
A Lightweight Framework for
Universal Fragment Composition

— with an application in the Semantic Web

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

MSc. Jakob Henriksson
geboren am 11.08.1979 in Norrköping, Schweden

Gutachter:
Prof. Dr. rer. nat. habil. Uwe Aßmann

(Technische Universität Dresden)
Prof. Michael Schröder

(Biotechnologisches Zentrum der TU Dresden)
Prof. Welf Löwe

(Växjö University, Schweden)

Tag der Verteidigung: Dresden, den 19. Dezember 2008

Dresden, den 14. Oktober 2008

ii

Abstract

Domain-specific languages (DSLs) are useful tools for coping with complexity in soft-
ware development. DSLs provide developers with appropriate constructs for specifying
and solving the problems they are faced with. While the exact definition of DSLs can
vary, they can roughly be divided into two categories: embedded and non-embedded.
Embedded DSLs (E-DSLs) are integrated into general-purpose host languages (e.g.
Java), while non-embedded DSLs (NE-DSLs) are standalone languages with their own
tooling (e.g. compilers or interpreters). NE-DSLs can for example be found on the
Semantic Web where they are used for querying or describing shared domain mod-
els (ontologies). A common theme with DSLs is naturally their support of focused
expressive power. However, in many cases they do not support non–domain-specific
component-oriented constructs that can be useful for developers. Such constructs are
standard in general-purpose languages (procedures, methods, packages, libraries etc.).
While E-DSLs have access to such constructs via their host languages, NE-DSLs do not
have this opportunity. Instead, to support such notions, each of these languages have
to be extended and their tooling updated accordingly. Such modifications can be costly
and must be done individually for each language. A solution method for one language
cannot easily be reused for another. There currently exist no appropriate technology
for tackling this problem in a general manner.

Apart from identifying the need for a general approach to address this issue, we
extend existing composition technology to provide a language-inclusive solution. We
build upon fragment-based composition techniques and make them applicable to ar-
bitrary (context-free) languages. We call this process for the composition techniques’
universalization. The techniques are called fragment-based since their view of compo-
nents—reusable software units with interfaces—are pieces of source code that con-
form to an underlying (context-free) language grammar. The universalization process
is grammar-driven: given a base language grammar and a description of the compo-
sitional needs wrt. the composition techniques, an adapted grammar is created that
corresponds to the specified needs. The result is thus an adapted grammar that forms
the foundation for allowing to define and compose the desired fragments. We further
build upon this grammar-driven universalization approach to allow developers to define
the non–domain-specific component-oriented constructs that are needed for NE-DSLs.
Developers are able to define both what those constructs should be, and how they are
to be interpreted (via composition). Thus, developers can effectively define language
extensions and their semantics. This solution is presented in a framework that can be
reused for different languages, even if their notion of ‘components’ differ.

To demonstrate the approach and show its applicability, we apply it to two Semantic
Web related NE-DSLs that are in need of component-oriented constructs. We introduce
modules to the rule-based Web query language Xcerpt and role models to the Web
Ontology Language OWL.

iii

iv

Acknowledgments

First of all I would like to thank my supervisor Uwe Aßmann for inviting me to Dres-
den and for helping me along in the world of research. We have had much fun dis-
cussing fragment-based software composition and trying to fit in somewhere between
the fields of traditional software engineering and the Semantic Web. I will not soon
forget the early flights to Munich and our traditional “Weißwürste und Bier” breakfasts
in preparation for project meetings. A big thanks to you Uwe, and the whole software
technology group at TU Dresden, for having made me feel at home.

I owe a great debt to Jan Małuszyński, whom I had the great pleasure to work with.
Jan has been a great mentor to me, the kind of mentor all young researchers should
have. Jan has taught me much of what I know about writing and preparing research
talks. I would also like to thank Włodek Drabent for our joint work, and from whom I
also learned much about paper writing and critical thinking.

Having worked on this thesis topic in solitude would have been uninspiring and
unrewarding. Jendrik Johannes was first a student of mine, and later a great friend
and colleague. Jendrik has more than anyone been helpful during this work and I do
not think it would have been done without him. Our software composition “séances”
in the hidden cafés of Neustadt are fond memories. Steffen Zschaler has also been a
fierce fragment composition proponent and has been of great value in forwarding this
research. I’ve also very much enjoyed working with Florian Heidenreich – thank you
for your support and friendship.

Much of this research was carried out in the REWERSE project. I want to mention
Tim Furche, whom it always was a great pleasure to meet and work with. We worked
together on investigating modules for the rule-based query language Xcerpt. I think we
had a great collaboration, and I appreciated it very much. I also want to mention Sacha
Berger who was a key player in this work. I had the privilege of supervising Michael
Pradel, whom I worked with in investigating modularization techniques for ontology
languages. I greatly thank him for that joint work.

I want to thank Ilie Savga, whom I shared an office with, and could share all thesis
agony with. Thanks to Uwe, Ilie, Jendrik and Sven Karol for your invaluable comments
on the written text. Any remaining errors and inconsistencies are naturally my own.

Finally, but not lastly, I want to thank my family - Jan-Erik, Barbro, Jonatan, An-
dreas and Aron. They encouraged and supported me throughout this whole experience.
During this time I also started my own family by marrying Christina Hade. Without
her love and support this work would never have been completed.

Jakob Henriksson
Dresden, October 2008

This research has been co-funded by the European Commission and by the Swiss Federal Office
for Education and Science within the 6th Framework Programme (FP) project REWERSE (No.: 506779
(cf. http://rewerse.net), and the 7th FP project MOST (No.: 216691, cf. http://most-project.eu).

v

http://rewerse.net
http://most-project.eu

vi

Publications

This thesis is partially based on the following peer-reviewed publications:

– Jakob Henriksson and Florian Heidenreich and Steffen Zschaler and Jendrik Jo-
hannes and Uwe Aßmann. Extending Grammars and Metamodels for Reuse –
The Reuseware approach. Special issue on Language Engineering in IET Soft-
ware Journal, Volume 2, 2008.

– Jakob Henriksson and Jendrik Johannes and Steffen Zschaler and Uwe Aßmann.
Reuseware - Adding Modularity to Your Language of Choice. TOOLS EUROPE
2007 - Objects, Models, Components, Patterns. Zurich, Switzerland, June 2007.

– Jakob Henriksson and Florian Heidenreich and Jendrik Johannes and Steffen
Zschaler and Uwe Aßmann. How dark should a component black box be?
The Reuseware Answer. Proceedings of the 12th International Workshop on
Component-Oriented Programming (WCOP). Co-located with 21st European
Conference on Object-Oriented Programming (ECOOP’07). Berlin, Germany,
July 31 2007.

– Jakob Henriksson and Michael Pradel and Steffen Zschaler and Jeff Z. Pan. On-
tology Design and Reuse with Ontological Roles. In Proceedings of the Second
International Conference on Web Reasoning and Rule Systems (RR’08). Karl-
sruhe, Germany, October 2008.

– Uwe Aßmann and Sacha Berger and François Bry and Tim Furche and Jakob
Henriksson and Jendrik Johannes. Modular Web Queries—From Rules to Stores.
In Proceedings of On the Move to Meaningful Internet Systems 2007: OTM
2007 Workshops, volume 4806/2007, pages 1165–1175, Lecture Notes in Com-
puter Science.

vii

viii

Contents

I Overview 9

1 Introduction 11
1.1 Problem: Component-based development for DSLs 15
1.2 Thesis Contributions . 16

1.2.1 Composition Technology . 17
1.2.2 Evaluation 1: Modules for Xcerpt 20
1.2.3 Evaluation 2: Role Models for Ontologies 20

1.3 Thesis scope . 21

II Composition Framework 23

2 Universal Grammar-Based Modularization (U-GBM) 25
2.1 Background . 27

2.1.1 Context-free grammars and languages 27
2.1.2 Grammar-Based Modularization (GBM) 30

2.2 Universal Grammar-Based Modularization 32
2.2.1 Grammar adaptation for GBM 33
2.2.2 Generic fragment language – FLABS 41

2.3 Grammar types and safe slot applications 44
2.3.1 General safeness conditions 45
2.3.2 User-restricted slot applications 50
2.3.3 Syntax-restricted slot applications 51

2.4 Summary . 53

3 Universal Invasive Software Composition (U-ISC) 55
3.1 Background . 56

3.1.1 Invasive Software Composition (ISC) 56
3.1.2 Understanding composition: composition systems 59

3.2 Universal Invasive Software Composition 63
3.2.1 Grammar adaptation for ISC 63
3.2.2 Aligned composition algebra 70
3.2.3 Generic composition language for ISC 73

3.3 Developing U-ISC–based composition systems 83
3.3.1 Component model specification language (CmSL) 83
3.3.2 Component model generation from CmSL specifications . . . 84

3.4 Tooling – REUSEWARE/AIR . 85
3.5 Examples: U-ISC–based composition systems 88

1

2 CONTENTS

3.5.1 Composition system for simple rule language 88
3.5.2 Composition system for Java− 91

3.6 Summary . 95
3.A Appendices . 98

4 Embedded Invasive Software Composition (E-ISC) 103
4.1 Taming Invasive Software Composition 105
4.2 Domain appropriateness . 106

