
Circuit Obfuscation Using Braids
Gorjan Alagic1, Stacey Jeffery2, and Stephen Jordan3

1 Institute for Quantum Information and Matter
California Institute of Technology
Pasadena, CA, USA
galagic@gmail.com

2 Institute for Quantum Computing
University of Waterloo
Waterloo, ON, Canada
smjeffery@gmail.com

3 National Institute of Standards and Technology
Gaithersburg, MD, USA
stephen.jordan@nist.gov

Abstract
An obfuscator is an algorithm that translates circuits into functionally-equivalent similarly-sized
circuits that are hard to understand. Efficient obfuscators would have many applications in cryp-
tography. Until recently, theoretical progress has mainly been limited to no-go results. Recent
works have proposed the first efficient obfuscation algorithms for classical logic circuits, based
on a notion of indistinguishability against polynomial-time adversaries. In this work, we propose
a new notion of obfuscation, which we call partial-indistinguishability. This notion is based on
computationally universal groups with efficiently computable normal forms, and appears to be
incomparable with existing definitions. We describe universal gate sets for both classical and
quantum computation, in which our definition of obfuscation can be met by polynomial-time al-
gorithms. We also discuss some potential applications to testing quantum computers. We stress
that the cryptographic security of these obfuscators, especially when composed with translation
from other gate sets, remains an open question.

1998 ACM Subject Classification D.4.6 Security and Protection

Keywords and phrases obfuscation, cryptography, universality, quantum

Digital Object Identifier 10.4230/LIPIcs.TQC.2014.141

1 Introduction

1.1 Past work on circuit obfuscation
Informally, an obfuscator is an algorithm that accepts a circuit as input, and outputs a
hard-to-understand but functionally equivalent circuit. In this subsection, we briefly outline
the state of current research in classical circuit obfuscation. To our knowledge, quantum
circuit obfuscation has not been considered in any prior published work.

Methods used for obfuscating logic circuits in practice have so far been essentially ad
hoc [11, 41]. Until recently, theoretical progress has primarily been in the form of no-go
theorems for various strong notions of obfuscation [7, 21]. The ability to efficiently obfuscate
certain circuits would have important applications in cryptography. For instance, sufficiently
strong obfuscation of circuits of the form “encrypt with a hard-wired private key” could
turn a private-key encryption scheme into a public-key encryption scheme. As this example
illustrates, one undesirable outcome is when the input circuit can be recovered completely

T Q C
© Gorjan Alagic, Stacey Jeffery, and Stephen Jordan;
licensed under Creative Commons License CC-BY

9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC’14).
Editors: Steven T. Flammia and Aram W. Harrow; pp. 141–160

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TQC.2014.141
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

142 Circuit Obfuscation Using Braids

from the obfuscated circuit. In this case, we say that the obfuscator completely failed on
that circuit [7]. Unfortunately, every obfuscator will completely fail on some circuits (e.g.,
learnable circuits.) On the other hand, there are trivial obfuscators which will erase at least
some information from some circuits, e.g., by removing all instances of X−1X for some
invertible gate X.

In order to give a useful formal definition of obfuscation, one must decide on a reasonable
definition of “hard-to-understand.” The most stringent definition in the literature demands
black-box obfuscation, i.e., that the output circuit is computationally no more useful than
a black box that computes the same function. Barak et al. [8] gave an explicit family of
circuits that are not learnable and yet cannot be black-box obfuscated. They also showed
that there exist (non-learnable) private-key encryption schemes that cannot be turned into
a public-key cryptosystem by obfuscation. Their results do not preclude the possibility of
black-box obfuscation for specific families of circuits, or of applying obfuscation to produce
public-key systems from private ones in a non-generic fashion. It is an open problem whether
quantum circuits can be black-box obfuscated.

A weaker but still quite natural notion is called best-possible obfuscation; in this case,
we ask that the obfuscated circuit reveals no more information than any other circuit
that computes the same function. Goldwasser and Rothblum [21] showed that for efficient
obfuscators, best-possible obfuscation is equivalent to indistinguishability obfuscation, which
is defined as follows. For any circuit C, let |C| be the number of elementary gates, and let
fC be the Boolean function that C computes.

I Definition 1. A probabilistic algorithm O is an indistinguishability obfuscator for the
collection C of circuits if the following three conditions hold:
1. (functional equivalence) for every C ∈ C, fO(C) = fC ;
2. (polynomial slowdown) there is a polynomial p such that |O(C)| ≤ p(|C|) for every C ∈ C;
3. (indistinguishability obfuscation) For any C1, C2 ∈ C such that fC1 = fC2 and |C1| = |C2|,

the two distributions O(C1) and O(C2) are indistinguishable.

In the third part of the above definition, one must choose a notion of indistinguishability
for probability distributions. Goldwasser and Rothblum [21] consider three such notions:
perfect (exact equality), statistical (total variation distance bounded by a constant), and
computational (no probabilistic polynomial-time Turing Machine can distinguish samples
with better than negligible probability). They show that the existence of an efficient statistical
indistinguishability obfuscator would result in a collapse of the polynomial hierarchy to
the second level. This result also applies if the condition |C1| = |C2| in property (3) of
Definition 1 is relaxed to |C1| = k|C2| for any fixed constant k [21].

A recent breakthrough has shown that computational indistinguishability may be achiev-
able in polynomial time. Combining a new obfuscation scheme for NC1 circuits with fully
homomorphic encryption, Sahai et al. gave an efficient obfuscator which achieves the compu-
tational indistinguishability condition under plausible hardness conjectures [19]. Subsequent
work outlined a number of cryptographic applications of computational indistinguishabil-
ity [38].

1.2 Outline of present work

1.2.1 New notion of obfuscation
An exact deterministic indistinguishability obfuscator would yield a solution to the circuit
equivalence problem. For general Boolean circuits, this problem is co-NP hard. Therefore,

G. Alagic, S. Jeffery, and S. Jordan 143

exact deterministic indistinguishability obfuscation of general Boolean circuits cannot be
achieved in polynomial time under the assumption P 6= NP. We propose an alternative route
to weakening the exactness condition, by pursuing a notion of “partial-indistinguishability”.
In partial-indistinguishability obfuscation, we relax condition (3) so that it need only hold for
C1 and C2 that are related by some fixed, finite set of relations on the underlying gate set.1

I Definition 2. Let G be a set of gates and Γ a set of relations satisfied by the elements of
G. An algorithm O is a (G,Γ)-indistinguishability obfuscator for the collection C of circuits
over G if the following three conditions hold:
1. (functionality) for every C ∈ C, fC = fO(C);
2. (polynomial slowdown) there is a polynomial p such that |O(C)| ≤ p(|C|) for every C ∈ C;
3. ((G,Γ)-indistinguishability) for any C1, C2 ∈ C that differ by some sequence of applications

of the relations in Γ, O(C1) = O(C2).

The power of the obfuscation is now determined by the power of the relations Γ. If
Γ is a complete set of relations, generating all circuit equivalences over G, then a (G,Γ)-
indistinguishability obfuscator is a perfect indistinguishability obfuscator according to Defini-
tion 1. (Complete sets of relations for {Toffoli} and {AND,OR,NOT} are given in [27, 26].)
If Γ is the empty set then even the identity map fits the definition, and no obfuscation is
taking place. With different sets of relations, one can interpolate between these extremes.
The intermediate obfuscators form a partially ordered set, where a (G,Γ′)-indistinguishability
obfuscator is strictly stronger than a (G,Γ)-indistinguishability obfuscator if Γ′ is a strict
superset of Γ. We remark that partial-indistinguishability is no stronger than perfect
indistinguishability, and appears to be incomparable with statistical and computational
indistinguishability. This is part of our motivation in considering this new definition.

