisibly” A:Act ]] h a f d un ue uf l ln le lf =
perform A h a f d un ue uf l ln le lf ;

(16) (1) u-count D h d false() false() empty-list = ac-state n zn hn ze he e ;
(2) a′ = free-register f ;
(3) l′ = sum(l,4) ;
(4) l′′ = sum(l′, n) ;
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(5) unf U h a′ union(f , set of a) d un ue uf a′ false() a false() a empty-list
l′ l′′ sum(l′′,6) sum(l′′,12) l′ = a-state p an ae ;

(6) either(e is empty-list, un is 0 ) = true
⇒ perform [[ “unfolding” U :Unf ]] h a f d un ue uf l ln le lf = a-state overlay(

putcommit l 0 ,
map of sum(l,3) to ( move a to a′ ) ,
p ,
combine l′′ ln le lf )

an ae ;

(17) (1) a-count A h d ac-state n′ z′n h′
n z′e h′

e empty-list ;
(2) a-count A′ h d ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) l′ = sum(l, n′) ;
(4) l′′ = sum(l′,2,n′′) ;
(5) l′′′ = sum(l′′,c-size ) ;
(6) perform A h a′ union(f , set of a) d 0 ue uf

l sum(l′,2) l′ lf = a-state p′ a′
n a′

e ;
(7) perform A′ h a′ union(f , set of a′

n) d un ue uf

sum(l′,2) l′′ sum(l′′′,6) sum(l′′′,12) = a-state p′′ a′′
n a′′

e ;
(8) either(e is empty-list, un is 0) = true
(9) r = is free-register union(f , set of (a′

n, a′′
n))

⇒ perform [[ A:Act [[ “and” “then” ]] A′:Act ]] h a f d un ue uf l ln le lf =
a-state overlay(
p′

map of l′ ( move a′
e to a′′

e ) ,
map of sum(l′,1) to ( jump le ) ,
p′′ ,
concatenation-code a′

n a′′
n r l ,

combine l′′′ ln le lf )

r a′′
e ;

(18) (1) a-count A h d ac-state n′ z′n h′
n z′e h′

e empty-list ;
(2) a-count A′ h′

n d ac-state n′′ z′′n h′′
n z′′e h′′

e e ;
(3) l′ = sum(l, n′) ;
(4) l′′ = sum(l′,2,n′′) ;
(5) perform A h a f d 0 ue uf l sum(l′,2) l′ lf = a-state p′ a′

n a′
e ;

(6) perform A′ h′
n a′

n f d un ue uf sum(l′,2) l′′ sum(l′′,6) sum(l′′,12) =
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a-state p′′ a′′
n a′′

e ;

(7) either(e is empty-list un is 0) = true
⇒ perform [[ A:Act “then” A′:Act ]] h a f d un ue uf l ln le lf =

a-state overlay(
p′

map of l′ ( move a′
e to a′′

e ) ,
map of sum(l′,1) to ( jump le ) ,
p′′ ,
combine l′′ ln le lf )

a′′
n a′′

e ;

(19) (1) a-count A h d ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h insert(d,e′) = acstate n′′ z′′n h′′

n z′′e h′′
e e′′ ;

(3) l′ = sum(l,n′) ;
(4) l′′ = sum(l′,2,n′′) ;
(5) l′′′ = sum(l′′,c-size ) ;
(6) perform A h a union(f , set of a) d 0 ue uf

l sum(l′,2) l′ lf = a-state p′ a′
n a′

e ;
(7) perform A′ h a union(f , set of a′

n) insert(d,e′) un

sum(ue,count of items of e′) sum(uf ,count of items of e′)
sum(l′,2) l′′ sum(l′′′,6) sum(l′′′,12) = a-state p′′ a′′

n a′′
e ;

(8) either(concatenation(e′′,e′) is empty-list, un is 0) = true ;
(9) r = is free-register union(f , set of (a′

n, a′′
n))

⇒ perform [[ A:Act “before” A′:Act ]] h a f d un ue uf l ln le lf =
a-state overlay(
p′

map of l′ ( move a′
e to a′′

e ) ,
map of sum(l′,1) to ( jump le ) ,
p′′ ,
concatenation-code a′

n a′′
n r l ,

combine l′′′ ln le lf )

r a′′
e ;

(20) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h′

e d = ac-state n′′ z′′n h′′
n z′′e h′′

e e′′ ;
(3) l′ = sum(l, n′) ;
(4) l′′ = sum(l′,2,n′′) ;
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(5) perform A h a f d un 0 l l′ sum(l′,2) lf = a-state p′ a′
n a′

e ;
(6) perform A′ h′

e a′
e f d un ue uf sum(l′,2) l′′ sum(l′′,6) sum(l′′,12) =

a-state p′′ a′′
n a′′

e ;
(7) compare-blocks z′n e′ z′′n e′′ = e:block ;
(8) either(e is empty-list, un is 0) = true
⇒ perform [[ A:Act “trap” A′:Act ]] h a f d un ue uf l ln le lf =

a-state overlay(
p′

map of l′ ( move a′
n to a′′

n ) ,
map of sum(l′,1) to ( jump ln ) ,
p′′ ,
combine l′′ ln le lf )

a′′
n a′′

e ;

(21) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h d = ac-state n′′ z′′n h′′

n z′′e h′′
e e′′ ;

(3) l′ = sum(l, n′) ;
(4) l′′ = sum(l′,7,n′′) ;
(5) perform A h a union(f , set of a) d un ue 0

l l′ sum(l′,2) sum(l′,4) = a-state p′ a′
n a′

e ;
(6) perform A′ h a f d un ue uf sum(l′,7) l′′ sum(l′′,6) sum(l′′,12) =

a-state p′′ a′′
n a′′

e ;
(7) compare-blocks z′n e′ z′′n e′′ = e:block ;
(8) either(e is empty-list, un is 0) = true
⇒ perform [[ A:Act “or” A′:Act ]] h a f d un ue uf l ln le lf =

a-state overlay(
p′

map of l′ ( move a′
n to a′′

n ) ,
map of sum(l′,1) to ( jump ln ) ,
map of sum(l′,2) to ( move a′

e to a′′
e ) ,

map of sum(l′,3) to ( jump le ) ,
map of sum(l′,4) to ( load cp -1 commits into global ),
map of sum(l′,5) to ( compare global with 1 ),
map of sum(l′,6) to ( branchequal lf ),
p′′

combine l′′ ln le lf )
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a′′
n a′′

e ;

(22) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h insert(d, e′) = ac-state n′′ z′′n h′′

n z′′e h′′
e empty-list ;

(3) l′ = sum(l, n′) ;
(4) l′′ = sum(l′,2,n′′) ;
(5) l′′′ = sum(l′′, c-size) ;
(6) j = count of items of e ;
(7) perform A h a union(f , set of a) d 0 ue uf l sum(l′,2) l′ lf =

a-state p′ a′
n a′

e ;
(8) perform A′ h a union(f , set of a′

n) insert(d, e′) sum(un, j) sum(ue, j) sum(uf , j)
sum(l′,2) l′′ sum(l′′′,6) sum(l′′′,12) = a-state p′′ a′′

n a′′
e ;

(9) r = free-register union(f , set of (a′
n, a′′

n))
⇒ perform [[ [[ “furthermore” A:Act ]] “hence” A′:Act ]] h a f d un ue uf l ln le lf =

a-state overlay(
p′ ,
map of l′ to ( move a′

e to a′′
e ) ,

map of sum(l′,1) to ( jump le ) ,
p′′

concatenation-code a′
n a′′

n r l′′ ,
combine l′′′ ln le lf )

r a′′
e ;

(23) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e′ ;
(2) a-count A′ h′

n insert(d,e′) = ac-state n′′ z′′n h′′
n z′′e h′′

e empty-list ;
(3) l′ = sum(l,n′) ;
(4) l′′ = sum(l′,2,n′′) ;
(5) j = count of items of e′ ;
(6) perform A h a d 0 ue uf l sum(l′,2) l′ lf =

a-state p′ a′
n a′

e ;
(7) perform A′ h′

n a′
n f insert(d,e′) sum(un,j) sum(dee,j) sum(uf ,j)

sum(l′,2) l′′ sum(l′′,6) sum(l′′,12) = a-state p′′ a′′
n a′′

e ;
⇒ perform [[ [[ “furthermore” A:Act ]] “thence” A′:Act ]] h a f d un ue uf l ln le lf =

a-state overlay(
p′ ,
map of l′ to ( move a′

e to a′′
e ) ,

map of sum(l′,1) to ( jump le ) ,
p′′ ,
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combine l′′ ln le lf )

a′′
n a′′

e ;

(24) (1) w-count D′ h d = error
⇒ perform [[ “enact” “application” D:Dependent “to” D′:Tuple ]]

h a f d un ue uf l ln le lf =
a-state overlay(putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;

(25) (1) d-count D h d = error
⇒
(2) perform [[ “give” D:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;
(3) perform [[ “check” D:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;
(4) perform [[ “bind” k:token “to” D:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;
(5) perform [[ “store” D:Dependent “in” D′:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;
(6) perform [[ “store” D:Dependent “in” D:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;
(7) perform [[ “batch-send” D:Dependent ]] h a f d un ue uf l ln le lf =

a-state overlay(putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;
(8) perform [[ “enact” “application” D:Dependent “to” D′:Tuple ]]

h a f d un ue uf l ln le lf =
a-state overlay(putcommit l 0, finalize sum(l,3) uf 2 lf ) a a ;

C.4.2 Unfolding

needs: Actions .

introduces: unf .

• unf ::
Unf, data-type, general-register, frozen, symbol-table,
cleanup, cleanup, cleanup,
general-register, truth-value, general-register,
truth-value, general-register, block
linenumber, linenumber-complete,
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linenumber-escape, linenumber-fail, linenumber-unfold → a-state (partial) .

h , hn , h′
n , h′′

n , he , h′
e , h′′

e : data-type ;
a , a′ , an , a′

n , a′′
n , a′′′

n , ae , a′
e , a′′

e , a′′′
e : general-register ;

f : frozen ;
d : symbol-table ;
un , ue , uf : cleanup ;
zn , z′n , z′′n , ze , z′e , z′′e : truth-value ;
e , e′ , e′′ , e′′′ : block ;
l , l′ : linenumber ;
ln : linenumber-complete ;
le : linenumber-escape ;
lf : linenumber-fail ;
lu :linenumber-unfold ;
n′ , n′′ : natural ;
p′ , p′′ : program

⇒
(1) (1) a-count A h d = ac-state n′ z′n () z′e h′

e empty-list ;
(2) compare-data-types ze he z′e h′

e = h′′′
e :data-type ;

(3) ze = either(ze,z
′
e) ;

(4) u-count U h d zn hn z′′′e h′′′
e e = ac-state n′′ z′′n h′′

n z′′e h′′
e e′′ ;

(5) l′ = sum(l, n′) ;
(6) perform A h a union(f , set of a) d 0 ue uf l sum(l′,2) l′ lf =a-state p′ a′

n a′
e ;

(7) a′′′
e = if ze then ae else a′

e ;
(8) unf U h a f d un ue uf a′ zn hn an z′′′e h′′′

e a′′′
e e sum(l′,7) ln le lf lu =

a-state p′′ a′′
n a′′

e ;
(9) either(e′′ is empty-list, un is 0) = true
⇒ unf [[ A:Act O:( [[ “and” “then” ]] “before” ) U :Unf ]]

h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu = a-state overlay(
p ,
map of l′ to ( move a′

e to a′′
e ),

map of sum(l′,1) to ( jump le ),
combinecommit sum(l′,2),
p′′ )

a′′
n a′′

e ;

(2) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;
(2) compare-data-types ze he z′e h′

e = h′′′
e :data-type ;

114



(3) z′′′e = either(ze,z
′
e) ;

(4) u-count U h′
n d zn hn z′′′e h′′′

e e = ac-state n′′ z′′n h′′
n z′′e h′′

e e′′ ;
(5) l′ = sum(l, n′) ;
(6) perform A h a union(f , set of a) d 0 ue uf l sum(l′,2) l′ lf =a-state p′ a′

n a′
e ;

(7) a′′′
e = if ze then ae else a′

e ;
(8) unf U h′

n a′
n f d un ue uf a′ zn hn an z′′′e h′′′

e a′′′
e e sum(l′,7) ln le lf lu =

a-state p′′ a′′
n a′′

e ;
(9) either(e′′ is empty-list, un is 0) = true
⇒ unf [[ A:Act “then” U :Unf ]] h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu =

a-state overlay(
p′ ,
map of l′ to ( move a′

e to a′′
e ),

map of sum(l′,1) to ( jump le ),
combinecommit sum(l′,2),
p′′ )

a′′
n a′′

e ;

(3) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e ;
(2) compare-data-types zn hn z′n h′

n = h′′′
n :data-type ;

(3) z′′′n = either(zn, z′n) ;
(4) compare-blocks zn e z′n e′ = e′′′:block ;
(5) u-count U h′

e d z′′′n h′′′
n ze he e′′′ = ac-state n′′ z′′n h′′

n z′′e h′′
e e′′ ;

(6) l′ = sum(l, n′) ;
(7) perform A h a union(f , set of a) d un 0 uf l l′ sum(l′,2) lf =a-state p′ a′

n a′
e ;

(8) a′′′
n = if zn then zn else a′

n ;
(9) unf U h′

e a′
e f d un ue uf a′ z′′′n h′′′

n a′′′
n ze he ae e′′′ sum(l′,7) ln le lf lu =

a-state p′′ a′′
n a′′

e ;
(10) either(e′′ is empty-list, un is 0) = true
⇒ unf [[ A:Act “trap” U :Unf ]] h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu =

a-state overlay(
p′ ,
map of l′ to ( move a′

n to a′′
n ),

map of sum(l′,1) to ( jump ln ),
combinecommit sum(l′,2),
p′′ )

a′′
n a′′

e ;
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(4) (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e e ;
(2) compare-data-types zn hn z′n h′

n = h′′′
n :data-type ;

(3) z′′′n = either(zn,z′n) ;
(4) compare-data-types ze he z′e h′

e = h′′′
e :data-type ;

(5) z′′′e = either(ze,z
′
e) ;

(6) compare-blocks zn e z′n e′ = e′′′:block ;
(7) u-count U h′

e d z′′′n h′′′
n z′′′e h′′′

e e′′′ = ac-state n′′ z′′n h′′
n z′′e h′′

e e′′ ;
(8) l′ = sum(l, n′) ;
(9) perform A h a union(f , set of a) d un ue 0 l l′ sum(l′,2) sum(l′,4) =

a-state p′ a′
n a′

e ;
(10) a′′′

n = if zn then an else a′
n ;

(11) a′′′
e = if ze then ae else a′

e ;
(12) unf U h a f d un ue uf a′ z′′′n h′′′

n a′′′
n z′′′e h′′′

e a′′′
e e′′′ sum(l′,12) ln le lf lu =

a-state p′′ a′′
n a′′

e ;
(13) either(e′′ is empty-list, un is 0) = true
⇒ unf [[ A:Act “or” U :Unf ]] h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu =

a-state overlay(
p′ ,
map of l′ to ( move a′

n to a′′
n ),

map of sum(l′,1) to ( jump ln ),
map of sum(l′,2) to ( move a′

e to a′
e ),

map of sum(l′,3) to ( jump le ),
map of sum(l′,4) to ( load cp -1 commits into global ),
map of sum(l′,5) to ( compare global with 1 ),
map of sum(l′,6) to ( branchequal lf ),
combinecommit sum(l′,7),
p′′ )

a′′
n a′′

e ;

(5) unf [[ U :Unf “or” A:Act ]] h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu =
unf [[ A “or” U ]] h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu ;

(6) (1) either( e is empty-list, un is 0) = true

⇒ unf “unfold” h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu = a-state overlay(
map l to ( move a to a′ ), map of sum(l,1) to ( jump lu )) an ae .
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C.4.3 Tuples

needs: Dependent Data .

introduces: with .

• with :: Tuple, data-type, general-register, frozen, symbol-table,
linenumber, linenumber-fail → (program, general-register) (partial) .

• h : data-type ;
r , r′ , r′′ , a : general-register ;
f , f ′ : frozen ;
d : symbol-table ;
l , l′ , l′′ : linenumber ;
lf : linenumber-fail ;

⇒
(1) (1) r = free-register f

⇒ with “()” h a f d l lf = (empty-list-code r l, r) ;

(2) (1) d-count D h d = (n:natural, S:type) ;
(2) l′ = sum(l, n) ;
(3) evaluate D h a f d l lf = (p:program, r:general-register) ;
(4) r′ = free-register union(f , set of r)
⇒ with D:Dependent h a j d l lf = (overlay(p, single-listcode r r′ l′), r′) ;

(3) (1) w-count T h d = wc-state n:natural h′:data-type) ;
(2) w-count T ′ h d = wc-state n′:natural h′′:data-type) ;
(3) l′ = sum( l, n ) ;
(4) l′′ = sum( l′, n′ ) ;
(5) with T h a f d l lf = (p:program, r:general-register) ;
(6) f ′ = union(f , set of( a, r));
(7) with T ′ h a f ′ d l′ lf = (p′:program, r′:general-register) ;
(8) r′′ = free-register union(fset of (r, r′))
⇒ with [[T :Tuple “,” T ′:Tuple ]] h a f d l lf =

(overlay(p, p′, concatenation-code r r′ r′′ l′′), r′′) ;

(4) with “them” h a f d l lf = (empty-map, a) .

C.4.4 Dependent Data

needs: Actions , Lookup in Symbol Tables ,
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Unary Operations , Binary Operations .

introduces: evaluate .

• evaluate ::
Dependent, data-type, general-register, frozen, symbol-table,
linenumber, linenumber-fail → (program, general-register) (partial) .

h , h′ , hn , he : data-type ;
a , an , ae , r , r′ : general-register ;
f , f ′ : frozen ;
d : symbol-table ;
l , l′ , l′′ : linenumber ;
lf : linenumber-fail ;
n : natural ;
zn , ze : truth-value ;
p : program

⇒
(1) (1) r = free-register f

⇒
(2) evaluate “true” h a f d l lf = (map of l to ( move 1 to r )), r) ;
(3) evaluate “false” h a f d l lf = (map of l to ( move 0 to r )), r) ;
(4) evaluate n:natural h a f d l lf = (map of l to ( move n to r )), r) ;
(5) evaluate [[ “empty-list” “&” “[” T :Type “]” “list” ]] h a f d l lf =

(empty-list-code r l, r) ;

(2) (1) data-type D = h′ ;
(2) a-count A h′ concatenation(list of empty-list, d) =

ac-state n zn hn ze he empty-list ;
(3) l′ = sum(l,1,n) ;
(4) perform A h′ (reg 0) empty-set concatenation(list of empty-list, d) 0 0 0

sum(l,1) l′ sum(l′,2) sum(l′,3) = a-state p an ae ;
(5) r = free-register f
⇒ evaluate [[ “closure” “abstraction” “of” A:Act “&” “[” “perhaps”

“using” D:Data “]” “act”]] h a f d l lf = overlay(
map of sum(l,0) to (jump sum(l′,4) ),
p ,
return-sequence an ae l′ ,
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map of sum(l′,4) to ( move sum(l,1) to global ),
map of sum(l′,5) to ( store global in hp 0 heap ),
map of sum(l′,6) to ( store staticlink in hp 1 heap ),
map of sum(l′,7) to ( move hp to r ),
map of sum(l′,8) to ( move sum hp 2 to hp )) ,

r) ;

(3) (1) d-count D h d = (n:natural, S:type) ;
(2) evaluate D h a f d l lf = (p:program, r:general-register) ;
(3) r′ = free-register union(f , set of r)
⇒ evaluate [[ O:Unary D:Dependent ]] h a f d l lf =

(overlay(p, unary-code O r r′ sum(l, n) lf ), r′) ;

(4) (1) d-count D h d = (n′:natural, S ′:type) ;
(2) d-count D′ h d = (n′′:natural, S ′′:type) ;
(3) l′ = sum(l, n′) ;
(4) l′′ = sum(l′, n′′) ;
(5) evaluate D h a union(f , set of a) d l lf = (p′:program, r′:general-register) ;
(6) f ′ = union(f , set of r′) ;
(7) evaluate D′ h a f ′ d l′ lf = (p′′:program, r′′:general-register) ;
(8) r = free-register union(f , set of (r′, r′′))
⇒
(9) evaluate [[ O:Binary “(” D:Dependent “,” D′:Dependent “)” ]] h d f d l lf =

(overlay(p′, p′′, binary-code O r′ r′′ r l′′ lf ), r) ;
(10) evaluate [[ D:Dependent O:( “is” ||| [[ “is” “less” “than” ]] ) D′:Dependent]]

h d f d l lf =
(overlay(p′, p′′, binary-code O r′ r′′ r l′′ lf ), r) ;

(11) evaluate [[ “component#” D′:Dependent “items” D:Dependent]] h d f d l lf =
(overlay(p′, p′′, binary-code “at” r′ r′′ r l′′ lf ), r) ;

(5) (1) r = free-register union(f , set of a) ;
(2) r′ = free-register union(f , set of (a, r) ) ;
⇒ evaluate “it” h a f d l lf = (overlay(

map of l to ( move 1 to r ),
at-code a r r′ sum(l,1) lf ),

r′) ;

(6) (1) r = free-register union(f , set of a) ;
(2) r′ = free-register union(f , set of )a, r)) ;
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⇒ evaluate [[ “the” “given” S:Datum “#” n:natural ]] h a f d l lf = (overlay(
map of l to ( move n to r ),
at-code a r r′ sum(l,1) lf ),

r′) ;

(7) (1) find-count k d = (n:natural, S ′:type, j:natural) ;
(2) r = free-register f ;
(3) l′ = sum(l, 1,n) ;
(4) find k d sum(l,1) = p:program
⇒ evaluate [[ “the” S:Datum “bound” “to” k:token ]] h a f d l lf = (overlay(

map of l to ( move statclink to global ),
p,
map of l′ to ( load global j stack into r)),

r′) ;

(8) (1) d-count D h d = (n:natural, S ′:type) ;
(2) l′ = sum(l, n) ;
(3) evaluate D h a f d l lf = (p:program, r:general-register) ;
(4) r′ = free-register union(f ,set of r)

⇒ evaluate [[ “the” S:Datum “stored” “in” D:Dependent ]] h a f d l lf = (overlay(
p,
map of sum(l′, 0 ) to ( load r 0 store into global ) ,
map of sum(l′, 1 ) to ( compare global with 0 ) ,
map of sum(l′, 2 ) to ( branchequal lf ) ,
map of sum(l′, 3 ) to ( load r 1 store into r′ )) ,

r′) ;

(9) evaluate [[ “(” D:Dependent “)” ]] h a f d l lf = evaluate D h a f d l lf .

C.4.5 Lookup in Symbol Tables

introduces: find .

• find :: token, symbol-table, linenumber → (program) (partial) .

(1) find k:token concatenation(list of e:block, d:symbol-table) l:linenumber =

120



if (block-find-count k e) is error
then overlay( map l to ( load global 0 stack into global ),

find k d sum(l,1))
else empty-map .

C.4.6 Unary Operations

introduces: unary-code .

• unary-code :: Unary, general-register, general-register, linenumber
linenumber-fail → (program) (partial) .

r, r′ : general-register ;
l : linenumber ;
lf : linenumber-fail

⇒
(1) unary-code “not” r r′ l lf = overlay(

map of sum(l,0) to ( move 1 to global )
map of sum(l,1) to ( move difference global r to r′ ),

(2) unary-code “negation” r r′ l lf = overlay(
map of sum(l,0) to ( move 0 to global )
map of sum(l,1) to ( move difference global r to r′ ) ;

(3) unary-code [[ “list” “of” ]] r r′ l lf = single-list-code r r′ l ;

(4) unary-code “head” r r′ l lf = head-code r r′ l lf ;

(5) unary-code “tail” r r′ l lf = tail-code r r′ l lf ;

C.4.7 Binary Operations

introduces: binary-code .

• binary-code :: Binary ||| “is” ||| [[ “is” “less” “than” ]] ||| “at”,
general-register, general-register, general-register,
linenumber, linenumber-fail → (program) (partial) .

r, r′ r′′ : general-register ;
l : linenumber ;
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lf : linenumber-fail
⇒
(1) binary-code “both” r′ r′′ r l lf = overlay(

map of sum(l,0) to ( compare r′ with 0 ),
map of sum(l,1) to ( branchequal sum(l,6) ),
map of sum(l,2) to ( compare r′′ with 0 ),
map of sum(l,3) to ( branchequal sum(l,6) ),
map of sum(l,4) to ( move 1 to r ),
map of sum(l,5) to ( jump sum(l,7) ),
map of sum(l,6) to ( move 0 to r )) ;

(2) binary-code “either” r′ r′′ r l lf = overlay(
map of sum(l,0) to ( compare r′ with 1 ),
map of sum(l,1) to ( branchequal sum(l,6) ),
map of sum(l,2) to ( compare r′′ with 1 ),
map of sum(l,3) to ( branchequal sum(l,6) ),
map of sum(l,4) to ( move 0 to r ),
map of sum(l,5) to ( jump sum(l,7) ),
map of sum(l,6) to ( move 1 to r )) ;

(3) binary-code “sum” r′ r′′ r l lf =
map of l to ( move sum r′ r′′ to r ) ;

(4) binary-code “difference” r′ r′′ r l lf =
map of l to ( move difference r′ r′′ to r ) ;

(5) binary-code “concatenation” r′ r′′ r l lf = concatenation-code r′ r′′ r l ;

(6) binary-code “is” r′ r′′ r l lf = overlay(
map of sum(l,0) to ( compare r′ with r′′ ),
map of sum(l,1) to ( branchequal sum(l,4) ),
map of sum(l,2) to ( move 0 to r ),
map of sum(l,3) to ( jump sum(l,5) ),
map of sum(l,4) to ( move 1 to r ),

(7) binary-code [[ “is” “less” “than” ]] r′ r′′ r l lf = overlay(
map of sum(l,0) to ( compare r′ with r′′ ),
map of sum(l,1) to ( branchequal sum(l,4) ),
map of sum(l,2) to ( move 0 to r ),
map of sum(l,3) to ( jump sum(l,5) ),
map of sum(l,4) to ( move 1 to r ),

(8) binary-code “at” r′ r′′ r l lf = at-code r′ r′′ r l lf .
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Appendix D

Abstraction of Semantic
Entities

needs: Data Notation ,
A Pseudo SPARC Machine Language/Abstract Syntax .

D.1 Auxiliary Notation

introduces: is submap of , is .

gramma:

• is submap of :: program, program → truth-value (total) .

• is :: instruction, instruction → truth-value (total, commutative) .

• is :: movable, movable → truth-value (total, communative) .

• is :: argument, argument → truth-value (total, communative) .

• is :: register, register → truth-value (total, comutative) .