4.2.1 Domain-appropriate components 107
4.2.2 Domain-appropriate composition statements 109

4.3 Domain-appropriate composition operators 111
4.4 Developing E-ISC–based composition systems 114

4.4.1 Extended component model specification language (CmSL+) . 114
4.4.2 Development process . 117

4.5 Example: E-ISC–based composition system 118
4.6 Summary and Discussion . 122
4.A Appendices . 126

III Applications / Evaluation 131

5 Query Components: Modules for Xcerpt 133
5.1 Background: Web query language Xcerpt 135
5.2 Use cases—Modular Querying . 137

5.2.1 Encapsulating and reusing schema information 137
5.2.2 Encapsulating and reusing data processing services 139

5.3 Requirements and constructs for Modular Xcerpt 140
5.4 Examples: Modular Xcerpt . 144

5.4.1 Ontology reasoning . 144
5.4.2 Web Music Library . 151

5.5 Composing Modular Xcerpt programs 152
5.5.1 Refined module encapsulation 157

5.6 Framework Evaluation: Composition System 158
5.7 Related Work . 161
5.8 Summary . 162
5.A Appendices . 163

6 Ontology Components: Role Models for Ontologies 173
6.1 Background . 175

6.1.1 Role Modeling . 175
6.1.2 Description Logics and OWL 178

6.2 Role Modeling for Ontology Languages 180
6.2.1 Ontology Modularization with Role Models 180
6.2.2 Methodology . 181
6.2.3 Role Models vs. Base Ontologies 182

6.3 Semantics of Ontological Role Modeling 183
6.3.1 Formalization of Role-Based Ontologies 183
6.3.2 Conjunctive Role Modeling Semantics 184
6.3.3 Disjunctive Role Modeling Semantics 186

6.4 Framework Evaluation: Composition System 187

CONTENTS 3

6.5 Related Work . 192
6.6 Summary and Outlook . 193
6.A Appendices . 194

IV Summary 199

7 Related Work 201

8 Outlook 211
8.1 Reusable language extensions . 211
8.2 Abstraction-specific composition contracts 216

9 Conclusions 221

4 CONTENTS

List of Tables

2.1 An example string derivation sequence. 28
2.2 The SLOT-grammar. 36
2.3 Grammar for the generic fragment language FLABS. 43
2.4 Definition of alternative slot construct. 50
2.5 Definition of slot construct with hard-coded type. 51

3.1 Dissection of the Mjølner fragment system. 61
3.2 Dissection of a reuse-grammar–based composition system for RL. . . 62
3.3 Construct for general variation points in fragments. 65
3.4 The ISC-grammar. 65
3.5 The ISC composition operators and their usages. 70
3.6 Main methods available on core composition language objects. 80
3.7 The main part of the CmSL-grammar. 84
3.8 A ISC-reuse grammar for rule language RL. 89

4.1 Construct for defining modules for rule-based languages. 108
4.2 Construct for defining module interfaces. 108
4.3 Definition of constructs for importing and using modules. 110

5.1 A store consists of three sections: out, private and in. 154

6.1 Steimann’s 15 role modeling properties. 176
6.2 Static vs. dynamic role properties. 177

5

6 LIST OF TABLES

List of Figures

1.1 An example RDF graph. 12
1.2 Non-embedded DSLs are in need of non–domain-specific abstractions. 14
1.3 Illustration of the three-staged advance over previous work. 19
1.4 Diagram of the two applications of our composition technology. . . . 20

2.1 Adapting grammars to allow to define slots. 33
2.2 A syntax diagram demonstrating the grammar adaptation. 37
2.3 The composition process is a composition chain. 41

3.1 Composition systems. 60
3.2 A composition system for ISC. 61
3.3 Adapting grammars to restrict implicit fragment access. 64
3.4 Illustration of ISC’s composition operators and their usages. 71
3.5 Composition system for COMPOST/J. 74
3.6 Illustration of two different traversal techniques of ASTs. 75
3.7 Composition language hierarchy, from GBM to ISC. 82
3.8 Illustration of generated classifiers for a core composition language. . 86
3.9 Architectural overview of the REUSEWARE Composition Framework. 87

4.1 Composition system roles: developer and user. 106
4.2 Abstractions are collections of reusable entities. 107
4.3 Illustration of a complex composition operator. 111
4.4 Connection between a complex composition operator and a grammar. 112
4.5 Modular programs composes into equivalent non-modular programs. . 113
4.6 Composition system development process. 117
4.7 Illustration of an abstract syntax tree transformation. 121
4.8 Refined composition system development process. 125

5.1 Web querying covers different activities. 134
5.2 Encapsulating data schemata improves reuse and maintainability. . . . 138
5.3 Query program maintainability cost is reduced via modularization. . . 138
5.4 Query modules can encapsulate display/output schemata. 139
5.5 Data transformation tasks can be reused across query programs. . . . 140
5.6 Illustration of Web query modules. 150
5.7 Result of a modular query program. 151
5.8 Modified result of modified query program. 153

6.1 Illustration of a simple role model. 174

8.1 A module extension can be divided into three levels of sophistication. 213

7

8 LIST OF FIGURES

9.1 Aspects transform programs before execution. 222
9.2 Comparing DSL embedding with out approach. 223

Part I

Overview

9

There are substantial benefits to
introducing a component approach
even in cases where component
markets or in-house component
reuse is not yet foreseeable.

Clemens Szyperski
(Component Software, 2nd edition)

1
Introduction

In the early 1980s, Tim Berners-Lee developed the first system of inter-linked hyper-
text documents, today better known as the World Wide Web—the hugely successful
network of information and services now part of our daily lives. With vast amounts
of data available on the Web it is vital to employ computer systems and software to
find, organize and display data for the benefit of the human user. The perhaps most
visible such system today is the Web search engine, to many considered indispensable
for finding information. An inherent drawback with any computerized system dealing
with information is the system’s lack of understanding of what the information actually
means. Failing to understand the intended meaning of information often leads to the
inability to properly process and present that information. On the Web, for example,
software agents can only extract the syntactical structure of a Web page while a human
quickly can capture the often subtle and deeper intended meaning of the content—the
semantics. Web pages are traditionally written for humans by humans, unfortunately
leaving a semantic gap between the human users and software systems employed to
help better process the available content.

An initiative addressing this issue was published by Berners-Lee in an 1999 edition
of Scientific American.1 The article outlined a refined model for the Web where not
only humans could read and understand the available information, but also machines.
To signify the shift in importance from the information itself to the meaning and inten-
tion of the same, the term ’Semantic Web’ was coined.

“The Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

– Tim Berners-Lee

Since its conception, the Semantic Web has come to encompass many different
ideas, research topics and technical solutions—all devoted to promoting semantics on

1http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21

11

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21

12 CHAPTER 1. INTRODUCTION

http://ex.org/index.html

http://purl.org/dc/elements/1.1/creator
http://ex.org/jakob

August 07, 2007
http://purl.org/dc/elements/1.1/created

FIGURE 1.1: A Web site given metadata about its creator and creation date.

the Web.2 The original core idea of the Semantic Web, however, remains the same:
to provide well-defined metadata (data about data) to allow software agents to accu-
rately process the underlying data. As such, it can be argued that the Semantic Web
encompasses a fundamental duality in its realization—two sides of the same coin that
will remain unchanged irrespective of specific adopted technical solutions: One part
deals with formulating well-defined metadata, the other with accessing and processing
that metadata for the benefit of the users. To specify and encode metadata a suitable
descriptive language needs to be employed; to access and extract the metadata (or the
underlying data itself) an appropriate query language be must available. Such lan-
guages are the fundamental tools—the chisel and hammer—of the Semantic Web.

In order for machines to make use of the provided metadata it needs to be expressed
in a machine-processable format using a formal language. A formal language can pro-
vide an unambiguous description of the data and allow for reasoning. Thus, if this is
the case, software agents can process the metadata, in some sense understand it and
possibly draw useful conclusions based on the given information. The Resource De-
scription Framework (RDF) [55] is an example of such a metadata language. RDF is
designed to represent information about different kinds of resources identified by Uni-
form Resource Identifiers (URIs). RDF encodes information in simple triple statements
consisting of a subject, a predicate and an object. An example of two such statements
are shown in graphical form in Figure 1.1. The statements provide metadata about the
Web site http://ex.org/index.html, stating that it was created on August 7, 2007
by the person identified by the resource http://ex.org/jakob.

