40 research outputs found

    Modular Web Queries — From Rules to Stores

    Get PDF
    Even with all the progress in Semantic technology, accessing Web data remains a challenging issue with new Web query languages and approaches appearing regularly. Yet most of these languages, including W3C approaches such as XQuery and SPARQL, do little to cope with the explosion of the data size and schemata diversity and richness on the Web. In this paper we propose a straightforward step toward the improvement of this situation that is simple to realize and yet effective: Advanced module systems that make partitioning of (a) the evaluation and (b) the conceptual design of complex Web queries possible. They provide the query programmer with a powerful, but easy to use high-level abstraction for packaging, encapsulating, and reusing conceptually related parts (in our case, rules) of a Web query. The proposed module system combines ease of use thanks to a simple core concept, the partitioning of rules and their consequences in flexible “stores”, with ease of deployment thanks to a reduction semantics. We focus on extending the rule-based Semantic Web query language Xcerpt with such a module system though the same approach can be applied to other (rule-based) languages as well

    05371 Abstracts Collection -- Principles and Practices of Semantic Web Reasoning

    Get PDF
    From 11.09.05 to 16.09.05, the Dagstuhl Seminar 05371 ``Principles and Practices of Semantic Web Reasoning\u27\u27 % generate automaticall was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Ontology-based composition and matching for dynamic cloud service coordination

    Get PDF
    Recent cross-organisational software service offerings, such as cloud computing, create higher integration needs. In particular, services are combined through brokers and mediators, solutions to allow individual services to collaborate and their interaction to be coordinated are required. The need to address dynamic management - caused by cloud and on-demand environments - can be addressed through service coordination based on ontology-based composition and matching techniques. Our solution to composition and matching utilises a service coordination space that acts as a passive infrastructure for collaboration where users submit requests that are then selected and taken on by providers. We discuss the information models and the coordination principles of such a collaboration environment in terms of an ontology and its underlying description logics. We provide ontology-based solutions for structural composition of descriptions and matching between requested and provided services

    Regular Rooted Graph Grammars

    Get PDF
    In dieser Arbeit wir ein pragmatischer Ansatz zur Typisierung, statischen Analyse und Optimierung von Web-Anfragespachen, speziell Xcerpt, untersucht. Pragmatisch ist der Ansatz in dem Sinne, dass dem Benutzer keinerlei Einschränkungen aus Entscheidbarkeits- oder Effizienzgründen auf modellierbare Typen gestellt werden. Effizienz und Entscheidbarkeit werden stattdessen, falls nötig, durch Vergröberungen bei der Typprüfung erkauft. Eine Typsprache zur Typisierung von Graph-strukturierten Daten im Web wird eingeführt. Modellierbare Graphen sind so genannte gewurzelte Graphen, welche aus einem Spannbaum und Querreferenzen aufgebaut sind. Die Typsprache basiert auf reguläre Baum Grammatiken, welche um typisierte Referenzen erweitert wurde. Neben wie im Web mit XML üblichen geordneten strukturierten Daten, sind auch ungeordnete Daten, wie etwa in Xcerpt oder RDF üblich, modellierbar. Der dazu verwendete Ansatz---ungeordnete Interpretation Regulärer Ausdrücke---ist neu. Eine operationale Semantik für geordnete wie ungeordnete Typen wird auf Basis spezialisierter Baumautomaten und sog. Counting Constraints (welche wiederum auf presburgerarithmetische Ausdrücke) basieren. Es wird ferner statische Typ-Prüfung und -Inferenz von Xcerpt Anfrage- und Konstrukttermen, wie auch Optimierung von Xcerpt Anfragen auf Basis von Typinformation eingeführt.This thesis investigates a pragmatic approach to typing, static analysis and static optimization of Web query languages, in special the Web query language Xcerpt. The approach is pragmatic in the sense, that no restriction on the types are made for decidability or efficiency reasons, instead precision is given up if necessary. Pragmatics on the dynamic side means to use types not only to ensure validity of objects operating on, but also influencing query selection based on types. A typing language for typing of graph structured data on the Web is introduced. The Graphs in mind are based on spanning trees with references, the typing languages is based on regular tree grammars with typed reference extensions. Beside ordered data in the spirit of XML, unordered data (i.e. in the spirit of the Xcerpt data model or RDF) can be modelled using regular expressions under unordered interpretation – this approach is new. An operational semantics for ordered and unordered types is given based on specialized regular tree automata and counting constraints (them again based on Presburger arithmetic formulae). Static type checking of Xcerpt query and construct terms is introduced, as well as optimization of Xcerpt query terms based on schema information