• is :: page-id, page-id → truth-value (total, commutative) .

p , p′ : program ;
i , i′ : integer ;
R , R′ , R′′ , R′′′ : register ;
P : page-id ;
M , M ′ : movable ;
A , A′ : argument ;
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n , n′ : natural

⇒

(1) p is submap of p′ = overlay(p, p′) is p′ ;

(2) skip is I:(call ||| return ||| storeregisters ||| loadregisters ||| (jump i ) |||
(branchequal i) ||| (branchlessthan i) ||| (store R in R′ i P ) |||
(load R i P into R′) ||| (move M to R) ||| (compare R with A)) = false ;

(3) call is I:(return ||| storeregisters ||| loadregisters ||| (jump i) |||
(branchequal i) ||| (branchlessthan i) ||| (store R in R′ i P ) |||
(load R i P into R′) ||| (move M to R) ||| (compare R with A)) = false ;

(4) return is I:(store registers ||| loadregisters ||| (jump i) |||
(branchequal i) ||| (branchlessthan i) ||| (store R in R′ i P ) |||
(load R i P into R′) ||| (move M to R) ||| (compare R with A)) = false ;

(5) storeregisters is I:(loadregisters ||| (jump i) ||| (branchequal i) ||| (branchlessthan i) |||
(store R in R′ i P ) ||| (load R i P into R′) ||| (move M to R) |||
(compare R with A)) = false ;

(6) loadregisters is I:((jump i) ||| (branchequal i) ||| (branchlessthan i) |||
(store R in R′ i P ) ||| (load R i P into R′) ||| (move M to R) |||
(compare R with A)) = false ;

(7) (jump i′) is I:((branchequal i) ||| (branchlessthan i) ||| (store R in R′ i P ) |||
(load R i P into R′) ||| (move M to R) ||| (compare R with A)) = false ;

(8) (branchequal i′) is I:((branchlessthan i) ||| (store R in R′ i P ) |||
(load R i P into R′) ||| (move M to R) ||| (compare R with A)) = false ;

(9) (branchlessthan i′) is I:((store R in R′ i P ) ||| (load R i P into R′) |||
(move M to R) ||| (compare R with A)) = false ;

(10) (store R in R′ i P ) is I:((load R′′ i′ P ′ into R′′′) ||| (move M ′ to R′′) |||
(compare R′′ with A′)) = false ;
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(11) (load R i P into R′) is I:((move M ′ to R′′) ||| (compare R′′ with A′)) = false ;

(12) (move M to R) is (compare R′ with A) = false ;

(13) (jump i) is (jump i′) = i is i′ ;

(14) (branchequal i) is (branchequal i′) = i is i′ ;

(15) (branchlessthan i) is (branchlessthan i′) = i is i′ ;

(16) (store R in R′ i P ) is (store R′′ in R′′′ i′ P ′) =
alI(R is R′′, R′ is R′′′, i is i′, P is P ′) ;

(17) (load R i P into R′) is (load R′′ i′ P ′ into R′′′) =
all(R is R′′, R′ is R′′′, i is i′, P is P ′) ;

(18) (move M to R) is (move M ′ to R′) = both(M is M ′, R is R′) ;

(19) (compare R with A) is (compare R′ with A′) = both(R is R′, A is A′) ;

(20) (sum R A) is (difference R′ A′) = false ;

(21) (sum R A) is (sum R′ A′) = both(R is R′, A is A′) ;

(22) (difference R A) is (difference R′ A′) = both(R is R′, A is A′) ;

(23) R:register is i:integer = false ;

(24) firstfree is x:(sp ||| hp ||| cp ||| cef ||| global ||| arg ||| staticlink ||| (reg n)) = false ;

(25) sp is x:(hp ||| cp ||| cef ||| global ||| arg ||| staticlink ||| (reg n)) = false ;

(26) hp is x:(cp ||| cef ||| global ||| arg ||| staticlink ||| (reg n)) = false ;

(27) cp is x:(cef ||| global ||| arg ||| staticlink ||| (reg n)) = false ;

(28) cef is x:(global ||| arg ||| staticlink ||| (reg n)) = false ;
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(29) global is x:(arg ||| staticlink ||| (reg n)) = false ;

(30) arg is x:(staticlink ||| (reg n)) = false ;

(31) staticlink is (reg n) = false ;

(32) (reg n) is (reg n′) = n is n′ ;

(33) stack is x:(store ||| heap ||| commits) = false ;

(34) store is x:(heap ||| commits) = false ;

(35) heap is commits = false .

D.2 Abstraction Functions

needs: Data Notation ,
A Compilable Subset of Action Notation/Abstract Syntax ,
A Compilable Subset of Action Notation/Semantic Entities ,
A Pseudo SPARC Machine Language/Abstract Syntax ,
A Pseudo SPARC Machine Language/Semantic Entities ,
Actions to SPARC Compiler ,
Auxiliary Notation .

introduces: t-abs , b-abs , e-abs , store-abs ,
s-abs , i-abs , o-abs , c-abs ,
m-abs , v-abs , storable-abs .

• t-abs :: natural, memory, program, data-type → data .

• b-abs :: natural, memory, program, symbol-table → bindings .

• e-abs :: natural, memory, program, block → bindings .

• store-abs :: natural, page → storage .
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• s-abs :: natural, page → storage-map .

• i-abs :: naturals page → [integer] list .

• o-abs :: natural, page → [integer] list .

• c-abs :: integer → truth-value (partial) .

• m-abs ::
spare-state, truth-value, data-type, truth-value, data-type,
general-register, general-register, block,
linenumber-complete, linenumber-escape, linenumber-fail → state .

• v-abs :: integer, memory, program, type → datum .

• storable-abs :: naturals page → storage-map .

n : natural ;
q : memory ;
p , p′ , p′′ : program ;
S : type ;
h , hn , he : data-type ;
e : block ;
b , b′ : bindings ;
v , v′ : datum ;
m , m′ : storage-map ;
k : token :
se : page ;
cz : was-zero ;
cn : was-negative ;
zn , ze : truth-value ;
d : symbol-table ;
s : storage :
g : globals ;
w : windows ;
an , ae : general-register ;
l , l′ : linenumber ;
ln : linenumber-complete ;
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le : linenumber-escape ;
lf : linenumber-fail ;
c : commitment

⇒

(1) (1) (q at heap) at sum(n,1) = -1
⇒ t-abs n q p () :- () ;

(2) (1) v-abs ((q at heap) at n) q p S :- v ;
(2) t-abs ((q at heap) at sum(n, 1)) q p h :- t ;
⇒ t-abs n q p (S, h) :- (v,t) ;

(3) b-abs n q p empty-list :- empty-map;

(4) (1) e-abs sum(n,count of items of e) q p e :- b ;
(2) b-abs ((q at stack) at n) q p d :- b′

⇒ b-abs n q p concatenation(list of e, d) :- overlay(b, b′) ;

(5) e-abs n q p empty-list :- empty-map ;

(6) (1) v-abs ((q at stack) at successor(n)) q p S :- v ;
(2) e-abs n q p e :- b
⇒ e-abs successor(n) q p concatenation(list of (entry(k, S), e) :-

overlay(map k to v, b) ;

(7) (1) s-abs n se :- m
⇒ store-abs n:natural se:page :- (m,n) ;

(8) s-abs 0 empty-map :- empty-map ;

(9) (1) storable-abs n se :- m ;
(2) s-abs n se :- m′ ;
⇒ s-abs sum(n,2) se :- overlay(m, m′) ;

(10) i-abs 0 se = empty-list ;

(11) (1) se at successor(n) = i:integer ;
(2) i-abs n se = il:[integer] list
⇒ i-abs successor(n) se = concatenation(list of i, il) ;

(12) o-abs 0 se = empty-list ;

(13) (1) se at successor(n) = i:integer ;
(2) o-abs n se = i:[integer] list
⇒ o-abs successor(n) se = concatenation(ol, list of i) ;

(14) c-abs i:integer = if i is 0 then false else
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if i is 1 then true else nothing ;

(15) (1) store-abs (g at firstfree) (q at store) :- s ;

(2) io:input-output = (il:[integer] list, ol:[integer] list) ;

(3) i-abs ((q at input) at 0) (q at input) = il ;

(4) o-abs ((q at output) at 0) (q at output) = ol
⇒
(5) (1) (g at cef) is 0 = true ;

(2) t-abs ((head of w) at an) q p hn :- t ;

(3) e-abs difference(g at sp, count of items of e) q p e :- b
⇒m-abs (p, ln, cz, cn, g, w, q) true hn ze he an ae e ln le lf :-

completed t b s io c ;

(6) (1) (g at cef) is 1 = true ;

(2) t-abs ((head of w) at ae) q p he :- t
⇒m-abs (p, le, cz, cn, g, w, q) zn hn true he an ae e ln le lf :-

escaped t s io c ;

(7) (1) (g at cef) is 2 = true
⇒m-abs (p, lf , cz, cn, g, w, q) zn hn ze he an ae e ln le lf :-

failed s io c ;

(16) v-abs 0 q p truth-value-type :- false ;

(17) v-abs 1 q p truth-value-type :- true ;

(18) v-abs i:integer q p integer-type :- i ;

(19) v-abs n:naturaI q p truth-value-cell-type :- truth-value-cell n ;

(20) v-abs n:naturaI q p integer-cell-type :- integer-cell n ;

(21) (1) a-count A h concatenation(list of empty-list, d) =
ac-state n zn hn ze he empty-list ;

(2) l = (q at heap) at i ;

(3) l′ = sum(l, n) ;

(4) perform A h (reg 0) empty-set concatenation(list of empty-list, d) 0 0 0
l l′ sum(l′,2) sum(l′,3) = a-state p′ an ae ;

(5) return-sequence an ae l′ = p′′ ;

(6) p′ is submap of p = true ;

(7) p′′ is submap of p = true ;

(8) data-type D = h ;
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(9) b-abs ((q at heap) at sum(i,1)) q p d :- b

⇒ v-abs i:integer q p (abstraction-type h zn hn ze he d) :-
closure-abstraction A:Act D:Data b:bindings ;

(22) (1) ((q at heap) at sum(i,1)) is -1 = true

⇒ v-abs i:integer q p (list-type S) :- empty-list ;

(23) (1) v-abs ((q at heap) at i) q p S :- v ;

(2) v-abs ((q at heap) at sum(i,1)) q p (list-type S:type) :- v′

⇒ v-abs i:integer q p (list-type S) :- concatenation(list of v, v′) ;

(24) (1) se at n = 0

⇒ storable-abs n se :-

(map of x:((truth-value-cell n) ||| (integer-cell n)) to uninitialized) ;

(25) (1) se at n = 1 ;

(2) se at sum(n,1) = 0

⇒ storable-abs n se :- (map of truth-value-cell n to false) ;

(26) (1) se at n = 1 ;

(2) se at sum(n,1) = 1
⇒ storable-abs n se :- (map of truth-value-cell n to true) ;

(27) (1) se at n = 1

⇒ storable-abs n se :- (map of integer-cell n to (se at sum(n,1))) .
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Appendix E

Lemmas

needs: Data Notation ,
A Compilable Subset of Action Notation ,
A Pseudo SPARC Machine Language ,
Actions to SPARC compiler ,
Abstraction of Semantic Entities .

E.1 Auxiliary Notation

E.1.1 Code Placement

introduces: well-placed ,
a-consistent , d-consistent , w-consistent ,
find-consistent , operation-consistent ,

• well-placed :: program, linenumber, natural → truth-value (total) .

• a-consistent ::
ac-state, a-state, cleanup, linenumber → truth-value (total) .

• d-consistent :: (natural, type) ||| error, (program,general-register),
frozen, linenumber → truth-value (total) .

• w-consistent :: wc-state ||| error, (program, general-register),
frozen, linenumber → truth-value (total) .

• find-consistent :: (naturaltypenatural) ||| error, program,
linenumber → truth-value (total) .
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• operation-consistent ::
(natural,type) ||| error, program, linenumber → truth-value (total) .

p : program ;
l : linenumber ;
n : natural ;
zn , ze : truth-value ;
hn , he : data-type ;
e : block ;
an , ae : general-register ;
un : cleanup ;
f : frozen ;
y : (program, general-register)

⇒

(1) well-placed p l n = if p is empty-map then n is 0 else all(
(count of elements of mapped-set of p) is n,
(minimum of mapped-set of p) is n,
(maximum of mapped-set of p) is difference(sum(l,n),1) ;

(2) a-consistent (ac-staten n zn hn ze he e) (a-state p an ae) un l = both(
well-placed p l n,
either( e is empty-list, un is 0) ) ;

(3) d-consistent (x : (natural, type) ||| error) y f l =
if x is error then true else both(
well-placed (component#1 of y) l (component#1 of x),
(component#2 of y) is not in f) ;

(4) w-consistent (x : wc-state ||| error) y f l =
if x is error then true else both(
well-placed (component#1 of y) l (code-size of x),
(component#2 of y) is not in f) ;

(5) find-consistent (x : (natural, type, natural) ||| error) p l =
if x is error then true else
(well-placed p l (component #1 of x)) ;

(6) operation-consistent (x : (natural, type) ||| error) p l =
if x is error then true else (well-placed p l (component#1 of x)) .
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E.1.2 Semantics of Types

introduces: tc-abs , bc-abs , ec-abs , mc-abs , vc-abs ,
ac-less , cc-less , ec-less ,

• tc-abs :: data-type → data .
• bc-abs :: symbol-table → bindings .
• ec-abs :: block → bindings .
• mc-abs :: ac-state → state .
• vc-abs :: type → datum .
• ac-less ::

truth-value, data-type, truth-value, data-type, block,
truth-value, data-type, truth-value, data-type, block →

truth-value ( total) .
cc-less ::

truth-value, data-type, block, truth-value, data-type, block → truth-
value (total) .

ec-less :: truth-value, data-type, truth-value, data-type → truth-
value (total) .

t, t′ : data ;
b, b′ : bindings ;
s : storage ;
io : input-output ;
c : commitment ;
h, h′, hn, h′

n, he, h′
e : data-type ;

e, e′ : block ;
zn, z′n, ze, z′e : truth-value ;

⇒

(1) tc-abs () = () ;

(2) (1) vc-abs S :- v
⇒ tc-abs S:type :- v ;

(3) (1) tc-abs h :- t ;
(2) tc-abs h′ :- t′

⇒ tc-abs (h:data-type, h′:data-type) :- (t,t′) ;

(4) bc-abs empty-list = empty-map ;
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(5) (1) ec-abs e :- b
⇒ bc-abs list of e:block :- b ;

(6) (1) bc-abs d :- b ;
(2) bc-abs d′ :- b′

⇒ bc-abs concatenation(d:symbol-table, d′:symbol-table) :- overlay(b, b′) ;

(7) ec-abs empty-list = empty-map ;

(8) (1) vc-abs S :- v
⇒ ec-abs list of entry k:token S:type :- map of k to v ;

(9) (1) ec-abs e :- b ;
(2) ec-abs e′ :- b′

⇒ ec-abs concatenation(e:block, e′:block) :- overlay(b, b′) ;

(10) mc-abs x:ac-state :- failed s io c ;

(11) (1) tc-abs he :- t
⇒ mc-abs (ac-state n:natural zn:truth-value hn:data-type true he:data-type

e:block) :- escaped t s io c ;

(12) (1) tc-abs hn :- t ;
(2) ec-abs e′ :- b
⇒ mc-abs (ac-state n:natural true hn:data-type ze:truth-value he:data-type

e:block) :-completed t b s io c ;

(13) vc-abs truth-value-type = truth-value ;

(14) vc-abs integer-type = integer ;

(15) vc-abs truth-value-cell-type = truth-value-cell ;

(16) vc-abs integer-cell-type = integer-cell ;

(17) (1) a-count A h concatenation(list of empty-list, d) =
ac-state n:natural zn hn ze he empty-list ;

(2) data-type D = h ;

(3) bc-abs d :- b

⇒ vc-abs (abstraction-type h:data-type zn:truth-value hn:data-type
ze:truth-value hedata-type dsymbol-table) :-
closure-abstraction A Act D:Data b:bindings ;

(18) vc-abs (list-type S:type) = [vc-abs S] list ;

(19) ac-less zn hn ze he e z′n h′
n z′e h′

e e′

= both(cc-less zn hn e z′n h′
n e′, ec-less ze he z′e h′

e) ;

(20) cc-less false h e false h′ e′ = true ;
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(21) cc-less true h e false h′ e′ = false ;

(22) cc-less false h e true h′ e′ = true ;

(23) cc-less true h e true h′ e′ = both(h is h′, e is e′) ;

(24) ec-less false h false h′ = true ;

(25) ec-less true h false h′ = false ;

(26) ec-less false h true h′ = true ;

(27) ec-less true h true h′ = h is h′ ;

E.1.3 Program Execution

introduces: leq , cleaned-up , up-to ,
q-earlier , m-earlier , mq-earlier ,
basic-pre-condition , pre-condition ,
basic-post-condition ,
a-post-condition ,
u-post-condition ,
unchanged ,
post-condition ,
d-post-condition , f-post-condition ,

op-post-condition , .

• leq :: natural, natural∗ → truth-value(total) .

• cleaned-up ::
integer, integer, natural, clean-up, clean-up, clean-up → integer

(partial) .

• up-to :: natural → [natural] set .

• q-earlier ::
natural, natural, memory, memory → truth-value (total) .

• m-earlier :: sparc-state, sparc-state → truth-value (total) .

• mq-earlier ::
sparc-state, memory → truth-value (total) .

• basic-precondition :: program, program,
linenumber, linenumber∗, globals, windows, memory,
memory, natural → truth-value (total) .

• precondition :: program, program,
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linenumber, linenumber∗, globals, windows, memory,
memory, natural, symbol-table → truth-value (total) .

• basic-post-condition :: globals, windows, memory, sparc-
state, frozen, cleanup, cleanup, cleanup, block → truth-value (total) .

• a-post-condition :: globals, windows, memory, sparc-state,
frozen, cleanup, cleanup, cleanup, block, commitment → truth-value

(partial) .

• u-post-condition :: globals, windows, memory, sparc-state,
frozen, cleanup, cleanup, cleanup, block, commitment → truth-value

(total) .

• unchanged ::
natural, windows, memory, windows, memory → truth-value (total) .

• post-condition ::
globals, windows, memory, sparc-state → truth-value (total) .

• d-post-condition ::
globals, windows, memory, sparc-state, frozen
→ truth-value (partial) .

• f-post-condition ::
globals, windows, memory, sparc-state → truth-value (total) .

• op-post-condition ::
globals, windows, memory, sparc-state, frozen
→ truth-value (total) .

n, n′, nw : natural ;
nt, nt′ : natural∗ ;
sp, cef : integer ;
un, ue, uf : cleanup ;
e : block ;
c : commitment ;
w, w′ : windows ;
q, q′ : memory ;
mp, m′

p : sparc-state ;
p, p′ : program ;
g : globals ;
l : linenumber ;
lt : linenumber∗ ;
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d : symbol-table ;
f : frosen ;
r : general-register ;

⇒

(1) n leq () = true ;

(2) n leq n′:natural = n is less than successor(n′) ;

(3) n leq (nt, nt′) = both(n leq nt, n leq nt′) ;

(4) cleaned-up sp cef n un ue uf =
if cef is 0 then difference(sum(sp,n),un else
if cef is 1 then difference(sum(sp,ue) else
if cef is 2 then difference(sum(sp,uf ) else nothing ;

(5) up-to 0 = empty-set ;

(6) up-to successor n = union(up-to n, n) ;

(7) q-earlier n n′ q q′ = all(
((q at stack) restricted to up-to successor n) is

((q′ at stack) restricted to up-to successor n),
(q at storage) is (q′ at storage),
((q at heap) restricted to up-to n′) is

((q′ at heap) restricted to up-to n′),
(q at commits) is (q′ at commits),
(q at input) is (q′ at input),
(q at output) is (q′ at output)) ;

(8) m-earlier mp m′
p = all(

(program of mp) is (program of m′
p),

(program-counter of mp) is (program-counter of p′m),
(was-zero of mp) is (was-zero of m′

p),
(was-negative of mp) is (was-negative of m′

p),
(globals of mp) is (globals of m′

p),
(windows of mp) is (windows of m′

p),
q-earlier ((globals of mp) at sp) ((globals of m′

p) at hp)
(memory of mp) (memory of m′

p) ;

(9) m-earlier mp q =
q-earlier ((globals of mp at sp) ((globals of mp) at hp)

(memory of mp) q ;
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(10) basic-precondition p′ p l lt g w q q′ nw = all(
p′ is submap of p,
l leq lt,
(count of items of w) is nw,
q-earlier (g at sp) (g at hp) q q′) ;

(11) pre-condition p′ p l lt g w q q′ nw d = all(
basic-pre-condition p′ p l lt g w q q′ nw,
(g at sp) is sum((head of w) at staticlink, count of items of head of d)) ;

(12) basic-post-condition g w q mp f un ue uf e = all(
((globals of mp) at sp) is (cleaned-up (g at sp) ((globals of mp) at cef)

(count of items of e) un ue uf ),
((head of w) restricted to f) is

((head of windows of mp) restricted to f),
q-earlier (g at sp) (g at hp) q (memory of mp),
((globals of mp) at cp) is successor(g at cp),
(tail of w) is (tail of windows of mp),
((head of w) restricted to set of (return-address, staticlink) is

(head of windows of mp) restricted to set of (return-address,
staticlink))) ;

(13) a-post-condition g w q mp f un ue uf e c = all(
basic-post-condition g w q mp f un ue uf e,
((q at commits) restricted to up-to(g at cp)) is

(((mp at memory) at commits) restricted to up-to (g at cp)),
(cabs ((memory of mp) at commits) at

(predecessor of ((globals of mp) at cp))) is c) ;

(14) u-post-condition g w q mp f un ue uf e c = all(
basic-post-condition g w q mp f un ue uf e,
((q at commits) restricted to up-to the predecessor of (g at cp)) is

(((memory of mp) at commits) restricted to
up-to the predecessor of (g at cp)),

either(c-abs ((memory of mp) at commits) at
(predecessor of ((globals of mp) at cp)),
c-abs ((memory of mp) at commits) at
(predecessor of predecessor of ((globals of mp) at cp))) is
either(c, c-abs (q at commits) at (predecessor of (g at cp)))) ;

(15) unchanged n w q w′ q′ = all(
(tail of w) is (tail of w′),
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((head of w) restricted to union(set of return-address, set of
staticlink)) is

((head of w′) restricted to union(set of return-address, set of
staticlink)),

(q at stack) is (q′ at stack),
(q at storage) is (q′ at storage),
((q at heap) restricted to up-to n) is ((q′ at heap) restricted to up-to n),
(q at commits) is (q′ at commits),
(q at input) is (q′ at input),
(q at output) is (q′ at output)) ;

(16) post-condition g w q mp = all(
unchanged (g at hp) w q (windows of mp) (memory of mp),
(g at sp) is ((globals of mp) at sp),
(g at firstfree) is ((globals of mp) at firstfree),
(g at op) is ((globals of mp at cp)) ;

(17) d-post-condition g w q mp f = both(
((head of w) restricted to f) is ((head of windows of mp)

restricted to f),
post-condition g w q mp) ;

(18) f-post-condition g w q mp = both(
(head of w) is (head of windows of mp)
post-condition g w q mp) ;

(19) op-post-condition g w q mp r = both(
((head of w) omitting (set of r)) is ((head of windows of mp)

omitting (set of r)),
post-condition g w q mp) .

E.2 Compiler Consistency

needs: Auxiliary Notation .

Lemma: (Calculation of Free Registers)

(1) (free-register f) is not in f :frozen = true .

Proof: Consider the definition of ‘free-register f ’ in C.l.3.(15) that is
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• free-register f :frozen = if f is empty-set then reg 0 else
minimum of difference(registers up to successor(maximum of f), f) .

There are two cases. If f is the empty set, then ‘free-register f ’ is not con-
tained in it. If f is non-empty, then ‘maximum of f ’ is an individual. In this
case, ‘difference(registers up to successor(maximum of f), f)’ is an individual
disjoint from f , so its minimum is not contained in f . ✷

Lemma: (Code Macro Size)

r, r′, r′′ : general-register ;
l, l′ : linenumber ;
ln : linenumber-complete ;
le : linenumber-escape ;
lf : linenumber-fail ;
u : cleanup

⇒
(1) well-placed (empty-list-code r l) l e-size = true ;

(2) well-placed (single-list-code r r′ l) l s-size = true ;

(3) well-placed (concatenation-code r r′ r′′ l) l c-size = true ;

(4) well-placed (head-code r r′ l lf ) l h-size = true ;

(5) well-placed (tail-code r r′ l lf ) l t-size = true ;

(6) well-placed (at-code r r′ r′′ l lf ) l a-size = true ;

(7) well-placed (putcommit l (i/textsf:0 ||| 1) l 3 = true ;

(8) well-placed (combinecommit l) l 5 = true ;

(9) well-placed (combine l ln le lf ) l 18 = true ;

(10) well-placed (finalize l u(i:0 ||| 1 ||| 2) l′ ) l 3 = true ;

(11) well-placed (call-sequence l r r′ un ue uf ln le lf ) l 27 = true ;

(12) well-placed (return-sequence an ae l) l 4 = true ;

Proof: We will prove the first point in detail, the others can be proved
similarly. Consider the definition of ‘empty-list-code r l’ in C.2.1.(1) that is

• empty-list-code r l = overlay(
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map of sum(l,0) to ( move -1 to global ) ,
map of sum(l,1) to ( store global in hp 1 heap ) ,
map of sum(l,2) to ( move hp to r ) ,
map of sum(l,3) to ( move sum hp 2 to hp )) .

Consider also the definition of ‘well-placed p l n’ in E.1.1.(1) that is

• well-placed p l n= if p is empty-map then n is 0 else all(
(count of elements of mapped-set of p) is n ,
(minimum of mapped-set of p) is l,
(maximum of mapped-set of p) is difference(sum(l,n),1)) .

The program p is not the empty map, so there are three things to prove.
Firstly, there are four elements in the domain of p, and in the definition of
‘e-size’ in C.2.1.(7) we find that ‘e-size = 4’. Secondly, the minimal element
in the domain of p is l. Thirdly, the maximal element in the domain of p is
‘sum(l,3)’, which equals ‘difference(sum(l,4),1))’. ✷

Lemma: (Compiler Consistency)

a , a′ , an , ae , r , r′ , r′′ : general-register ;
un , ue , uf : cleanup ;
l : linenumber ;
ln : linenumber-complete ;
le : linenumber-escape ;
lf : linenumber-fail ;
lu : linenumber-unfold ;
h , hn , he : data-type ;
d : symbol-table ;
f : frosen ;
zn , ze : truth-value ;
e : block ;
S , S ′ : type ;

⇒

(1) (1) a-count A:Act h d = x:ac-state ;

(2) perform A h a f d un ue uf l ln le lf = y:a-state
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⇒ a-consistent x y un l = true ;

(2) (1) u-count U :Unf h d zn hn ze he e = x:ac-state ;

(2) unf U h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu = y:a-state

⇒ a-consistent x y un l = true ;

(3) (1) d-count D:Dependent h d = x:(natural, type) ||| error ;

(2) evaluate U h a f d l lf = y:(program, general-register)

⇒ d-consistent x y f l = true ;

(4) (1) w-count D:Tuple h d = x:(natural, data-type) ||| error ;

(2) with D h a f d l lf = y:(program, general-register)

⇒ w-consistent x y l = true ;
(5) operation-consistent (unary-count O:Unary S) (unary-code O r r′ l lf ) l

= true ;

(6) operation-consistent (binary-count O:Binary S S ′)
(binary-code O r′ r′′ r l lf ) l = true .

Proof: The definitions of ‘a-count’, ‘u-count’, ‘d-count’, and ‘w-count’ are
mutually recursive, and so are the definitions of ‘perform’, ‘unf’, ‘evaluate’,
and ‘with’. We therefore need to prove (5) and (6) first, and then the con-
junction of (1)—(4).

The proofs of (5) and (6) are straightforward. We will consider only one
of the cases, the others are similar.

Consider the unary operation “not”. The involved definitions are C.3.6.(1)
and C.4.6.(1) that is

• unary-count “not” S:type =
if S is truth-value-type then (2, truth-value-type) else error .