Ontologies have emerged as a viable approach and formalism for modeling meta-
data. The currently adopted ontological formalisms are based on first-order logic
(FOL) and rely on many years of research in the field of knowledge representation,
particularly on the Description Logics (DLs) formalism [8]. Web-adapted versions of
DLs with machine-processable serializations have also been standardized by the World
Wide Web Consortium (W3C), for example, the Web Ontology Language OWL [73]
which is (partly) layered on top of RDF. Ontologies are commonly processed by dedi-
cated reasoning engines. Such dedicated engines are often powerful, but can also be too
heavyweight for some applications, where speed and efficiency is of essence. The ap-
plied reasoners may be used for checking consistency of ontologies or for drawing new
implicit conclusions from the explicitly given information. However, since the W3C-
championed OWL language serializes its ontologies in a format based on the Extensible
Markup Language (XML), they can also be processed by general-purpose XML query
engines. Queries can be written that processes an ontology document and uses the
extracted information in some intelligent way. As a simple example, if the metadata

2For an overview of current Semantic Web topics a “Semantic Web Topic Hierarchy” has been defined at
http://semanticweb.org/wiki/Semantic_Web_Topic_Hierarchy (accessed 16 September 2008).

http://semanticweb.org/wiki/Semantic_Web_Topic_Hierarchy

13

in Figure 1.1 was written in OWL, the OWL document could be queried by an XML
query engine for the creator of the Web page http://ex.org/index.html, and would
return http://ex.org/jakob as the answer. For data intensive tasks, general-purpose
(XML) query languages can be more efficient and hence be preferable over dedicated
reasoner. So, while dedicated reasoners are better suited for complex reasoning tasks,
general-purpose query languages can still provide some basic form of reasoning, and
might be easier to use since they are already often deployed for accessing Web data
(not metadata).

Domain-specific languages Ontology and query languages can both be seen as ex-
amples of domain-specific languages (DSLs). DSLs are pervading many application
areas and are often considered to be a great tool for helping to cope with complex-
ity in software development. DSLs can help with respect to complexity by allow-
ing to program, model, or specify certain software parts using succinct and domain-
appropriate language constructs. A complex Web application might—as one part of
its realization—make use of an appropriate XML query language for data access and
transformation, for example, XQuery [13]. Another popular DSL is LINQ (Language
Integrated Querying) which allow query programmers to write database queries in C#
programs, but using an intuitive syntax very similar to SQL (Structured Query Lan-
guage) queries [14]. A domain-specific language is defined in [28] as:

“[A] programming language or executable specification language that of-
fers, through appropriate notations and abstractions, expressive power fo-
cused on, and usually restricted to, a particular domain.”

– van Deursen, Klint, Visser [28, p. 26]

As the authors of [28] point out in their work, the key to the definition is the
notion of focused expressive power. Thus, constructs and abstractions are provided
specifically for formulating and solving problems related to the domain for which the
language was developed. With such specialized constructs and appropriate domain-
related abstractions at hand, programmers can concisely express what they want and
need. Even though DSLs can be a tool to help cope with software complexity, un-
fortunately, they also introduce a new level of complexity that is not always initially
foreseen. The new complexity arises because the DSL specifications themselves may
grow in size. For example, XML query or transformation programs can easily grow
large and become hard to manage and maintain. As those specific parts of the larger
software applications grow, there must be means in place to cope with that growth in
order for DSLs to maintain their attractiveness. Admittedly, some DSL specifications
will never grow in this fashion, but as explained, there are some that will.

Domain-specific languages stand in direct contrast to general-purpose languages
(GPLs), such as Java or UML. General-purpose languages differ from domain-specific
ones in (at least) one interesting aspect: rich abstractions. First of all, general-purpose
languages—at least programming-oriented GPLs such as Java—usually relate to some
specific programming paradigm(s), they are declarative, imperative, procedural, object-
oriented etc. Regardless of the paradigm choice, the languages do not beforehand as-
sume the type of problems they will be used to model and address. Instead, within the
context of their paradigms, they focus on more general constructs for structuring pro-
grams and ways of defining reusable units, for example: functions, methods, classes,

14 CHAPTER 1. INTRODUCTION

L1
L3

L2

L4
L6

L5

Legend: = Domain-specific language

Embedded DSLs
(E-DSLs)

Non-Embedded DSLs
(NE-DSLs)

Provided via
host language

(e.g. Java, Ruby,
Scala)

Embedment

Method, procedure,

package, library etc.

?
Non-domain
related

abstractions

Domain
related

abstractions

FIGURE 1.2: A host language provides non–domain-specific abstraction constructs for
an embedded DSL. This option is however not available for a non-embedded DSL.

macros, templates, packages. The situation is however not the same for domain-
specific languages, in fact, the opposite often holds. As domain-specific languages are
developed to model specific kinds of problems—and have focused expressive power—
they are not always pre-equipped with more general non–domain-specific abstraction
and reuse constructs in the way many general-purpose languages are. There are at least
two reasons for this. The first reason is that language and tool development is diffi-
cult, and foremost costly; the inclusion of any additional constructs is a hard balance
between the actual need and incurred cost of introducing them. The second reason is
that domain-specific languages are commonly developed with the intention of being
embedded in some general-purpose host language. The language is then referred to as
an embedded domain-specific language (E-DSL) [47]. One of the motivations for em-
bedding a domain-specific language is to reduce its development cost. The advantage
of embedment is that both syntax and semantics from the host language can be reused
for the domain-specific language. For example, as a way to provide semantics for the
embedded language, a translation into the host language can be specified. In that case,
thanks to the translational semantics, existing tooling for the general-purpose language
may be reused. Often an explicit translation is not needed at all. Instead the flexible
syntax of the host language is simply used to accomplish desirable statement forms
that suffice for the purpose of the DSL. Host languages that are suitable for this kind
of development are for example Ruby and Scala.3 As an added benefit, the already ex-
isting abstraction and reuse constructs of the host language may be exploited, making
it unnecessary to provide them in the domain-specific language in the first place (see
left-hand side of Figure 1.2). This also holds for other useful language constructs, such
as control-flow mechanisms (e.g. conditionals and loops).

3See http://www.ruby-lang.org/ and http://www.scala-lang.org, respectively.

http://www.ruby-lang.org/
http://www.scala-lang.org

1.1. PROBLEM: COMPONENT-BASED DEVELOPMENT FOR DSLS 15

However, there also exist domain-specific languages not intended to be embedded
into a host language. This can be the case if there is no obvious host language can-
didate, or because the DSL is intended to be used as a standalone language. We call
such a language a non-embedded domain-specific language (NE-DSL).4 In this case,
new tooling has to be developed at the normal high cost. Thus, most investments are
usually centered on the core focus of the language. For a query language, for example,
the central query algorithms are prioritized; for an ontology language the reasoning
mechanisms receive the attention. Thus, rich non–domain-specific abstractions and
reuse constructs are not always directly available and can be difficult to include in the
language at low cost.

1.1 Problem: Component-based development for DSLs

This situation—a non-embedded domain-specific language without easily achievable
reuse constructs—corresponds to the top-right quadrant of Figure 1.2 and is part of the
problem we address in this thesis. We will in the course of this thesis give examples of
two (Semantic) Web related languages that fit this description and that are in need of
such rich abstractions and reuse constructs.

Component-based Development with DSLs In the above we have essentially al-
ready equalled the notions of abstraction and reusability. This is confirmed by Wegner
who states that “abstraction and reusability are two sides of the same coin” ([93, p.
30] as cited in [60]). Krueger paraphrases Wegner explaining that “every abstraction
describes a related collection of reusable entities and that every related collection of
reusable entities determines an abstraction” [60]. From reusable entities the step to
the general notion of “components” and component-oriented development is not far.
Component-oriented development has played a major role in the traditional software
engineering discipline [86]. Large software products benefit drastically in terms of ro-
bustness and maintainability if built from reusable, understandable and independently
designed units.

This is not only true in traditional software engineering, but is equally valid on the
Semantic Web. Ontologies can often be large descriptions that need to be maintained
and understood, just like any other software. As an example, the well-known Gene On-
tology [88] describes approximately 25,000 terms and their relationships (as of January
2008). Furthermore, if large ontologies are not constructed from smaller components,
reusability of already modeled parts is hampered. The same holds for Web query lan-
guages. Queries in traditional database settings, for example expressed in SQL, do not
usually depend on the data-size and can therefore remain small and do not always have
a direct need for modularization and reuse. The orthogonality of query size and data
size is also true on the Web, but with an important difference. Queries on the Web often
need to respect many different, and not seldom exotic, data schemata. This means that
query programs cannot always make assumptions of exactly how data is represented—
according to which schema the data is modeled. Query developers wanting to develop
robust query programs need to take this into consideration, often resulting in large and
verbose query programs.

4Martin Fowler makes the distinction between internal and external DSLs, roughly corresponding to
E-DSLs and NE-DSLs [32]. NE-DSLs are also sometimes called standalone.

16 CHAPTER 1. INTRODUCTION

An example of such a situation is the possibility to serialize the same OWL ontol-
ogy in different ways.5 The different ways OWL ontologies can be serialized should be
respected by query programs working on the ontologies. Enabling the possibility to en-
capsulate part of a query program dealing with a particular data schema (serialization)
becomes important. Encapsulation of this information allows for better maintainability,
since modifications to query programs can be localized to independent components.