In the context of quantum computation, we make only a few minor changes to Definitions
1 and 2. First, the obfuscators will still be classical algorithms. On the other hand, the gates
will be unitary and the circuits to be obfuscated will be unitary quantum circuits. Finally,
the notion of functional equivalence now simply means that the operator-norm distance
between the unitary implemented by C and the unitary implemented by O(C) is bounded
by a small constant ε > 0.

1.2.2 Group normal forms
A finitely generated group can be specified by a presentation. This is a list of generators
σ1, . . . , σn and a list of relations obeyed by these generators. (A relation is simply an identity
such as σ1σ3 = σ3σ1.) All group elements are obtained as products of the generators and their
inverses. However, by applying the relations, we can get multiple words in the generators
and their inverses that encode the same group element. A normal form specifies, for each
group element, a unique decomposition as a product of generators and their inverses. For
certain groups, including the braid groups, polynomial time algorithms are known which,
given a product of generators and their inverses, can reduce it to a normal form. The word
problem is, given two words in the alphabet {σ1, . . . , σn, σ

−1
1 , . . . , σn}, to decide whether

they specify the same group element. If a normal form can be computed, then this solves
the word problem: just reduce both words to normal form and check whether the results are
identical. However, an efficient solution for the word problem does not in general imply an
efficiently computable normal form.

1 Our construction for satisfying this definition uses reversible gates. The definition of functional
equivalence becomes more technical in that context, as discussed in Section 3.1.

TQC’14

144 Circuit Obfuscation Using Braids

1.2.3 Efficient constructions from group representations
In this paper, we propose a general method of designing partial-indistinguishability obfuscators
based on groups with efficiently computable normal forms. If a set of gates G obeys the
relations Γ of the generators of a group with an efficiently computable normal form, then
the reduction to normal form is an efficient (G,Γ)-indistinguishablity obfuscator. The gates
may obey additional relations beyond Γ, which is why the obfuscator does not solve the
circuit-equivalence problem, which is believed to be intractable for both classical and quantum
circuits.

To demonstrate this method, we discuss an implementation using the braid groups Bn,
for both classical reversible circuits and unitary quantum circuits. The number of strands
n in the braid group depends linearly on the number of dits or qudits on which the circuit
acts. In Section 3, we describe a computationally universal reversible classical gate obeying
the braid group relations, which was constructed in [34, 37, 31] from the quantum double of
A5. In Section 4.1, we describe a computationally universal quantum gate obeying the braid
group relations, which was constructed in [18] from the Fibonacci anyons. Our obfuscation
scheme is similar in spirit to previously-proposed obfuscation schemes based on applying
local circuit identities [41], but the uniqueness of normal forms adds a qualitatively new
feature. One consequence of this feature is that we can satisfy Definition 2 and guarantee
the partial-indistinguishability property against computationally unbounded adversaries.
The running time of the obfuscator is the same as the running time of the the normal form
algorithms, which take time O(l2m logm) for m-strand braids of length l [14].

We remark that these gate sets that obey the braid group relations are not artificial
constructions; in fact, they are the most natural choice in many contexts, some of which we list
here. In the quantum case, these gates are native to certain proposed physical implementations
of quantum computers [31], where the topological braiding property provides inherent fault-
tolerance. The problem of approximating the Jones Polynomial invariant of links is complete
for polynomial-time quantum computation [2]; an analogous fact is true for a restricted case
of quantum computations motivated by NMR implementations [40]. Both of these facts are
naturally expressed in the gate set constructed from the Fibonacci representation. In the
classical case, the gate set derived from quantum doubles of finite groups was recently used
to show BPP-completeness for approximation of certain link invariants [32].

We remark that another potential group family for constructing partial-indistinguishability
obfuscators are the mapping class groups MCG(Σg) of unpunctured surfaces of genus g.
These groups also have quantumly universal representations [5] and an efficiently solvable
word problem [23]. It is not known if there are also classically universal permutation
representations, or if there are efficiently computable normal forms.

1.2.4 Other gate sets
In some applications the native gate set will be different than the ones used in our construction.
It is natural to ask if our obfuscators can be used in these settings as well. By universality
(quantum or classical), one has an efficient algorithm B which translates circuits from the
native gate set to the braiding gate set, as well as an efficient algorithm C for translation in
the opposite direction. We also let N denote the partial-indistinguishability obfuscator. One
might then attempt to obfuscate by applying the following:

I Algorithm 1.
1. input: a circuit C on n (qu)dits
2. output: The circuit C(N(B(C)))

G. Alagic, S. Jeffery, and S. Jordan 145

Figure 1 The generator σi represents the (clockwise) crossing of strands i and i+ 1 connecting
a bottom row of “pegs” to a top row. Multiplication of group elements corresponds to composition
of braids. As an example, we show the 3-strand braid σ−1

1 σ2 (left), and the same braid composed
with its inverse σ−1

2 σ1 (middle), which is equivalent to the identity element of B3 (right).

We stress that, unlike the map N, the composed map N ◦ B does not necessarily satisfy
Definition 2. As we discuss in Section 5.1, careless choice of the map B can partially or
completely break the security of the obfuscator. Finding translation algorithms securely
composable with partial-indistinguishability obfuscators is an area of current investigation.

2 Relevant Properties of the Braid Group

The braid group Bn is the infinite discrete group with generators σ1, . . . , σn−1 and relations

σiσj = σjσi ∀ |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1 ∀ i. (1)

The group Bn is thus the set of all words in the alphabet {σ1, . . . , σn−1, σ
−1
1 , . . . , σ−1

n−1}, up
to equivalence determined by the above relations. In 1925 Artin proved that the abstract
group defined above precisely captures the topological equivalence of braided strings [6], as
illustrated in Fig. 1. A charming exposition of this subject can be found in [30].

In the word problem on Bn, we are given words w and z, and our goal is to determine if
they are equal as elements of Bn. One solution is to put both w and z into a normal form,
and then check if they are equal as words. For our purposes, it is enough to describe the
normal form and specify the complexity of the algorithm for computing it. The details of
the algorithm, along with a thorough and accessible presentation of the relevant facts about
braids, can be found in [14].

We first observe that the word problem is easily shown to be decidable if we restrict our
attention to an important subset of Bn. Note that the presentation (1) can also be viewed as
a presentation of a monoid, which we denote by B+

n . The elements of B+
n are called positive

braids, and are words in the generators σi only (no inverses), up to equivalence determined
by the relations in (1). Since all the relations of Bn preserve word length, and there are
only finitely many words of any given length, we can decide the word problem (albeit very
inefficiently) simply by trying all possible combinations of the relations.

Building upon this, one can give an (inefficient) algorithm for the word problem on Bn

itself [22]. First, given two elements a, b of B+
n , we write a 4 b if there exists z ∈ B+

n such
that b = az; in this case we say that a is a left divisor of b. Similarly, we write a < b if there
exists y ∈ B+

n such that b = ya; in this case we say that a is a right divisor2 of b. The center
of Bn is the cyclic group generated by ∆2

n, where

∆n := ∆n−1σn−1σn−2 · · ·σ1 ∈ B+
n

2 The terminology is not accidental; it turns out that we can also define l.c.m.s and g.c.d.s in B+
n , and that

Bn is the group of fractions of B+
n . These facts are some of the achievements of Garside theory [20].