• unary-code “not” r r′ l lf = overlay(
map of sum(l,0) to ( move 1 to global ),
map of sum(l,1) to ( move difference global r to r′)) ;

The definition of ‘operation-consistent ’ in E.1.1.(6) is

• operation-consistent (x : (natural, type) ||| error) p l =
if x is error then true else (well-placed p l (component#1 of x)) .

If not ‘S is truth-value-type’, then the result is immediate. Otherwise, we need
to prove ‘well-placed (unary-code “not” r r′ l lf ) l 2’. This follows immediately
from the definition of ‘well-placed ’ in E.1.1.(1).
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We then turn to the proof of the conjunction of (1)–(4). The proof is
by induction on the length of inference of formulas on the form (1.1), (2.1),
(3.1), and (4.1).

In the base case, we consider inferences that involve only one clause
for either ‘a-count’, ‘u-count’, ‘d-count’, or ‘w-count’. We will only give the
details of one of the cases, the others are similar.

Consider the ‘a-count’ clause for “complete” in C.3.1.(1) that is

• a-count “complete” h d = ac-state sum(e-size,6) true () false () empty-list .

The ‘perform’ clause for “complete” in C.4.1.(1) is

• (1) r = free-register f

⇒ perform “complete” h a f d un ue uf l n le lf = a-state overlay(
empty-list-code r l, putcommit sum(l,3) 0, finalize sum(l,6)

un 0 ln) r a ;

The definition of ‘a-consistent ’ in E.1.1.(2) is

• a-consistent (ac-state n zn hn ze he e) (a-state p an ae) un l = both(
well-placed p l n,
either(e is empty-list, un is 0) ) .

The second part of this predicate follows immediately because e is the empty
list. The first part follows from the bode macro sizes lemma and a simple
calculation.

In the induction step, we consider the remaining clauses for ‘a-count’,
‘u-count’, ‘d-count’, and ‘w-count’. We will only give the details of one of the
cases, the others are similar.

Consider the ‘a-count’ clause for [[ “enact” “application” D:Dependent
“to” D′: Tuple ]] in C.3.1.(15) that is

• (1) d-count D h d = n:natural,
abstraction-type h′:data-type zn:truth-value hn:data-type
ze:truth-value he:data-type d′:symbol-table) ;

(2) w-count D′ h d = wc-state n’:natural h′:data-type ;

⇒ a-count [[ “enact” “application” D:Dependent “to” D′:Tuple ]] h d =
ac-state sum(n, n′,27) zn hn ze he empty-list .
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The ‘perform’ clause for [[ “enact” “application” D:Dependent “to” D′:Tuple ]]
in C.4.1.(14) is

• (1) d-count D h d = (n:natural, abstraction-type h′:data-type zn:truth-
value hn:data-type ze:truth-value he:data-type d′:symbol-table) ;

(2) w-count D′ h d = wc-state n′:natural h′:dataatype ;

(3) l′ = sum(l, n) ;

(4) l′′ = sum(l′, n′) ;

(5) evaluate D h a union(f , set of a) d l sum(l′′,21) =

(p:program, r:general-register) ;
(6) with D′ h a union(f , set of r) d l′ sum(l′′,21) =

(p′:program, r′:general-register) ;

⇒ perform [[ “enact” “application” D:Dependent “to” D′:Tuple ]]
h a f d un ue uf l ln le lf =
a-state overlay(p, p′, call-sequence l′′ r r′ un ue ue uf ln le

lf ) r r .

By applying the induction hypothesis twice and by using the code macros
sizes lemma we get

• d-consistent (d-count D h d)
(evaluate D h a union(f , set of a) d l sum(l′′,21)) union(f , set of a)

l = true ;

• w-consistent (w-count D′ h d)
(with D′ h a union(f , set of r) d l′ sum(l′′,21)) l′ = true ;

• well-placed (call-sequence l′′ r r′ un ue uf ln le lf ) l′′ 27 = true .

To recall, the definition of ‘a-consistent ’ in E.1.1.2) is

• a-consistent (ac-state n zn hn ze he e) (a-state p an ae) un l = both(
well-placed p l n,
either(e is empty-list, h is 0) ) .

The second part of this predicate follows immediately because e is the empty
list. The first part follows from the equations for l′ and l′′ and a simple
calculation. ✷
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Lemma: (Consistent use of Symbol-tables)

d : symbol-table ;
l : linenumber

⇒
(1) (1) find k d l = p:program

⇒ find-consistent (find-count k:token d) p l = true .

Proof: The lemma is proved by induction on the length of inference of (1.1).
The definition of ‘find ’ in C.4.5.(1) is

• find k:token concatenation(list of e: block, d:symbol-table) l:linenumber =
if (block-find-count k e) is error
then overlay( map l to ( load global 0 stack into global ),

find k d sum(l,1))
else empty-map .

The definition of ‘find-consistent ’ in E.1.1.(5) is

• find-consistent (x : (natural, type, natural) ||| error) p l =
if x is error then true else
(well-placed p l (component#1 of x)) .

In the base case, we consider inferences of length one, so the rule for ‘find ’
has only been applied once. Hence, ‘block-find-count k e’ is not ‘error’ and ‘p
= empty-map’. In the definition of ‘find-count ’, see C.3.5, it is easy to see
that ‘find-count k d’ then either yields ‘error’, (in which case the conclusion
immediately follows) or yields a tuple with the first component being 0 (in
which case the conclusion follows from the definition of ‘well-placed ’, see
E.1.1.(1).

In the induction step, we have that ‘block-find-count k e’ is ‘error’ and
that ‘find k d sum(l,1)’ is an individual. In the definition of ‘find-count ’,
see C.3.5, it is easy to see that ‘find-count k d’ then either yields ‘error’, (in
which case the conclusion immediately follows) or else involves the clause
C.3.5.(3) that is

• (1) block-find-count k e = error ;

(2) find-count k d = (n:natural, S:type, j:natural)
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⇒ find-count k:token concatenation(list of e:block, d:symbol-table) =
(sum(n,1), S, j) .

We then need to prove ‘well-placed (find k d l) l sum(n,1)’. By applying the
induction hypothesis to ‘find k d sum(l,1)’ we get that

• find-consistent (find-count k:token d) (find k d sum(l,1)) sum(l,1) = true .

Hence, ‘well-placed (find k d sum(l,1)) sum(l,1) n’, from which the desired
conclusion follows by a simple calculation. ✷

Lemma: (Increasing Type Analysis of Unfoldings)

h , hn , h′
n , he , h′

e : data-type ;
zn , z′n , ze , z′e : truth-value :
d : symbol-table ;
e , e′ : block ;
n′ : natural

⇒
(1) (1) u-count U :Unf h d zn hn ze he e = ac-state n′ z′n h′

n z′e h′
e e′

⇒ ac-less zn hn ze he e z′n h′
n z′e h′

e e′ =true .

Proof: The lemma is proved by induction on the length of inference of (1.1).

In the base case there is only one clause to consider, namely C.3.2.(6)
that is

• u-count “unfold” h d zn hn ze he e = ac-state 2 zn hn ze he e .

The conclusion of the lemma is immediate.

In the induction step we consider the five other clauses in C.3.2. The
fifth of them is

• u-count [[ U :Unf “or” A:Act ]] h d zn hn ze he e =
u-count [[ A “or” U ]] h d zn hn ze he e ;

By applying the induction hypothesis, we get the conclusion of the lemma.

We give the details of only the second of the remaining four cases, the
others are similar. The involved clause is
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• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) compare-data-types ze he z′e h′
e = h′′′

e :data-type ;

(3) u-count U h′
n d zn hn either(ze, z

′
e) h′′′

e e = ac-state n′′ z′′n h′′
n z′′e h′′

e e′′

⇒ u-count [[ A:Act “then” U :Unf ]] h d zn hn ze he e =
ac-state sum(n′,7,n′′) z′′n h′′

n z′′e h′′
e e′′ ;

By applying the induction hypothesis to the third assumption we get that
‘cc-less zn hn e z′′n h′′

n e′′’ and ‘ec-less either(ze,z
′
e) h′′′

e z′′e h′′
e ’ (see the definition

of ‘ac-less’ in E.1.2). We then only need to prove ‘ec-less ze he z′′e h′′
e ’. It is

easy to see that ‘ec-less’ is transitive, so it is sufficient to prove ‘ec-less ze he

either(ze,z
′
e) h′′′

e ’. If ze is false, then this is immediate. If ze is true, then we
also have that either(ze,z

′
e) is true. We then have to prove that ‘he is h′′′

e ’. To
do this we need the second assumption. The definition of ‘compare-data-types

’ in C.1.2.(8) is

• compare-data-types z h z′ h′ =
if z′ is false then h else
if both(z is false, z′ is true) then h′ else
if alI(z is true,z′ is true, h is h′) then h else nothing .

It follows that because ze is true, then ‘he = h′′′
e ’. ✷

Lemma: (Type Analysis of Unfoldings computes a Fixed Point)

h , hn , h′
n , he , h′

e : data-type ;
zn , z′n , ze , z′e : truth-value :
d : symbol-table ;
e , e′ : block ;
n′ : natural

⇒
(1) (1) u-count U :Unf h d zn hn ze he e = ac-state n′ z′n h′

n z′e h′
e e′

⇒ u-count U :Unf h d z′n h′
n z′e h′

e e = ac-state n′ z′n h′
n z′e h′

e e′

Proof: The lemma is proved by induction on the length of inference of (1.1).

In the base case there is only one clause to consider, namely C.3.2.(6)
that is

• u-count “unfold” h d zn hn ze he e = ac-state 2 zn hn ze he e .
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The conclusion of the lemma is immediate.

In the induction step we consider the five other clauses in C.3.2. The
fifth of them is

• u-count [[ U :Unf “or” A:Act ]] h d zn hn ze he e =
u-count [[ A “or” U ]] h d zn hn ze he e ;

By applying the induction hypothesis, we get the conclusion of the lemma.

We give the details of only the second of the remaining four cases, the
others are similar. The involved clause is

• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) compare-data-types ze he z′e h′
e = h′′′

e :data-type ;

(3) u-count U h′
n d zn hn either(ze, z

′
e) h′′′

e e = ac-state n′′ z′′n h′′
n z′′e h′′

e e′′

⇒ u-count [[ A:Act “then” U :Unf ]] h d zn hn ze he e =
ac-state sum(n′,7,n′′) z′′n h′′

n z′′e h′′
e e′′ ;

By applying the induction hypothesis to the third assumption we get that

• u-count U :Unf h′
n d z′′n h′′

n z′′e h′′
e e′′ = ac-state n′′ z′′n h′′

n z′′e h′′
e e′′

It is sufficient to prove

• either(z′′e ,z′e) = z′′e .
• compare-data-types z′′e h′′

e z′e h′
e = h′′

e .

We will split the proof into two cases.

Consider first ‘z′′e = false’. From the lemma on increasing type analysis
of unfolding we get that

• ec-less either(ze,z
′
e) h′′′

e z′′e h′′
e = true .

Hence, ze and z′e are both false. The validity of the two formulas follows.

Consider next ‘z′′e = true’. Here, ‘either(z′′e ,z′e) = z′′e ’ is immediate. If z′e
is false, then the second formula immediately follows. Consider therefore the
case where z′e is true. We need to prove ‘h′′

e = h′
e’. To prove this, we again

use

• ec-less either(ze,z
′
e) h′′′

e z′′e h′′
e = true .
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From this, it follows that

• h′′
e = h′′′

e = compare-date-types ze he z′e h′
e = he .

The last equality holds because the result is known in advance to be an
individual. ✷

E.3 Correctness of Analysis

needs: Auxiliary Notation .

Lemma: (Correctness of Analysis)

h, hn, h′
n, he, h′

e : data-type ;
zn, z′n, ze, z′e : truth-value ;
d : symbol-table ;
e, e′ : block ;
n, n′ : natural ;
b : bindings ;
v, v′ : datum ;
S, S ′ : type ;

⇒

(1) (1) a-count A h d = ac-state n zn hn ze he e ;

(2) tc-abs h :- t ;

(3) bc-abs d :- b ;

(4) final A:Act t:data b:bindings s:storage io:input-output = ma:state

⇒ mc-abs (ac-state n:natural zn:truth-value hn:data-type
ze:truth-value he:data-type e:block) :- ma ;

(2) (1) u-count U h d zn hn ze he e = ac-state n′ z′n h′
n z′e h′

e e′ ;

(2) u-count U ′ h′ d false () false () empty-list = ac-state n z′n h′
n z′e h′

e e′ ;

(3) tc-abs h :- t ;

(4) bc-abs d :- b ;

(5) unf-final U :Unf [[ “unfolding” U ′ ]]
t:data b:bindings s:storage io:input-output = ma:state
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⇒ mc-abs (ac-state n′:natural z′n:truth-value h′
n:data-type

z′e:truth-value h′
e:data-type e′:block) :- ma ;

(3) (1) d-count D h d = error ;

(2) tc-abs h :- t ;

(3) bc-abs d :- b

⇒ evaluated D:Dependent t:data b:bindings s:storage = nothing ;

(4) (1) d-count D h d = (n:natural,S:type) ;

(2) tc-abs h :- t ;

(3) bc-abs d :- b ;

(4) evaluated D:Dependent t:data b:bindings s:storage = v:datum

⇒ vc-abs S :- v ;

(5) (1) w-count D h d = error ;

(2) tc-abs h :- t ;

(3) bc-abs d :- b

⇒ multi-evaluated D:Tuple t:data b:bindings s:storage = nothing ;

(6) (1) w-count D h d = wc-state n:natural h′:data-type ;

(2) tc-abs h :- t ;

(3) bc-abs d :- b

(4) multi-evaluated D:Tuple t:data b:bindings s:storage = t′:data

⇒ tc-abs h′ :- t′ ;

(7) (1) find-count k d = error ;

(2) bc-abs d :- b

⇒ b at k:token = nothing ;

(8) (1) find-count k d = (n:natural, S:type, j:natural) ;

(2) bc-abs d :- b

⇒ vc-abs S :- (b at k:token) ;

(9) (1) block-find-count k e = error ;

(2) ec-abs e :- b

⇒ b at k:token = nothing ;

(10) (1) block-find-count k e = (S:type, j:natural) ;

(2) ec-abs e :- b

⇒ vc-abs S :- (b at k:token) ;
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(11) (1) unary-count O S = error ;

(2) vc-abs S :- v

⇒ unary-operation O:Unary v = nothing ;

(12) (1) unary-count O S = (n:natural, S ′:type) ;

(2) vc-abs S :- v ;

(3) unary-operation O:Unary v = v′:datum

⇒ vc-abs S ′ :- v′ ;

(13) (1) binary-count O S S ′ = error ;

(2) vc-abs S :- v ;

(3) vc-abs S ′ :- v′

⇒ binary-operation O:Binary v v′ = nothing ;

(14) (1) binary-count O S S ′ = (n:natural, S ′′:type) ;

(2) vc-abs S :- v ;

(3) vc-abs S ′ :- v′ ;

(4) binary-operation O:Binary v v′ = v′′:datum
⇒ vc-abs S ′′ :- v′′ .

Proof: The definitions of ‘a-count ’, ‘u-count ’, ‘d-count
’, and ‘w-count ’ are mutually recursive. We therefore need to prove

first (9)–(14), then (7)–(8), and finally the conjunction of (1)–(6).

The proofs of (9)–(14) are straightforward. We will consider only two of
the cases, the others are similar.

Consider the unary operation “not” and the points (11) and (12). The
involved definitions are C.3.6.(1) and A.3.5.(1) that is

• unary-count “not” S:type =
if S is truth-value-type then (2, truth-value-type) else error .

• unary-operation “not” v = not v .

For the proof of (11), note that if ‘unary-count “not” S = error’, then S cannot
be ‘truth-value- type’. From the definition of ‘vc-abs ’ in E.1.2.(13)–(18) we
then get that v cannot be included in ‘truth-value’. Hence, ‘unary-operation
“not” v = nothing’, as desired.

For the proof of (12), note that if ‘unary-count “not” S = (n:natural,
S ′:type)’, then S must be ‘truth-value-type’, n must be 2, and S ′ must be

151



‘truth-value-type’. One of the clauses that define ‘vc-abs ’ is E.1.2.(13) that
is

• vc-abs truth-value-type = truth-value .

The operation ‘not ’ will yield an individual contained in ‘truth-value’ when
applied to an individual contained in ‘truth-value’. From this the conclusion
follows.

Let us then consider the proof of (7)–(8). The proof is by induction in the
length of inference of formulas on the form (7.1) and (8.1), since the definition
of ‘find-count ’ is recursive. In the base case, we consider inferences of length
one, so only one clause for ‘find-count ’ has been applied. The only two
possible such clauses are C3.5.(1)–(2) that is

• find-count k:token empty-list = error .

• (1) block-find-count k e = (S:type, j:natural)

⇒ find-count k:token concatenation(list of e:block, d:symbol-table) =
(0, S, j) .

In the first case, we need to prove the conclusion of (7). From the definition
of ‘bc-abs ’ in D.2.(3)–(4) we get that b must be the empty map. From this
the conclusion follows immediately. In the second case, we need to prove the
conclusion of (8). From the definition of ‘bc-abs ’ in E.1.2.(4)–(6) we get
that

• (1) ec-abs e :- b ;

(2) bc-abs d :- b′ ;

⇒ bc-abs concatenation(list of e:block, d:symbol-table) :- overlay( b, b′) .

By using the lemma’s point (10) we get that ‘vc-abs S :- (b at k)’. From this
it immediately follows that ‘vc-abs S :- (overlay(b, b′) at k)’, as desired.

In the induction step, we consider the remaining two clauses for ‘find-
count ’ namely C.3.5.(3)–(4) that is

(1) (1) block-find-count k e = error ;

(2) find-count k d = (n:natural, S:type, j:natural)

⇒ find-count k:token concatenation(list of e:block, d:symbol-table) =
(sum(n,1), S, j) .
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(2) (1) block-find-count k e = error ;

(2) find-count k d = error

⇒ find-count k:token concatenation(list of e:block, d:symbol-table) =
error .

In the first case, we need to prove the conclusion of (8). Like above, we get
that

• (1) ec-abs e :- b ;

(2) bc-abs d :- b′

⇒ bc-abs concatenation(list of e:block, d:symbol-table) :- overlay(b, b′) .

By using the lemma’s point (9) and the induction hypothesis we get that
k is not in the domain of b and that ‘vc-abs S :- (b′ at k)’. From this it
immediately follows that ‘vc-abs S :- (overlay(b, b′) at k)’, as desired.

In the second case, we need to prove the conclusion of (7). Similar
to the first case this follows from the lemma’s point (9) and the induction
hypothesis.

Let us finally consider the proof of the conjunction of (1)–(6). The proof
is by induction in the length of inference of formulas on the form (1.1), (2.5),
(3.1), (4.1), (5.1), and (6.1).

In the base case, we consider inferences that involve only one clause
for either ‘a-count’, ‘u-count’, ‘d-count’, or ‘w-count’. We will only give the
details of one of the cases, the others are similar.

Consider the ‘a-count’ clause for “complete” in C.3.1.(1) that is

• a-count “complete” h d = ac-state sum(e-size,6) true () false () empty-list .

The ‘final’ clause for “complete” in A.3.1.(1) is

• final “complete” t b s io = completed () empty-map s io uncommitted .

To prove the conclusion of (1), we need a clause for ‘mc-abs’ namely E.1.2(12)
that is

• (1) tc-abs hn :- t ;

(2) ec-abs e :- b

⇒ mc-abs (ac-state n:natural true hn:data-type, ze:truth-value
he:data-type eblock) :- completed t b s io c ;
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From this the conclusion immediately follows.

In the induction step, we consider the remaining clauses for ‘a-count’,
‘u-count’, ‘d-count’, and ‘w-count’. We will only give the details of four of the
cases, the others are similar.

Firstly, consider the ‘a-count’ and ‘final’ clauses for [[ “enact” “applica-
tion” D:Dependent “to” D′:Tuple ]] namely C.3.1.(15) and A.3.1.(15) that
is

• (1) d-count D h d = (n:natural,
abstraction-type h′:data-type zn:truth-value hn:data-type
ze:truth-value he:data-type d′:symbol-table) ;

(2) w-count D′ h d = wc-state n′:natural h′:data-type ;

⇒ a-count [[ “enact” “application” D:Dependent “to” D′:Tuple ]] h d =
ac-state sum(n,n′,27) zn hn ze he empty-list .

• (1) evaluated D t b s = closure-abstraction A:Act D′′:Data b′:bindings ;

(2) multi-evaluated D′ t b s = t′:data

⇒ final [[ “enact” “application” D:Dependent “to” D′:Tuple ]] t b s io =
final A t′ b′ s io ;

By applying the induction hypothesis twice, points (4) and (6), we get

• vc-abs (abstraction-type h′:data-type zn:truth-value hn:data-type
ze:truth-value he:data-type d′:symbol-table) :-
closure-abstraction A:Act D′′:Data b′:bindings .

• tc-abs h′ :- t′ .

We then need one of the defining clauses for ‘vc-abs ’ namely E.1.2.(17), and
using that we can further assume that

• a-count A h′ concatenation(list of empty-list, d′) =
ac-state n:natural zn hn ze he empty-list .

• data-type D = h′ .

• bc-abs d′ :- b′ .

We can now apply the induction hypothesis, point (1), and that immediately
gives the conclusion.

Secondly, consider the ‘a-count’ and ‘final’ clauses for [[ “unfolding” U ]]
namely C.3.1.(17) and A.3.1.(17) that is
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• (1) u-count U h d false () false () empty-list = ac-state n zn hn ze he e

⇒ a-count [[ “unfolding” U :Unf ]] h d = ac-state sum (4,n,18) zn hn ze

he e ;

• final [[ “unfolding” U :Unf ]] t b s io = unf-final U [[ “unfolding” U ]] t b s
io ;

To prove the conclusion of (1), we use these two clauses to bring us in a situ-
ation where we can apply the induction hypothesis, point (2). This immedi-
ately yields the desired result, since the ‘natural’ component of an ‘ac-state’
has no impact on what is yielded by ‘mc-abs’.

Thirdly, consider the ‘a-count’ clause and the first ‘final’ clause for
[[ A:Act “then” A′:Act ]] namely C.3.1.(19) and A.3.1.(21) that is

• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) a-count A′ h′
n d = ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) compare-data-types z′e h′
e z′′e h′′

e = he:data-type
⇒ a-count [[ A:Act “then” A′:Act ]] h d = ac-state sum(n′,2,n′′,18)

both(z′n,z′′n) h′′
n) he e .

• (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) final A′ t′ b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act “then” A′:Act ]] t b s io := completed t′′ b′′ s′′ io′′

either(c′,c′′) .

By applying the induction hypothesis, point (1), to the first assumptions we
get

• mc-abs (ac-state n′ z′n h′
n z′e h′

e empty-list) :-
completed t′ empty-map s′ io′ c′ .

From one of the clauses for ‘mc-abs’ E.1.2.(12) we get that we further can
assume ‘tc-abs h′

n :- t′’, and that z′n must be true. We can then apply the
induction hypothesis, point (1), this time to the second assumptions, and we
get

• mc-abs (ac-state n′′ z′′n h′′
n z′′e h′′

e e) :-
completed t′′ b′′ s′′ io′′ c′′ .
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From one of the clauses for ‘mc-abs’ E.1.2.(12) we get that we further can
assume ‘tc-abs h′′

n :- t′′’ and ‘ec-abs e :- b′′’ and z′′n must be true.

To prove the conclusion of point (1) , we note that we have the es-
tablished the explicit assumptions of the clause E.1.2.(12) for ‘mc-abs’. We
then only need to prove that ‘both(z′n,z′′n)’ is true. This follows immediately
because both components are true.

Fourthly, consider the ‘u-count’ clause for “unfold” in C.3.2.(6) that is

• u-count “unfold” h d zn hn ze he e= ac-state 2 zn hn ze he e .

The ‘unf-final’ clause for “unfold” in A.3.2.(13) and the ‘final’ clause for [[
“unfolding” U ]] in A.3.1.(17) are

• unf-final “unfold” [[ unfolding U :Unf ]] t b s io = final [[ “unfolding” U ]] t
b s io .

• final “unfolding” U :Unf ]] t b s io = unf-final U [[ “unfolding” U ]] t b s
io ;

To prove the conclusion of (2), we use these two clauses to bring us in a situ-
ation where we can apply the induction hypothesis, point (2). This immedi-
ately yields the desired result, since the ‘natural’ component of an ‘ac-state’
has no impact on what is yielded by ‘mc-a bs’. ✷

E.4 Completeness

needs: Auxiliary Notation ,
Compiler Consistency ,
Correctness of Analysis .

Lemma: (Sound Semantics of Types)

n : natural ;
q : memory ;
p : program ;
h, hn, he, : data-type ;
t : data ;
d : symbol-table ;

156



b : bindings ;
e : block ;
mp : sparc-state ;
zn, ze : truth-value ;
an, ae : general-register ;
ln : linenumber-complete ;
le : linenumber-escape ;
lf : linenumber-fail ;
ma : state ;
i : integer ;
S : type ;
v: datum ;

⇒

(1) (1) t-abs n q p h :- t

⇒ tc-abs h :- t ;

(2) (1) b-abs n q p d :- b

⇒ bc-abs d :- b ;

(3) (1) e-abs n q p e :- b

⇒ ec-abs e :- b ;

(4) (1) m-abs mp zn hn ze he an ae e ln le lf :- ma

⇒ mc-abs (ac-state n zn hn ze he e ) :- ma ;

(5) (1) v-abs i q p S :- v

⇒ vc-abs S :- v .

Proof: The definitions of ‘b-abs ’, ‘e-abs ’, and ‘v-abs ’ are
mutually recursive, and so are the definitions of ‘bc-abs ’, ‘ec-abs

’, and ‘vc-abs ’. We therefore need to prove the conjunction of (2),
(3), and (5) before the others. After that we must prove (1) and finally we
must prove (4). These three subproofs are similar, however, so here we give
a detailed proof of only the conjunction of (2), (3), and (5).

The proof is by induction on the length of inference of formulas on the
form (2.1), (3.1), and (5.1). We will only show the treatment of the clauses
for the defining of ‘v-abs’, in D.2.(16)–(23), and ‘vc-abs’ in E.1.2.(13)–(18).
The clauses for ‘b-abs’, ‘bc-abs’, ‘e-abs’, and ‘ec-abs’ can be treated similarly.
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In the base case, we consider the clauses for the four base types and
the abstractiontype constructor. Each of the cases involving a base type
are similar. Let us here look at only the first, the one concerning ‘truth-
value-type’. The involved definitions are D.2.(16)–(17) and E.1.2.(13) that
is

• v-abs 0 q p truth-value-type :- false ;

• v-abs 1 q p truth-vaIue-type :- true ;

• vc-abs truth-value-type = truth-value .

The conclusion is then immediate because ‘false,true:truth-value’.

In the induction step, we consider the clauses for the abstraction-type
constructor and the list-type constructor.

The case with the abstraction-type constructor involves the clauses D.2.(21)
and E.1.2.(17) that is

• (1) a-count A h concatenation(list of empty-list, d) =
ac-state n zn hn ze he empty-list ;

(2) l = (q at heap) at i ;

(3) l′ = sum(l, n) ;

(4) perform A h (reg 0) empty-set concatenation(list of empty-list, d) 0 0 0
l l′ sum(l′,2) sum(l′,3) = a-state p′ n ae ;

(5) return-sequence an ae l′ = p′′ ;

(6) p′ is submap of p = true ;

(7) p′′ is submap of p = true ;

(8) data-type D = h ;

(9) b-abs ((q at heap) at sum(i,1)) q p d :- b

⇒ v-abs i:integer q p (abstraction-type h zn hn ze he d) :-
closure-abstraction A h concatenation(list of empty-list, d) =

• (1) a-count A h concatenation(list of empty-list, d) =
ac-state n:natural zn hn ze he empty-list ;

(2) data-type D = h ;

(3) bc-abs d :- b

⇒ vc-abs (abstraction-type h:data-type zn:truth-value hn:data-type
ze:truth-value he:data-type d:symbol-table) :-
closure-abstraction A:Act D:Data b:bindings .
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Assume the conclusion of the first of these clauses. We can then also assume
the nine assumptions of that clause. To prove the lemma we need to prove the
three assumptions of the second clause. The first two of these are immediate,
the third follows by using the induction hypothesis point (2).