Components and component-oriented development is not only needed for ontol-
ogy and query languages on the Web. It can also be important for domain-specific
languages in general, but as already argued it is especially pressing for languages not
intended to be embedded in a general-purpose host language (see Figure 1.2). The
number of such non-embedded languages developed for the Web is high, most likely
because there is no obvious and appropriate host language into which to embed them.
But it should be noted that such languages also exist in other areas, such as software
modeling [39]. As a remark, many abstractions and reuse constructs that could be use-
ful for programmers are not even available in many general-purpose languages, either
because the designers did not want to integrate them, or because it is costly and dif-
ficult to do so. Examples of such constructs are roles [83], aspects [51, 52], mixin
layers [80] and traits [79]. As mentioned, the development of domain-specific lan-
guages often have a different focus than general-purpose languages; the focus is on the
essential primitives needed for modeling problems related to the domain in question.
More general constructs are not usually, at least initially, taken into consideration. Such
constructs are often not really essential to programmers at the early stages when the lan-
guage takes its first staggering steps towards being truly productive. Nonetheless, when
a domain-specific language has been developed and is being used by programmers to
build larger software artifacts, needs for abstraction and reuse become inevitable.

1.2 Thesis Contributions

The work presented in this thesis is a response to one of the challenges put forward
in the European Network of Excellence REWERSE6: develop composition technol-
ogy for query and ontology languages used on the Semantic Web. In addressing these
issues we have developed composition technology applicable to a wide range of lan-
guages. But, in demonstrating the technology we have focused on two languages in
particular. For querying we have focused on the language Xcerpt [77], the further de-
velopment of which was another main objective of REWERSE. Xcerpt is also an inter-
esting choice because of its declarative and rule-based nature (rules are considered an
important paradigm on the Semantic Web), and because of its lack of an explicit con-
trol flow mechanism. For ontologies we have focused on the Web Ontology Language
OWL [73]. This choice is quite natural since OWL is the main ontology language being
used today and is standardized by W3C.

In the following we give a brief summary of what will be described in more detail
in subsequent chapters. We here try to focus on the conceptual advance presented in
this thesis.

5By ‘serialize’ we here mean the encoding of the ontology in an XML format.
6Reasoning on the Web with Rules and Semantics, 2004–2008. http://rewerse.net.

http://rewerse.net

1.2. THESIS CONTRIBUTIONS 17

1.2.1 Composition Technology

Our developed composition technology builds upon previous work. BETA is an object-
oriented programming language which first proposed the idea of grammar-based mod-
ularization (GBM) [63]. The technique is called grammar-based because the consid-
ered modules—pieces of source code, called fragments—are defined wrt. an underlying
language grammar. Such fragments only have explicit interfaces. We will not just yet
detail what these interfaces are and how they can be used, other than to say that the
interfaces—ways of integrating fragments into larger programs—are always declared
by their authors. To be precise, the grammar-based modularization capabilities are not
integrated into the BETA language itself, but is rather part of its development envi-
ronment: the Mjølner system. So, the Mjølner system realizes the said modularization
technique for the BETA language. But in fact the technique is very general and, in prin-
ciple, not restricted to only BETA. However, the Mjølner system does not provide a way
for working with arbitrary languages. We develop a generative approach for extending
language grammars such that the GBM techniques can be applied. We assume that the
grammars are context-free. It is generative in the sense that based on some user input
relating to the desired modularization possibilities, an extended grammar is generated
which describes a language in which it is possible to define the required fragments. We
call the technique universal grammar-based modularization (U-GBM). The technique
is referred to as being ‘universal’ since arbitrary languages can be addressed. We will
always use the term ‘universal,’ or the verb ‘universalize,’ in this sense. So, while the
Mjølner system is grammar-based and general in its conceptualization, we make the
development of GBM-based systems grammar-driven and general in practice.

Having this possibility to enable modularization—separation of software artifacts
into “components”—for arbitrary languages is important. Especially when component-
based development has not initially been planned for. This is also acknowledged by
Clemens Szyperski. Even though Szyperski’s notion of components differs from that
of GBM, his claim should still be valid [86]:

“There are substantial benefits to introducing a component approach even
in cases where component markets or in-house component reuse is not yet
foreseeable.”

– Clemens Szyperski, Component Software [86, p. 139]

Szyperski essentially says that a component approach is needed sooner or later.
With universal GBM, a component approach can be introduced into arbitrary lan-
guages. Not necessarily at the time of language design, but even afterwards.

Definition of components (hence a form of modularization) is supported in inva-
sive software composition (ISC) [5] by a technique that is similar to the one in GBM,
but where implicit interfaces are also considered. As in GBM, components in ISC are
fragments. Implicit interfaces are points in fragments that are not declared by the frag-
ments’ authors, but which still are accessible during the composition process. For this
reason, ISC can simulate techniques such as aspect-oriented programming [51], which
is traditionally completely reliant on the notion of implicit interfaces. As such, ISC is
a more flexible and powerful approach than GBM. We leverage our ‘universal’ exten-
sion of GBM to also cover ISC. First of all, this makes the development of ISC-based
systems grammar-driven. As a consequence, we achieve universal invasive software
composition (U-ISC). That is, we enable the possibility of applying ISC to arbitrary

18 CHAPTER 1. INTRODUCTION

languages. Being able to generalize the technique to arbitrary languages in a grammar-
driven manner does not only make it easier to build ISC-based composition systems
for new languages, but it also improves our understanding of the underlying techniques
and how well they work for arbitrary languages.

One of the interesting results from ISC is its distillation of two basic composition
operators that are used to assemble fragments into useful programs. These operators
are very general, that is, language independent, which is a basic requirement for a
‘universal’ approach. However, Aßmann explains:

“[T]he basic operators are not expressive enough, since they are so general.
[...] Software designers will not like designing with a minimal pattern
language. Instead they will need languages with more domain-specific,
tailored, and adequate composition operators. [...] And I believe that such
languages will be the software construction languages of the future.”

– Uwe Aßmann, Invasive Software Composition [5, p. 278]

One of the root causes for this problem is that source code fragments, the module
type of choice for both GBM and ISC, are inappropriate abstractions for most end-
users and programmers. But the composition algebras of both these approaches can
only work on the primitive level of transforming fragments, using the “minimal pattern
language.” To address this problem we develop a technique which allow programmers
to use more appropriate abstractions; abstractions that are related to the programming
languages they use on a daily basis (for example, their DSLs). Such abstractions are
specified in extensions of programmers’ languages, extensions tailored for the kind of
component-based development they are in need of. Included in such extensions are the
“domain-specific, tailored, and adequate composition operators.” But, unbeknownst to
users of such an extended language, the extended programs that support the appropriate
modularization constructs are composed into semantically equivalent programs of the
underlying, non-extended, language. So, the programs written in an extended language
are given a reduction semantics by referring to the underlying language. We call this
approach embedded invasive software composition (E-ISC). The reason we call it ‘em-
bedded’ is because the reduction semantics is defined by a U-ISC–based composition
system. So, we exploit and build upon the previous work on U-GBM and U-ISC to
reach this higher goal.

Hence, the composition technology contribution of this thesis is a three-staged ad-
vance from previous work. This advance is illustrated in Figure 1.3. First, we univer-
salize GBM to achieve universal GBM (U-GBM). Then, we build upon this to make
ISC grammar-based, and, in the same sense, universal (U-ISC). Finally, due to the
difficultness of working with fragments as first-class software artifacts, we define em-
bedded ISC which allow end-users to work with more intuitive software units (E-ISC).
This lays the foundation for addressing an important open issue, that is, how to enable
component-based development for NE-DSLs.

One immediate consequence of the above-mentioned reduction semantics is that
the core expressiveness of the addressed language is never really extended. One great
benefit of this is that existing tooling can be reused. We do not claim that the ex-
pressiveness of DSLs is at fault, rather their ability to support developers in defining
and using reusable entities—components. This is supported by another remark from

1.2. THESIS CONTRIBUTIONS 19

Space of
Existing composition approaches

Universal Grammar-based
Modularization (U-GBM)

Universal Invasive Software
Composition (U-ISC)

Embedded Invasive Software
Composition (E-ISC)

generalizationgeneralization

generalization

Space of
Universalized composition approaches

universalization

universalization

 G
e
n
e
ra

liz
a
ti
o
n

 Universalization

Composition Technology Advance

Embedded Invasive Software
Composition (E-ISC)

Role models for
ontologies

Modules for Xcerpt

instantiates

Invasive Software Composition
(ISC)

Grammar-based
Modularization (GBM)

FIGURE 1.3: We present a three-staged advance over previous work: universal
grammar-based modularization, universal invasive software composition and embed-
ded invasive software composition.

Szyperski:

“[...] from a purely formal point of view, there is nothing that could be
done with components that could not be done without them.”

– Clemens Szyperski, Component Software [86, p. 10]

The universal nature of our composition approach essentially means that we are
defining a composition framework. The following are some benefits with our frame-
work approach towards enabling component-oriented development and design for pro-
gramming language in general, and domain-specific languages in particular:

– By providing a framework approach where the exact properties of the addressed
language are not presumed, it is possible to augment any language that has a
context-free grammar with new abstractions. Not only already existing and well-
known abstractions, but also new abstractions which will be found to be useful
for existing or future domain-specific languages.