    Implementation of Web Query Languages Reconsidered

    Get PDF
    Visions of the next generation Web such as the "Semantic Web" or the "Web 2.0" have triggered the emergence of a multitude of data formats. These formats have different characteristics as far as the shape of data is concerned (for example tree- vs. graph-shaped). They are accompanied by a puzzlingly large number of query languages each limited to one data format. Thus, a key feature of the Web, namely to make it possible to access anything published by anyone, is compromised. This thesis is devoted to versatile query languages capable of accessing data in a variety of Web formats. The issue is addressed from three angles: language design, common, yet uniform semantics, and common, yet uniform evaluation. % Thus it is divided in three parts: First, we consider the query language Xcerpt as an example of the advocated class of versatile Web query languages. Using this concrete exemplar allows us to clarify and discuss the vision of versatility in detail. Second, a number of query languages, XPath, XQuery, SPARQL, and Xcerpt, are translated into a common intermediary language, CIQLog. This language has a purely logical semantics, which makes it easily amenable to optimizations. As a side effect, this provides the, to the best of our knowledge, first logical semantics for XQuery and SPARQL. It is a very useful tool for understanding the commonalities and differences of the considered languages. Third, the intermediate logical language is translated into a query algebra, CIQCAG. The core feature of CIQCAG is that it scales from tree- to graph-shaped data and queries without efficiency losses when tree-data and -queries are considered: it is shown that, in these cases, optimal complexities are achieved. CIQCAG is also shown to evaluate each of the aforementioned query languages with a complexity at least as good as the best known evaluation methods so far. For example, navigational XPath is evaluated with space complexity O(q d) and time complexity O(q n) where q is the query size, n the data size, and d the depth of the (tree-shaped) data. CIQCAG is further shown to provide linear time and space evaluation of tree-shaped queries for a larger class of graph-shaped data than any method previously proposed. This larger class of graph-shaped data, called continuous-image graphs, short CIGs, is introduced for the first time in this thesis. A (directed) graph is a CIG if its nodes can be totally ordered in such a manner that, for this order, the children of any node form a continuous interval. CIQCAG achieves these properties by employing a novel data structure, called sequence map, that allows an efficient evaluation of tree-shaped queries, or of tree-shaped cores of graph-shaped queries on any graph-shaped data. While being ideally suited to trees and CIGs, the data structure gracefully degrades to unrestricted graphs. It yields a remarkably efficient evaluation on graph-shaped data that only a few edges prevent from being trees or CIGs

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    A Lightweight Framework for Universal Fragment Composition

    Get PDF
    Domain-specific languages (DSLs) are useful tools for coping with complexity in software development. DSLs provide developers with appropriate constructs for specifying and solving the problems they are faced with. While the exact definition of DSLs can vary, they can roughly be divided into two categories: embedded and non-embedded. Embedded DSLs (E-DSLs) are integrated into general-purpose host languages (e.g. Java), while non-embedded DSLs (NE-DSLs) are standalone languages with their own tooling (e.g. compilers or interpreters). NE-DSLs can for example be found on the Semantic Web where they are used for querying or describing shared domain models (ontologies). A common theme with DSLs is naturally their support of focused expressive power. However, in many cases they do not support non–domain-specific component-oriented constructs that can be useful for developers. Such constructs are standard in general-purpose languages (procedures, methods, packages, libraries etc.). While E-DSLs have access to such constructs via their host languages, NE-DSLs do not have this opportunity. Instead, to support such notions, each of these languages have to be extended and their tooling updated accordingly. Such modifications can be costly and must be done individually for each language. A solution method for one language cannot easily be reused for another. There currently exist no appropriate technology for tackling this problem in a general manner. Apart from identifying the need for a general approach to address this issue, we extend existing composition technology to provide a language-inclusive solution. We build upon fragment-based composition techniques and make them applicable to arbitrary (context-free) languages. We call this process for the composition techniques’ universalization. The techniques are called fragment-based since their view of components— reusable software units with interfaces—are pieces of source code that conform to an underlying (context-free) language grammar. The universalization process is grammar-driven: given a base language grammar and a description of the compositional needs wrt. the composition techniques, an adapted grammar is created that corresponds to the specified needs. The result is thus an adapted grammar that forms the foundation for allowing to define and compose the desired fragments. We further build upon this grammar-driven universalization approach to allow developers to define the non–domain-specific component-oriented constructs that are needed for NE-DSLs. Developers are able to define both what those constructs should be, and how they are to be interpreted (via composition). Thus, developers can effectively define language extensions and their semantics. This solution is presented in a framework that can be reused for different languages, even if their notion of ‘components’ differ. To demonstrate the approach and show its applicability, we apply it to two Semantic Web related NE-DSLs that are in need of component-oriented constructs. We introduce modules to the rule-based Web query language Xcerpt and role models to the Web Ontology Language OWL
    corecore