TQC’14

146 Circuit Obfuscation Using Braids

(see p.30 of [22] for a simple proof). Geometrically, ∆n implements a twist by π in the z-plane
as the strands move from z = 0 to z = 1. One can show that σi 4 ∆n for all i, i.e. there
exists xi ∈ B+

n such that σ−1
i = xi∆−1

n . Given a word w in the σi and their inverses, we first
replace the leftmost instance of an inverse generator (say it is σ−1

i) with xi∆−1
n . We then

insert ∆−1
n ∆n in front of xi, and observe that conjugating a positive braid x by ∆n results

in another positive braid (specifically, the rotation of x by π in the z-plane). In this way,
we can push ∆−1

n all the way to the left. We repeat this process for each inverse generator
appearing in the word, resulting in a word of the form ∆p

nb where p ∈ Z and b ∈ B+
n . Since

we can solve the word problem in B+
n , we can factor out the maximal power of ∆n appearing

as a left divisor of b. We thus have that, as elements of the braid group, w = ∆p′

n b
′ with ∆n

not a left divisor of b′ and p′ unique. This solves the word problem in Bn.
We can make the above algorithm efficient by finding an efficiently computable normal

form for a positive braid word b that does not have ∆n as a left divisor. Recall that the
symmetric group Sn has a remarkably similar presentation to Bn. Indeed, starting with
(1), letting σi = (i i + 1) and adding the relations σ2

i = 1 for all i results in the standard
presentation of Sn. In other words, there is a surjective homomorphism π : Bn → Sn with
σi 7→ (i i+1). In terms of the geometric interpretation, a braid is mapped to the permutation
on [n] defined by the connections between the top and bottom “pegs,” as in Figure 1. For
each σ ∈ Sn, there is a unique preimage of σ that can be drawn so that any given pair of
strands cross only in the positive direction, and at most once. We call such braids simple
braids, and they form a subset of B+

n of size n!.

I Definition 3 (p. 4 of [14]).
1. A sequence of simple braids (s1, . . . , sp) is said to be normal if, for each j, every σi that

is a left divisor of sj+1 is a right divisor of sj .
2. A sequence of permutations (f1, . . . , fp) is said to be normal if, for each j, f−1

j+1(i) >
f−1

j+1(i+ 1) implies fj(i) > fj(i+ 1).

A sequence of simple braids (s1, . . . , sp) is normal if and only if the sequence of permutations
(π(s1), . . . , π(sp)) is normal. Given a permutation f ∈ Sn, let f̂ denote the simple braid of
Bn satisfying π(f̂) = f .

I Theorem 4 (p. 4 of [14] and Ch. 9 of [15]).
1. Every braid z in Bn admits a unique decomposition of the form ∆m

n s1 . . . sp with m ∈ Z
and (s1, . . . , sp) a normal sequence of simple braids satisfying s1 6= ∆n and sp 6= 1.

2. Every braid z in Bn admits a unique decomposition of the form ∆m
n f̂1 . . . f̂p with m ∈ Z

and (f1, . . . , fp) a normal sequence of permutations satisfying f1 6= π(∆n) and fp 6= 1.

The most efficient algorithms for computing the normal form of a word w in the generators
of Bn have complexity O(|w|2n logn) [14].

3 Obfuscation of Classical Reversible Circuits

3.1 Reversible Circuits
In the next section, we will describe a gate R which is universal for classical computation
and satisfies Definition 2 when Γ is the set of relations of the braid group. Because group
elements are invertible, R must be a reversible gate, that is, it must bijectively map its
possible inputs to its possible outputs. We will thus work in the setting of reversible classical
circuits. These circuits are composed entirely of reversible gates. For more background on
reversible computation see [9, 17, 36].

G. Alagic, S. Jeffery, and S. Jordan 147

Because reversible circuits cannot erase any information, they operate using ancillary dits
(“ancillas”) to store unerasable data left over from intermediate steps in the computation. A
reversible circuit evaluating a function f : {0, . . . , d− 1}n → {0, . . . , d− 1}m thus operates on
r ≥ max(n,m) dits, where r−n of the input dits are work dits to be initialized to some fixed
value independent of the problem instance, and r −m of the output dits contain unerasable
leftover data, to be ignored. Efficient procedures are known for compiling arbitrary logic
circuits into reversible form, e.g., by using the Toffoli (or CCNOT) gate [9, 17].

In adapting Definitions 1 and 2 to reversible circuits, one is faced with two natural choices
for the notion of functional equivalence. One may either demand that the original and
obfuscated circuits implement the same function f : {0, 1}n → {0, 1}m, ignoring the ancilla
dits (weak equivalence), or demand that they implement the same transformation on the
entire set of r dits, including the ancillas (strong equivalence). Our constructions will satisfy
the latter. Strong equivalence implies weak equivalence, so our construction proves that
both possible definitions of partial-indistinguishability are polynomial-time achievable when
Γ is the set of relations of the braid group. We remark that, as with ordinary irreversible
circuits, determining if two arbitrary reversible circuits are equivalent (weakly or strongly) is
coNP-complete [29].

3.2 Classical computation with braids

We now briefly describe a classical reversible gate R which satisfies the braid relations. The
complete details of the construction and the proof of universality of R are given in Appendix
A. Taken together with Theorem 4, this yields an obfuscator satisfying Definition 2.

Let G be a finite group and set d = |G|. Consider the reversible gate R that acts on pairs
of dits encoding group elements by

R(a, b) = (b, b−1ab). (2)

Let Ri denote R acting on the i and (i+ 1)th wires of a circuit. By direct calculation, one
can check that the set {R1, . . . , Rn−1} satisfies the braid relations, that is,

RiRj = RjRi ∀ |i− j| ≥ 2
RiRi+1Ri = Ri+1RiRi+1 ∀ i. (3)

In 1997, Kitaev discovered that the gate set {R,R−1} is universal for classical reversible
computation when G is the symmetric group S5 [31]. Ogburn and Preskill subsequently
showed that the alternating group A5, which is half as large as S5, is already sufficient [37].
The universality construction for A5 was subsequently presented in greater detail and
generalized to all non-solvable groups by Mochon [34]. To make our presentation more
accessible and self-contained, we give in Appendix A an explicit description of Mochon’s
universality construction in the the case G = A5. The construction proves computational
universality by showing how to efficiently compile Toffoli circuits into R-circuits.

Given any R-circuit, we can apply the algorithm of Theorem 4 by interpreting each
Ri as σi and each R−1

i as σ−1
i . This leads to partial-indistinguishability obfuscation of

R-circuits. A discussion of whether this can also yield meaningful obfuscation for classical
circuits constructed from other gate sets is given in Section 5.

TQC’14

148 Circuit Obfuscation Using Braids

4 Quantum Circuits

4.1 Quantum computation with braids
In Section 3.2 and Appendix A, we discuss classical universality of circuits encoded as braids.
It turns out that an analogous theory can be developed for quantum circuits, and is well-
understood. The family of so-called Fibonacci representations of the braid groups have dense
image in the unitary group, and there are efficient classical algorithms for translating any
quantum circuit into a braid (and vice-versa) in a way that preserves unitary functionality [18].
A brief synopsis of these facts is given below. We remark that there are in fact many unitary
representations of the braid groups that satisfy these properties, and which are physically
motivated by the so-called fractional quantum Hall effect. In this setting, the image of these
representations consists of unitary operators which describe the braiding of excitations in a
2-dimensional medium [31].