The case with the list-type constructor involves the clauses D.2.(22)–(23)
and E.1.2.(18) that is

• (1) ((q at heap) at sum(i,1)) is -1 = true

⇒ v-abs i:integer q p (list-type S) :- empty-list ;

• (1) v-abs ((q at heap) at i) q p S :- v ;

(2) v-abs ((q at heap) at sum(i,1)) q p list-type S:type) :- v′ ;

⇒ v-abs i:integer q p (list-type S) :- concatenation(list of v, v′) ;

• vc-abs (list-type S:type) = [vc-abs S] list .

Firstly, assume the conclusion of the first clause. Since ‘S’ is an individual, we
immediately get ‘[vc-abs S] list :- empty-list’. Secondly, assume the conclusion
of the second clause. We can then also assume the two assumptions of that
clause. We need to prove ‘vc-abs S :- v’ and ‘vc-abs (list-type S) :- v′’. Both
follow from the induction hypothesis. ✷

Lemma: (Singlethreadedness of Actions)

t : data ;
b : bindings ;
s : storage ;
io : input-output ;

⇒

(1) (1) final A Act t b s io = mastate

⇒ either(both((storage of ma) is s, (input-output of ma) is io),
(commitment of ma) is committed) = true ;

(2) (1) unf-final U :Unf [[ “unfolding” U ′:Unf ]] t b s io = ma:state

⇒ either(both((storage of ma) is s, (input-output of ma) is io),
(commitment of ma) is committed) = true .

Proof: By induction in the length of inference. See section 4.2.2 for the
proof. ✷
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Lemma: (Completeness)

g globals ;
w : windows ;
n, n′, n′′, nw : natural ;
q, q′, q′′ : memory ;
p, p′, p′′ : program ;
h, h′, hn, h′

n, he, h′
e : data-type ;

t : data ;
d : symbol-table ;
b : bindings ;
e, e′s : block ;
mp, m′

p : sparc-state ;
cz : was-zero ;
cn : was-negative ;
zn, z′n, ze, z′e : truth-value ;
r, r′, r′′, a, a′, an, a′

n, ae, a′
e : general-register ;

l linenumber ;
ln : linenumber-complete ;
le : linenumber-escape ;
lf : linenumber-fail ;
lu :linenumber-unfold ;
S, S ′ : type ;
v, v′ : datum ;
io :input-output ;
s : storage ;
f , f ′ : frosen ;
un, ue, uf :cleanup ⇒

(1) (1) a-count A h d = ac-state n′ zn hn ze he e ;

(2) perform A h a f d un ue uf l ln le lf = a-state p′ an ae ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs((head of w) at statlink q′ p d :- b ;

(5) store-abs (g at firstfree)(q at store ) :- s ;

(6) io:input-output = (il:[integer] list, ol:[integer] list ) ;

(7) i-abs ((q at input) at 0)(q at input) = il ;
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(8) o-abs ((q at output) at 0)(q at output) = ol ;

(9) pre-condition (p′ p sum(l, n′)(ln, le, lf ) g w q q′ nw d = true ;

(10) final A:Act t, b s io = ma:state

⇒ ∃mp:sparc-state ∃n:natural

(11) spare-final n (p, l, cz, cn, g, w, q) (ln, le, lf ) nw = mp ;

(12) a-post-condition g w q mp f un ue uf e (commitment of ma) = true ;

(13) (1) m-earlier mp m′
p = true

⇒ m-abs m′
p zn hn ze he an ae e ln le lf :- ma ;

(2) (1) u-count U h d zn hn ze he e = ac-state n′ z′n h′
n z′e h′

e e′ ;

(2) u-count U ′ h′ d false () false () empty-list = ac-state n′′ z′n h′
n z′e h′

e e′ ;

(3) unf U h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu = a-state p′

a′
n a′

e ;

(4) unf U ′ h′ a′ f ′ d un ue uf a′ false () a′ false () a′ empty-list lu ln le lf lu
= a-state p′′ a′

n a′
e ;

(5) t-abs ((head of w) at a) q′ p h :- t ;

(6) b-abs ((head of w) at staticlink) q′ p d :- b ;

(7) store-abs (g at firstfree) (q at store) :- s ;

(8) io:input-output = (il:[integer] list, ol:[integer] list) ;

(9) i-abs ((q at input) at 0) (q at input) = il ;

(10) o-abs ((q at output) at 0) (q at output) = ol ;

(11) precondition p′ p sum(l,n′) (ln, le, lf ) g w q q′ nw d = true ;

(12) p′′ is submap of p = true ;

(13) sum(lu, n′′) leq (ln, le, lf ) = true ;

(14) a′ is in f = false ;

(15) unf-final U :Unf [[ “unfolding” U ′:Unf ]] t b s io = ma:state

⇒ ∃ mp:sparc-state ∃ n:natural

(16) spare-final n (p, l, cz, cn, g, w, q) (ln, le, lf ) nw = mp ;

(17) u-post-condition g w q mp f un ue uf e (commitment of ma) = true ;

(18) (1) m-earlier mp m′
p = true

⇒ m-abs m′
p z′n h′

n z′e h′
e a′

n a′
e e′ ln le lf :- ma ;

(3) (1) d-count D h d = (n′:natural, S:type) ;

(2) evaluate D h a f d l lf = (p′:program, r:general-register) ;
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(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l,n′) lf g w q q′ nw d = true ;

(7) evaluated D:Dependent t b s = v:datum

⇒ ∃ mp:sparc-state ∃ n:natural

(8) spare-final n (p, l, cz, cn, g, w, q) sum(l,n′) nw = mp ;

(9) d-post-condition g w q mp f = true ;

(10) (1) mq-earlier mp q′′ = true

⇒ v-abs ((head of (windows of mp)) at r) q′′ p S :- v ;

(4) (1) d-count D h d = (n′:natural, S:type) ;

(2) evaluate D h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l,n′) lf g w q q′ nw d = true ;

(7) evaluated D:Dependent t b s = nothing

⇒ ∃ mp:sparc-state ∃ n:natural

(8) spare-final n (p, l, cz, cn, g, w, q) lf nw = mp ;

(9) d-post-condition g w q mp f = true ;

(5) (1) w-count D h d = wc-state n′:natural h′:data-type ;

(2) with D h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(7) multi-evaluated D:Tuple t b s = t′:data

⇒ ∃ mp:sparc-state ∃ n:natural

(8) spare-final n (p, l, cz, cn, g, w, q) sum(l,n′) nw = mp ;

(9) d-post-condition g w q mp f = true ;

(10) (1) mq-earlier mp q′′ = true
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⇒ t-abs((head of (windows of mp)) at r) q′′ p h′ :- t′ ;

(6) (1) w-count D h d = wc-state n′:natural h′:data-type ;

(2) with D h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l,n′) lf g w q q′ nw d = true ;

(7) multi-evaluated D:Tuple t b s = nothing

⇒ ∃ mp:sparc-state ∃ n:natural

(8) spare-final n (p, l, cz, cn, g, w, q) lf nw = mp ;

(9) d-post-condition g w q mp f = true ;

(7) (1) find-count k d = (n′:natural, S:type, j:natural) ;

(2) find k d l = p′:program ;

(3) b-abs (g at global) q′ p S :- b ;

(4) basic-pre-condition p′ p sum(l, n′) lf g w q q′ nw = true

⇒ ∃ mp:sparc-state ∃ n:natural

(5) spare-final n (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp ;

(6) f-post-condition g w q mp = true ;

(7) (1) mq-earlier mp q′′ = true

⇒ v-abs sum((globals of mp at globals, j) q′′ p S :- (b at k:token) ;

(8) (1) block-find-count k e = (S:type, j:natural) ;

(2) e-abs sum(g at global, count of items of e) q p e :- b

⇒
(3) (1) ((q at heap) restricted to up-to (q at hp)) is

((q′ at heap) restricted to up-to (q at hp)) = true

⇒ v-abs sum(g at global, j) q′ p S :- (b at k:token) ;

(9) (1) unary-count O S = (n′:natural, S ′:type) ;

(2) unary-code O r r′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(5) unary-operation O:Unary v = v′:datum

⇒ ∃ mp:sparc-state ∃ n:natural
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(6) sparc-final n (p, l, cz, cn, g, w, q) sum(l, n′) n w = mp ;

(7) op-post-condition g w q mp r′ = true ;

(8) (1) mq-earlier mp q′′ = true

⇒ v-abs ((head of (windows of mp)) at r) q′′ p S ′ :- v′ ;

(10) (1) unary-count O S = (n′:natural, S ′:type) ;

(2) unary-code O r r′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(5) unary-operation O:Unary v = nothing

⇒ ∃ mp:sparc-state ∃ n:natural

(6) spare-final n (p, l, cz, cn, g, w, q) lf nw = mp ;

(7) op-post-condition g w q mp r′ = true ;

(11) (1) binary-count O S S ′ = (n′:natural, S ′′:type) ;

(2) binary-code O r r′ r′′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) v-abs ((head of w) at r′) q′ p S ′ :- v ;

(5) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(6) binary-operation O:Binary v v′ = v′′:datum

⇒ ∃ mp:sparc-state ∃ n:natural

(7) spare-final n (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp ;

(8) op-post-condition g w q mp r′′ = true ;

(9) (1) mq-earlier mp q′′ = true

⇒ v-abs ((head of (windows of mp)) at r′′) q′′ p S ′ :- v′′ ;

(12) (1) binary-count O S S ′ = (n′:natural, S ′′:type) ;

(2) binary-code O r r′ r′′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) v-abs ((head of w) at r′) q′ p S ′ :- v ;

(5) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(6) binary-operation O:Binary v v′ = nothing

⇒ ∃ mp:sparc-state ∃ n:natural

(7) spare-final n (p, l, cz, cn, g, w, q) lf nw = mp ;
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(8) op-post-condition g w q mp r′′ = true .

Proof: The definitions of ‘a-count’, ‘u-count’, ‘d-count’, ‘w-count’ are mutu-
ally recursive, and so are the definitions of ‘perform’, ‘unf’, ‘evaluate’, ‘with’.
We therefore need to prove first (8)—(12), then (7), and anally the conjunc-
tion of (1)—(6).

Let us first consider the proofs of (8)—(12). We will consider only one
of the cases, the others are similar.

Consider the unary operation “not” and the lemma’s point (9). The
involved definitions are C.3.6.(1), C.4.6.(1), and A.3.5.(1) that is

• unary-count “not” S:type =

if S is truth-value-type then (2, truth-value-type) else error .

• unary-code “not” r r′ l lf = overlay(

map of sum(l,0) to ( move 1 to global ),

map of sum(l,1) to ( move difference global r to r′)) .

• unary-operation “not” v = not v .

First note that if ‘unary-count “not” S = (n′:natural, S ′:type)’, then S must
be ‘truth-value-type’, n must be 2, and S ′ must be ‘truth-value-type’. Two of
the clauses that define ‘v-abs ’ are D.2.(16)–(17) that is

• v-abs 0 q p truth-value-type :- false .

• v-abs 1 q p truth-value-type :- true .

Let us consider the first of these two cases, the second is similar. We then
have that ‘v = false’, and, using the definition of ‘unary-operation “not” v’,
we also have ‘v′ = true’. Furthermore, we have that ‘(head of w) at r = 0’.
To prove the lemma’s conclusions, we choose ‘n = 2’ and mp = (p, sum(l,2),
cz, cn, overlay(map of global to 1, g), update w (map of r to 1), q). Consider
the definition of ‘sparc-final ’ in B.3.1.(1) that is

• sparc-final n:natural mp:sparc-state lt:linenumber∗ nw:natural =

if both(n is 0, finished mp lt nw)
then mp

else if not any(n is 0, finished mp lt nw, out-of-bound mp)
then spare-final predecessor(n) step(mp) lt nw
else nothing .
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We can then prove the first conclusion of the lemma by applying this clause
three times, as follows. First note that n is different from 0, that ‘finished
mp lt nw’ is false, and that ‘out-of-bound mp’ is also false. Hence, that
application of the rule just given yields

• spare-final 2 (p, l, cz, cn, g, w, q) sum(l,2) nw

= sparc-final 1 step(p, l, cz, cn, g, w, q) sum(l,2) nw

= sparc-final 1 (p, sum(l,1), cz, cn, overlay(map of global to 1, g), w,

q) sum(l,2) nw

In the second step, we used the clause for ‘move’ namely B.3.2.(13.2). Again,
we get that 1 is different from 0, that ‘finished mp lt nw’ is false, and that
‘out-of-bound mp’ is also false. We can then continue the calculation as follows

• spare-final 2 (p, l, cz, cn, g, w, q) sum(l,2) nw

= spare-final 0 step(p, sum(l,1), cz, cn, overlay(map of global to 1, g),

w, q) sum(l,2) nw

= sparcfinal 0 mp sum(l,2) nw

= mp

In the second step, we used the clause for ‘move’ namely B.3.2.(13.3). In the
third step, we used that the number of steps to execute finally reached 0,
and that ‘finished mp lt nw’ now is true.

To prove the second conclusion of the lemma, we note that r′ is the
only general-register that has been modified, that the register-windows are
otherwise unchanged, that ‘global’ is the only global register that has been
modified, and that the memory is unchanged.

To prove the third conclusion of the lemma, we note that ‘v-abs 1 q p
truth-value-type :- true’. We need to prove ‘v-abs 1 q′′ p truth-value-type :-
true’. This follows immediately from the assumption ‘mq-earlier mp q′′ =
true’.

Let us then consider the proof of the lemma’s point (7). The involved
definitions are C3.5.(2)—(3) and C4.5.( 1).

• (1) block-find-count k e = (S:type, j:natural)

⇒ find-count k:token concatenation(list of e:block, d:symbol-table) =

(0, S, j) .
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• (1) block-find-count k e = error ;

(2) find-count k d = (n:natural, S:type, j:natural)

⇒ find-count k:token concatenation(list of e:block, d:symbol-table) =

(sum(n,1), S, j) .

• find k:token concatenation(list of e:block, d:symbol-table) l:linenumber =

if (block-end-count k e) is error
then overlay( map l to ( load global 0 stack in to global ),

find k d sum(l,1))
else empty-map .

The proof is by induction on the length of inference of (7.1), since the defi-
nitions of both ‘find-count ’ and ‘find ’ are recursive.

In the base case, we consider inferences of length one, so only one clause
for ‘find-count’ has been applied. The only possible such clause is the first of
the above. From the third of the clauses, we see that ‘p′ = empty-map’. We
then choose ‘mp = (p, l, cz, cn, g, w, q)’ and ‘n = 0’. The first of the lemma’s
conclusions follows immediately, and so does the second, since nothing has
been changed. To prove the third conclusion, we use one of the clauses for
‘b-abs ’ to bring us in a position where we can apply the lemma’s point
(8). The conclusion follows immediately from this.

In the induction step, we consider the second clause for ‘find-count ’,
see above. From the third of the above clauses we get that

• p′ = overlay( map l to ( load global 0 stack in to global ),
find k d sum(l,1))

Executing the first instruction yields a state where we can apply the induction
hypothesis. This allows us to choose mp and n, such that

• sparc-final n (p, l, cz, cn, g, w, q) sum(l,n′) nw = mp ;
• f-post-condition g w q mp = true ;

• (1) mq-earlier mp q′′ = true

⇒ v-abs sum((globals of mp) at globals, j) q′′ p S :- (b at k:token) ;

To prove the lemma we then choose the same mp as the final machine state,
and we choose sum(n,1) as the number of steps to be executed. The conclu-
sion follows.
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Let us finally consider the proof of the conjunction of (1)—(6). The
proof is by induction in the length of inference of formulas on the form (1.1),
(2.15), (3.1), (4.1), (5.1), and (6.1).

In the base case, we consider inferences that involve only one clause
for either ‘a-count’, ‘u-count’, ‘d-count’, or ‘w-count’ . We will only give the
details of one of the cases, the others are similar.

Consider the ‘a-count’, ‘perform’, and ‘final’ clauses for “complete” namely
C.3.1.(1), C.4.1.(1), and A.3.1.(1) that is

• a-count “complete” h d = ac-state sum(e-size,6) true () false () empty-list .

• (1) r = free-register f

⇒ perform “complete” h a f d un ue uf l ln le lf = a-state overlay(

empty-list-code r l, putcommit sum(l,3) 0, finalize sum(l,6)

un 0 ln ) r a ;

• final “complete” t b s io = completed () empty-map s io uncommitted .

We choose ‘n = sum(e=size,6) = 10’ and

• mp = (p, ln, cz, cn,

overlay(map of global to 0, map of hp to sum(g at hp,2),
map of cp to sum(g at cp,1),
map of sp to difference(g at sp, un),
map of cef to 0, g),

update w (map of r to (g at hp)),

overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),
map of commits to overlay(map of g at cp to 0, q at commits),

q))

We will then show the first conclusion of the lemma, namely that

• sparc-final 10 (p, l, cz, cn, g, w, q) (ln, le, lf ) nw = mp

The proof will use the clause for ‘sparc-final ’ in B.3.1.(1) and the various
clauses for ‘step ’ in B.3.2. We do not comment on the individual steps.

• sparc-final 10 (p, l, cz, cn, g, w, q) (ln, le, lf ) nw
= sparc-final 9 (p, sum(l,1), cz, cn, overlay(map of global to -1, g), w,
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q) (ln, le, lf ) nw

= sparc-final 8 (p, sum(l,2), cz, cn, overlay(map of global to -1, g), w,
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

q ) (ln, le, lf ) nw

= sparc-final 7 (p, sum(l,3), cz, cn, overlay(map of global to -1, g), w,
update w (map of r to (g at hp)), q )
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

q ) (ln, le, lf ) nw

= sparc-final 6 (p, sum(l,4), cz, cn,
overlay(map of global to -1, map of hp to sum(g at hp,2), g),
update w (map of r to (g at hp)),
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

q ) (ln, le, lf ) nw

= sparc-final 5 (p, sum(l,5), cz, cn,
overlay(map of global to 0, map of hp to sum(g at hp,2), g),
update w (map of r to (g at hp)),
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

q ) (ln, le, lf ) nw

= sparc-final 4 (p, sum(l,6), cz, cn,
overlay(map of global to 0, map of hp to sum(g at hp,2), g),
update w (map of r to (g at hp)),
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

map of commits to overlay(map of g at cp to 0, q at commits),
q ) (ln, le, lf ) nw

= sparc-final 3 (p, sum(l,7), cz, cn,
overlay(map of global to 0, map of hp to sum(g at hp,2),

map of cp to sum(g at cp,1), g),
update w (map of r to (g at hp)),
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

map of commits to overlay(map of g at cp to 0, q at commits),
q ) (ln, le, lf ) nw

= sparc-final 2 (p, sum(l,8), cz, cn,
overlay(map of global to 0, map of hp to sum(g at hp,2),

map of cp to sum(g at cp,1),
map of sp to difference(g at sp,un), g),

update w (map of r to (g at hp)),
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overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),
map of commits to overlay(map of g at cp to 0, q at commits),
q ) (ln, le, lf ) nw

= sparc-final 1 (p, sum(l,9), cz, cn,
overlay(map of global to 0, map of hp to sum(g at hp,2),

map of cp to sum(g at cp,1),
map of sp to difference(g at sp,un),
map of cef to 0, g),

update w (map of r to (g at hp)),
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

map of commits to overlay(map of g at cp to 0, q at commits),
q ) (ln, le, lf ) nw

= sparc-final 0 (p ln, cz, cn,
overlay(map of global to 0, map of hp to sum(g at hp,2),

map of cp to sum(g at cp,1),
map of sp to difference(g at sp,un),
map of cef to 0, g),

update w (map of r to (g at hp)),
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

map of commits to overlay(map of g at cp to 0, q {textsfat commits),
q ) (ln, le, lf ) nw

= (p ln, cz, cn,
overlay(map of global to 0, map of hp to sum(g at hp,2),

map of cp to sum(g at cp,1),
map of sp to difference(g at sp,un),
map of cef to 0, g),

update w (map of r to (g at hp)),
overlay(map of heap to overlay(map of sum(g at hp,1) to -1, q at heap),

map of commits to overlay(map of g at cp to 0, q at commits),
q))

= mp

Most of the conjuncts in the second conclusion of the lemma are immediately
satisfied. Only the following condition needs the assumption ‘r = free-register
f ’ and the calculation of free registers lemma.

• ((head of w) restricted to f) is ((head of windows of mp) restricted to f) .
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The third conclusion of the lemma follows immediately from one of the clauses
for ‘m-abs’ namely D.2.15.(5).

In the induction step, we consider the remaining clauses for ‘a-count’,
‘u-count’, ‘d-count’, and ‘w-count’. We will only give the details of four of the
cases, the others are similar.

Firstly, consider the ‘a-count’, ‘perform’, and ‘final’ clauses for [[ “en-
act” “application” D:Dependent “to” D′:Tuple ]] in C.3.1.(15), C.4.1.(14), and
A.3.1.(15).

• (1) d-count D h d = (n:natural,
abstraction-type h′:data-type zn:truth-value hn:data-type
ze:truth-value he:data-type d′:symbol-table) ;

(2) w-count D′ h d = wc-state n′:natural h′:data-type ;

⇒ a-count [[ “enact” “application” D:Dependent “to” D′:Tuple ]] h d =
ac-state sum(n, n′,27) zn hn ze he empty-list .

• (1) d-count D h d = (n:natural, abstraction-type h′:data-type zn:truth-value

hn:data-type ze:truth-value he:data-type d′:symbol-table) ;

(2) w-count D′ h d = wc-state n′:natural h′:data-type ;

(3) l′ = sum(l, n) ;

(4) l′′ = sum(l, n′) ;

(5) evaluate D h a union(f , set of a) d l sum(l′′,21) =
(p:program, r:general-register) ;

(6) with D′ h a union(f , set of r) d l′ sum(l′′,21) =

(p′:program, r′:general-register) ;

⇒ perform [[ “enact” “application” D:Dependent “to” D′:Tuple ]]
h a f d un ue uf l ln le lf =
a-state overlay( p, p′, call-sequence l′′ r r′ un ue uf ln le lf ) r r .

• (1) evaluated D t b s = closure-abstraction A:Act D′′:Data b′:bindings ;

(2) multi-evaluated D′ t b s = t′ : data

⇒ final [[ “enact” “application” D:Dependent “to” D′:Tuple ]] t b s io =
final A t′ b′ s io .

By applying the induction hypothesis point (3) we get ‘mp:sparc-state’ and
‘j:natural’ such that

• spare-final j (prg , l, cz, cn, g, w, q) sum(l,n) nw = mp ;
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• d-post-condition g w q mp union(f , set of a) = true ;

• (1) mq-earlier mp q′′ = true

⇒ v-abs ((head of (windows of mp)) at r) q′′ prg
(abstraction-type h′:data-type zn:truth-value
hn:data-type ze:truth-value he:data-type d′:symbol-table) :-
(closure-abstraction A:Act D′′:Data b′:bindings) ;

Note the variable prg , it is the one which in the lemma is called p.

We can then apply the induction hypothesis point (5) and get ‘m′
p:sparc-

state’ and ‘j′:natural’ such that, after a simplification,

• sparc-final sum(j, j′) (prg , l, cz, cn, g, w, q) sum(l,n,n′) nw = m′
p ;

• d-post-condition g w q m′
p union(f , set of (a, r)) = true ;

• (1) mq-earlier m′
p q′′ = true

⇒ t-abs ((head of (windows of m′
p)) at r′) q′′ prg h′ :- t′ ;

The actual call to the closure represented in the register r is performed by
the code macro ‘call-sequence’, C.2.4.(1). Let us consider the execution of
the first 8 instructions of this code macro, up to the ‘call’ instruction.

• spare-final 8 m′
p sum(l,n,n′,8) nw

= spare-final 8 (prg , sum(l,n,n′), cz′, cn′, g′, w′, q′′′) sum(l,n,n′,8) nw

= sparc-final 7 (prg , sum(l,n,n′,1), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1), g′), w′, q′′′)
sum(l,n,n′,8) nw

= spare-final 6 (prg , sum(l,n,n′,2), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1),

map of global to (q′′′ at heap) at sum((head of w′) at r,1), g′),
w′, q′′′)
sum(l,n,n′,8) nw

= spare-final 5 (prg , sum(l,n,n′,3), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1),

map of global to (q′′′ at heap) at sum((head of w′) at r,1), g′),
w′,
overlay(map of stack to

overlay(map of sum(g′ at sp,1) at sp to
(q′′′ at heap) at sum((head of w′) at r,1),
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q′′′ at stack),
q′′′))

sum(l,n,n′,8) nw

= sparc-final 4 (prg , sum(l,n,n′,4), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1),

map of global to (q′′′ at heap) at ((head of w′) at r),
g′ ),

w′,
overlay(map of stack to

overlay(map of sum(g′ at sp,1) at sp to
(q′′′ at heap) at sum((head of w′) at r,1),

q′′′ at stack),
q′′′))

sum(l,n,n′,8) nw

= spare-final 3 (prg , sum(l,n,n′,5), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1),

map of global to (q′′′ at heap) at ((head of w′) at r),
map of arg to (head of w′) at r′,
g′) ,

w′,
overlay(map of stack to

overlay(map of sum(g′ at sp,1) at sp to
(q′′′ at heap) at sum((head of w′) at r, 1),

q′′′ at stack),
q′′′))

sum(l,n,n′,8) nw

= spare-final 2 (prg , sum(l,n,n′,6), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1),

map of global to (q′′′ at heap) at ((head of w′) at r),
map of arg to (head of w′) at r′,
g′) ,

concatenation(list of empty-map, w′),
overlay(map of stack to

overlay(map of sum(g′ at sp,1) at sp to
(q′′′ at heap) at sum((head of w′) at r, 1),

q′′′ at stack),
q′′′))
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sum(l,n,n′,8) nw

= spare-final 1 (prg , sum(l,n,n′,7), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1),

map of global to (q′′′ at heap) at ((head of w′) at r),
map of arg to (head of w′) at r′,
g′) ,

concatenation(map of statlink to sum(g′ at sp,1), w′),
overlay(map of stack to

overlay(map of sum(g′ at sp,1) at sp to
(q′′′ at heap) at sum((head of w′) at r, 1),

q′′′ at stack),
q′′′))

sum(l,n,n′,8) nw

= spare-final 0 (prg , sum(l,n,n′,8), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1),

map of global to (q′′′ at heap) at ((head of w′) at r),
map of arg to (head of w′) at r′,
g′) ,

update concatenation(map of statlink to sum(g′ at sp,1), w′),
(map of r′ to (head of w′) at r′),

overlay(map of stack to
overlay(map of sum(g′ at sp,1) at sp to

(q′′′ at heap) at sum((head of w′) at r, 1),
q′′′ at stack),

q′′′))
sum(l,n,n′,8) nw

= (prg , sum(l,n,n′,8), cz′, cn′,
overlay(map of sp to sum(g′ at sp,1),

map of global to (q′′′ at heap) at ((head of w′) at r),
map of arg to (head of w′) at r′,
g′) ,

update concatenation(map of statlink to sum(g′ at sp,1), w′),
(map of r′ to (head of w′) at r′),

overlay(map of stack to
overlay(map of sum(g′ at sp,1) at sp to

(q′′′ at heap) at sum((head of w′) at r, 1),
q′′′ at stack),
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q′′′))

In this state, the ‘call’ instruction will be executed. In the new state, the
program counter will be ‘(q′′′ at heap) at ((head of w′) at r)’ and the register
window will have a return-address being ‘sum(l,n,n′,8)’.