– A consequence of a strictly reductional semantics for extended language con-
struct is that the approach allows for the possibility of introducing new abstrac-
tions for languages where associated tooling (compilers, interpreters etc.) are
not available to be modified, as for example in proprietary systems. Here, new
requirements for abstractions may arise for users of the language/system, but the
organization/company holding rights to the tools are not planning to introduce
the requirements. Our approach gives a solution to such problems by allowing
independent augmentation of abstraction and reuse of a language, without having
to modify the associated tooling.

20 CHAPTER 1. INTRODUCTION

Existing composition approaches

Universal Grammar-based
Modularization (U-GBM)

Universal Invasive Software
Composition (U-ISC)

Invasive Software Composition
(ISC)

Grammar-based
Modularization (GBM)

Embedded Invasive Software
Composition (E-ISC)

generalizationgeneralization

generalization

Universalized composition approaches

universalize

universalize

 G
e

n
e

ra
liz

a
ti
o

n

 Universalization

Composition Technology Advance

Embedded Invasive Software
Composition (E-ISC)

Role models for
ontologies

Modules for Xcerpt

instantiates

FIGURE 1.4: To evaluate our composition framework we instantiate it twice for two
different languages and abstraction concepts: modules for the query language Xcerpt,
and role models for ontology languages.

– There might still be cases where developers of a language and its associated
tools decide that a newly designed abstraction should be tightly integrated into
the language and tools. For example, due to strict requirements on efficiency. As
such an integration incurs costs in terms of time and money, it might be beneficial
to prototype the concepts before actually performing the full integration. This
prototyping could be done using our framework.

We demonstrate the applicability of our framework by instantiating it twice, for
two completely different languages and abstraction concepts (see Figure 1.4 for an
illustration). These framework applications hence evaluate the framework, and are
briefly mentioned below.

1.2.2 Evaluation 1: Modules for Xcerpt

We demonstrate the usefulness of allowing Web query developers to program with
modules, an arguably necessity on the Web. The particular language we address is the
rule-based Web query and transformation language Xcerpt [77]. Modules are sets of
related rules and can be defined using intuitive syntax. Moreover, since modules should
be encapsulated to ensure proper separation of concern, module interfaces can also be
defined. Apart from allowing to define reusable query components in form of modules,
constructs are provided to import and deploy them. We give several examples of the
usage of the introduced constructs, as well as explain their semantics. In practical terms
the Xcerpt module system is realized through our composition technology.

1.2.3 Evaluation 2: Role Models for Ontologies

We introduce and discuss a new reuse unit for ontologies—role models. A role model
is an abstraction unit that has previously been investigated in data, object-oriented and
conceptual modeling (see, e.g. [83] and references therein). However, role modeling is
lacking in current ontology languages, such as OWL [73]. We introduce the notion of
role modeling into ontology languages and show how it can be used to modularize on-
tologies. We demonstrate the use of role models on a subset of OWL, but the approach
is general and not limited to a particular ontology language. We demonstrate a com-
position system developed using our composition technology that is able to compose
ontologies from role models.

1.3. THESIS SCOPE 21

1.3 Thesis scope
In the following we comment on what is covered in this thesis, and what is not:

– Language engineering. Despite the fact that this thesis is about languages, and
extensions of languages, it is not a thesis on language engineering. There are
many sub-disciplines of language engineering that are employed in this work, but
most of them fail to receive any serious attention, for example, language devel-
opment, parsing theory, parser generation and grammar composition. The only
highlighted language engineering concept is context-free grammars (CFGs). This
is the underlying formalism any considered language is assumed to be express-
ible in. (Concretely this would be done in EBNF [1] or a similar practical formal-
ism.) Language extensions for adapting languages to the composition techniques
of, first grammar-based modularization, and then invasive software composition,
are described by referring to CFGs. For this reason, CFGs receive certain atten-
tion in Chapter 2.

– Ensuring valid compositions. When composing software, it is important to guar-
antee certain properties of the final result. We will guarantee that the composition
result is a syntactically valid program wrt. some underlying language. We will
not, however, guarantee that the composition result is also semantically valid.
For example, we do not, during the composition process, check the semantics of
the composition results. The reason we do not provide this second level of guar-
antee is because we are developing a general framework addressing arbitrary
languages. Since semantics is very specific for each particular language, such
details would have to be provided for each language, in addition to the grammar
specifications. This level of language tailoring is currently not provided in our
general solution and is out of the scope of this thesis.

– Composition framework evaluation. While it is our belief that the presented com-
position framework can be instantiated for many different languages, it is here
mainly validated for two languages: the Web query language Xcerpt and the on-
tology language OWL. However, it should be noted that the languages—apart
from belonging to the set of languages we consider to be in need of modulariza-
tion techniques—are quite different from each other in terms of their structure
and purpose. Also, because they are completely different languages, the devel-
oped types of components for the languages are of entirely different natures.
These differences wrt. languages and component types for which the framework
is validated should be regarded in its favor.

22 CHAPTER 1. INTRODUCTION

Part II

Composition Framework

23

2
Universal Grammar-Based

Modularization

BETA is an object-oriented programming language, historically following the SIM-
ULA tradition in the Scandinavian school of object-orientation [57, 63]. One of the
interesting concepts of BETA is the support of a single abstraction construct: the pat-
tern. However, rather than delving into the details of BETA as an object-oriented lan-
guage, we shall focus on another aspect of it, namely its program text modularization
technique. One of the side projects developed around BETA was the Mjølner BETA
system. The Mjølner system provides a fragment system (or fragment language) aimed
for modularization of BETA program text. Essentially, any snippet of BETA source
code—a fragment—can be a module. By putting such fragments together, a complete
and executable program can be constructed. By separating the BETA language with its
pattern construct from the modularization of program texts as provided by the fragment
language, a separation between “programming in the small” and “programming in the
large” is achieved [27].

The technique used by the Mjølner fragment system is called grammar-based mod-
ularization (GBM) in the literature [58, 59, 63]. The technique was initially introduced
under the name syntax-directed modularization [59]. The technique is ‘grammar-
based’ since the underlying language grammar dictates what are considered valid and
deployable fragments for the modularization process. Some of the mentioned benefits
for introducing this modularization technique to BETA were [63, Chapter 17]:

– Large programs are easier to understand, and edit, if split into a number of
smaller, logically coherent, units. Development is also simplified if several peo-
ple are working on the same project.

– Modules can be saved in a library and shared by several programs. Good modu-
larization mechanisms will thus improve reusability of code as well as designs.

– It is good practice to split a module into interface modules and implementation
modules. An interface module defines how a module can be used, and an im-

25

26 CHAPTER 2. UNIVERSAL GBM

plementation module describes how a module is implemented. This makes it
possible to prevent users of a module from seeing details about data representa-
tion and implementation of algorithms.

Despite of BETA having been introduced in the early 80s, we are not aware of
any other language or system supporting the same particular technique for program
modularization (except for gbeta, which is a direct extension of the BETA language
and developed within the same group [29]). The fact that BETA itself is considered a
‘dead’ language does not help championing the particular modularization technique it
was first, and practically alone, to provide.

The fragment system provided in the Mjølner system is directly connected to the
BETA language itself, in particular to its grammar – fragments defined must conform
to the BETA grammar. Nevertheless, the modularization approach, being based on
the notion of grammars, is very general and in principle not restricted to the BETA
language. This is indeed also mentioned by the developers of BETA [63, p. 256], but a
concrete, practical and automatic technique for enabling the approach for an arbitrary
language has, to the best of our knowledge, never been realized. Still, the generality of
the modularization approach is intriguing. So, one interesting research question is how
the grammar-based modularization technique of the Mjølner fragment system can be
made available to arbitrary languages, not only in theory, but also in practice. That is,
a method and a solution to the following scenario:

Given a grammar G that specifies a language L, and a set of constructs in
L that are considered useful modularization units, produce a grammar G+,
derived from G, that specifies a language in which it is possible to write frag-
ments (wrt. G) such that programs of L can be modularized.

The Mjølner fragment system provides a tailored solution to the above scenario,
addressing the BETA language, its grammar, and certain constructs of the language. In
this chapter we generalize this solution. The main contributions of this chapter are:

1. We provide an understanding of how grammar-based modularization, in the style
of the Mjølner fragment system, can be made available to arbitrary programming
languages.

2. We provide a practical transformation technique for adapting grammars such
that it is possible to concretely formulate, and thus program with, the considered
fragments.

3. We discuss how the original grammar can be used to ensure safe assemblage of
fragments. We also discuss how programmers can be more precise in controlling
what is considered safe for their fragments.

4. We analyze the minimal requirements for a fragment language. That is, what is
required from a language used to specify how fragments are put together into
meaningful programs.

By addressing arbitrary programming languages, we can achieve a universal gram-
mar-based modularization approach (U-GBM). The goal is in particular to have a prac-
tical approach where specified grammars can be transformed, or adapted, in a general
way to take advantage of GBM. The transformed grammars can be said to encode frag-
ment systems, and realize the possibility of formulating concrete fragments. In this

2.1. BACKGROUND 27

sense we develop a framework for how the GBM approach can be realized for arbitrary
languages. We use the term ‘framework’ here in the sense of capturing a methodology,
rather than a particular design.