Approachable descriptions of the Fibonacci representation are given in [40, 42]. In
[40], what we call the “Fibonacci representation” here, is called the “??” irreducible sub-
representation. This is a family of representations ρ(n)

Fib : Bn → U(Fn−4), where Fk is
the k-th Fibonacci number. For our application, the essential properties of the Fibonacci
representation are locality and local density. These two properties mean that, under a certain
qubit encoding, braid generators correspond to local unitaries, and local unitaries correspond
to short braid words. Standard arguments from quantum computation tell us that we
can achieve the latter to precision ε with O(log2.71(1/ε)) braid generators by means of the
Solovay-Kitaev algorithm [13].

A natural basis for the space of ρ(n)
Fib can be identified with strings of length n from the

alphabet {?, p}, which begin with ?, end with p, and do not contain “??” as a substring3.
Following [2]4, for n a multiple of four, we identify a particular subspace Vn of ρ(n)

Fib by
discarding some basis elements, as follows. Partition a string s into substrings of length four.
If each of these substrings is equal to either ?p ? p (this will encode a 0) or ?ppp (this will
encode a 1), then the basis element corresponding to s is in Vn; otherwise, it is not. Note
that dimVn = 2n/4. The following theorem follows from [2, 13].

I Theorem 5. There is a classical algorithm which, given an (n/4)-qubit quantum circuit C
and ε > 0, outputs a braid b ∈ Bn of length O(|C| log2.71(1/ε)) satisfying∥∥∥∥C − ρ

(n)
Fib(b)

∣∣∣
Vn

∥∥∥∥ ≤ ε ;

this algorithm has complexity O(|b|).

For the opposite direction, we can identify a subspace Wn ⊂ (C2)⊗n by discarding all
bitstrings except those that start with 0, end with 1 and do not have “00” as a substring.
Then dimWn = dim ρ

(n)
Fib and we have the following.

I Theorem 6. There is a classical algorithm which, given b ∈ Bn and ε > 0, outputs a
quantum circuit C on n qubits of length O(|b| log2.71(1/ε)) such that∥∥∥C|Wn

− ρ(n)
Fib(b)

∥∥∥ ≤ ε ;

this algorithm has complexity O(|C|).

3 In [40] the ?? subrepresentation of Bn acts on strings of length n+ 1 that begin and end with ?. One
can leave the initial and/or final ? implicit as these are left unchanged by all braiding operations. We
omit the final ? leaving us strings of length n that begin with ? and end with p.

4 Reference [2] describes the basis vectors in terms of “paths”. The correspondence between the path
notation and the p? notation is given in appendix C of [40].

G. Alagic, S. Jeffery, and S. Jordan 149

The two algorithms in the above theorems are described explicitly in [2].

4.2 Obfuscating quantum computations
While the state of knowledge about classical obfuscation is limited, essentially nothing is
known about the quantum case. Here we discuss how to use the facts from the previous
section to construct a partial-indistinguishability obfuscator for quantum circuits.

In light of Theorem 5, {ρFib(σ1), . . . , ρFib(σn−1)} may be regarded as a universal set of
elementary quantum gates. By the homomorphism property of ρFib, this set satisfies the
braid relations. These gates differ from conventional quantum gates in that they do not
possess locality defined in terms of a strict tensor product structure. Nevertheless, as shown
above, the power of unitary circuits composed from these gates is equivalent to standard
quantum computation. By interpreting each ρFib(σj) as a braid-group generator σj , we can
apply the algorithm from Theorem 4 directly to circuits from this gate set, resulting in a
partial-indistinguishability obfuscator satisfying Definition 2.

With the algorithms from the previous section in hand, we could also attempt to apply
the obfuscation algorithm, Algorithm 1, directly to quantum circuits. For an input circuit C
on n qubits, the running times of both of this algorithm is O(|C|2n · polylog(n, 1/ε)). The
length of the output cannot be longer than the running time. We are not aware of a better
upper bound for the length of the output. The security of this algorithms is questionable,
and some attacks and possible countermeasures are discussed in Section 5.

Note that reduction of arbitrary quantum circuits to a normal form using a complete set of
gate relations should not be possible in polynomial time; this would yield a polynomial-time
algorithm for deciding whether a quantum circuit is equivalent to the identity, which is a
coQMA-complete problem [28].

4.3 Testing claimed quantum computers with a quantum obfuscator
It is natural to consider quantum analogues of the applications of obfuscation from classical
computer science. We now consider a potential application of quantum circuit obfuscation
that does not fit this mold: testing claimed quantum computers. A similar proposal using a
restricted class of quantum circuits has been previously made in [39].

Suppose Bob claims to have access to a universal quantum computer with some fixed
finite number of qubits. Alice has access to a classical computer only, as well as a classical
communication channel with Bob. Can Alice determine if Bob is telling the truth? Barring
tremendous advances in complexity theory, a provably correct test is unlikely;5 can we still
design a test in which we have a high degree of confidence? Given the extensive work on
classical algorithms for factoring, a reasonable idea is to simply ask Bob to factor a sufficiently
large RSA number. However, Shor’s algorithm only begins to outperform the best classical
algorithms when thousands of logical qubits can be employed. A much smaller universal
quantum computer (e.g., a few dozen qubits) is likely to be a far simpler engineering challenge
and could still be quite useful, e.g., for simulating certain quantum systems. A test that
works in this case would thus be very valuable. We now outline a new proposal for such a test.

5 Notice that even a proof that BQP 6= BPP would be insufficient; one would have to find specific
problems and instance sizes where some quantum strategy provably beats every classical one. We
are thus left with a situation analogous to the practical security guarantees of modern cryptographic
systems, which tell us how many bit operations it would take to crack a given instance using the fastest
known algorithms.

TQC’14

150 Circuit Obfuscation Using Braids

Simply put, we propose asking questions that are classically easy to answer, but posing them
in an obfuscated manner. In this test, Alice would repeatedly generate quantum circuits and
ask Bob to run them. At least some of the circuits would in fact be quantumly-obfuscated
classical reversible circuits, allowing Alice to easily check the answers. Previous work has
yielded tests of quantum computers in the case that the verifier can perform some limited
quantum operations [10, 3].

We have considerable freedom when designing an obfuscation-based test of quantum
computers. How to choose these parameters in a way that makes the test difficult to fool
with a classical computer is an open question. For purposes of illustration, we give one
example. Let O be the obfuscation algorithm for quantum circuits described above.
I Algorithm 2.
1. Select a random bitstring s of length k.
2. Let C be the (k + 1)-bit circuit that, on all-zero input, initializes wires 2 through k + 1 to

s and then computes the parity of s into the first wire.
3. Compute O(C), and let n be the number of qubits needed to run O(C).
4. Ask Bob to run D on the all zeros string and return the first bit of output.

Clearly, k must be chosen so that n is smaller than the number of logical qubits Bob claims to
control. To fool Alice, a purely classical Bob must determine the parity of s. The dictionary
attack (i.e. Bob repeatedly guesses at k, obfuscates the corresponding circuit, and compares
the result to the circuit given by Alice) is of no use provided k is reasonably large, e.g.,
80 bits, which can be encoded using a braid of 115 strands using the Zeckendorf encoding
described in [40].