It is now straightforward to see that the induction hypothesis point
(1) can be applied. The code for the action incorporated in the closure
may be placed anywhere in the program prg. The program counter may
even at some point during execution of the call assume one of the values in
‘(ln, le, lf )’. This does not cause the execution to yield ‘nothing’, however,
(recalling the definition of ‘spare-final’ in B.3.1.(1)) because the length of the
register window will be strictly greater than nw.

By applying the induction hypothesis point (1) to the action incorpo-
rated in the closure, and then executing the remaining 18 instructions of
‘call-sequence’, it follows that the conclusion of the lemma is satisfied. We
will not give the details of this computation, however, but merely note that
it is in the remaining 18 instructions where it is crucial that the ‘cef’ has the
correct value after the call.

As the second case of the induction step, consider the ‘a-count’, ‘perform’,
and ‘final’ clauses for [[ “unfolding” U :Unf ]] in C.3.1.(17), C.4.1.(16), and
A.3.1.(17).

• (1) u-count U h d false () false () empty-list = ac-state n zn hn ze he e

⇒ a-count [[ “unfolding” U :Unf ]] h d = ac-state sum(4,n,18) zn hn ze he e .

• (1) u-count U h d false () false () empty-list = ac-state n zn hn ze he e ;

(2) a′ = free-register f ;

(3) l′ = sum(l,4) ;

(4) l′′ = sum(l′,n) ;

(5) unf U h a′ union(f ,set of a) d un ue uf a′ false () a false () a empty-list
l′ l′′ sum(l′′,6) sum(l′′,12) l′ = a-state p an ae ;

(6) either(e is empty-list, un is 0) = true

⇒ perform [[ “unfolding” U :Unf ]] h a f d un ue uf l ln le lf
= ac-state overlay(
putcommit l 0 ,
map of sum(l,3) to ( move a to a′ ) ,
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p ,
combine l′′ ln le lf )

an ae .

• final [[ “unfolding” U :Unf ]] t b s io = unf-final U [[ “unfolding” U ]] t b
s io .

The code places a representation of ‘uncommitted’ on top of the stack before
entering the unfolding. It also copies the representation of the received data,
contained in in register a, to a free register a′ and freezes a. We will not
give the details of this computation but merely note that by applying the
induction hypothesis, point (2), we obtain a ‘sparc-state’ that satisfies the ‘u-
post-condition’ and not the ‘a-post-condition’, as required. The subtlety is that
after the execution of the loop, the commitment stack contains two values
whose disjunction is the wanted commitment value. The task of removing
the two values and placing their disjunction on top of the commitment stack
is performed by the code macro ‘combine’.

As the third case of the induction step, consider the ‘a-count’, ‘perform’,
and ‘final’ clauses for [[ A:Act “then” A′:Act ]] in C.3.1.(19), C.4.1.(18), and
A.3.1.(21).

• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) a-count A′ h′
n d = ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) compare-data-types z′e h′
e z′′e h′′

e = he:data-type

⇒ a-count [[ A:Act “then” A′:Act ]] h d = ac-state sum(n′,2,n′′,l8)
both(z′n,z′′n) h′′

n either(z′e,z
′′
e ) he e .

• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) a-count A′ h′
n d = ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) l′ = sum(l,n′) ;

(4) l′′ = sum(l′,2,n′′) ;

(5) perform A h a f d 0 ue uf l sum(l′,2) l′ lf = a-state p′′ a′′
n a′′

e ;
(7) either( e is emptylist, un is 0) = true

⇒ perform [[ A:Act “then” A′:Act ]] h a f d un ue uf l ln le lf
= a-state overlay(
p′
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map of l′ to ( move a′
e to a′′

e ),
map of sum(l′,1) to (jump le ),
p′′ ,
combine l′′ ln le lf )

a′′
n a′′

e

• (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;
(2) final A′ t′ b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act “then” A′:Act ]] t b s io := completed t′′ b′′ s′′ io′′

either(c′, c′′) .

By applying the induction hypothesis point (1) to the action A we get
‘mp:sparc-state’ and ‘j:natural’ such that

• sparc-final j (p, l, cz, cn, g, w, q) (sum(l′,2), l′, lf ) nw = mp .

• a-post-condition g w q mp f 0 ue uf e c′ = true .

• (1) m-earlier mp m′
p = true

⇒ m-abs m′
p z′n h′

n z′e h′
e a′

n a′
e empty-list sum(l′,2) l′ lf :-

(completed t′ empty-map s′ io′ c′) .

By using one of the clauses for ‘m-abs’ namely D.2.(15.5) we come in a situ-
ation where we can and use the induction hypothesis point (1) to the action
A′. This gives us ‘m′

p:sparc-state’ ‘j′:natural’ such that, after a simplification,
we have

• sparc-final sum(j,j′) (p, l, cz, cn, g, w, q) (l′′, sum(l′′,6), sum(l′′,12))
nw = m′

p .

• a-post-condition g w q m′
p f un ue uf e c′′ = true .

• (1) m-earlier mp m′
p = true

⇒ m-abs m′
p z′′n h′′

n z′′e h′′
e a′′

n a′′
e e l′′ sum(l′′,6) sum(l′′,12) :-

(completed t′′ b′′ s′′ io′′ c′′) .

It is now straight-forward to combine the information from the two applica-
tions of the induction hypothesis to get almost the desired conclusion. The
only thing left, then, is that we need the representation of the two commit-
ment values c′ and c′′ on top of the commitment stack to be replaced by their
disjunction. This is done by the code macro ‘combine’.

As the fourth case of the induction step, consider the ‘u-count’, ‘unf’ and
‘unf-final’ clauses for “unfold” in C3.2.(6), C.4.2.(6), and A.3.2.(13).
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• u-count “unfold” h d zn hn ze he e = ac-state 2 zn hn ze he e .

• (1) either(e is empty-list, un is 0) = true

⇒ unf “unfold” h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu
= a-state overlay(
map l to ( move a to a′ ), map of sum(l,1) to ( jump lu))
an ae.

• unf-final “unfold” [[ “unfolding” U :Unf ]] t b s io = final [[ “unfolding” U ]]
t b s io .

Before jumping to the start of the code for the unfolding, the code copies
the representation of the received data, contained in the register a, to the
dedicated register a′ as explained in chapter 3. To prove the conclusion, we
need the ‘final’ clause for [[ “unfolding” U ]] in A.3.1.(17) that is

• unf-final “unfold” [[ “unfolding” U :Unf ]] t b s io = final [[ unfolding” U ]]
t b s io .

• final [[ “unfolding” U :Unf ]] t b s io = unf-final U [[ “unfolding” U ]]
t b s io ;

Using this clause and the ‘unf-final’ clause for “unfold” we can bring us in
a situation where we can apply the induction hypothesis, point (2). This
immediately yields the desired result. ✷

E.5 Code Well-behavedness

needs: Auxiliary Notation ,
Compiler Consistency ,
Correctness of Analysis .

Lemma: (Read-only Code)

n , nw : natural ;
mp : spare-state ;
lt : linenumber∗

⇒
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(1) (1) sparc-final n mp lt = m′
p:sparc-state t

⇒ (program of mp) is (program of m′
p) = true .

Proof: Consider the definition of ‘spare-final ’ in B.3.1.(1) that is

• spare-final n:atural mp:sparc-state lt:linenumber∗ nw:natural =
if both(n is 0, finished mp lt nw)
then mp

else if not any(n is 0, finished mp lt nw, out-of-bound mp )
then spare-final predecessor(n) step(mp) lt nw
else nothing .

The proof of the lemma is by induction on the length of inference of (1.1).

In the base case, we consider inferences of length one, so the rule just
given has only been applied once. Since ‘nothing’ is not an individual, we
have ‘m′

p = mp’, from which the conclusion is immediate.

In the induction step, we have the recursive application ‘spare-final prede-
cessor(n) step(q) lt nw’. It is a condition that n is non-zero, so its predecessor
is an individual. Furthermore, ‘step(mp)’ has t he same program component
as mp (this is easily checked), so by applying the induction hypothesis we get
the conclusion. ✷

Lemma: (Code Well-behavedness)

g : globals ;
w : windows ;
j , n , n′ , n′′ , nw : natural ;
q , q′ , q′′ memory ;
p , p′ , p′′ : program ;
h , h′ , hn , h′

n , he , h′
e : data-type ;

t : data ;
d : symbol-table ;
b : bindings ;
e , e′ : block ;
mp , m′

p , m′′
p : sparc-state ;

ma : state ;
cz : was-zero ;
cn : was-negative ;
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zn , z′n , ze , z′e : truth-value ;
r , r′ , r′′ , a , a′ , an , a′

n , ae , a′
e : general-register ;

l , l′ linenumber ;
ln :linenumber-complete ;
le : linenumber-escape ;
lf :linenumber-fail ;
lu : linenumber-unfold ;
S , S ′ : type ;
v , v′ :datum ;
io : input-output ;
s : storage ;
f , f ′ : frozen ;
un , ue , uf : cleanup ;

⇒

(1) (1) a-count A h d = ac-state n′ zn hn ze he e ;

(2) perform A:Act h a f d un ue uf l ln le lf = a-state p′ an ae ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;
(6) io:input-output = (il:[integer] list, ol:[integer] list) ;

(7) i-abs ((q at input) at 0) (q at input) = il ;

(8) o-abs ((q at output) at 0) (q at output) = ol ;

(9) pre-condition p′ p sum(l,n′) (ln, le, lf ) g w q q′ nw d = true ;

(10) sum(l,n′) leq l′ = true ;

(11) spare-final n (p, l, cz, cn, g,w,q) l′ nw = m′′
p

⇒ ∃ mp:sparc-state ∃ j:natural ∃ ma:state

(12) spare-final j (p, l, cz, cn, g, w, q) (ln, le, lf ) nw = mp ;

(13) j leq n = true ;

(14) a-post-condition g w q mp f un ue uf e (commitment of ma) = true ;

(10) (1) m-earlier mp m′
p = true

⇒ m-abs m′
p zn hn ze he an ae e ln le lf :- ma ;

(2) (1) u-count U h d zn hn ze he e = ac-state n′ z′n h′
n z′e h′

e e′ ;

(2) u-count U ′ h′ d false () false () empty-list = ac-state n′′ z′n h′
n z′e h′

e e′ ;
(3) unf U :Unf h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu = a-state
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p′ a′
n a′

e ;

(4) unf U ′:Unf h′ a′ f ′ d un ue uf a′ false () a′ false () a′ empty-list lu ln le
lf lu = a-state p′′ a′

n a′
e ;

(5) t-abs ((head of w) at a) q′ p h :- t ;

(6) b-abs ((head of w) at staticlink) q′ p d :- b ;

(7) store-abs (g at firstfree) (q at store) :- s ;

(8) io:input-output = (il:[integer] list, ol:[integer] list) ;

(9) i-abs ((q at input) at 0) (q at input) = il ;

(10) o-abs ((q at output) at 0) (q at output) = ol ;

(11) pre-condition p′ p sum(l,n′) (ln, le, lf ) g w q q′ nw d = true ;

(12) p′′ is submap of p = true ;

(13) sum(lu, n′′) leq (ln, le, lf ) = true ;

(14) a′ is in f = false ;

(15) sum(l,n′) leq l′ = true ;

(16) spare-final n (p, l, cz, cn, g, w, q) l′ nw = mp ;
⇒ ∃ mp:sparc-state ∃ j:natural ∃ ma:state

(17) spare-final j (p, l, cz, cn, g, w, q) (ln, le, lf ) nw = mp ;

(18) j leq n = true ;

(19) u-post-condition g w q mp f h ue uf e (commitment of ma) = true ;

(20) (1) m-earlier mp m′
p = true

⇒ m-abs m′
p z′n h′

n z′e h′
e a′

n a′
e e′ ln le lf :- ma ;

(3) (1) d-count D h d = (n′:natural, S:type) ;

(2) evaluate D:Dependent h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(7) sum(l, n′) leq l′ = true ;

(8) sparc-final n (p, l, cz, cn, g, w, q) l′ nw = m′
p

⇒ ∃ mp:sparc-state ∃ j:natural
either ∃ v:datum

(1) spare-final j (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp ;
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(2) j leq n = true ;

(3) d-post-condition g w q mp r′ = true ;

(4) mq-earlier mp q′′ = true ⇒
v-abs ((head of (windows of mp)) at r) q′′ p S ′ :- v′ ;

or (1) sparc-final j (p, l, cz, cn, g, w, q) lf nw = mp ;

(2) j leq n = true ;

(3) evaluated D t b s = nothing ;

(4) d-post-condition g w q mp f = true ;

(4) (1) w-count D h d = wc-state n′:natural h′:data-type;

(2) with D:Tuple h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(7) sum(l, n′) leq l′ = true ;

(8) sparc-final n (p, l, cz, cn, g, w, q) l′ nw = m′
p

⇒ ∃ mp:sparc-state ∃ j:natural
either ∃ t′:data

(1) spare-final j (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp ;

(2) j leq n = true ;

(3) d-post-condition g w q mp f = true ;

(4) mq-earlier mp q′′ = true ⇒
t-abs ((head of (windows of mp)) at r) q′′ p h′ :- t′ ;

or (1) sparc-final j (p, l, cz, cn, g, w, q) lf nw = mp ;

(2) j leq n = true ;

(3) multi-evaluated D t b s = nothing ;

(4) d-post-condition g w q mp f = true ;

(5) (1) find-count k d = (n′:natural, S:type, j′:natural) ;

(2) find k:token d l = p′:program ;

(3) b-abs (g at global) q′ p S :- b ;

(4) basic-pre-condition p′ p sum(l,n′) lf g w q q′ nw = true

(5) sum(l,n′) leq l′ = true ;
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(6) sparc-final n (p, l, cz, cn, g, w, q) l′ nw = m′
p

⇒ ∃ mp:sparc-state ∃ j:natural ∃ v:datum

(7) sparc-final j (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp ;

(8) f-post-condition g w q mp = true ;

(9) (1) mq-earlier mp q′′ = true
⇒ v-abs sum((globals of mp) at globals, j′) q′′ p S :- v ;

(6) (1) unary-count O S = (n′:natural, S ′:type) ;

(2) unary-code O:Unary r r′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(5) sum(l, n′) leq l′ = true ;

(6) sparc-final n (p, l, cz, cn, g, w, q) l′ nw = m′
p

⇒ ∃ mp:sparc-state ∃ j:natural

either ∃ v′:datum

(1) sparc-final j (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp ;

(2) j leq n = true ;

(3) op-post-condition g w q mp r′ = true ;

(4) mq-earlier mp q′′ = true ⇒
v-abs ((head of (windows of mp)) at r) q′′ p S :- v′ ;

or (1) sparc-final j (p, l, cz, cn, g, w, q) lf nw = mp ;

(2) j leq n = true ;

(3) unary-operation O v = nothing ;

(4) op-post-condition g w q mp r′ = true ;

(7) (1) binary-count O S S ′ = (n′:natural, S ′′:type) ;

(2) binary-code O:Binary r r′ r′′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) v-abs ((head of w) at r′) q′ p S ′ :- v′ ;

(5) precondition p′ p sum(l,n′) lf g w q q′ nw d = true ;

(6) sum(l, n′) leq l′ = true ;

(7) sparc-final n (p, l, cz, cn, g, w, q) l′ nw = m′
p

⇒ ∃ mp:sparc-state ∃ j:natural

either ∃ v′′:datum
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(1) sparc-final j (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp ;

(2) j leq n = true ;

(3) op-post-condition g w q mp r′′ = true ;

(4) mq-earlier mp q′′ = true ⇒
v-abs ((head of (windows of mp)) at r) q′′ p S ′′ :- v′′ ;

or (1) sparc-final j (p, l, cz, cn, g, w, q) lf nw = mp ;

(2) j leq n = true ;

(3) binary-operation O v v′ = nothing ;

(4) op-post-condition g w q mp r′′ = true .

Proof: The proof has the same structure as the proof of completeness. Fur-
thermore, most of the details are similar, so we will demonstrate only a single
case of the induction step.

Consider the ‘a-count’ and ‘perform’ clauses for [[ A:Act “then” A′:Act ]]
in C.3.1(19) and C.4.1.(18).

• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) a-count A′ h′
n d = ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) compare-data-types z′e h′
e z′′e h′′

e = he:data-type
⇒ a-count [[ A:Act “then” A′:Act ]h d = ac-state sum(n′,2,n′′,18)

both(z′n,z′′n) h′′
n either(z′e,z

′′
e ) he e .

• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) a-count A′ h′
n d = ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) l′ = sum(l, n′) ;

(4) l′′ = sum(l′, 2, n′′) ;

(5) perform A h a f d 0 ue uf l sum(l, 2) l′ lf = a-state p′ a′
n a′

e ;

(6) perform A′ h′
n a′

n f d un ue uf sum(l′, 2) l′′ sum(l′′, 6) sum(l′′, 12) =
a-state p′′ a′′

n a′′
e ;

(7) either( e is empty-list, un is 0) = true
⇒ perform [[ A:Act “then” A′:Act ]] h a f d un ue uf l n le lf =

a-state overlay( p′,
map of l′ to ( move a′

e to a′′
e ),

map of sum(l′,1) to (jump le ),
p′′ ,
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combine l′′ ln le lf )

a′′
n a′′

e .

Note that in the statement of the lemma, l′ is a linenumber past “the end”
of the code for [[ A “then” A′ ]], and it is not one of those that will make
spare-final yield a result.

By applying the induction hypothesis point (1) to the action A we get
‘mp:sparc-state’, ‘j:natural’, and ‘ma:state’ such that

• sparc-final j (p, l, cz, cn, g, w, q) (sum(l′,2), l′, lf ) nw = mp .

• j leq n = true .

• a-post-condition g w q mp f 0 ue uf e c′ = true.

(1) m-earlier mp m′
p = true

⇒ m-abs m′
p z′n h′

n z′e h′
e a′

n a′
e empty-list sum(l′ ,2) l′ lf :- ma .

Note that n is the number of steps that has been used to pass “the end” of
the code for A.

Now there are three cases, one for each linenumber in the tuple ‘(sum(l′,
2), l′, lf )’. We will demonstrate the treatment of only the first of them, the
treatment of the others are simpler in that they don’t require the use of the
induction hypothesis.

In this first case, the code has, after the execution of j steps, reached
the line with the number ‘(sum(l′, 2)’.

By using one of the clauses for ‘m-abs’ namely D.2.(15.5) we almost
come in a situation where we can apply the induction hypothesis point (1)
to the action A′. It is still necessary, though, to demonstrate that there exits
a natural number j′′ so that

• sparc-final j′′ mp l′ nw = m′′
p

Here, l′ and m′′
p are the same as in the lemma’s assumptions. In other words,

we must find j′′ so that continuing the execution after the first j step will
lead to the same state as after n steps. Since ‘j leq n = true’ we can choose
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• j′′ = difference(n, j) .

By applying the induction hypothesis point (1) to the action A′ we get
‘m′

p:sparc-state’, ‘j′:natural’, and m′
a:state such that, after a simplification,

we have

• sparc-final sum(j,j′) (p, l, cz, cn, g, w, q) (l′′, sum(l′, 6), sum(l′′, 12)) nw = m′
p .

• j leq n = true .

• j′ leq difference(n, j) = true .

• a-post-condition g w q m′
p f un ue uf e c′′ = true .

• (1) m-earlier mp m′
p = true

• ⇒ m-abs m′
p z′′n h′′

n z′′e h′′
e a′′

n a′′
e e l′′ sum(l′′, 6) sum(l′′, 12) :- m′

a .

It is now straight-forward to combine the information from the two applica-
tions of the induction hypothesis to get almost the desired conclusion. Only
two things are left, then. Firstly, we need the representation of the two com-
mitment values c′ and c′′ on top of the commitment stack to be replaced by
their disjunction. This is done by the code macro ‘combine’.

Secondly, we need to show that

• sum(j, j′) leq n = true .

This follows immediately from ‘j′ leq difference(n, j) = true’. ✷

E.6 Soundness

needs: Auxiliary Notation ,
Compiler Consistency ,
Correctness of Analysis .
Code Well-behavedness .

Lemma: (Soundness)

g : globals ;
w : windows ;
n , n′ , n′′ , nw : natural ;
q , q′ , q′′ : memory ;
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p , p′ , p′′ : program ;
h , h′ , hn , h′

n , he , h′
e : data-type ;

t : data ;
d : symbol-table ;
b : bindings ;
e , e′ : block ;
mp , m′

p : sparc-state ;
ma : state ;
cz : was-zero ;
cn : was-negative ;
zn , z′n , ze , z′e : truth-value ;
r , r′ , r′′ , a , a′ , an , a′

n , ae , a′
e : general-register ;

l : linenumber ;
ln : linenumber-complete ;
le : linenumber-escape ;
lf : linenumber-fail ;
lu : linenumber-unfold ;
S , S ′ : type ;
v , v′ : datum ;
io : input-output ;
s : storage ;
f , f ′ : frozen ;
un , ue , uf : cleanup ;

⇒

(1) (1) a-count A h d = ac-state n′ zn hn ze he e ;

(2) perform A h a f d un ue uf l ln le lf = a-state p′ an ae ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) io:input-output = (il:[integer] list, ol:[integer] list) ;

(7) i-abs ((q at input) at 0) (q at input) = il ;

(8) o-abs ((q at output) at 0) (q at output) = ol ;

(9) precondition p′ p sum(l, n′) (ln, le, lf ) g w q q′ nw d = true ;

(10) spare-final n (p, l, cz, cn, g, w, q) (ln, le, lf ) nw = mp

⇒ ∃ ma:state
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(11) final A:Act t b s io = ma ;

(12) a-post-condition g w q mp f un ue uf e (commitment of ma) = true ;

(13) (1) m-earlier mp m′
p = true

⇒ m-abs m′
p zn hn ze he an ae e ln le lf :- ma ;

(2) (1) u-count U h d zn hn ze he e = ac-state n′ z′n h′
n z′e h′

e e′ ;

(2) u-count U ′ h′ d false () false () empty-list = ac-state n′′ z′n h′
n z′e h′

e e′ ;

(3) unf U h a f d un ue uf a′ zn hn an ze he ae e l ln le lf lu = a-state p′ a′
n a′

e ;

(4) unf U ′ h′ a′ f ′ d un ue uf a′ false () a′ false () a′ empty-list lu ln le lf lu =
a-state p′′ a′

n a′
e ;

(5) t-abs ((head of w) at a) q′ p h :- t ;

(6) b-abs ((head of w) at staticlink) q′ p d :- b ;

(7) store-abs (g at firstfree) (q at store) :- s ;

(8) io:input-output = (il[integer] list, ol:[integer] list) ;

(9) i-abs ((q at input) at 0) (q at input) = il ;

(10) o-abs ((q at output) at 0) (q at output) = ol ;

(11) pre-condition p′ p sum(l, n′) (ln, le, lf ) g w q q′ nw d = true ;

(12) p′′ is submap of p = true ;

(13) sum(lu, n′′) leq (ln, le, lf ) = true ;

(14) a′ is in f = false ;

(15) spare-final n (p, l, cz, cn, g, w, q) (ln, le, lf ) nw = mp

⇒ ∃ ma:state
(16) unf-final U :unf [[ “unfolding” U ′:unf]] t b s io = ma ;

(17) u-post-condition g w q mp f un ue uf e (commitment of ma) = true ;

(18) (1) m-earlier mp m′
p = true

⇒ m-abs m′
p z′n h′

n z′e h′
e a′

n a′
e e′ ln le lf :- ma ;

(3) (1) d-count D h d = (n′:natural, S:type) ;

(2) evaluate D h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(7) sparc-final n (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp
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⇒ ∃ v:datum
(8) evaluated D:Dependent t b s = v:datum ;

(9) d-post-condition g w q mp f = true ;

(10) (1) mq-earlier mp q′′ = true
⇒ v-abs ((head of (windows of mp)) at r) q′′ p S :- v ;

(4) (1) d-count D h d = (n′:natural, S:type) ;

(2) evaluate D h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(7) sparc-final n (p, l, cz, cn, g, w, q) lf nw = mp

⇒
(8) evaluated D:Dependent t b s = nothing ;

(9) d-post-condition g w q mp f = true ;

(5) (1) w-count D h d = wc-state n′:natural h′:data-type ;

(2) with D h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;

(6) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(7) sparc-final n (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp

⇒ ∃ v:datum
(8) multi-evaluated D:Tuple t b s = t′:data ;

(9) d-post-condition g w q mp f = true ;

(10) (1) mq-earlier mp q′′ = true
⇒ t-abs ((head of (windows of mp)) at r) q′′ p h′ :- t′ ;

(6) (1) w-count D h d = wc-state n′:natural h′:data-type ;

(2) with D h a f d l lf = (p′:program, r:general-register) ;

(3) t-abs ((head of w) at a) q′ p h :- t ;

(4) b-abs ((head of w) at staticlink) q′ p d :- b ;

(5) store-abs (g at firstfree) (q at store) :- s ;
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(6) pre-condition p′ p sum(l,n′) lf g w q q′ nw d = true ;

(7) sparc-final n (p, l, cz, cn, g, w, q) lf nw = mp

⇒ ∃ v:datum
(8) multi-evaluated D:Tuple t b s = nothing ;

(9) d-post-condition g w q mp f = true ;

(7) (1) find-count k d = (n′:natural, S:type, j:natural) ;

(2) find k d l = p′:program ;

(3) b-abs (g at global) q′ p S :- b ;

(4) basic-pre-condition p′ p sum(l, n′) lf g w q q′ nw = true

(5) sparc-final n (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp

⇒
(6) f-post-condition g w q mp = true ;

(7) (1) mq-earlier mp q′′ = true
⇒ v-abs sum((globals of mp) at globals, j) q′′ p S :- (b at k:token) ;

(8) (1) unary-count O S = (n′:natural, S ′:type) ;

(2) unary-code O r r′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) pre-condition p′ p sum(l,n′) lf g w q q′ nw d = true ;

(5) sparc-final n (p, l, cz, cn, g, w, q) sum(l,n′) nw = mp

⇒ ∃ v:datum
(6) unary-operation O:unary v = v′:datum ;

(7) op-post-condition g w q mp r′ = true ;

(8) (1) mq-earlier mp q′′ = true
⇒ v-abs ((head of (windows of mp)) at r′) q′′ p S ′ :- v′ ;

(9) (1) unary-count O S = (n′:natural, S ′:type) ;

(2) unary-code O r r′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) pre-condition p′ p sum(l,n′) lf g w q q′ nw d = true ;

(5) sparc-final n (p, l, cz, cn, g, w, q) lf nw = mp

⇒
(6) unary-operation O:unary v = nothing ;

(7) op-post-condition g w q mp r′ = true ;
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(10) (1) binary-count O S S ′ = (n′:natural, S ′′:type) ;

(2) binary-code O r r′ r′′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) v-abs ((head of w) at r′) q′ p S ′ :- v′ ;

(5) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(6) sparc-final n (p, l, cz, cn, g, w, q) sum(l, n′) nw = mp

⇒ ∃ v′′:datum
(7) binary-operation O:Binary v v′ = v′′:datum ;

(8) op-post-condition g w q mp r′′ = true ;

(9) (1) mq-earlier mp q′′ = true
⇒ v-abs ((head of (windows of mp)) at r′′) q′′ p S ′ :- v′′ ;

(11) (1) binary-count O S S ′ = ( n′:natural, S ′′:type) ;

(2) binary-code O r r′ r′′ l lf = p′:program ;

(3) v-abs ((head of w) at r) q′ p S :- v ;

(4) v-abs ((head of w) at r′) q′ p S ′ :- v′ ;

(5) pre-condition p′ p sum(l, n′) lf g w q q′ nw d = true ;

(6) spare-final n (p, l, cz, cn, g, w, q) lf nw = mp

⇒
(7) binary-operation O:Binary v v′ = nothing ;

(8) op-post-condition g w q mp r′′ = true .