We will focus on languages that (syntactically) can be described by context-free
grammars. Most programming languages can be described by such grammars. The
investigations in this chapter are important because we will build upon them in subse-
quent chapters to provide more advanced and useful modularization and composition
methods.

This chapter is structured as follows. In Section 2.1 we provide required back-
ground knowledge relating to context-free grammars and GBM. In Section 2.2 we then
describe how context-free grammars can be adapted such that they encode fragment
systems. In Section 2.3 we discuss how fragment systems can guarantee safe modular-
ization. Finally, in Section 2.4, we summarize the achievements of the chapter.

2.1 Background
First we will recall the formalism of context-free grammars, since we will base our
framework on it. Then, in Section 2.1.2, we look in more detail at the BETA Mjølner
system and how its fragment system works.

2.1.1 Context-free grammars and languages
The syntax of formal languages used in computer science, for example programming
languages such as Java, are often specified in some grammar formalism. A grammar is
a convenient way of specifying an infinite set of possible programs in a finite way. This
essentially means that there is not an a priori set of programs that can be written in the
language being specified. The Extended Backhus-Naur Form (EBNF) [1] is a format
frequently used to specify grammars. For example, the syntax of a simple fictitious
rule-based language RL—RL for “Rule Language”—can be specified by the EBNF
statements in Example 2.1.1

Example 2.1. (RL grammar) The following is an EBNF grammar for an example rule
language.

〈prgm〉 ::= 〈stmt〉*
〈stmt〉 ::= 〈rule〉 | 〈fact〉
〈rule〉 ::= 〈head〉 :- 〈body〉 .
〈head〉 ::= 〈atom〉
〈fact〉 ::= 〈atom〉 .
〈body〉 ::= 〈atom〉 (, 〈atom〉)*
〈atom〉 ::= 〈predname〉 (〈term〉 (, 〈term〉)*)

〈term〉 ::= 〈const〉 | 〈var〉 | 〈num〉
〈predname〉 ::= STRING

〈const〉 ::= STRING

〈var〉 ::= CAP_STRING

1In fact, our example language RL is very similar to the language Datalog.

28 CHAPTER 2. UNIVERSAL GBM

〈prgm〉
〈stmt〉
〈rule〉
〈head〉 :- 〈body〉 .
〈atom〉 :- 〈body〉 .
〈predname〉(〈term〉) :- 〈body〉 .
animal(〈term〉) :- 〈body〉 .
animal(〈var〉) :- 〈body〉 .
animal(X) :- 〈body〉 .
animal(X) :- 〈atom〉 .
animal(X) :- 〈predname〉(〈term〉) .
animal(X) :- tiger(〈term〉) .
animal(X) :- tiger(〈var〉) .
animal(X) :- tiger(X) .

TABLE 2.1: Derivation sequence from nonterminal prgm to the string in (2.1).

〈num〉 ::= NUM_STRING

The first grammar rule states that a program (represented by 〈prgm〉) consists of
an arbitrary number of statements (〈stmt〉). The second grammar rule states that a
statement is either a rule statement or a fact statement. The third rule states that a
rule statement consists of a head, followed by the word “:-”, followed by a body,
and trailed by a dot (“.”), and so on. In EBNF, an asterisk (∗) after a nonterminal
〈n〉 usually mean “zero or more” of 〈n〉. A plus sign (+) means “at least one”, and a
questions mark (?) “zero or one.” Hence, an RL program consists of “zero or more”
statements. The traditional way of understand rules (here represented by 〈rule〉) is: If
the body holds, then the head also holds. Facts are always true. The last four grammar
rules define what predicate names, constant symbols, variables and numbers look like.
They are defined by special tokens not further specified here, only to say that predicate
names and constant symbols are character strings assumed to start with a lower-case
letter, variables are capitalized character strings (first character must be upper-case),
and numbers are strings of numerals.

�

We shall use Example 2.1 as an example grammar throughout this chapter. The
〈xyz〉 parts of the specification are called nonterminal symbols. Each nonterminal 〈xyz〉
generates a set of strings over a finite alphabet Σ, using the grammar rules with 〈xyz〉 on
the left-hand side as a starting point. Rule choices (separated by |) describe different
ways of generating the strings.

animal(X) :- tiger(X). (2.1)

For example, the string in (2.1)—stating that every tiger is an animal—can be gen-
erated from the nonterminal 〈prgm〉 using the grammar rules. This is shown by the
derivation sequence in Table 2.1.1, starting with the nonterminal 〈prgm〉 and ending
with the string itself.

Each step in the sequence is derived from the previous one by replacing one of the
nonterminals with the right-hand side of its definition.2 Other strings can be generated

2This technique of matching a string with a grammar is also called top-down parsing in the literature [3].

2.1. BACKGROUND 29

in a similar fashion. The set of strings that can be derived from a carefully selected
nonterminal of a grammar—called the start symbol—is called the language generated
by the grammar.

Formally, a context-free grammar (CFG) is a 4-tuple [56]:

G = (N,Σ,P,S)

where N a finite set of nonterminal symbols, sometimes called syntactic categories,
Σ is a finite set of terminal symbols (disjoint from N), P a finite set of production rules
N× (N ∪Σ)∗ and S ∈ N the start symbol. Each production rule N× (N ∪Σ)∗ can be
used to rewrite N by (N ∪Σ)∗ (cf. example in Table 2.1.1). Any string in (N ∪Σ)∗

derivable from the start symbol S is called a sentential form. A sentential form that
does not contain any nonterminal symbols is called a sentence (it only contains terminal
symbols, that is, it is in Σ∗). For example, all the steps in the derivation sequence in
Table 2.1.1 are sentential forms of the grammar in Example 2.1. Only the last step is a
sentence of the same grammar (since it does not contain any nonterminal symbols). The
start symbol S specified by a grammar G is of importance since it explicitly defines the
valid units of the language generated by G, hence the valid units that can be specified
by programmers. Sentences derived from S are sometimes called programs of the
language. In Example 2.1 the nonterminal prgm is assumed to be the start symbol.

Considering a CFG G = (N,Σ,P,S), a sentential form F1 derives a sentential form
F2 in one derivation step if and only if F1 = σlAσr, F2 = σlA1 · · ·Anσr and A ::=
A1 · · ·An ∈ P, where each σi is some sequence of terminal symbols and A j are non-
terminals. This is written as:

F1
1−−→
G

F2

where the one (1) above the derivation arrow signifies that the sentential form F2
is derived from F1 in one step. If the sentential form F1 derives F2 in any number of
derivation steps, then this is written:

F1
∗−−→
G

F2

The set of strings generated by a syntactic category n of a grammar G is called the
language LG(n) of n (simply L(n) when it is clear which G is meant). This can be
defined as:

LG(n) = {x ∈ Σ∗ | n ∗−−→
G

x}

The de facto semantics of a context-free grammar is given by the sentences it gener-
ates [4]. The set of all sentences of a grammar G is called the language L(G) generated
by G and is defined as:

L(G) = {x ∈ Σ∗ | S ∗−−→
G

x}

Notice that L(G)≡ L(S) where S is the start symbol of G. A language L is context-
free if there exists a context-free grammar that generates it. Intuitively, a context-free
grammar G (of a programming language L) defines a (possibly infinite) set of sentences
(programs) that conform to G. Most programming languages can syntactically be de-
fined by context-free grammars, and in the following we only consider such languages.

30 CHAPTER 2. UNIVERSAL GBM

2.1.2 Grammar-Based Modularization (GBM)

The Mjølner system, for the purpose of the BETA programming language, proposed a
grammar-based modularization technique [63]. The Mjølner fragment system, or frag-
ment language, allows for the definition of BETA source code fragments as modules.
To simplify the presentation we do not introduce the BETA language and its syntax,
but instead exemplify the technique using our rule language RL defined in Example 2.1.
We try to stay as close as possible to the terminology used in [63]. Modules, which
here are equalled to fragments, are syntactical structures of the considered language
and are called forms. Forms must belong to some syntactic category of the underlying
grammar, and hence be derivable from some of its nonterminals. A form derived from
nonterminal 〈A〉 is called an A-form. Forms can in principle be any sequence of termi-
nal and nonterminal symbols of the considered grammar. Hence, forms are essentially
sentential forms of a particular syntactic category of the grammar. The sentential form
in (2.2) can be seen as a rule-form of the RL grammar with one 〈num〉 and one 〈atom〉
nonterminal (not yet derived to terminal symbols).

bonus(X, 〈num〉) :- employee(X), 〈atom〉. (2.2)

To be able to refer to nonterminals in forms, they are given names. Nonterminals
meant to be replaced by the fragment system are called slots and have the following
syntax:3

«SLOT T:A» (2.3)

where T is the name of the slot and A is its syntactic category. The sentential
form from (2.2) can thus be written as in (2.4), which contains a slot named value
of syntactic category 〈num〉 and a slot named condition of syntactic category 〈atom〉
(when using nonterminals in slots we do away with the angle brackets). These slots
describe where change can take place and are called slot declarations.

bonus(X, «SLOT value:num») :- employee(X),

«SLOT condition:atom» .
(2.4)

When defining forms in the fragment system, they must be given a name and a
syntactic category, and are then called fragment-forms. Following the style of [63], we
use a graphical syntax for defining fragment-forms. The table in (2.5) demonstrates
the graphical syntax (grayed table rows indicate ‘meta’ information about forms, while
white rows contain concrete forms).4

F:A
ff

(2.5)

In (2.5) F is the name of the fragment-form, A is its syntactic category and ff is the
form (derivable from nonterminal 〈A〉). The Mjølner system also introduces the notion
of fragment groups, which are sets of fragment-forms associated by a name using the

3This syntax was originally chosen for its suitability wrt. the BETA language, and we use the same here.
4There is also a textual syntax available in the Mjølner BETA system, but is not further discussed here.