We now show that there can be no efficient general-purpose algorithm for breaking our
test by detecting whether a given quantum circuit is in fact (almost) classical, and if so,
simulating it.

I Definition 7. Let c be a bit string specifying a quantum circuit via a standard universal set
Q of quantum gates, and let Uc be the corresponding unitary operator. Fix some constants
r, d, a ∈ N, and fix a set R of reversible gates. The problem CLASS(r, d, a,Q,R) is to find
a reversible circuit of at most r|c|d gates from R such that the corresponding permutation
matrix P satisfies ‖Uc − P‖ ≤ 2−a|c|.

Note that CLASS(r, d, a,Q,R) is not a decision problem. Thus, to formulate the question of
whether this problem can be efficiently solved, we must ask not whether CLASS(r, d, a,Q,R)
is contained in P but whether it is contained in FP. We now provide some formal evidence
that this is not the case. Note that the following theorems continue to hold if we change the
classicality condition in Definition 7 to ‖Uc − P‖ ≤ |c|−a.

I Theorem 8. For any fixed r, d, a ∈ N, any universal reversible gate set R, and any universal
quantum gate set Q, if CLASS(r, d, a,Q,R) ∈ FP then QCMA ⊆ PNP.

Note that, QCMA ⊆ PNP would be very surprising because, among other things, it would
imply BQP ⊆ PH, and there is evidence that this is false [1, 16].

Proof. The standard QCMA-complete language L is as follows. Let C be the set of all
quantum circuits (expressed as a concatenation of bitstrings that index elements of the gate
set Q). C decomposes as the disjoint union of L and L̄ where L consists of the quantum
circuits that accept at least one classical (i.e. computational basis state) input, and L̄ consists
of the circuits that reject all inputs. Given a quantum circuit V1 ∈ C, (the “verifier”) we can
amplify it using standard techniques [33, 35] to accept YES instances with probability at

G. Alagic, S. Jeffery, and S. Jordan 151

least 1−O(2−n) and accept NO instances with probability at most O(2−n). Let V2 be such
an amplified verifier. Further, let

V3 =
V2

•
V −1

2

where the second-to-top qubit is the acceptance qubit of V2. If Vi ∈ L̄ then ‖V3 − 1‖ =
O(2−n). By assumption, there exists a polynomial time classical algorithm for solving
CLASS(r, d, a,Q,R). When presented with V3, this algorithm will produce a polynomial-size
reversible circuit V4 strongly equivalent to the identity. By querying an oracle for the problem
of strong equivalence of reversible circuits, one can decide whether V4 is equivalent to the
circuit of no gates, and hence to the identity operation. If V1 ∈ L̄, this oracle will accept.
If V1 ∈ L then the algorithm for problem 1 will answer NO or produce a circuit that this
oracle rejects. As shown in [29], the problem of deciding strong equivalence of reversible
circuits is contained in coNP. Thus, we can decide QCMA in PcoNP, which is equal to the
more familiar complexity class PNP. J

5 Some Attacks

5.1 Compiler attacks
The security or insecurity of braid-based partial-indistinguishability obfuscation remains an
area of current investigation. From a purely information-theoretic point of view, the power of
this obfuscation comes from the many-to-one nature of the map N that takes arbitrary braid
words to their normal form. If the initial braid words are highly structured because they are
obtained by compilation from a different gate set, then this can undermine or destroy the
many-to-one feature of N.

In Section 3.2, we describe a reversible gate R on pairs of 60-state dits, corresponding to
elements of A5, that obeys the relations of the braid group and can perform universal classical
computation. The gate itself and the proof that it is universal come from the quantum
computation literature [31, 37, 34]. Appendix A recounts the universality proof of [34], which
can be viewed as a compiler BR that maps circuits constructed from the well-known universal
reversible Toffoli gate into circuits constructed from the R gate. As a cautionary example,
we now show that naively obfuscating Toffoli circuits using the composed map N ◦ BR is
completely insecure.

The construction in Appendix A gives a general mapping from a Toffoli gate to a
corresponding braid. We will refer to braids obtained in this way as Toffoli braids. Recall
that the normal form of a braid in Bn has the form ∆m

n s1 . . . sp for a normal sequence of
simple braids (s1, . . . , sp). A Toffoli braid obtained from a Toffoli with controls c1 and c2
and target t has normal form

∆0
ns1(c1, c2, t)s2s3s4s5s6s7s8s9(c1, c2, t)s10s11s12s13(c1, c2, t)s14(t). (4)

The factors s2, . . . , s8, s10, s11 and s12 only depend on n, and not on the wires c1, c2 or t.
Note that this is a positive braid — consisting only of σ1, . . . , σn−1 and none of their inverses.
Any product of such braids will thus also be a positive braid, so attempting to obfuscate a
circuit in Toffoli gates using this construction will yield only positive braids.

Because Toffoli is a 3-bit gate, there are only
(

n
3
)
ways to apply a Toffoli to n bits. Thus,

one may, in polynomial time, test each of these
(

n
3
)
possibilities as a guess for the last gate

TQC’14

152 Circuit Obfuscation Using Braids

of the obfuscated circuit. One performs the test by compiling the guessed Toffoli gate into a
braid, appending the inverse of this braid to the normal form braid produced as the output
the obfuscator, and then reducing the resulting braid to normal form. If the guess is correct,
then the resulting braid is still a braid corresponding to a circuit — the original obfuscated
circuit with its last Toffoli gate removed — and thus this will result in a positive braid. If
the guess is incorrect, then appending the inverse of a positive braid, which consists entirely
of σ−1

1 , . . . , σ−1
n−1, might result in a braid that is no longer positive — that is, has a negative

power of ∆n, and this seems to be the case with any wrong guess, based on some limited
tests.

Furthermore, the presence of a negative power of ∆n is efficiently recognizable, so it is
immediately clear whether or not the guess was correct.

This attack is related to so-called length-based attacks. These have been introduced in
the cryptanalysis of braid based key-exchanged protocols [25]. In the present context, the
natural length-based attack is to guess the final gate, append the inverse of the corresponding
braid to the normal-form braid produced by the obfuscator, and the reduce the product
braid to normal form. If the result is a shorter word in the braid-group generators than the
original normal form, then this can be taken as heuristic evidence that the guess was correct.
Intuitively, one expects that the longer the braid words are that implement individual gates
from the original gate set, then the better such attacks should work.

One can easily propose modifications to the naive obfuscator N ◦BR that thwart guessing-
based attacks such as the two attacks described above. In particular, one finds that the gate
R described in Appendix A has order 60. Hence, one can start with the positive Toffoli
braid in equation (4) and then each generator σi can independently, with probability 1

2 ,
be replaced with σ−59

i , without altering the functionality of the circuit. The number of
generators in a Toffoli braid depends on n, and which wires the Toffoli acts on, but there are
always at least 124. Thus, each gate will be compiled into one of 2124 braid-words uniformly
at random. Thus, guessing-based attacks on the composition of this compiler with N may
become impractical. Whether such a scheme is vulnerable to other attacks remains an open
question for future research.