Proof: The proof has the same structure as the proof of completeness. Fur-
thermore, most of the details are similar, except for the repeated application
of the code well-behavedness lemma, so we will demonstrate only a single
case of the induction step.

Consider the ‘a-count’, ‘perform’, and ‘final’ clauses for [[ A:Act “then”
A′:Act ]] in C.3.1.(19), C.4.1.(18), and A.3.1.(21).

• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) a-count A′ h′
n d = ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) compare-data-types z′e h′
e z′′e h′′

e = he:data-type

⇒ a-count [[ A:Act “then” A′:Act ]h d = ac-state sum(n′, 2,n′′,18)

both(z′n, z′′n) h′′
n either(z′e, z′′e ) he e .
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• (1) a-count A h d = ac-state n′ z′n h′
n z′e h′

e empty-list ;

(2) a-count A′ h′
n d = ac-state n′′ z′′n h′′

n z′′e h′′
e e ;

(3) l′ = sum(l, n′) ;

(4) l′′ = sum(l′, 2, n′′) ;

(5) perform A h a f d 0 ue uf l sum(l, 2) l′ lf = a-state p′ a′
n a′

e ;

(6) perform A′ h′
n a′

n f d un ue uf sum(l′, 2) l′′ sum(l′′, 6) sum(l′′, 12) =

a-state p′′ a′′
n a′′

e ;

(7) either( e is empty-list, un is 0) = true

⇒ perform [[ A:Act “then” A′:Act ]] h a f d un ue uf l n le lf = a-state
overlay( p′,
map of l′ to ( move a′

e to a′′
e ),

map of sum(l′,1) to (jump le ),
p′′ ,
combine l′′ ln le lf )

a′′
n a′′

e .

• (1) final A t b s io = completed t′ empty-map s′ io′ c′ ;

(2) final A′ t′ b s′ io′ = completed t′′ b′′ s′′ io′′ c′′

⇒ final [[ A:Act “then” A′:Act ]] t b s io := completed t′′ b′′ s′′ io′′

either(c′, c′′) .

By applying the code well-behavedness lemma point (1) to the action A, we
get ‘mp:sparc-state’ and ‘j:natural’ such that

• sparc-final j (p, l, cz, cn, g, w, q) (sum(l′, 2), l′, lf ) nw = m′′
p .

• j leq n = true .

By using this and applying the induction hypothesis point (1) we further get
‘ma:state’ such that

• final A t b s io = ma .

• a-post-condition g w q m′′
p f 0 ue uf e c′ = true .

• (1) m-earlier m′′
p m′

p = true

⇒ m-abs m′
p z′n h′

n z′e h′
e a′

n a′
e empty-list sum(l′, 2) l′ lf :- ma .
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There are now three cases, depending on whether the performance of A has
completed, escaped, or failed. We will demonstrate the treatment of only
the first of them, the treatment of the others are simpler in that they don’t
require the use of the induction hypothesis.

In this first case, the code has, after the execution of j steps, reached the
line with the number ‘sum(l′, 2)’. From the definition of ‘m-abs’ in D.2.(15)
we get that ‘ma = completed t′ empty-map s′ io′ c′’. We also almost come
in a situation where we can apply code well-behavedness lemma and the
induction hypothesis point (1) to the action A′.

To be allowed to apply the code well-behavedness lemma to A′, it suffi-
cient to show that there exits a natural number j′′ so that

• spare-final j′′ m′′
p (ln, le, lf ) nw = mp

In other words, we must find j′′ so that continuing the execution after the
first j step will lead to the same state as after n steps. Since ‘j leq n = true’
we can choose

• j′′ = difference(n, j) .

By applying the code well-behavedness lemma to the action A′ we get ‘m′′′
p :sparc-

state’ and ‘j′:natural’ such that, after a simplification, we have

• sparc-final sum(j, j′) (p, l, cz, cn, g, w, q) (l′′, sum(l′′, 6), sum(l′′,12))
nw = m′′′

p .

• j′ leq j′′ = true .

• a-post-condition g w q m′′′
p f un ue uf e c′′ = true .

• (1) m-earlier m′′′
p m′

p = true

⇒ m-abs m′
p z′′n h′′

n z′′e h′′
e a′′

n a′′
e e l′′ sum(l′′, 6) sum(l′′, 12) :- m′

a .

By using this and applying the induction hypothesis point (1) we further get
‘m′

a:state’ such that, after a simplification, we have

• final A′ t′ b s′ io′ = m′
a .

• a-post-condition g w q m′
p f un ue uf e c′′ = true .

• (1) m-earlier mp m′
p = true

⇒ m-abs m′
p z′′n h′′

n z′′e h′′
e a′′

n a′′
e e l′′ sum(l′′, 6) sum(l′′, 12) :- m′

a .
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There are now three cases, depending on whether the performance of A has
completed, escaped, or failed. We will demonstrate the treatment of only the
first of them, the treatment of the others are similar. In this first case, the
code has, after the execution of j steps, reached the line with the number l′′.
From the definition of ‘m-abs’ in D.2(15) we get that ‘m′

a = completed t′′ b′′

s′′ io′′ c′′’.

In the line l′′ we find start of the code macro ‘combine’. Executing six
further steps yields a state where the representation of the two commitment
values c′ and c′′ on top of the commitment stack has been replaced by their
disjunction. It is then straight-forward to see, using the above clause for
‘final’ applied to [[ A “then” A′ ]] that the conclusion follows. ✷
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Appendix F

Main Theorem

needs: Data Notation ,
A Compilable Subset of Action Notation ,
A Pseudo SPARC Machine Language ,
Actions to SPARC Compiler ,
Abstraction of Semantic Entities ,
Lemmas.

introduces: result , result ,
run , sparc-run , compile , abstract .

• result :: program, truth-value, data-type, truth-value,
data-type, general-register, general-register → result (total) .

• run :: Act, [integer] list → state .

• spare-run :: program, natural, space → spare-state .

• compile :: Act → result .

• abstract :: spare-state, truth-value, data-type, truth-value, data-type,
general-register, general-register → state .

zn , ze : truth-value ;
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hn , he : data-type ;
an , ae : general-register ;
p : program ;
n : natural ;
mp : spare-state ;
ma : state ;
se : space ;
il : [integer] list

⇒

(1) run A:Act il = final A () empty-map empty-storage (il empty-list) .

(2) spare-run p n se = spare-final n (p, 0, false, false, overlay(
map of firstfree to 0, map of sp to 0, map of hp to 2, map of cp to 0),
list of overlay(map of staticlink to 0, map of (reg 0) to 0),
overlay( map of stack to empty-map,

map of store to empty-map,
map of heap to (map of 1 to -1),
map of commits to empty-map,
map of input to se,
map of output to (map of 0 to 0)))
(count of elements of mapped-set of p) 1 .

(3) (1) a-count A () (list of empty-list) = ac-state n zn hn ze he empty-list ;

(2) perform A () (reg 0) empty-set (list of empty-list) 0 0 0 0 n n n =
a-state p an ae .

⇒ compile A:Act = result p zn hn ze he an ae .

(4) (1) n = count of elements of mapped-set of program of mp ;

(2) m-abs mp zn hn ze he an ae empty-list n n n :- ma

⇒ abstract mp zn hn ze he an ae :- ma

Theorem:

p : program ;
zn , ze : truth-value ;
hn , he : data-type ;
an , ae : general-register ;
se : page

196



⇒

(1) compile A :Act = result p zn hn ze he an an ;

(2) i-abs (se at 0) se = il:[integer] list

⇒ (1) run A il = ma:state ⇒
( ∃ mp:sparc-state ∃ n:natural .
spare-run p n se = mp ;
abstract mp zn hn ze he an ae :- ma

(2) spare-run p n:natural se = mp:sparc-state ⇒
( ∃ ma:state .
run A il = ma ;
abstract mp zn hn ze he an ae :- ma ) .

Proof: Immediate from the previous lemmas on soundness and complete-
ness, using the compiler consistency lemma for Act and the read-only code
lemma. ✷
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Appendix G

HypoPL Action Semantics

G.1 Abstract Syntax

grammar:

(1) Program = [[ “program” Identifier Block ]] .

(2) Declaration = [[ “int” Identifier ]] |||
[[ “bool” ldentifier ]] |||
[[ “const” Identifier “=” Integer ]] |||
[[ “array” Identifier “[” Integer “]” ]] |||
[[ “procedure” Identifier “(” Identifier “)” Block ]] |||
[[ Declaration “;” Declaration ]] .

(3) Block = [[ Declaration “begin” Statement “end” ]] |||
[[ “begin” Statement “end” ]] .

(4) Statement = [[ Expression “:=” Expression ]] |||
[[ “write” Expression ]] |||
[[ “read” Expression ]] |||
[[ “if” Expression “then” Statement “else” Statement “endif” ]] |||
[[ “while” Expression “do” Statement “endwhile” ]] |||
[[ Identifier “(” Expression “)” ]] |||
[[ Statement “;” Statement ]] ||| “skip” .

(5) Expression = “true” ||| “false” ||| Integer ||| Identifier |||
[[ Identifier “[” Expression “]” ]] |||
[[ Expression Operation Expression ]] |||
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[[ “not” Expression ]] .

(6) Operation = “+” ||| “−” ||| “<” ||| “=” ||| “and” .

(7) Integer = natural ||| [[ “-” natural ]] .

(8) Identifier = token .

G.2 Semantic Entities

G.2.1 Items

introduces: item

(1) truth-value ||| integer .

G.2.2 Coercion

introduces: coercively .

• coercively :: act → act .

(1) coercively A:act =
A

then
give the given item #1 or
give the item stored in the given cell #1 .

G.3 Semantic Functions

introduces: run , establish , activate , execute , evaluate ,
operation-result , integer-value id .

G.3.1 Programs

• run :: Program → act .

(1) run [[“program” I: identifier B: block ]] = activate B .
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G.3.2 Declarations

• establish :: Declaration → act .

(1) establish [[“int” I: identifier ]] = allocate integer cell then bind id I to it .

(2) establish [[“bool” I: identifier ]] = allocate truth-value cell then bind id I to it .

(3) establish [[“const” I: identifier “=” j: integer ]] = bind id I to integer-value j .

(4) establish [[ “array” I: Identifier “[” j: integer “]” ]] =
give empty-list & [integer cell] list and then
give sum(integer-value j, 1)

then
unfolding

check the given integer #2 is 0 and then
give the given list #1

or
regive and then allocate integer cell

then
give concatenation(list of the given integer cell #3, the given list #1)

and then give difference(the given integer #2, 1)
then
unfold

then
bind id I to the given list #1 .

(5) establish [[ “procedure” I1: Identifier “(” I2:ldentifier “)” I3:Block ]] =
bind id I1 to
closure abstraction of

furthermore
give the given integer #1 and then
allocate integer cell

then
store the given integer #1 in the given cell #2 and then
bind id I2 to the given cell #2

thence activate B
& [perhaps using integer] act .

(6) establish [[ D1:Declaration “;” D2:Declaration ]] = establish D1 before establish D2 .
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G.3.3 Blocks

• activate :: Block → act .

(1) activate [[ D: Declaration “begin” S: Statement “end” ]] =
furthermore establish D

hence execute S .

(2) activate [[“begin” S: Statement “end” ]] = execute S .

G.3.4 Statements

• execute :: Statement → act .

(1) execute [[ E1: Expression “=:” E2: Expression ]] =
evaluate E1 and then
coercively evaluate E2

then store the given item #2 in the given cell #1 .

(2) execute [[ “write” E:Expression ]] =

coercively evaluate E then batch-send it .

(3) execute [[ “read” E:Expression ]] =
batch-receive an integer and then evaluate E

then store the given integer #1 in the given integer cell #2 .

(4) execute [[ “if” E: Expression “then” S1:Statement “else” S2: Statement “endif” ]] =
coercively evaluate E

then
check it then execute S1

or
check not it then execute S2

(5) execute [[ “while” E:Expression “do” S:Statement “endwhile” ]] =
unfolding

coercively evaluate E
then

check it then execute S then unfold
or check not it .

(6) execute [[ I: Identifier “(” E: Expression “)” ]] =
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give the abstraction bound to id I and then
coercively evaluate E

then enact application the given abstraction #1 to the given integer #2 .

(7) execute [[ S1:Statement “;” S2:Statement ]] = execute S1 and then execute S2 .

(8) execute “skip” = complete .

G.3.5 Expressions

• evaluate :: Expression → act .

(1) evaluate “true” = give true .

(2) evaluate “false” = give false

(3) evaluate i: Integer = give integer-value i

(4) evaluate I: Identifier = give the datum bound to id I .

(5) evaluate [[I: Identifier “[” E:Expression “]” ]] =

give the list bound to id I and then
coercively evaluate E then give sum(it, 1)

then give component# (the given integer #2) items (the given list #1) .

(6) evaluate [[ E1: Expression O: Operation E2: Expression ]] =
coercively evaluate E1 and then
coercively evaluate E2

then give operation-result O .

(7) evaluate [[ “not” E: Expression ]] =
coercively evaluate E then
give not it .

G.3.6 Operations

• operation-result :: Operation → dependent datum .

(1) operation-result “+” = sum(the given integer #1, the given integer #2) .

(2) operation-result “−” = difference(the given integer #1, the given integer #2) .

(3) operation-result “<” = (the given integer #1) is less than (the given integer #2) .

(4) operation-result “=” = (the given item 1 cell #1) is (the given item [ cell #2) .

(5) operation-result “and” = both(the given truth-value #1, the given truth-value #2) .
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G.3.7 Integers

• integer-value :: Integer → Integer .

(1) integer-value n: natural = n .

(2) integer-value [[ “−” n:natural ]] = negation n .

G.3.8 Identifiers

• id :: Identifier → token .

(1) id k: token = k .
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Appendix H

The HypoPL Bubble-sort
Program

This appendix presents the HypoPL bubble-sort program which was used in
chapter 3. It also presents excerpts of the action and assembly code generated
from this program.

program bubblesort
/∗
∗ This HypoPL program performs a sorting exercise for timing purposes.
∗
∗ input: an integer n, n ≤ 1000
∗ action: sorts 0..n-1 into descending order using bubble-sort
∗ output: original array: 0..n−1
∗ marker : −999
∗ sorted array : n−1..0
∗/

const maxsize = 1000 ;
array num [1000] ; /∗ The array to sort ∗/

procedure sort (numElts)
/∗
∗ This procedure uses a bubble sort to arrange the 0..numElts−1
∗ elements of the “num” array
∗/
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int last ;
int current ;
int temp ;

begin
last := numElts −1 ;
while 0 < last do

current : = 0 ;

while current < last do
if num [current] < num [current + 1] then

temp : = num [current] ;
num [current] : = num [current + 1] ;
num [current + 1] : = temp

else
skip

endif ;
current : = current + 1

endwhile ;

last : = last −1
endwhile

end ; /∗ sort ∗/

procedure printNums (size)
/∗
∗ Print out the “num” array, 0..size −1
∗/

int i

begin
i := 0 ;
while i < size do

write num [i] ;
i := i + 1

endwhile
end ; /∗ printNums ∗/
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/∗
∗ Main program
∗/

inti ;
intnumSort /∗ The number of integers to sort ∗/

begin
read numSort ;

if max size < numsort
then skip
else

i := 0 ;

while i < numSort do
num [i] := i ;
i := i + 1

endwhile ;

printNums (numSort) ;
write − 999 ;
sort (numSort) ;
print Nums (numSort)

endif
end
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The following is the action generated for the printNums procedure.

establish [[ “procedure” “printNums” “(” “size” “)” . . . ]] =
bind “printnums” to closure abstraction of
furthermore

give the given integer #1 and then allocate integer cell
then

store the given integer #1 in the given cell #2
and then
bind “size” to the given cell #2

thence
furthermore
allocate integer cell then bind “i” to it

hence
give the datum bound to “i”

and then
give 0

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

then
store the given (truth-value ||| integer) #2 in the given cell #1

and then
unfolding

give the datum bound to “i”
then
give the given (truth-value 1 integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

and then
give the datum bound to “size”

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

then
give the given integer #1 is less than the given integer #2

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1
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then
check it

then
execute [[ “write” “num” “[” “i” “]” “;” “i” “;=” “i” “+” 1 ]]

then
unfold

or
check not it

& [ perhaps using integer ] act
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execute [[ “write” “num” “[” “i” “]” “;” “i” “;=” “i” “+” 1 ]]
give the list bound to num

and then
give the datum bound to “i”

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

then
give sum(it,1)

then
give component# (the given integer #2) items (the given list #1)

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

then
batch-send it

and then
give the datum bound to “i”

and then
give the datum bound to “i”

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

and then
give 1

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

then
give sum(the given integer #1, the given integer #2)

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

then
store the given (truth-value ||| integer) #2 in the given cell #1
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The following is the action generated for the statement “write−999”.

execute [[ “write” [[ 999 ]] ]]
give negation 999

then
give the given (truth-value ||| integer) #1 or
give the (truth-value ||| integer) stored in the given cell #1

then
batch-send it

The following is the SPARC code generated for the statement “write−999”,
when compiled as part of the HypoPL bubble-sort program. The Pseudo
Spare instructions appear as comments (in a concrete syntax that differs
slightly from the abstract syntax used in the formal specification). Other
comments indicate for which part of the action the code is generated.

! (move 999 to (reg 2)) !! 999

or %g0, 999, %r26

! (move 0 to global) !! negation

or %g0, 0, %g1

! (move difference global (reg 2) to (reg 5))

sub %g1, %r26, %r23

! (store (reg 5) in hp 2 heap) !! give)

set ( DSpace + 10008), %o0

st %r23, [%oO + %g3]

! (move -4 to global)

or %g0, -4, %g1

! (store global in hp 1 heap)

set ( DSpace + 10004), %o0

st %g1, [%o0 + %g3]

! (store hp in hp 3 heap)

set ( DSpace + 10012), %o0

st %g3, [%o0 + %g3]

! (move sum hp 8 to (reg 2))

add %g3, 8, %r26

! (move sum hp 16 to hp)

add %g3, 16, %g3

! (move 0 to global)

or %g0, 0, %g1

! (store global in cp 0 commits)

set ( DSpace + 2000), %o0

st %g1, C[%o0 + %g4]

! (move sum cp 4 to cp)

add %g4, 4, %g4

! (move difference sp 0 to sp)

sub %g2, 0, %g2

! (move 0 to cef)
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or %g0 0, %g5

! (jump 13155)

ba Ll3155

nop

! (make-label)

L13147:

! (move 0 to global)

or %g0, 0, %g1

! (store global in cp 0 commits)

set ( DSpace + 2000) , %o0

st (%g1, [%o0 + %g4]

! (move sum cp 4 to cp)

add %g4, 4, %g4

! (move difference sp 24 to sp)

sub %g2, 24, %g2

! (move 2 to cef)

or %g0, 2, %g5

! (jump 13319)

ba Ll3319

nop

! (make-label) !! then

L13153:

! (move (reg 0) to (reg 2))

or %g0, %r28, %r26

! (jump 13235)

ba L13235

nop

!make-label !! the given

L13155:

!! (truth-value-integer)

! (move 1 to (reg 5)) !! #1

or %g0, 1, %r23

! (compare (reg 5) with 1)

subcc %r23, 1, %g0

! (branchlessthan 13180)

bneg L13180

nop

! (move (reg 2) to global)

or %g0, %r26, %g1

! (move (reg 5) to arg)

or %g0, %r23, %g7

! (make-label)

L13160:

! (compare arg with 1)

subcc %g7, 1, %g0

! (branchequal 13167)

be L13167
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nop

! (load global 1 heap into global)

set ( DSpace + 10004), %o0

Id [%o0 + %g1], %g1

! (compare global with -4)

subcc %g1, -4, %g0

! (branchequal 13180)

be L13180

nop

! (move difference arg 1 to arg)

sub %g7, 1, %g7

! (jump 13160)

ba L13160

nop

! (make-label)

L13167:

! (load global 0 heap into (reg 6))

set ( DSpace + 10000) , %o0

Id [%o0 + %g1] , %r22

! (store (reg 6) in hp 2 heap) !! give

set ( DSpace + 10008), %o0

st %r22, [%o0 + %g3]

! (move -4 to global)

or %g0, -4, %g1

! (stor e global in hp 1 heap)

set ( DSpace + 10004), %o0

st %g1, [%o0 + %g3]

! (store hp in hp 3 heap)

set ( DSpace + 10012), %o0

st %g3, [%o0 + %g3]

! (move sum hp 8 to (reg 5))

add %g3, 8, %r23

! (move sum hp 16 to hp)

add %g3, 16, %g3

! (move 0 to global)

or %g0, 0, %g1

! (store global in cp 0 commits)

set ( DSpace + 2000), %o0

st %g1, [%o0 + %g4]

! (move sum cp 4 to cp)

add %g4, 4, %g4

! (move difference sp 0 to sp)

sub %g2, 0, %g2

! (move 0 to cef)

or %g0, 0, %g5

! (jump 13186)

ba L13186

nop

! (make-label)

L13180:

! (move 0 to global)

or %g0, 0, %g1
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! (store global in cp 0 commits)

set ( DSpace + 2000), %o0

st %g1, [%o0 + %g4]

! (move sum cp 4 to cp)

add %g4, 4, %g4

! (move difference sp 0 to sp)

sub %g2, 0, %g2

! (move 2 to cef)

or %g0, 2, %g5

! (jump 13190)

ba L13190

nop ! (make-label) !! or

L13186:

! (move (reg 5) to (reg2))

or %g0, %r23, %r26

! (jump 13217)

ba L13217

nop ! (make-label)

L13188:

! (move (reg 2) to (reg 5))

or %g0, %r26, %r26

! (jump 13223)

ba L13223

nop

! (make-label)

L13190:

! (load cp -1 commits into global)

set ( DSpace + 1996), %o0

ld [%o0 + %g4], %g1

! (compare global with 1)

subcc %g1, 1, %g0

! (branchequal 13229)

be L13229

nop

! (make-label)

L13193:

!! give the

! (move 0 to global) !! (truth-value|integer)
or %g0, 0, %g1 !! stored in

! (store global in cp 0 commits) !! the given cell #1

set ( Dspace + 20000), %o0

st %g1, [%o0 + %g4]

! (move sum cp 4 to cp)

add %g4, 4, %g4

! (move difference sp 24 to sp)

sub %g2, 24, %g2
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! (move 2 to cef)

or %g0, 2, %g5

! (jump 13211)

ba L13211

nop

! (make-label) !! combine (or)

L13199:

! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set ( Dspace + 20000), %o0

ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0

! (branchequal 13204)

be L13204

nop

! (store global in cp -1 commits)

set ( DSpace + 1996), %o0

st %g1, [%o0 + %g4]

! (make-label)

L13204:

! (jump 13217)

ba L13217

nop

! (make-label)

L13205:

! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set texttt( Dspace + 20000), %o0
ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0

! (branchequal 13210)

be L13210

nop

! (store global in cp -1 commits)

set ( DSpace + 1996), %o0

st %g1, [%o0 + %g4]

! (make-label)

L13210:

! (jump 13223)

ba L13223

nop

! (make-label)

L13211:
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! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set ( Dspace + 20000), %o0

ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0

! (branchequal 13216)

be L13216

nop

! (store global in cp -1 commits)

set ( DSpace + 1996), %o0

st %g1, [%o0 + %g4]

! (make-label)

L13216:

! (jump 13229)

ba L13229

nop

! (make-label) !!combine (then)

L13217:

! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set ( Dspace + 20000), %o0

ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0

! (branchequal 13222)

be L13222

nop

! (store global in cp -1 commits)

set ( DSpace + 1996), %o0

st %g1, [%o0 + %g4]

! (make-label)

L13222:

! (jump 13237)

ba L13237

nop

! (make-label)

L13223:

! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set ( Dspace + 20000), %o0

ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0
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! (branchequal 13228)

be L13228

nop

! (store global in cp -1 commits)

set ( DSpace + 1996), %o0

st %g1, [%o0 + %g4]

! (make-label)

L13228:

! (jump 13235)

ba L13235

nop

! (make-label)

L13229:

! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set ( Dspace + 20000), %o0

ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0

! (branchequal 13234)

be L13234

nop

! (store global in cp -1 commits)

set ( DSpace + 1996), %o0

st %g1, [%o0 + %g4]

! (make-label)

L13234:

! (jump 13319)

ba L13235

nop

! (make-label) !! then

L13235:

! (move (reg 2) to (reg 2))

or %g0, %r26, %r26

! (jump 13313)

ba L13313

nop

! (make-label) !! it

L13237:

! (move 1 to (reg 5))

or %g0, 1, %r23

! (compare (reg 5) with 1)

subcc %r23, 1, %g0

! (branchlesstha 13265)
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bneg L13265

nop

! (move (reg 2) to global)

or %g0, %r26, %g1

! (move (reg 5) to arg)

or %g0, %r23 + %g7

! (make-label)

L13242:

! (compare arg with 1)

subcc %g7, 1, %g0

! (branchequal 13249)

be L13249

nop

! (load global 1 heap into global)

set ( DSpace + 10004), %go0

ld [%o0 + %g1], %g1

! (compare global with -4)

subcc %g1, -4, %g0

! (branchequal 13265)

be L13265

nop

! (move difference arg 1 to arg)

sub %g7, 1, %g7

! (jump 13424)

ba L13242

! (branchequal 13265)

nop

! (make-label)

L13249:

! (load global 0 heap into (reg 6))

set ( DSpace + 10000), %o0

ld [%o0 + %g1], %g1

! (move 0 to global !! (brance-send)

or %g0, 0, %g1

! (load global 0 output into arg)

set ( Dspace + 0), %o0

ld [%o0 + %g1], %g7

! (move sum arg (a 1) to arg)

add %g7, 4, %g7

! (store arg in global 0 output)

set ( Dspace + 0), %o0

st %g7, [%o0 + %g1]

! (store (reg 6) in arg 0 output)

set ( Dspace + 0), %o0

st %r22, [%o0 + %g7]

! (move -4 to global)

or %g0, -4, %g1

! (store global in hp 1 heap)

set ( Dspace + 10004), %o0

st %g1, [%o0 + %g3]

! (move hp to (reg 2))

or %g0, %g3 + %r26

217



! (move sum hp 8 to hp)

add %g3, 8, %g3

! (move 1 to global)

or %g0, 1, %g1

! (store global in cp 0 commits)

set ( Dspace + 2000), %o0

st %g1, [%o0 + %g4]

! (move sum cp 4 to cp)

add %g4, 4, %g4

! (move difference sp 0 to sp)

sub %g2, 0, %g2

! (move 0 to cef)

or %g0, 0, %g5

! (jump 13271)

ba L13271

nop

! (make-label)

L13265:

! (move 0 to global)

or %g0, 0, %g1

! (store global in cp 0 commits)

set ( Dspace + 2000), %o0

st %g1, [%o0 + %g4]

! (move sum cp 4 to cp)

add %g4, 4, %g4

! (move difference sp 24 to sp)

sub %g2, 24, %g2

! (move 2 to cef)

or %g0, 2, %g5

! (jump 13283)

ba L13283

nop

! (make-label) !! combine (then)

L13271:

! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set ( Dspace + 2000), %o0

ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0

! (branchequal 13276)

be L13276

nop

! (store global in cp -1 commits)

set ( Dspace + 1996), %o0

st %g1, [%o0 + %g3]

! (make-label)

L13276:

! (jump 13289)
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ba L13289

nop

! (make-label)

L13277:

! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set ( Dspace + 2000), %o0

ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0

! (branchequal 13282)

be L13282

nop

! (store global in cp -1 commits)

set ( Dspace + 1996), %o0

st %g1, [%o0 + %g3]

! (make-label)

L13282:

! (jump 13313)

ba L13313

nop

! (make-label)

L13283:

! (move difference cp 4 to cp)

sub %g4, 4, %g4

! (load cp 0 commits into global)

set ( Dspace + 2000), %o0

ld [%o0 + %g4], %g1

! (compare global with 0)

subcc %g1, 0, %g0

! (branchequal 13288)

be L13288

nop

! (store global in cp -1 commits)

set ( Dspace + 1996), %o0

st %g1, [%o0 + %g3]

! (make-label)

L13282:

! (jump 13319)

ba L13319

nop

! (make-label)

L13289:
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Appendix I

Mini-Ada Action Semantics

I.1 Abstract Syntax

grammar:

(1) Program = [[ Declarations Identifier ]] .