2.1. BACKGROUND 31

name construct (illustrated below). A fragment group containing a single fragment-
form, corresponding to (2.4), is shown in (2.6).

name ‘RuleGroup’
myRule:rule
bonus(X, «SLOT value:num») :- employee(X),

«SLOT condition:atom» .

(2.6)

Complete programs are assembled by binding fragment-forms to declared slots.
The origin construct can be used for this purpose. The origin construct takes the frag-
ment group being operated on as an argument. The fragment-forms appearing in a
fragment group with an origin construct are called slot applications.

name ‘Rules’
origin ‘RuleGroup’
value:num
200
condition:atom
efficient(X)

(2.7)

By matching the names of the fragment-forms in (2.7) (slot applications) with the
slot names in the fragment group indicated by the origin construct (slot declarations),
the fragment-form in (2.8) is constructed.

myRule:rule
bonus(X, 200) :- employee(X), efficient(X).

(2.8)

Notice that the form in (2.8) is a valid sentence of the RL language, stating that
“efficient employees receive a bonus of 200.” As such it is a useful entity constructed
from its smaller fragment parts. The above has demonstrated the main idea of the
Mjølner fragment system, but using the simple RL language rather than BETA itself.
All the features of the fragment system have not been discussed here, instead we direct
the reader to [63, Chapter 17] for further details.

The grammar-based modularization provided by the Mjølner fragment system is
attractive because of its simplicity. All the variable points in fragment-forms are ex-
plicit via slot declarations, and hence clearly dictate where forms can be modified (but
not how). A fragment-form with one slot allows for the variability dictated by the
slot declaration. That is, any form of the same syntactic category as specified in the
slot declaration can replace it. The technique also allow fragment-forms to separate
between module interface and module implementation. The slot declarations are the
interfaces, while the slot applications specify the implementations. Thus, the imple-
mentations can easily be varied by changing the slot applications. The main benefits of
grammar-based modularization are thus:

– The underlying idea is simple and easy to understand for programmers.

– By being based on the notion of grammars the approach is very generic and can
be applied to most programming languages.

– Since fragments only can be transformed via their declared slots, a kind of en-
capsulation is supported.

32 CHAPTER 2. UNIVERSAL GBM

– Slots allow for rich variability by not restricting the content of the fragments
being bound. This allows for separation between fragment interfaces (slots) and
their realizations (slot applications).

– Assembly of fragments is safe (controlled by syntactic categories in a declarative
way).

While the underlying idea is language independent, the Mjølner fragment system
has its limitations due to its close connection to the BETA language:

– Slots can only be declared for a few carefully selected syntactic categories of the
BETA grammar.

This restriction is in place because the fragment system supports separate compila-
tion of fragment-forms. Hence, fragment-forms containing slots can first be compiled
and then later bound together in the compiled form. The benefit is that the target frag-
ment does not have to be recompiled if a slot application is changed. Any limitations
to the general approach are in place in the Mjølner fragment system to serve particular
needs of the BETA language and its users. But it should be noted that supporting, for
example, separate compilation of fragments can have far-reaching consequences. For
example, special tools have to be implemented to handle the grammar-based modular-
ization technique that is special to the Mjølner fragment system.

2.2 Universal Grammar-Based Modularization
Our goal is to deploy the same grammar-based modularization technique as outlined
in the previous section, but without the limitations connected to the Mjølner fragment
system. In contrast, we pursue a lightweight approach. That is, we want to provide
a methodology and technique for developing and generating lightweight fragment sys-
tems. Given a grammar and certain input regarding what kind of modularization should
be supported (for example which fragment-forms should be definable), a grammar-
specific fragment system can be generated allowing modularization of program text in
the style of GBM. The approach is considered ‘lightweight’ because:

– Separate compilation of fragment-forms is not supported. While less powerful,
the benefit is that existing tooling does not have to be extended to handle compi-
lation of fragment-forms and slots appearing in such forms.

A consequence is that the lightweight approach is strictly static, in the sense that it
can be seen as a front-end – fragments must be assembled into valid programs of the
underlying language before being compiled/interpreted. Since the fragment system is
not involved when assembled programs are executed, existing tools (e.g. compilers and
interpreters) can directly be reused.

We expect the following benefits of a lightweight approach:

– Support for different languages does not in detail have to be programmed for
each language’s grammar. Instead, support for grammar-based modularization
and programming with the slot concept can be given semi-automatically by ap-
propriate transformations on the considered grammar, resulting in a grammar-
specific fragment system.

2.2. UNIVERSAL GRAMMAR-BASED MODULARIZATION 33

G

Base grammars
(defining languages)

Fragment language (binding slots)

Grammar-based modularization using slots

L'

Fragment system

"Reuse grammar"
(defining reuse language)

adapt grammar (via function !)

G'

FIGURE 2.1: Languages formally specified by a base grammar can be adapted to a
reuse grammar, which generates a language that allows slots. Such a language is called
a reuse language wrt. its base language.

– In line with the conceptual idea of grammar-based modularization, slot support
can be given for any syntactic category of the considered grammar, and not for
only a few selected ones as in the Mjølner system.

– Any context-free language can be supported. Thanks to a generative approach,
new languages can more quickly be addressed and supported with fragment sys-
tems. This will enable us to learn more about the true usefulness of the approach,
since we can do ‘rapid prototyping’ and more easily experiment with different
underlying languages.

In the following section we will discuss how this lightweight support for grammar-
based modularization can be made available for arbitrary languages.

2.2.1 Grammar adaptation for GBM

In Section 2.1.1 we briefly introduced context-free grammars as the standard formalism
for describing the syntax of formal languages. We also mentioned EBNF as a practical
language for specifying such grammars. This section describes how formally specified
languages can be adapted, or extended, to be subject to grammar-based modulariza-
tion. This idea is illustrated in Figure 2.1 were G is the base grammar (specifying a
base language) under consideration and G’ its adaptation, called a “reuse” grammar
(wrt. G), which generates a language in which it is possible to program with slots.
Along with a fragment language (discussed in Section 2.2.2), such an adapted gram-
mar essentially constitutes a lightweight fragment system supporting grammar-based
modularization (see Figure 2.1). This is so because the reuse grammar describes what

34 CHAPTER 2. UNIVERSAL GBM

valid fragments are and what their interfaces can be, while the fragment language can
be used to describe how they should be assembled.

We start by recalling, and formalizing, what are considered to be valid and well-
formed units of deployment in such an approach—fragments. First, we may define
units that are not valid programs of the original language, but “subsets” thereof. For
example, we might want to use atoms as basic building blocks (units) for a fragment
system based on RL. So, while not valid programs wrt. their grammar, each such unit
is a string derivable from some nonterminal of the grammar. For RL atoms, such a
nonterminal would be 〈atom〉. For a given grammar G, we will call such a unit a
PG

n -program (or simply P-program when referring more abstractly to such a unit).

Definition 2.1. (PG
n -program) Given a CFG G, the strings P ⊆ Σ∗ derivable from

nonterminal n ∈ N of G are called PG
n -programs.

Notice that PG
n -programs, in formal language theory terms, are nothing other than

strings belonging to the language generated by the nonterminal n of grammar G, that
is, strings in LG(n). Keep in mind that P-programs are sentential forms that are also
sentences. The string “efficient(X)” is an example of a PRL

atom-program.
Second, to allow for variability in fragments we may define P-programs that are

incomplete “within” themselves via the concept of slots. Such slots effectively deter-
mine the possible variability for the P-programs. Formally, the slots are non-derived
nonterminals.

Definition 2.2. (FG
n -program) Given a CFG G, the strings F ⊆ (N ∪Σ)∗ derivable

from nonterminal n ∈ N of G are called FG
n -programs.

That is, FG
n -programs as defined in Definition 2.2 are sentential forms of G, but

derived from n∈N rather than the start symbol of G. The string “p(〈var〉) :- q(X),
〈atom〉.” is an example of a FRL

rule-program. It is not a P-program since it contains
nonterminals.

Whenever it is clear what is meant we shall use the term fragment in a rather lib-
eral fashion to mean P- or F-programs. That is, partial and possibly under-specified
(via slots representing nonterminals) programs of some language (as defined in Defini-
tions 2.1 and 2.2).