5.2 Dictionary attacks
The partial-indistinguishability obfuscator described in the preceding sections deterministi-
cally maps input circuits to obfuscated circuits. This creates a potential weakness in the
obfuscation. Suppose Alice wishes to run a computation C on Bob’s server but does not
wish Bob to know what computation she is running. Thus, she sends the obfuscated circuit
O(C) to Bob, who executes it, and returns the result. To improve security, Alice may instead
use a circuit C ′ in which her desired input is hard-coded, and which applies a one-time pad
at the end of the computation. If the obfuscation is secure, then Bob is unlikely to learn
anything about C, the input, or the output. However, if Bob knows that the circuits Alice is
likely to want to execute are drawn from some small set S, then Bob can simply compute
{O(s)|s ∈ S} and identify Alice’s computation by finding it in this list. Such attacks are
sometimes called “dictionary” attacks after the practice of recovering passwords by feeding all
words from a dictionary into the hash function and comparing against the hashed password.

Dictionary attacks may or may not be a serious threat to our obfuscation scheme,
depending on the the size of the set of likely circuits to be obfuscated. In cryptographic
applications where dictionary attacks are a concern, the standard way to protect against
them is to append random bits prior to encryption. (In the context of hashing passwords,
this practice is called “salting”.) Such a strategy can be applied to our obfuscator, but some

G. Alagic, S. Jeffery, and S. Jordan 153

care must be taken in doing so. The most obvious strategy is to append a random circuit on
the output ancillas prior to obfuscation. However, attackers can defeat this countermeasure
by using the polynomial-time algorithms for computing left-greatest-common-divisors in the
braid group [15]. However, prior to obfuscation, one may introduce extra dits, and apply
random circuits before, after, and simultaneously with the computation, in a way so as not
to disrupt it. The problem of optimizing the details of this procedure so as to maximize
security and efficiency is left to future work.

6 Future Work

6.1 Classical and quantum universality
It is of interest to consider other computationally universal representations of the braid
group, which might provide more efficient translations from circuits to braids. One avenue
for obtaining such representations is by finding other solutions to the Yang-Baxter equation,
besides the operator R from Appendix A. Our investigations so far prove that no permutation
matrix solution of dimension up to 16×16 is a universal gate and suggest that no permutation
matrix solution of dimension 25× 25 is a universal gate. In the quantum case, it has been
shown that no 4× 4 unitary solution is universal [4].

More generally, one may look for other finitely-generated groups with computationally
universal representations and efficiently computable normal forms. One potential candidate
family are the mapping class groups MCG(Σg) of unpunctured surfaces of genus g. These
groups also have quantumly universal representations [5] and an efficiently solvable word
problem [23]. It is not known if there are also classically universal permutation representations,
or if there are efficiently computable normal forms.

6.2 Expanding the set of indistinguishability relations
By [29], achieving efficient indistinguishability obfuscation for the complete set of relations
of a universal gate set is unlikely. However, it is possible that partial-indistinguishability
obfuscation on R gates could be achieved with a larger set of relations than the braid relations.
For example, the universal reversible gate described in Appendix A has order 60. If we
add the relations σ60

i = 1 for i = 1, 2, . . . , n − 1 to Bn, we obtain a “truncated” (but still
infinite for large n [12]) factor of the braid group. If a normal form can still be computed in
polynomial time for this group then one could construct an efficient obfuscator using the
relations of this truncated group, which would be strictly stronger than our braid group
obfuscator. This approach also provides motivation for finding a complete set of relations for
the gate R.

Acknowledgements. We thank Anne Broadbent, Rainer Steinwandt, Scott Aaronson, Bill
Fefferman, Leonard Schulman, Robert König, and Yi-Kai Liu for helpful discussions. We
also thank Mariano Suárez-Alvarez and Gjergji Zaimi for leading us to reference [12] via
math.stackexchange and mathoverflow. Portions of this paper are a contribution of NIST,
an agency of the US government, and are not subject to US copyright.

TQC’14

154 Circuit Obfuscation Using Braids

References
1 Scott Aaronson. BQP and the polynomial hierarchy. In STOC’10: Proceedings of the 42nd

ACM Symposium on Theory of Computing, pages 141–150, 2010. arXiv:0910.4698.
2 Dorit Aharonov and Itai Arad. The BQP-hardness of approximating the Jones polynomial.

New Journal of Physics, 13(3):035019, 2011.
3 Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for quantum computa-

tion. In Proceedings of Innovations in Computer Science (ICS 2010), pages 453–469, 2010.
arXiv:0810.5375.

4 G. Alagic, S. Jordan, and A. Bapat. Classical simulation of Yang-Baxter gates. To appear
in: Proceedings of TQC2014.

5 Gorjan Alagic, Stephen P. Jordan, Robert Koenig, and Ben W. Reichardt. Approximating
Turaev-Viro 3-manifold invariants is universal for quantum computation. Physical Review
A, 82:040302(R), 2010. arXiv:1003.0923.

6 Emil Artin. Theorie der Zöpfe. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 4:42–72, 1925.

7 B. Barak. Can we obfuscate programs? http://www.cs.princeton.edu/~boaz/Papers/
obf_informal.html.

8 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances in
Cryptology – CRYPTO 2001, number 2139 in Lecture Notes in Computer Science, pages
1–18. Springer-Verlag, 2001.

9 C.H. Bennett. Logical reversibility of computation. IBM Journal of Research and Devel-
opment, 17(6):525–532, 1973.

10 Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum compu-
tation. In Proceedings of the 50th Annual IEEE Symposium on Fountations of Computer
Science (FOCS 2008), pages 517–526, 2009. arXiv:0807.4154.

11 Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and ob-
fuscation – tools for software protection. IEEE Transactions on Software Engineering,
28(8):735–746, 2002.

12 H. S.M. Coxeter. Factor groups of the braid group. In Proceedings
of the 4th Canadian Mathematical Congress, pages 95–122, 1959. See
http://mathoverflow.net/questions/48849/.

13 Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algorithm. Quantum
Information and Computation, 6(1):81–95, 2006. arXiv:quant-ph/0505030.

14 Patrick Dehornoy. Efficient solutions to the braid isotopy problem. Discrete Applied Math-
ematics, 156:3094–3112, 2008. arxiv:math/0703666.

15 D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, and W. Thurston. Word processing
in groups. Jones and Bartlett Publ., 1992.

16 Bill Fefferman and Chris Umans. Pseudorandom generators and the BQP vs. PH problem,
2010. arXiv:1007.0305.

17 E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical Physics,
21(3/4):219–253, 1982.

18 Michael H. Freedman, Michael Larsen, and Zhenghan Wang. A modular functor which is
universal for quantum computation. Communications in Mathematical Physics, 227:605–
622, 2002. arXiv:quant-ph/0001108.

19 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 40–49, 2013.

http://www.cs.princeton.edu/~boaz/Papers/obf_informal.html
http://www.cs.princeton.edu/~boaz/Papers/obf_informal.html

G. Alagic, S. Jeffery, and S. Jordan 155

20 F.A. Garside. The braid group and other groups. Quart. J. Math. Oxford Ser., 2, 20:235–
254, 1969.

21 Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Theory of
Cryptography – TCC 2007, pages 194–213. Springer, 2007.

22 Juan González-Meneses. Basic results on braid groups, 2010. arxiv:1010.0321 [math].
23 Hessam Hamidi-Tehrani. On complexity of the word problem in braid groups and mapping

class groups. Topology and its Applications, 105:237–259, 2000.
24 Jarmo Hietarinta. All solutions to the constant quantum Yang-Baxter equation in two

dimensions. Physics Letters A, 165:245–251, 1992.
25 D. Hofheinz and R. Steinwandt. A practical attack on some braid group based cryptographic

primitives. In Public Key Cryptography, pages 187–198, 2003.
26 Edward V. Huntington. Sets of independent postulates for the algebra of logic. Transactions

of the American Mathematical Society, 4:288–309, 1904.
27 Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita. Transformation rules for de-

signing CNOT-based quantum circuits. In DAC’02: Proceedings of the 39th Annual Design
Automation Conference, pages 419–424, 2002.