(2) Declarations = [[ Declarations Declarations ]] |||
[[ Identifier “:” “constant” “:=” Expression “;” ]] |||
[[ Identifier “:” Nominator “;” ]] |||
[[ Identifier “:” Nominator “:=” Expression “;” ]] |||
[[ “type” Identifier “is” “array”
“(” “0” “..” Expression “)” “of” Primitive “;” ]] |||
[[ “function” Identifier “return” “integer” “is” Block “;” ]] |||
[[ “function” Identifier “(” Formals-In “)”
“return” “integer” “is” Block “;” ]] |||
[[ “procedure” Identifier “is” Block “;” ]] |||
[[ “procedure” Identifier “(” Formals “)” “is” Block “;” ]] .

(3) Formals = [[ Formal “;” Formals ]] ||| Formal .

(4) Formal = [[ Identifier “:” “in” “Out” “integer” ]] .

(5) Formals-In = [[ Formal-In “;” Formals-In ]] ||| Formal-In .

(6) Formal-In = [[ Identifier “:” “Integer” ]] .

(7) Nominator = Primitive ||| Identifier .

(8) Primitive = “boolean” ||| ‘integer” .

(9) Statements = [[ Statements Statements ]] |||
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[[ “null” “;” ]] |||
[[ Name “:=” Expression “;”]] |||
[[ “if” Expression “then” Statements “end” “if” “;” ]] |||
[[ “if” Expression “then” Statements
“else” Statements “end” “if” “;” ]] |||
[[ “select” Alternatives “end” “select” “;”]] |||
[[ “select” Alternatives “else” Statements “end” “select” “;” ]] |||
[[ “loop” Statements “end” “loop” “;”]] |||
[[ “while” Expression “loop” Statements “end” “loop” “;”]] |||
[[ “exit” “;”]] |||
[[ “begin” Statements “end ” “;” ]] |||
[[ “declare” Declarations “begin” Statements “end” “;” ]] |||
[[ Identifier “;”]] |||
[[ Identifier “(” Names “)” “;” ]] |||
[[ “return” “;”]] |||
[[ “return” Expression “;”]] |||
[[ “write “Expression “;” ]] |||
[[ “read” Name “;” ]] .

(10) Block = [[ “begin” Statements “end” ]] |||
[[ Declarations “begin” Statements “end” ]] .

(11) Alternatives = Statements |||
[[ “when” Expression “=>” Statements ]] |||
[[ Alternatives “or” Alternatives ]] .

(12) Names = Name ||| [[ Names “;” Names ]] .

(13) Name = Identifier ||| [[ Identifier “(” Expressions “)” ]] .

(14) Expressions = Expression ||| [[ Expressions “;” Expressions ]] .

(15) Expressions = “true” ||| “false” ||| Integer ||| Name ||| .
[[ “(” Expression “)” ]] ||| .
[[ “not” Expression ]] ||| .
[[ Expression Binary-Operator Expression ]] ||| .
[[ Expression Control-Operator Expression ]] .

(16) Binary-Operator = “+” ||| “−” ||| “=” ||| “/ =” ||| “<” |||“<=” ||| .

“>” ||| “>=” ||| “and” ||| “or” ||| “xor” .

(17) Control-Operator = [[ “and” “then” ]] ||| [[ “or” “else” ]] .

(18) Integer = natural ||| [[ “−” natural ]] .
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(19) Identifier = token .

I.2 Semantic Entities

I.2.1 Items

introduces: item , parameter-less-procedure , parameterized-procedure ,
parameter-less-function , parameterized-function ,
non-abstraction , escape-reason , exit , function-return ,
procedure-return , there-is-given-an-exit , there-is-given-a-return ,
there-is-given-a-procedure-return , err .

(1) item = truth-value ||| integer .

(2) parameter-less-procedure = abstraction .

(3) parameterized-procedure = abstraction .

(4) parameter-less-function = abstraction .

(5) parameterized-function = abstraction .

(6) non-abstraction = item ||| cell ||| list .

(7) escape-reason = [integer] list .

(8) exit = list of 0 .

(9) function-return = [integer] list .

(10) procedure-return = list of 2 .

(11) there-is-given-an-exit = (component# 1 items it) is 0 .

(12) there-is-given-a-return =
either((component# 1 items it) is 1 , (component# 1 items it) is 2) .

(13) there-is-given-a-procedure-return = (component# 1 items it) is 2 .

(14) err = commit and then fail .

I.2.2 Closures

introduces: function-return-of , returned-value-of ,
parameter-less-closure ,
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parameterized-function-closure , parameterized-procedure-closure .

• function-return-of :: integer → [integer] list .

• returned-value-of :: [integer] list → integer .

• parameter-less-closure :: act → dependent datum .

• parameterized-function-closure :: act → dependent datum .

• parameterized-procedure-closure :: act → dependent datum .

(1) function-return-of i:integer = concatenation(list of 1, list of i) .

(2) returned-value-of l:[integer] list = component# 2 items l) .

(3) parameter-less-closure A:act = closure abstraction of A & [perhaps using ()] act .

(4) parameterized-function-closure A:act =
closure abstraction of A & [perhaps using [integer] list] act .

(5) parameterized-procedure-closure A:act =
closure abstraction of A & [perhaps using [integer cell] list] act .

I.3 Semantic Functions

introduces: run , elaborate , actualize-formals , actualize-formal , ,
actualize-formals-in , actualize-formal-in ,
allocate-for , allocate-for-primitive
execute , execute-block , exhaust ,
multi-investigate , investigate
multi-evaluate , evaluate ,
the-binary-operation-result-of
the-control-operation-completion-of
integer-value , id .

I.3.1 Program

• run :: Program → act .

(1) run [[D:Declarations I:Identifier ]] =
furthermore elaborate D

hence
enact application (the parameter-less-procedure bound to id I) to () .
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I.3.2 Declarations

• elaborate :: Declarations → act .

(1) elaborate [[ D1:Declarations D2:Declarations ]] = elaborate D1 before elaborate D2 .

(2) elaborate [[ I:Identifier “:” “constant” “:=” E:Expression “;” ]] =
evaluate E then bind id I to it .

(3) elaborate [[ I:Identifier “:” N:Nominator “;” ]] =
allocate-for N then bind id I to it .

(4) elaborate [[ I:Identifier “:” N :Nominator “:=” E:Expression “;” ]] =
allocate-for N and then evaluate E

then
store the given item #2 in the given cell #1 and then
bind id I to the given datum #1 .

(5) elaborate [[ “type” I:Identifier “is” “array”
“(” “0” “..” E:Expression “)” “of” “boolean” “;” ]] =
bind id I to parameter-less-closure

give empty-list & [truth-value cell] list and then
evaluate E then give sum(it, 1)

then
unfolding

check the given integer #2 is 0 and then
give the given list #1

or
regive and then
allocate truth-value cell

then
give concatenation(list of the given truth-value cell #3, the given list #1)

and then
give difference(the given integer #2, 1)

then
unfold .

(6) elaborate [[ “type” I:Identifier “is” “array”
“(” “0” “..” E:Expression “)” “of” “integer” “;” ]] =
bind id I to parameter-less-closure
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give empty-list & [integer cell] list and then
evaluate E then give sum(it, 1)

then
unfolding

check the given integer #2 is 0 and then
give the given list #1

or
regive and then
allocate integer cell

then
give concatenation(list of the given integer cell #3, the given list #1)

and then
give difference(the given integer #2, 1)

then
unfold .

(7) elaborate [[ “function” I:Identifier “return” “integer” ‘is” B:Block “;” ]] =
bind id I to parameter-less-closure

execute-block B and then err
trap give returned-value-of the given function-return #1 .

(8) elaborate [[ “function” I:Identifier “(” F :Formals-In “)”
“return” “integer” “is” B:Block “;” ]] =
bind id I to parameter-function-closure
furthermore actualize-formals-in F thence

execute-block B and then err
trap give returned-value-of the given function-return #1 .

(9) elaborate [[ “procudure” I:Identifier “is” B:Block “:” ]] =
bind id I to parameter-less-closure
execute-block B
trap check there-is-given-a-procedure-return .

(10) elaborate [[ “procedure” I:Identifier “(” F :Formals “)” ‘is” B:Block “;” ]] =
bind id I to parameterized-procedure-closure
furthermore actualize-formals F thence
execute-block B
trap check there-is-given-a-procedure-return .
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I.3.3 Formals

• actualize-formals :: Formals → act .

(1) actualize-formals [[ F1:Formal “;” F2:Formals ]] =
give head the given list #1 then actualize-formal F1

before
give tail the given list #1 then actualize-formals F2 .

(2) actualize-formals F :Formal =
give head the given list #1 then actualize-formal F .

I.3.4 Formal

• actualize-formal :: Formal → act .

(1) actualize-formal [[ I:Identifier “:” “in” “out” “integer” ]] =
bind id I to the given integer cell #1 .

I.3.5 Formals-In

• actualize-formals-in :: Formals-In → act .

(1) actualize-formals-in [[ F1:Formal-In “;” F2:Formals-In ]] =
give head the given list #1 then actualize-formal-in F1

before
give tail the given list #1 then actualize-formals-in F2 .

(2) actualize-formals-in F :Formal-In =
give head the given list #1 then actualize-formal-in F .

I.3.6 Formal-In

• actualize-formal-in :: Formal-In → act .

(1) actualize-formal-in [[ I:Identifier “:” “integer” ]] =
bind id I to the given integer #1 .
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I.3.7 Nominator

• allocate-for :: Nominator → act .

(1) allocate-for P :Primitive = allocate-for-primitive P .

(2) allocate-for I:Identifier =
enact application (the abstraction bound to id I) to () .

I.3.8 Primitive

• allocate-for-primitive :: Primitive → act .

(1) allocate-for-primitive “boolean” = allocate truth-value cell .

(2) allocate-for-primitive “Integer = allocate integer cell .

I.3.9 Statements

• execute :: Statements → act .

(1) execute [[ S1:Statements S2:Statements ]] = execute S1 and then execute S2 .

(2) execute [[ “null” “;” ]] = complete .

(3) execute [[ N :Name “:=” E:Expression ]] =
investigate N and then evaluate E

then store the given item #2 in the given cell #1 .

(4) execute [[ “if” E:Expression “then” S:Statements “end” “if” “;” ]] =
evaluate E then

check (it is true) and then execute S
or
check (it is false) .

(5) execute
[[ “if” E:Expression “then” S1:Statements “else” S2:Statements “end” “if” “;” ]] =
evaluate E then

check (it is true) and then execute S1

or
check (it is false) and then execute S2 .

(6) execute [[ “select” A:Alternatives “end” “select” “;” ]] =
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exhaust A
trap
enact application the given abstraction #1 to ()

(7) execute [[ “select” A:Alternatives “else” S:Statements “end” “select” “;” ]] =
exhaust A and then

give parameter-less-closure execute S
then escape

trap
enact application the given abstraction #1 to ()

(8) execute [[ “loop” S:Statements “end” “loop” “;” ]] =
unfolding
execute S and then unfold

trap
chech there-is-given-an-exit

or

check there-is-given-a-return and then escape .

(9) execute [[ “while” E:Expression “loop” S:Statements “end” “loop” “;” ]] =
unfolding
evaluate E then

check (it is true) and then execute S and then unfold
or check (it is false)

trap
check there-is-given-an-exit

or

check there-is-given-an-return and then escape .

(10) execute [[ “exit” “;” ]] = give exit then escape .

(11) execute [[ “begin” S:Statement “end” “;” ]] = execute S .

(12) execute [[ “declare” D:Declarations “begin” S:Statements “end” “;” ]] =
furthermore elaborate D hence
execute S .

(13) execute [[ I:Identifier “;” ]] =
enact application the parameter-less-procedure bound to id I to () .

(14) execute [[ I:Identifier “(” N :Names “)” “;” ]] =
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give the parameterized-procedure bound to id I and then
multi-investigate N

then
enact application the given abstraction #1 to the given list #2 .

(15) execute [[ “return” “;” ]] = give procedure-return then escape .
(16) execute [[ “return” E:Expression “;” ]] =

evaluate E then
give function-return-of it then
escape .

(17) execute [[ “write” E:Expression “;” ]] =
evaluate E then batch-send it .

(18) execute [[ “read” N :Names “;” ]] =
batch-receive an integer and then investigate N

then store the given integer #1 in the given integer cell #2 .

I.3.10 Block

• execute-block :: Block → act .

(1) execute-block [[ “begin” S:Statements “end” ]] = execute S .

(2) execute-block [[ D:Declarations “begin” S:Statements “end” ]] =
furthermore elaborate D hence
execute S .

I.3.11 Alternatives

• exhaust :: Alternatives → act .

(1) exhaust S:Statements =
give parameter-less-closure execute S

then escape .

(2) exhaust [[ “when” E:Expression “=>” S:Statements “end” ]] =
evaluate E then

check (it is true) then
give parameter-less-closure execute S

then escape
or check (it is false) .
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(3) exhaust [[ A1:Alternatives “or” A2:Alternatives ]] =
exhaust A1 and then exhaust A2 .

I.3.12 Names

• multi-investigate :: Names → act .

(1) multi-investigate N :Name =
investigate N then give list of it .

(2) multi-investigate [[ N1:Names “;” N2:Names ]] =
multi-investigate N1 and then multi-investigate N2

then give concatenation(the given list #1, the given list #2) .

I.3.13 Name

• investigate :: Name → act .

(1) investigate I:Identifier =
give the datum bound to id I then
give the given non-abstraction #1 or
enact application the given parameter-less-function #1 to () .

(2) investigate [[ I:Identifier “(” E:Expressions “)” ]] =
give the datum bound to id I and then
multi-evaluate E

then
give the given list #1 and then
give head the given [integer] list #2

then
give component# sum(the given integer #2, 1) items
(the given list #1)

or
enact application (the given parameterized-function #1)
to (the given list #2) .

I.3.14 Expressions

• multi-evaluate :: Expressions → act .

(1) multi-evaluate E:Expression = evaluate E then give list of it .
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(2) multi-evaluate [[ E1:Expressions “;” E2:Expressions ]] =
multi-evaluate E1 and then multi-evaluate E2

then give concatenation(the given list #1, the given list #2) .

I.3.15 Expression

• evaluate :: Expressions → act .

(1) evaluate “true” = give true .

(2) evaluate “false” = give false .

(3) evaluate i:Integer = give integer-value i .

(4) evaluate N :Name =
investigate N then
give the given item #1 or
give the item stored in the given cell #1 .

(5) evaluate [[ “(” E:Expression “)” ]] = evaluate E .

(6) evaluate [[ “not” E:Expression ]] = evaluate E then give not it .

(7) evaluate [[ E1:Expression O:Binary-Operator E2:Expression ]] =
evaluate E1 and then evaluate E2

then give the-binary-operation-result-of O .

(8) evaluate [[ E1:Expression O:Control-Operator E2:Expression ]] =
evaluate E1 then

check the-control-operation-completion-of O and then
give the given truth-value #1

or
check not the-control-operation-completion-of O and then
evaluate E2 .

I.3.16 Binary-Operator

• the-control-operation-completion-of :: Control-Operator → dependent datum .

(1) the-binary-operation-result-of “+” =
sum(the given integer #1 the given integer #2) .

(2) the-binary-operation-result-of “−” =
difference(the given integer #1, the given integer #2) .
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(3) the-binary-operation-result-of “=” =
(the given intem #1) is (the given intem #2) .

(4) the-binary-operation-result-of “/ =” =
not((the given intem #1) is (the given intem #2)) .

(5) the-binary-operation-result-of “<” =
(the given integer #1) is less than (the given integer #2) .

(6) the-binary-operation-result-of “<=” =
not((the given integer #2) is less than (the given integer #1)) .

(7) the-binary-operation-result-of “>” =
(the given integer #2) is less than (the given integer #1) .

(8) the-binary-operation-result-of “>=” =
not ((the given integer #1) is less than (the given integer #2)) .

(9) the-binary-operation-result-of “and” =
both(the given integer #1, the given integer #2) .

(10) the-binary-operation-result-of “or” =
either(the given truth-value #1, the given truth-value #2) .

(11) the-binary-operation-result-of “xor” =
not((the given truth-value #1) is (the given truth-value #2)) .

I.3.17 Control-Operator

• the-control-operation-completion-of :: Control-Operator → dependent datum .

(1) the-control-operation-completion-of [[ “and” “then” ]] =
(the given truth-value #1) is false .

(2) the-control-operation-completion-of [[ “or” “else” ]] =
(the given truth-value #1) is true .

I.3.18 Integer

• integer-value :: Integer → integer .

(1) integer-value n:natural = n .

(2) integer-value [[ “−” n:natural ]] = negation n .
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I.3.19 Identifier

• id :: Identifier → token .

(1) id k:token = k .
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Appendix J

Mini-Ada Benchmark
Programs

/∗
∗ This Mini-Ada program performs a sorting exercise for timing purposes.
∗
∗ input: an integer n, n ≤ 1000
∗ action: sorts 0..n−1 into descending order using bubble-sort
∗ output:original array: ..n−1
∗ marker : −999
∗ sorted array : n−1..0
∗/

max size : constant := 1000 ;
type numtype is array ( 0 .. 1000 ) of integer ;
num : numtype ; /∗ The array to sort ∗/

procedure sort ( numElts : in out integer ) is
/∗
∗ This procedure uses a bubble sort to arrange the 0..numElts−1
∗ elements of the “num” array
∗/

last : integer ;
current : integer ;
temp : integer ;
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begin
last : = numElts −1 ;
while 0 < last loop

current : = 0 ;

while current < last loop
if num ( current ) < num ( current +1 ) then

temp : = num ( current ) ;
num ( current ) := num(current +1) ;
num ( current +1 ) := temp ;

else
null ;

end if ;
current : = current +1 ;

end loop ;

last = last −1 ;
end loop ;

end ; /∗ sort ∗/

procedure printNums ( size : in out integer ) is
/∗
∗ Print out the “num” array, 0..size−1
∗/

i : integer ;

begin
i := 0 ;
while i < size loop

write num ( i ) ;
i := i +1 ;

end loop ;
end ; /∗ printNums ∗/
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/∗
∗ Main program
∗/

i : integer ;
numSort : integer ; /∗ The number of integers to sort ∗/

procedure main is
begin

read numSort ;

if maxsize < numsort
then null ;
else

i := 0 ;

while i < numSort loop
num(i) := i ;
i := i +1 ;

end loop ;

printNums ( numSort ) ;
write − 999 ;
sort ( numSort ) ;
printNums ( numSort ) ;

end if ;
end ;

main

/∗
∗ This Mini-Ada program performs the sieve of Erathosthenes prime number
∗ generator. There is neither input nor output; the program is solely used
∗ for timing purposes.
∗/
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type arr is array ( 0 .. 512 ) of boolean ;
flags : arr ;
size : constant := 512 ;
iterations : constant := 1 ;

procedure primes is
i : integer ;
prime : integer ;
j : integer ;
count : integer ;
loops : integer ;
begin

loops := 0 ;
while loops < iterations loop

count := 0 ;
i := 0 ;
while i < size loop

flags ( i ) := true ;
i := i +1 ;

end loop ;
i := 0 ;
while i < size loop

if flags ( i ) then
prime := i + i +3 ;
j := i + prime ;
while j < size loop

flags ( j ) : = false ;
j := j + prime ;

end loop ;
count :=count +1 ;

end if ;
i := i +1 ;

end loop ;
loops := loops +1 ;

end loop ;
end ;
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primes

/∗
∗ This Mini-Ada program performs Euclid’s algorithm 30 times.
∗
∗ input: three integers i, j, k
∗ action: performs k times Euclid’s algorithm on i and j
∗ output: the greatest common divisor of i and j, k times
∗/

procedure euclid ( i : in out integer ; j : in out integer ) is
begin

while i / = j loop
if i < j
then j := j − i ;
else i := i − j ;
end if ;

end loop ;
write i ;

end ;

procedure run is
i : integer ; j : integer ;
i2 : integer ; j2 : integer ; k : integer ;
begin

read i ; read j ;
read k ;
while k > 0 loop

i2 := i ;
j2 := j ;
euclid ( i2 ; j2 ) ;
k := k −1 ;

end loop ;
end ;

run

238



/∗
∗ This Mini-Ada program computes the n’th fibonacci number 36 times.
∗
∗ input: an integer n
∗ action: computes the n’th fibonacci number iteratively
∗ output: the n’th fibonacci number
∗/

procedure fibonacci ( n : in out integer ) is
i : integer ; j : integer ;
begin

select
when n < 0 => write −999 ;

or
when n = 0 or n = 1 => write 1 ;

else
n := n −1 ;
i := 1 ;
j := 1 ;
while n / = 0 loop

declare k : integer ;
begin

k := i ; i := i + j ; j := k ;
end ;
n := n −1 ;

end loop ;
write i ;

end select ;
end ;
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procedure run is
n : integer ; k : integer ;
begin

read n ;
k := 36 ;
while k > 0 loop

fibonacci ( n ) ;
k := k −1 ;

end loop ;
end ;

run
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Appendix K

Informal Summary of Action
Notation

K.1 Basic Action Notation

Basic action notation is primarily concerned with specifying flow of control
in performances of actions. It includes basic notation for data as well.

K.1.1 Actions

The notation for specifying actions consists of action primitives, which may
involve dependent data, and action combinators, which operate on one or two
subactions. There is also notation for specifying sorts of actions, as follows:

• ‘act’: the sort of all actions.

• ‘[perhaps using D0] act’: a sort of action, where D0 is a (sort of) de-
pendent data. Restricts ‘act’ to those actions which, when performed,
perhaps evaluate dependent data that refers to the current information
indicated by D0.

• Primitive basic actions:

– Give no data, except for ‘escape’.

– Produce no bindings.
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– Make no changes to storage.

– Do not communicate.

• ‘complete’: a primitive basic action. Represents normal termination.
Unit for ‘ and ’, as well as for ‘ and then ’.

– Indivisible. Always completes.

• ‘escape’: a primitive basic action. Represents abnormal termination.
Unit for ‘ trap ’.

– Indivisible. Always escapes.

– Gives any given data.

• ‘fail’: a primitive basic action. Represents abortion of the current al-
ternative. Unit for ‘ or ’.

– Indivisible. Always fails.

• ‘commit’: a primitive basic action. Represents commitment to the
current alternative, cutting away other current alternatives.

– Indivisible. Always commits and completes.

• ‘diverge’: a basic action. Represents nontermination.

– Always diverges.

• ‘unfold’: a dummy action, standing for the innermost enclosing unfold-
ing.

• ‘unfolding A’: a basic ‘combination’ of action A. Represents the (in gen-
eral, infinite) action formed by continually substituting A for ‘unfold’.
(To avoid singularities in pathological cases, substitute ‘complete and
then A’, rather than just A.)

– Performs A, but whenever the dummy action ‘unfold’ is reached,
A is performed in place of ‘unfold’.

• Basic action combinators are:
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– Functionally conducting (see ‘A1 and A2’), except for ‘A1 trap A2,
which is composing (see ‘A1 then A2’).

– Declaratively conducting. (See ‘A1 and A2’.)

• ‘indivisibly A’: a basic ‘combination’ of action A. Represents that A
is not interleaved with other actions of the same agent. For use only
when A cannot diverge.

– Indivisible. A is performed as a single step.

• ‘A1 or A2’: a basic combination of actions A1, A2. Represents imple-
mentationdependent choice; specializes to deterministic choice when
one or the other of A1, A2 must fail.

– Basically alternatives. Performs either A1 or A2. When the per-
formed alternative fails without committing, it is ignored and the
other alternative is performed instead.

– Functionally conducting. All the data given to the combination of
A1, A2 is given to the performed alternative. On normal or abnor-
mal termination, all the data given by the performed alternative
is given by the combined action.

– Declaratively conducting. All the bindings received by the com-
bination of A1, A2 are received by the performed alternative. On
normal termination, all the bindings produced by the performed
alternative are produced by the combined action.

• ‘A1 and A2’: a basic combination of actions A1, A2. Represents imple-
mentationdependent order of performance of indivisible subactions,
specializing to independent performance when there is no ‘interference’
between A1 and A2.

– Basically interleaving. Performs both A1, A2, with arbitrary in-
terleaving of their indivisible steps. An escape or a failure causes
any remaining parts of the subactions to be skipped.

– Functionally conducting. The data given to the combination of A1,
A2 is given to both A1, A2. On normal termination, all the data
given by A1, A2 is collected and given by the combined action—if
both give one or more items of data, these are tupled in the given
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order. On escape, only the data given by the escape is given by
the combined action.

– Declaratively conducting. The bindings received by the combi-
nation of A1, A2 are received by both A1, A2. On normal ter-
mination, all the bindings produced by A1, A2 are collected and
produced by the combined action—provided that the bindings are
all for distinct tokens, otherwise the combined action fails.

• ‘A1 and then A2’: a basic combination of actions A1, A2. Represents
dependency on normal termination.

– Basically (normal) sequencing. Performs A1 first. If A1 completes,
performs A2.

• ‘A1 trap A2’: a basic action combination. Represents recovery from
abnormal termination.

– Basically abnormal sequencing. Performs A1 first. If A1 escapes,
performs A2.

– Functionally composing. (See ‘A1 then A2’.)

K.1.2 Dependent Data

• ‘dependent D’: a sort. Its individuals are items of dependent data that,
when evaluated, always yield data of sort D.

• Every data-operation (i.e., operation specified only for arguments in-
cluded in ‘data’) is extended to arguments of sort ‘dependent data’.
The application of a data operation to dependent data yields whatever
is yielded by applying the data operation to the data yielded by the
arguments.

K.1.3 Data

• ‘datum’: a sort. Its individuals represent items of data. Left open,
as it depends on the variety of information processed by the programs
of a programming language. Includes generally-useful sorts from Data
Notation, except for tuples. Similarly for ‘distinct-datum’, the sort of
datum whose individuals are distinguished by the operation ‘ is ’.
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• ‘data’: a sort. Its individuals represent ordered collections of individuals
of sort ‘datum’, processed as transient information.