28 Dominik Janzing, Pawel Wocjan, and Thomas Beth. “Identity Check” is QMA-complete,
2003. arXiv:quant-ph/0305050.

29 Stephen Jordan. Strong equivalence of reversible circuits is coNP-complete. Quantum
Information and Computation, 14(15/16):1303–1308, 2014. arXiv:1307.0836.

30 Louis H. Kauffman. Knots and Physics. Wold Scientific, 1991.
31 A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303:2–

30, 2003. arXiv:quant-ph/9707021.
32 Hari Krovi and Alexander Russell. Quantum fourier transforms and the complexity of

link invariants for quantum doubles of finite groups, 2012. arXiv:quant-ph/1210.1550
[quant-ph].

33 Chris Marriott and John Watrous. Quantum Arthur-Merlin games. Computational Com-
plexity, 14(2):122–152, 2005. arXiv:cs/0506068.

34 Carlos Mochon. Anyons from nonsolvable finite groups are sufficient for universal quantum
computation. Physical Review A, 67(2):022315, 2003. arXiv:quant-ph/0206128.

35 Daniel Nagaj, Pawel Wocjan, and Yong Zhang. Fast amplification of QMA. Quantum
Information and Computation, 9(11/12):1053–1068, 2009. arXiv:0904.1549.

36 Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information.
Cambridge University Press, 2000.

37 R. Walter Ogburn and John Preskill. Topological quantum computation. In Quantum
Computing and Quantum Communications, volume 1509 of Lecture Notes in Computer
Science, pages 341–356. Springer, 1999. First NASA International Conference QCQC’98.

38 Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. IACR Cryptology ePrint Archive, 2013:454, 2013.

39 Dan Shepherd and Michael J. Bremner. Temporally unstructured quantum computation.
Proceedings of the Royal Society A, 465:1413–1439, 2009. arXiv:0809.0847.

40 Peter W. Shor and Stephen P. Jordan. Estimating Jones polynomials is complete
for one clean qubit. Quantum Information and Computation, 8(8/9):681–714, 2008.
arXiv:0707.2831.

41 Eric D. Simonaire. Sub-circuit selection and replacement algorithms modeled as term
rewriting systems. Master’s thesis, Air Force Institute of Technology, 2008.

42 Simon Trebst, Matthias Troyer, Zhenghan Wang, and Andreas W.W. Ludwig. A short
introduction to Fibonacci anyon models. Progress in Theoretical Physics Supplement,
176:384–407, 2008. arXiv:0902.3275.

TQC’14

156 Circuit Obfuscation Using Braids

R1

R2

R3

Figure 2 An example of a reversible circuit constructed from a single gate R. As a product of
matrices, we write this R2R3R1, in keeping with the convention [36] that circuit diagrams are to
be read left-to-right, whereas the matrix product acts right-to-left. Note that in subsequent circuit
diagrams we drop the subscripts from the R gates as these can be read off from the “wires” the
gates act on.

A Classical Computation with Braids

In this section, we present a reversible gate R on pairs of 60-state dits that can perform uni-
versal computation and obeys the relations of the braid group. The universality construction
for this gate comes from the quantum computation literature [31, 37, 34], but we present it
here in purely classical language to make it accessible to a broader audience.

Suppose we arrange n dits on a line, and allow R to act only on neighboring dits. Further,
we do not allow R to be applied “upside-down”. Then, there are n− 1 choices for how to
apply R. We label these R1, R2, . . . , Rn−1, as illustrated in Figure 2. Each of R1, . . . , Rn−1
corresponds to a dn × dn permutation matrix. Specifically, Rj is obtained by taking the
tensor product of R with identity matrices according to Rj = 1

⊗(j−1)
d×d ⊗R⊗ 1⊗(n−j−1)

d×d .
R1, . . . , Rn−1 generate a subgroup of Sdn . Among others, these generators obey the

relations

RiRj = RjRi ∀|i− j| ≥ 2. (5)

If R satisfies

R1R2R1 = R2R1R2 (6)

then

RiRi+1Ri = Ri+1RiRi+1 ∀i (7)

and in this case the gates R1, . . . , Rn−1 satisfy all the relations of the braid group Bn. In
other words, the map defined by σi 7→ Ri and σ−1

i 7→ R−1
i is a homomorphism from Bn to

Sdn , i.e. a representation of the braid group. Note that this representation is never faithful
as Bn is infinite.

The condition 6 is known as the Yang-Baxter equation6. Finding all the matrices satisfying
the Yang-Baxter equation at a given dimension has only been achieved at d = 2 [24]. However,
certain systematic constructions coming from mathematical physics can produce infinite
families of solutions. In particular, let G be any finite group, and let R be the permutation
on the set G×G defined by

R(a, b) = (b, b−1ab). (8)

6 Actually, two slightly different equations go by the name Yang-Baxter in the literature. Careful sources
distinguish these as the algebraic Yang-Baxter equation and the braided Yang-Baxter relation (which
is sometimes called the quantum Yang-Baxter equation). Equation 6 is the latter. Furthermore,
some sources treat a more complicated version of the Yang-Baxter equation in which R depends on
a continuous parameter. In such works equation 6 is often referred to as the constant Yang-Baxter
equation.

G. Alagic, S. Jeffery, and S. Jordan 157

By direct calculation one sees that any such an R satisfies the Yang-Baxter equation. (In
physics language, R comes from the braiding statistics of the magnetic fluxes in the quantum
double of G.)

In 1997, Kitaev discovered that choosing G to be the symmetric group S5 yields an
R gate sufficient to perform universal reversible computation [31]. Ogburn and Preskill
subsequently showed that the alternating group A5, which is half as large as S5, is already
sufficient. The universality construction for A5 was subsequently presented in greater detail
and generalized to all non-solvable groups by Mochon [34]. In the remainder of this section
we give a self-contained exposition of the universality construction from [34], shorn of physics
language.

To obtain a representation of the braid group, we must strictly enforce the requirement
that application of R to neighboring dits on a line is the only allowed operation. In particular,
we are not given as elementary operations the ability to apply R upside-down, or to non-
neighboring dits, or to move dits around. Thus, to prove computational universality, it is
helpful to first construct a SWAP gate from R gates, which exchanges neighboring dits. As
is well-known, the n− 1 swaps of nearest neighbors on a line generate the full group Sn of
permutations, and thus a SWAP gate enables application of R to any pair of dits.

For R gates of the form (2), two pairs of inverse group elements in the order a, a−1, b, b−1

can be swapped by applying the product R2R3R1R2. Thus, in the construction of [37, 34],
elements of A5 are always paired with their inverses. This can be regarded as a form of
encoding; |A5| = 60, so each 60-state dit is encoded by a corresponding pair of elements of
A5. We introduce the notation g̃ ≡ (g, g−1) for this encoding, and similarly, abbreviate the
encoded swap operation as follows.

ã
S

b̃

b̃ ã ≡

a
R

b

a−1
R R

b−1

b
R

a

b−1 a−1

Similarly, the sequence R2R3R3R2 performs the transformation (ã, b̃) 7→ (ã, ãba−1) on a pair
of encoded dits. We abbreviate this in circuit diagrams as follows.

ã • ã

b̃ C ãba−1 ≡

a a
a−1

R R
a−1

b
R R

aba−1

b−1 ab−1a−1

ã • ã

b̃ C−1
ã−1ba ≡

a a
a−1

R−1 R−1 a−1

b
R−1 R−1 a−1ba

b−1 a−1b−1a

This notation can easily be extended to provide a shorthand for the sequence of gates needed
to implement a C gate between non-neighboring pairs of bits, as illustrated by the following
examples.

TQC’14

158 Circuit Obfuscation Using Braids

•

C

≡

•

S
C

S

S S

C
•

≡ S
•

S
C

Next, consider the following product of elements of A5 (which should be read right-to-left).

f(g1, g2) = (521)g1(14352)g2(124)g−1
1 (15342)g−1

2 (521) (9)

One sees that

f((345), (345)) = 1

f((345), (435)) = 1

f((435), (345)) = 1

f((435), (435)) = (12)(34)

where 1 denotes the identity permutation. Furthermore, conjugating (345) by (12)(34) yields
(435), and conversely, conjugating (435) by (12)(34) yields (345). Thus, we may think of
(345) as an encoded zero and (435) as an encoded one, and we see that

f(g1, g2)g0f(g1, g2)−1 (10)

toggles g0 between one and zero if g1 and g2 are both encoded ones and leaves g0 unchanged
otherwise. Such a doubly-controlled toggling operation is known as a Toffoli gate, which is
well-known to be a computationally universal reversible gate [17].

As a circuit diagram, this construction can be expressed as follows.

˜(14352) • ˜(14352)
˜(15342) • ˜(15342)

(̃124) • (̃124)

(̃521) • • (̃521)

g̃0 C C−1 C C−1 C C C C C g̃′0

g̃1 • • g̃1

g̃2 • • g̃2

Here, if g0, g1, g2 encode bits b0, b1, b2 then g′0 encodes b0 ⊕ b1 ∧ b2. The four ancillary dits
˜(14352), ˜(15342), (̃124), and (̃521), are used to “catalytically” facilitate the construction
of a Toffoli gate, and thus computations built from arbitrarily many Toffoli gates can be
performed with only one copy of these four dits.

Unpacking the various shorthand notations, one sees that the above circuit represents
the following braid of 132 crossings on 14 strands, which encodes a Toffoli gate with the first

G. Alagic, S. Jeffery, and S. Jordan 159

wire as target, and the second and third wires as controls.

T = σ8σ9σ9σ8 σ10σ11σ9σ10 σ10σ11σ11σ10 σ10σ11σ9σ10
σ2σ3σ1σ2 σ4σ5σ3σ4 σ6σ7σ5σ6 σ8σ9σ9σ8
σ6σ7σ5σ6 σ4σ5σ3σ4 σ2σ3σ1σ2 σ12σ13σ11σ12
σ10σ11σ9σ10 σ10σ11σ11σ10 σ10σ11σ9σ10 σ12σ13σ11σ12
σ6σ7σ5σ6 σ8σ9σ9σ8 σ6σ7σ5σ6 σ10σ11σ9σ10
σ−1

10 σ
−1
11 σ

−1
11 σ

−1
10 σ10σ11σ9σ10 σ4σ5σ3σ4 σ6σ7σ5σ6

σ8σ9σ9σ8 σ6σ7σ5σ6 σ4σ5σ3σ4 σ12σ13σ11σ12
σ10σ11σ9σ10 σ−1

10 σ
−1
11 σ

−1
11 σ

−1
10 σ10σ11σ9σ10 σ12σ13σ11σ12

σ8σ9σ9σ8

(11)

Note that we take the convention that this should be read backwards compared to the way
one reads English text. This is in keeping with the conventional notation for the composition
of functions and our right-to-left multiplication of R matrices. We have used whitespace to
divide crossings into groups of four as these correspond to elementary S and R gates.

Given this construction of the Toffoli gate by braid crossings, it is a simple matter to
“compile” any given logic circuit into a corresponding braid. A5 has 60 elements. Thus,
encoding a single bit into a a pair of A5 elements appears somewhat wasteful. It is natural to
try to find Yang-Baxter solutions acting on d-state dits for smaller d that achieve universal
classical computation. In appendix B, we improve upon the A5-based construction to show
that d = 44 suffices. We have also used exhaustive computer search to find all permutation
solutions satisfying the Yang-Baxter equation up to d = 5 (i.e. up to 25× 25 permutation
matrices). Our examination of these solutions suggests that none are computationally
universal. Where between 5 and 44 lies the minimal d remains an interesting open question.

B Optimizing Classical Braid Gates

In appendix A we have recounted the construction of [34], which shows that the reversible
gate R, which acts on pairs of 60-state dits and satisfies the Yang-Baxter equation, can
perform universal classical computation. In this section, based on a suggestion of Robert
König, we show that R can be modified to obtain a gate acting on pairs of 44-state dits
that satisfies the Yang-Baxter equation and can perform universal classical computation.
Our computational evidence suggests that no reversible gate on d-state dits satisfying the
Yang-Baxter equation can perform universal computation for d ≤ 5. Where between 5 and 44
the minimal d lies for which computationally universal reversible Yang-Baxter gates acting
on d-state qudits exist remains an open question.

The universality construction of [34], recounted in appendix A, starts with all dits
initialized to states from the following set.

S = {g, g−1|g ∈ S0}
S0 = {(14352), (15342), (124), (521), (345), (435)}

Here we show that the orbit of S under the action of the gate R is not all of A5, rather the
orbit has only 44 elements. Thus the restriction of the matrix R onto this 44-dimensional
subspace is a permutation-matrix that satisfies the Yang-Baxter equation and is capable of
universal classical computation.

Recalling (2), one sees that the orbit OR of S under R is

OR = {b−1ab|a ∈ S, b ∈ 〈S〉} (12)

TQC’14

160 Circuit Obfuscation Using Braids

where 〈S〉 is the subgroup of A5 generated by S. A simple computer algebra calculation
shows that 〈S〉 = A5, thus OR consists of exactly those elements of A5 conjugate to S.

It is well known that the conjugacy classes of A5 are as follows.

1) the identity (1 element)
2) 3-cycles (20 elements)
3) conjugates of (12)(34) (15 elements)
4) conjugates of (12345) (12 elements)
5) conjugates of (21345) (12 elements)

One sees that OR contains 2), and does not contain 1) or 3). The only remaining question
is whether OR contains both 4) and 5) or just one of them. A simple computer algebra
calculation shows that (14352) and (15342) are non-conjugate elements of A5. Hence OR

must contain both 4) and 5). Therefore, |OR| = 44.

	Introduction
	Past work on circuit obfuscation
	Outline of present work
	New notion of obfuscation
	Group normal forms
	Efficient constructions from group representations
	Other gate sets

	Relevant Properties of the Braid Group
	Obfuscation of Classical Reversible Circuits
	Reversible Circuits
	Classical computation with braids

	Quantum Circuits
	Quantum computation with braids
	Obfuscating quantum computations
	Testing claimed quantum computers with a quantum obfuscator

	Some Attacks
	Compiler attacks
	Dictionary attacks

	Future Work
	Classical and quantum universality
	Expanding the set of indistinguishability relations

	Classical Computation with Braids
	Optimizing Classical Braid Gates