• ‘a D’: the same data as D. Only used to improve the readability of the
notation. Similarly for ‘an D’, ‘the D’, and ‘of D’. Thus an application
of an operation op to arguments x can be written as ‘op x’, ‘op of x’,
and ‘the op of x’. Note that ‘the’ and ‘of’ are obligatory parts of some
other (data-) operation symbols. (Compare the HyperCard scripting
language, HyperTalk [23].)

K.2 Functional Action Notation

Functional action notation is primarily concerned with specifying the pro-
cessing of transient information (data).

K.2.1 Actions

• Primitive functional actions:

– Do not commit.

– Produce no bindings.

– Make no changes to storage.

– Do not communicate.

• ‘give D’: a primitive functional action, where D is dependent data.
Represents creating a piece of transient information.

– Indivisible. Completes when D yields data. Fails when D yields
nothing.

– Gives the data yielded by D.

• ‘regive’: a primitive functional action. Represents propagation of tran-
sient information, i.e., data. Unit for then .

– Indivisible. Always completes.

– Gives any given data.
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• ‘check D’: a functional action, where D is a dependent truth-value.
Represents a guard checking that a condition is true.

– Indivisible. Completes when D yields true. Fails when D yields
false (or nothing).

– Gives no data.

• Functional action combinators are:

– Declaratively conducting. (See ‘A1 and A2.)

• ‘A1 then A2: a functional combination of actions A1, A2. Represents
passing on transient information normally.

– Basically sequencing. (See ‘A1 and then A2’.)

– Functionally composing. The data given to the combination of
A1, A2 is given to A1. Only the data given by A1 is given to A2

(provided that A2 is performed). Only the data given by A2 is
given by the combined action.

K.2.2 Dependent Data

• ‘given D#p’ a dependent datum, where D is a sort of datum and p is
a positive integer. Yields the p’th component of the data given to its
evaluation, provided that the datum is of sort D.

• ‘it’: a dependent datum. Yields the single datum given to its evaluation
as a transient.

• ‘them’: dependent data. Yields all the data given to its evaluation as
transients.

K.2.3 Data

• ‘data’: a sort. Its individuals represent ordered collections, i.e., tuples,
of individuals of sort ‘datum’, processed as transient information.
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K.3 Declarative Action Notation

Declarative action notation is primarily concerned with specifying the pro-
cessing of scoped information (bindings).

K.3.1 Actions

• Primitive declarative actions:

– Do not commit.

– Give no data.

– Make no changes to storage.

– Do not communicate.

• ‘bind T to D’: a primitive declarative action, where T is a token and D
is a dependent data. Represents creating a piece of scoped information.

– Indivisible. Completes when D yields a data of sort ‘bindable’.
Fails otherwise.

– Produces the binding of the token T to the data D.

• ‘furthermore A’: a declarative combination of action A. Represents
propagating the received bindings, but letting bindings produced by A
take precedence when there is a conflict.

– Baically as A.

– Functionally as A.

• ‘A1 hence A2’ a declarative combination of actions A1, A2. Represents
passing on scoped information, restricting the bindings received by A2.

– Basically sequencing. (See ‘A1 and then A2’.)

– Functionally conducting. (See ‘A1 and A2’.)

– Declaratively composing. The bindings received by the combina-
tion of A1, A2 are received by A1. Only the bindings produced by
A1 are received by A2 (provided that it is performed). Only the
bindings produced by A2 are produced by the combined action.
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• ‘A1 before A2’: a declarative combination of actions A1, A2. Represents
accumulating scoped information.

– Basically sequencing. (See ‘A1 and then A2’.)

– Functionally conducting. (See ‘A1 and A2’)

– Declaratively accumulating. The bindings received by the com-
bination of A1, A2 are received by A1. The bindings received by
the combined action, overlaid with the bindings produced by A1,
are received by A2 (provided that it is performed). The bindings
produced by A1, A2 are collected and produced by the combined
action—provided that the bindings are all for distinct tokens, oth-
erwise the action fails.

K.3.2 Dependent Data

• ‘the D bound to T ’: dependent data, where D is a sort of data and T is
a token. Yields the data of sort D to which T is bound by the received
bindings, if any.

K.3.3 Data

• ‘bindings’: a subsort of ‘map’. Its individuals represent collections of
associations between tokens and bindable individuals.

• ‘token’: a subsort of ‘distinct-datum’. Left unspecified, as it depends on
the variety of identifiers of a programming language. (Usually, it is a
subsort of ‘string’.)

• ‘bindable’: a subsort of ‘data’. Left open, as it depends on the variety
of scoped information processed by the programs of a programming
language.

K.4 Imperative Action Notation

Imperative action notation is primarily concerned with specifying the pro-
cessing of stable information (storage).
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K.4.1 Actions

• Primitive imperative actions:

– Give no data.

– Produce no bindings.

– Do not communicate.

• store D1 in D2: a primitive imperative action, where D1 is a dependent
storable and D2 is a dependent cell. Represents changing a piece of
stable information.

– Indivisible. Commits and completes when D2 yields a reserved cell
and D1 yields a data that is storable in that dell. Fails otherwise.

– Stores the storable yielded by D1 in the cell yielded by D2.

K.4.2 Dependent Data

• ‘the D1 stored in D2’: dependent data, where D1 is a sort of data and
D2 is a dependent cell. Yields the data of sort D1 stored in the cell
yielded by D2, according to the current storage, provided that the cell
is reserved.

K.4.3 Data

• ‘storage’: a subsort of ‘map’. Its individuals represents states of stable
information, associating cells with storable (or ‘uninitialized’) individu-
als.

• ‘cell’: a subsort of ‘distinct-datum’. Its individuals represent the lo-
cations of pieces of stable information. Left loosely-specified, as the
details are implementation dependent.

• ‘storable’: a subsort of ‘data’. Left unspecified, as it depends on the va-
riety of stable information processed by the programs of a programming
language.

• ‘uninitialized’: an individual datum. Represents the absence of a stored
datum in a reserved cell.
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K.5 Reflective Action Notation

Reflective action notation is concerned with specifying the reification of ac-
tions and information as abstractions, and with the reflection of abstractions
as actions.

K.5.1 Actions

• ‘enact D’; a reflective action, where D is a dependent abstraction. Rep-
resents performing an action in a context different from that of its
occurrence.

– Performs the action incorporated in the abstraction yielded by
evaluating D.

– The performance of the incorporated action is given no data. (But
see the dependent datum ‘application D1 to D2’.)

– The performance of the incorporated action receives no bindings.
(But see the dependent datum ‘closure D’.)

K.5.2 Dependent Data

• ‘application D1 to D2’: an abstraction, where D1 is an abstraction and
D2 is data. Incorporates the same action as D1, except that the in-
corporated action is given D2 as transients whenever the abstraction is
enacted. Represents supplying transients to an abstraction (precluding
the supply of further transients).

This operation extends to dependent data D1, D2 in the usual way: it
is evaluated by applying the above operation to the data yielded by
evaluating D1, D2.

• ‘closure D’ a dependent abstraction, where D is an abstraction. Yields
an abstraction which incorporates the same action as D except that
the incorporated action receives particular bindings whenever the ab-
straction is enacted. The bindings are those current for the evaluation
of ‘closure D’.
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This operation extends to dependent data D in the usual way: it is
evaluated by applying the above operation to the datum yielded by
evaluating D.

‘closure abstractios of A’ represents reification of an action as an ab-
straction with static bindings ‘enact the closure of a given abstraction’
represents reflection of an abstraction with dynamic bindings (unless
static bindings were already supplied to it). ‘enact a given abstraction’
represents reflection of an abstraction with no bindings (unless static
bindings were already supplied to it).

K.5.3 Data

• ‘abstraction’: the sort of datum that incorporates (i.e., reifies) an action.
The incorporated action is performed when the abstraction is enacted
(i.e., reflected).

• ‘abstraction of A’: an abstraction, where A is an action. Incorporates A.
Represents (a pointer to) the ‘code’ implementing A. Dependent data
occurring in A does not get evaluated when the abstraction is evaluated:
it is left for evaluation during the performance of the incorporated
action.

K.6 Hybrid Action Notation

Hybrid action notation is concerned with specifying the processing of a mix-
ture of scoped and stable information.

K.6.1 Actions

• ‘A1 thence A2’: a declarative and functional combination of actions A1,
A2. Like ‘A1 then A2’ for data and ‘A1 hence A2 for bindings.

– Basically sequencing. (See ‘A1 and then A2’.)

– Functionally composing. (See ‘A1 then A2’.)

– Declaratively composing. (See ‘A1 hence A2’)
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• ‘allocate D’: an imperative and functional action, where D is a sort of
cell. Represents implementation dependent choice and reservation of a
cell.

– Indivisible. Commits and completes when there is an unreserved
cell of sort D. Fails otherwise.

– Reserves some cell of sort D.

– Gives the reserved cell.
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Appendix L

Data Notation

L.1 Instant

L.1.1 Distinction

(1) s = ✷

(2) is :: s, s → truth-value (partial, commutative) .

L.1.2 Partial Order

(1) is , is less than , is greater than :: s, s → truth-value (partial) .

L.2 Truth-Values

L.2.1 Basics

(1) truth-value = truth ||| false (partial) .

L.2.2 Specifics

needs: Tuples/Basics . truth-value ≤ component .
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(1) if then else :: truth-value , x, y → x ||| y (linear) .

(2) not :: truth-value → truth-value (total) .

(3) both :: (truth-value, truth-value) → truth-value
(total, associative, commutative, idempotent, unit is true) .

(4) either :: (truth-value, truth-value) → truth-value
(total, associative, commutative, idempotent, unit is false) .

(5) all :: (truth-value∗ → truth-value
(total, associative, commutative, idempotent, unit is true) .

(6) any :: (truth-value∗ → truth-value
(total, associative, commutative, idempotent, unit is false) .

(7) is :: (truth-value, truth-value) → truth-value

L.3 Numbers

L.3.1 Naturals

Basics

(1) natural = 0 ||| positive-integer (disjoint) .

(2) sucessor :: natural → positive-integer (total) .

(3) 0 :: natural .

Specifics
needs: Tuples/Basics . natural ≤ component .

(1) 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 : natural .

(2) 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 :: natural → natural (total)

(3) sum :: (natural∗ → natural
(total, associative, commutative, idempotent, unit is 0) .
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(4) is , is less than:: (natural, natural) → truth-value
integer, integer → truth-value (total( .

L.3.2 Integers

Basics

(1) integer = 0 ||| nonzero-integer (disjoint) .

(2) nonzero-integer = positive-integer ||| negative-integer (disjoint) .

(3) successor predecessor :: integer → integer (total) .

Specifics

needs: Tuples/Basics . integer ≤ component .

(1) negation :: integer → integer (total) .

(2) sum :: integer∗ → integer (total, associative,
communative, unit is 0)

(3) difference :: (integer, integer) → integer (total) .
(4) is , is less than :: integer , integer → truth-value (total).

L.4 Characters

L.4.1 Generics

needs: Numbers/Naturals/Basics .

(1) character = ✷ .
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L.5 Strings

L.5.1 Basics

needs: Tuples/Basics, Lists/Basics . character ≤ nonlist-item .

(1) string [character] list .

(2) “” string .

(3) - ˆ - :: (string, string) → string (total, associative unit is “”) .

L.6 Trees

L.6.1 Generics

(1) nonlist-leaf = ✷ .

L.6.2 Basics

needs: Lists/Basics . tree ≤ nonlist-item .

(1) tree = nonlist-leaf ||| [tree] list (disjoint) .

L.6.3 Specifics

needs: Tuples/Basics .

(1) [[ ]] : tree .

(2) [[ ]] :: tree∗ → tree (total) .
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(3) [[ ]] :: tree∗ tree∗ → tree (total) .

L.6.4 Syntax

needs: Lists/Basics .

(1) character ≤ nonlist-leaf .

(2) syntax-tree = string ||| [syntax-tree] list .

L.7 Lists

L.7.1 Generics

(1) nonlist-item = ✷ .

L.7.2 Basics

needs: Tuples/Basics . item ≤ component .

(1) list = list of item∗ .

(2) item = nonlist-item ||| list (total) .
(3) list of item∗ → list(total) .

L.7.3 Specifics

needs: Tuples/Basics .
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(1) [ ] :: litem, list → list .

(2) items :: list → item∗ (total) .

(3) head :: list → item (partial) .

(4) tail :: list → list (partial) .

(5) empty-list :: list .

(6) concatenation :: list∗ → list (total, associative, unit is empty-list) .

L.8 Sets

L.8.1 Generics

(1) nonset-element = ✷ .

(2) is :: nonset-element, nonset-element → truth-value (total) .

L.8.2 Basics

needs: Tuples/Basics . element ≤ component .

(1) set = set of element∗ .

(2) element = nonset-element ||| set (disjoint) .

(3) set of = element∗ → set(total) .

L.8.3 Specifics

needs: Tuples/Basics , Lists .

(1) [ ] :: element, set → set .

(2) elements :: set → element∗ (strict, linear) .
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(3) empty-set :: set .

(4) union :: set∗ → set (total, associative, commutative,
unit is empty-set) .

(5) difference :: set, set → set (total) .

(6) intersection :: set+ → set (total, associative, commutative, idempotent) .

(7) restricted to omitting :: [element] list, set → [element] list (total) .

(8) is in :: element, set → truth-value (total) .

(9) is included in :: set, set → truth-value (total) .

(10) is :: set, set → truth-value (total) .

L.9 Maps

L.9.1 Generics

(1) nonmap-range = ✷ .

L.9.2 Basics

needs: Tuples/Basics . map ≤ component .

(1) map = map of (map of element to range)∗ .

(2) range = nonmap-range ||| map (disjoint) .

(3) map of to :: element, range → map (total) .

(4) empty-map :: map .
(5) map of :: map∗ → map (partial, associative, commutative,

unit is empty-map) .

(6) mapped-set map → set (total) .
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L.9.3 Specifics

needs: Tuples/Basics .

(1) [ to ] = element, range, map → map .

(2) at = map, element → range (partial) .

(3) overlay :: map∗ → map (total, associative,
idempotent, unit is empty-map) .

(4) restricted to , omitting :: map, set → map (total) .

L.10 Tuples

L.10.1 Generics

(1) component ✷ .

L.10.2 Basics

needs: Tuples/Basics . map ≤ component .

(1) tuple ≥ component .

(2) ( ) = tuple .

(3) ( , ) :: tuple, tuple → tuple (total, associative, unit is () ) .

(4) ∗, + :: tuple → tuple .

L.10.3 Specifics

(1) count :: tuple → natural (total) .

(2) component# :: positive-integer, tuple → component
(partial) .
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Appendix M

Informal Summary of Meta
Notation

Meta-notation is for specifying formal notation: what symbols are used, how
they may be put together, and their intended interpretation.

Our meta-notation here supports a unified treatment of sorts and indi-
viduals: an individual is treated as a special case of a sort. Thus operations
can be applied to sorts as well as individuals. A vacuous sort represents the
lack of an individual, in particular the ‘undefined’ result of a partial opera-
tion. Sorts may be related by inclusion; sort equality is just mutual inclusion.
But a sort is not determined just by the set of individuals that it includes:
it has an ‘intension’, stemming from the way it is expressed. For example,
the sort of those natural numbers that are in the range of the successor op-
eration is distinct from the sort of those that have a well-defined reciprocal,
even though their sets of individuals are the same.

The meta-notation provides Horn clauses and (initial) constraints—
explained below—for specifying the intended interpretation of symbols. Spec-
ifications may be divided into mutually-dependent and nested modules, pre-
sented incrementally.

M.1 Vocabulary

The vocabulary of the meta-notation consists of (constant and operation)
symbols, variables, titles, and special marks.
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M.1.1 Symbols

Symbols are of two forms: quoted or unquoted. Quoted symbols always stand
for constants. A doubly-quoted symbol may quote an arbitrary sequence of
graphic characters—except that it must be properly balanced with respect
to quotation marks. A singly quoted symbol may only quote a single char-
acter. (Single quotes are also used to delimit unquoted symbols when these
are exhibited in informal text; the quotes are then not part of the symbols
themselves.)

In unquoted symbols the character ‘ ’ indicates the positions of argu-
ments. Symbols without ‘ ’ always stand for constants.

Unquoted symbols are written here in this saris-serif font. They must not
contain quotation marks at all, and they must be balanced with respect to
brackets ( ), [ ], etc. A symbol may not consist entirely of ‘ ’s. An operation
symbol is classified as an infix when it both starts and ends with a ‘ ’, and
as a prefix or postfix when it only ends, respectively starts, with a ‘ ’. It is
galled an ‘outfix’ when ‘ ’ only occurs internally.

There is one built-in constant symbol, ‘nothing’, and there are two built-
in infix operation symbols, ‘ ||| ’, ‘ & ’.

M.1.2 Variables

Variables are sequences of letters, here written in this italic font, optionally
followed by primes ′ and/or a numerical subscript or suffix.

M.1.3 Titles

Titles are sequences of words, here Capitalized and written in This Bold
Font.

M.1.4 Marks

The marks used in the meta-notation consist of:

, . ; : :- :: () = ≤ ≥ → ⇒ ✷ / ∗ (continued) closed except open
includes: introduces: needs: privately associative commu-
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tative disjoint for idempotent individual linear partial strict total
unit is .

A pair of grouping parentheses ( ) may be replaced by a vertical rule to the
left of the grouped material. Horizontal rules separate formal specification
from informal comments. Reference numbers for parts of specifications have
no formal significance.

M.2 Sentences

A sentence is essentially a Horn clause involving formulae that assert equality,
sort inclusion, or individual inclusion between the values of terms. The vari-
ables occurring in the terms range over all values, not only over individuals.
The universal quantification is left implicit.

M.2.1 Terms

Terms consist essentially of constant symbols, variables, and applications of
operation symbols to subterms. We use ‘mixfix’ notation, writing the appli-
cation of a operation symbol S0 . . . Sn to terms T1, . . . , Tn as S0T1 . . . TnSn.
Infixes have weaker precedence than prefixes, which themselves have weaker
precedence than postfixes. Grouping parentheses ( ) may be inserted for
further disambiguation. Parentheses may also be omitted when alternative
ways of reinserting them lead to the same interpretation. E.g., the operation
‘ ||| ’ is associative, so we may write ‘x ||| y ||| z’ without disambiguating the
grouping.

The value of a term is determined by the interpretation of the variables
that occur in it. Such a value may be an individual (which is regarded as
a special kind of sort), a vacuous sort, or a proper sort that includes some
individuals.

The value of the constant ‘nothing’ is a vacuous sort, included in all
other sorts. Operations map sorts to sorts, preserving sort inclusion. ‘ ||| ’
is sort union and ‘ & ’ is sort intersection; they are the join and meet,
respectively, of the sort lattice, and enjoy the usual properties of set union
and intersection.
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M.2.2 Formulae

‘T1 = T2’ asserts that the values of the terms T1 and T2 are the same (indi-
viduals or sorts).

‘T1 ≤ T2’ asserts that the value of the term T1 is a subsort of that of
the term T2; so does ‘T2 ≥ T1’. Sort inclusion is the partial order of the sort
lattice.

‘T1 : T2’ asserts that the value of the term T1 is an individual included
in the (sort) value of the term T2; so does ‘T1 :- T2’. Thus ‘T : T ’ merely
asserts that the value of T is an individual.

The mark ‘✷’ (read as ‘filled in later’) in a term abbreviates the other
side of the enclosing equation. Thus ‘T2 = T1 ||| ✷’ specifies the same as
‘T2 = T1 ||| T2’ (which is equivalent to ‘T2 ≥ T1’).

The mark ‘disjoint ’ following an equation or inclusion ‘T = T1 ||| . . . ||| Tn’
abbreviates equations asserting vacuity of the pairwise intersections of the
Ti. The mark ‘individual ’ abbreviates equations asserting that each Ti is an
individual, as well as their disjointness.

‘F1 ; . . . ; Fn’ is the conjunction of the formulae F1 ; . . . ; Fn. Conjunc-
tions with a common term may be abbreviated, e.g., ‘x, y : z’ abbreviates
‘x : z; y : z’ and ‘x : y = z’ abbreviates ‘x : y; y = z’.

M.2.3 Clauses

A (generalized Horn) clause ‘F1; . . . ; Fn ⇒ C1; . . . ; Cn’ asserts that whenever
all the antecedent formulae Fi hold, so do all the consequent clauses (or
formulae) Cj. Note that clauses cannot be nested to the left of ⇒ , so
‘F1 ⇒ F2 ⇒ F3’ is unambiguously grouped as ‘F1 ⇒ (F2 ⇒ F3)’.

We restrict the interpretation of a variable V to individuals of some sort
T in a clause C by specifying ‘V : T ⇒ C’. Alternatively we may simply
replace some occurrence of V as an argument in C by ‘V : T ’. We restrict V
to subsorts of T by writing ‘V < T ’ instead of ‘V : T ’.

M.2.4 Functionalities

A functionality clause ‘S :: T1, . . . , Tn → T ’ specifies that the value of any
application of S is included in T whenever the values of the argument terms
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are included in the Ti. It does not by itself indicate whether the value might
be an individual, a proper sort, or a vacuous sort.

Such a functionality may be augmented by the following attributes:

strict : the value is nothing when any argument is nothing;

linear : the value on a union of two sorts is the union of the values on each
sort separately, and similarly for intersections;

total : the value is an individual when all arguments are individuals; more-
over, S is strict and linear.

partial : as for total, except that the value may also be a vacuous sort when
the arguments are individuals.

When S is binary, we may use the following attributes (following Obj3):
associative, commutative, idempotent, and unit is T ′. These attributes have
a similar meaning when S is unary and the argument sort is a tuple sort, such
as ‘T+’ or ‘(T1, T2)’. (See the appendix on data notation for the notation for
tuples, which is not regarded as a part of the meta-notation itself.)

In all cases, the attributes only apply when all arguments are included
in the sorts specified in the functionality. For instance, consider:

product ::
(number, number) → number (total, associative, commutative, unit is 1) ,
(matrix, matrix) → matrix (partial, associative) .

which also illustrates how several functionalities for the same symbol can be
specified together.

It is straightforward to translate ordinary many-sorted algebraic specifi-
cations into our meta-notation, using functionalities and attributes; similarly
for order-sorted specifications [18] written in Obj3 [20].

M.3 Specifications

A modular specification S is of the form ‘B M1 . . . Mn’, where B is a basic
specification, and the Mi are modules. Either B or the Mi (but not both)
may be absent. B is inherited by all the Mi.
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Each symbol stands for the same value or operation throughout a specification—
except for symbols introduced ‘privately’. All the symbols (but not the vari-
ables) used in a module have to be explicitly introduced: either in the module
itself, or in an outer basic specification, or in a referenced module.

M.3.1 Basic Specifications

A basic specification B may introduce symbols, assert sentences, and im-
pose (initial) constraints on subspecifications. The meta-notation for basic
specifications is as follows.

‘introduces: S1, . . . , Sn .’ introduces the indicated symbols, which
stand for constants and/or operations. Also ‘privately introduces: S1,
. . . , Sn .’ introduces the indicated symbols, but here the enclosing module
translates them to ‘new’ symbols, so that they cannot clash with symbols
specified in other modules.

‘S . ’ asserts the sentence S as an axiom, to hold for any assignment
of values to the variables that occur in it. Omitting S gives the empty
specification ‘.’.

‘B1 . . . Bn’ specifies all that the basic specifications B1, . . . , Bn specify,
i.e., it is their union. The order of the Bi is irrelevant, so symbols may be
used before they are introduced.

‘includes: R1, . . . , Rn .’ specifies the same as all the modules indi-
cated by the references Ri. ‘needs: R1, . . . , Rn .’ is similar to ‘introduces:
R1, . . . , Rn .’, except that it is not transitive: symbols introduced in the mod-
ules referenced by the Ri are not regarded as being automatically available
for use in modules that reference the enclosing module.

‘grammar: S’ augments the basic specification S with standard speci-
fications of strings and trees from data notation, and with the introduction
of each constant symbol that occurs as the left-hand-side of an equation in
S. Similarly when S is a series of modules.

‘closed .’ specifies the constraint that the enclosing module is to have
a ‘standard’ (i.e., initial) interpretation. This means that it must be pos-
sible, using the specified symbols, to express every individual that is in-
cluded in some expressible sort (‘no junk’), and moreover that terms have
equal/included/individual values only when that logically follows from the
specified axioms (‘no confusion’). ‘closed except R1, . . . , Rn .’ specifies a
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similar constraint, but leaves the (sub)modules referenced by the Ri open,
so that they may be specialized in extensions of the specification. ‘open .’
merely indicates the the enclosing module is not to be closed.

M.3.2 Modules

A module M is of the form ‘T S’, where T is a title (or a series of titles,
separated by ‘/’) that identifies the specification S.

Modules may be specified incrementally, in any order. To show that a
module is continuing an earlier specification with the same identification, the
mark ‘(continued)’ is appended to its title.

Modules may also be nested, in which case an inner module inherits the
basic specifications of all the enclosing modules, and the series of titles that
identifies the immediately enclosing module. Titles are not inherited when
T starts with a ‘/’. A part of a title starting with ‘/∗/’ is ignored, it merely
indicates the form of the titles of submodules.

Parameterization of modules is rather implicit: unconstrained submod-
ules, specified as ‘open .’, can always be specialized.

A series of titles ‘T1/ . . . /Tn refers to a module (together with all its
submodules). A common prefix of the titles of the enclosing module and of
the referenced module may be omitted. In particular, ‘sibling’ modules in
a nest can be referenced using single titles. ‘T/(T1, . . . , Tn)’ refers to the
collection of modules ‘T/T1, . . . , T/Tn’.

‘T (S ′
1 for S1, . . . , S ′

n for Sn)’ refers to the same module as the title(s) T ,
but with all the symbols Si translated to S ′

i. Each Si must be specified by the
module referenced by T . Identity translations ‘Si for Si’ may be abbreviated
to Si, as in ‘T (S1, . . . , Sn)’ which indicates that the module referenced by
T specifies at least all the symbols S1, . . . , Sn.
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Appendix N

Summary of Variable
Restrictions

In appendices A-F, we have consistently restricted the interpretation of some
variables to individuals of a particular sort. The following is a list of such
restrictions; the indicated sorts are exclusively ranged over by the shown
variables.

G : global-register
R, R′, R′′, RI ′′′ : register

T : Type
a, a′, an, a′

n, a′′
n, a′′′

n ae, a′
e, a′′

e , a′′′
e , r, r′, r′′ : general-register

b, b′, b′′ : bindings
c, c′, c′′ : commitment

ce : cell
ct : truth-value-cell
ci : integer-cell
cz : was-zero
cn : was-negative

d, d′ : symbol-table
e, e′, e′′, e′′′ : block

f , f ′ : frozen
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g : globals
h, h′, hn, h′

n, h′′
n, h′′′

n , he, h′
e, h′′

e, h′′′
e : data-type

i, i′, i′′ : integer
il, ol : [integer] list

io, io′, io′′ : input-output
j, j′, n, n′, n′′, nw : natural

k, k′ : token
l, l′, l′′, l′′′ : linenumber

ln : linenumber-complete
le : linenumber-escape
lf : linenumber-fail
lu : linenumber-unfold
lt : linenumber∗

m, m′ : storage-map
ma : state

mp, m′
p, m′′

p : spare-state
nt, nt′ : natural∗

p, p′, p′′, prg : program
pc : program-counter

q, q′, q′′ : memory
s, s′, s′′ : storage

se : space
t, t′, t′′ : data

u, un, ue, uf : cleanup
v, v′ : datum

w, w′, w′′ : windows
zn, z′n, z′′n, z′′′n , ze, z′e, z′′e , z′′′e : truth-value
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