We notice that regardless of a specific grammar (or, programming language spec-
ified by the grammar), P-programs and F-programs are the first-class entities in any
grammar-based modularization system or environment. That is, they are the fragments
being composed and transformed to construct software.5

Grammar-based adaptation requirements In the following we briefly summarize
the requirements on a lightweight adaptation of a base grammar to support grammar-
based modularization.

1. P- and F-program specification. It must be possible for programmers to con-
cretely define partial programs, that is P- and F-programs. This makes it possi-
ble to reuse and compose fragments, as defined in some fragment language (by
a developer).

(a) P-programs. It should be possible to restrict which kind of P-programs
are allowed to be defined and worked with. That is, for which n ∈ N wrt.

5We will discuss more on the relation between P- and F-programs in Section 3.2.1 (p. 69).

2.2. UNIVERSAL GRAMMAR-BASED MODULARIZATION 35

a grammar G Pn-programs may be defined (this choice also affects which
F-programs may be defined). It should also be possible to leave this unre-
stricted, and hence allow P-programs to be defined for every nonterminal
of a grammar. Dictating and clarifying such restrictions helps to control the
flexibility of a specific fragment system.

(b) F-programs. It must be possible to define explicit variation points in frag-
ments—slots. Note that sentential forms in formal language theory terms
are abstract entities that never are specified by programmers in practice.
But, being able to define F-programs essentially means the possibility of
specifying and practically working with concrete sentential forms. This
can be realized by introducing new language constructs for representing
unresolved nonterminals in F-programs.

2. F-program access. It must be possible to address slots in fragments. This will be
realized via name references. Addressing slots via names—in conjunction with
having new language constructs for representing them (see point 1b)—enables
the implementation of their access in a language-agnostic fashion.

We shall address the above requirements by first describing how explicit variation
points can be defined and accessed in F-programs, followed by how the definition of
P-programs can be restricted.

Defining and referencing slots

Consider the sentential form of the RL grammar in (2.9), where 〈var〉 is a nonterminal
not yet derived to terminal symbols. The nonterminal can be derived to any string
representing a variable.

animal(X) :- tiger(〈var〉). (2.9)

In a grammar-based modularization approach the nonterminal in the above repre-
sents a variable point. Slots are concrete constructs that help to simulate sentential
forms, more precisely the nonterminals in sentential forms. Thus, we want to intro-
duce the possibility to program with slots in fragments. To achieve this we extend the
addressed language with a new construct—the slot—for the purpose of specifying the
variable points. Introducing a new construct for the purpose of modularization avoids
the need to overload any existing construct for new and different purposes. Also, it is
easier to separate the names of slots from the names used in programs of the underlying
language (seen as a clear benefit in, for example, BETA [63, Chapter 17]). Suppose
we want to make the nonterminal 〈var〉 “slotable” in the RL rule language, such that
we can either directly specify variables in fragments, or leave variables unspecified as
named variation points (slots). For this we would introduce two nonterminals (〈slot’〉
and 〈ident’〉), assumed not to previously exist in the base grammar (hence the prime in
their names), along with their definitions, which can be found in Table 2.2.6

We will call the grammar in Table 2.2 the SLOT-grammar.7 Slots are given names
(via 〈ident’〉), enclosed by the tokens “«” and “»”, such that they can be referred to.
This particular concrete syntax is inspired by the Mjølner fragment system, but could

6In our realization we do not check the disjointness conditions on the grammars, but assume it to be true.
7For the sake of completeness we could specify 〈slot’〉 to be the start symbol of the SLOT-grammar.

36 CHAPTER 2. UNIVERSAL GBM

〈slot’〉 ::= « 〈ident’〉 »
〈ident’〉 ::= STRING

TABLE 2.2: The SLOT-grammar.

be changed if something else is more suitable for a particular language (e.g. if that
syntactic construct is already used for a different purpose).

To enable the use of slots for a particular base language, we transform the produc-
tion rules of the base language’s grammar appropriately. We can allow (representatives
of) non-derived nonterminals 〈n〉 to appear as slots in fragments by a set of grammar
transformations via function: ψ : (CFG,n)→ CFG, where n is a nonterminal of the
input CFG. For a given input base grammar G, and nonterminal n, ψ is defined by the
following transformation steps, resulting in grammar G′:

1. Union the SLOT-grammar with G.8 This means: Union the two disjoint sets of
nonterminals, (disjoint) terminal token symbols, (disjoint) production rules, but
retain G’s start symbol.

2. For each production rule in G defining nonterminal n (〈n〉 on the left-hand side),
rename n to (previously non-existing nonterminal) n′. We denote the original n
nonterminal n0 and strings generated by the original nonterminal n for n0-strings
(or L(n0)).

3. Introduce the new unit production rule: 〈n〉 ::= 〈n’〉.

4. Introduce the new unit production rule: 〈n〉 ::= 〈slot’〉.

Since the SLOT-grammar and G are disjoint wrt. their nonterminals, the only effect
made by steps 1–3 is that the derivation of strings derivable by G from any nonterminal
(of G) defined via n are one step longer when derived by G′, via the additional unit
production rule 〈n〉 ::= 〈n’〉.

Theorem 2.1. (Safe slot extension) Given CFG G and nonterminal n defined in G,
let ψ(G,n) = G′. Then every string generated by G is also generated by G′, that is,
L(G)⊆ L(G′).

Proof. Let G and G′ = ψ(G,n) be CFGs. All strings in L(G) are derived the same
way wrt. G′, save those derived via n, so we only have to concern ourselves with such
strings. Let l ∈ L(G) be a string derived via n (indicated by having n within brackets
over the derivation arrow):

S ∗−−→
G

γ1
1(n)−−−−→

G
γ2

∗−−→
G

l

where S is the start symbol of G and γ1,γ2 some sentential forms. Now, assume the
opposite of what we are trying to prove, that l 6∈ L(G′). Looking at the definition of ψ

which defines G′ we notice that we can just as well derive l with G′ using only a single
extra step via n′:

8If ψ is applied to the same base grammar more than once, this step is only performed the first time.

2.2. UNIVERSAL GRAMMAR-BASED MODULARIZATION 37

CAP_STRING

CAP_STRING

!slot'"

Syntax diagram for

nonterminal !var'":

Syntax diagram for

nonterminal !var":
!var'"

= terminal (token) symbol = nonterminal symbolLegend:

NOT DEFINED

G

SLOT-grammar

!(G,var) = G'

","

":-"atom atom

atom

"."

vpoint'ISC-grammar

Syntax diagram for
nonterminal rule

= terminal (token) symbol

= nonterminal symbol

Legend:

FIGURE 2.2: To make nonterminal 〈var〉 “slotable”, it is defined to be either a 〈var’〉
(the original 〈var〉), or a slot (〈slot’〉).

S ∗−−→
G′

γ1
1(n)−−−−→
G′

γ2
1(n′)−−−−→

G′
γ3

∗−−→
G′

l

The assumption we made was false, and hence l ∈ L(G′).

Transformation step 4 makes the n nonterminal not only derive n0-strings, but also
n-slots: representatives for non-derived n0 nonterminals.9 Thus, if we let grammar G be
the RL grammar from Example 2.1, and we apply ψ(G,var) = G′, then the transformed
grammar G′ also generates the string (2.10). The transformation is illustrated using a
syntax diagram notation in Figure 2.2.

animal(X) :- tiger(« myVarSlot »). (2.10)

In this case, the above represents the sentential form where the slot « myVarSlot »
represents the nonterminal 〈var〉 from G that has not yet been derived. This is, however,
a piece of code that can be parsed and worked with in practice. From the perspective
of grammar-based modularization, the slot represents an explicit variation point. The
variation point can be referred to via its name: myVarSlot.

While a slot must be given a name for identification, in contrast to the Mjølner
fragment system we do not require the specification of a syntactic category with the
slot declaration. We shall come back to this issue in Section 2.3.

The grammar transformation via ψ enables programming with slots by explicitly
introducing new constructs into the base grammar. The benefit of introducing new
constructs for this purpose is that this can be done without much consideration of the
particular base grammar. That is, the step can be automated. Furthermore, from a tool-
ing perspective, the identification of slots is made simpler by having explicit constructs
to represent them.

9Multiple applications of ψ for different nonterminals can potentially cause parsing problems due to
nondeterminism, but we do not further discuss this here. Rather we assume that such problems can be
resolved, either automatically, or manually.

38 CHAPTER 2. UNIVERSAL GBM

Controlling definable fragments

To control end-users of a grammar-based modularization system, it should be possible
to restrict which kind of fragments may actually be defined. That is, for which n∈N of
grammar G FG

n -programs may be defined. (We here see F-programs as generalizations
of P-programs, so the same restrictions would hold for P-programs.) Consider yet
again our example rule language grammar from Example 2.1. Say we want to be able
to define programs, atoms and variables as fragments, but nothing else. This means
that we want to be able to handle strings generated by the nonterminals 〈prgm〉, 〈atom〉
and 〈var〉, respectively. This can be accomplished by changing the start symbol of the
grammar depending on which fragment type should be considered. For example, by
specifying the start symbol to be 〈atom〉, we have a grammar that can only generate
atom-strings. For a given grammar G, declaring what kind of F-programs may be
defined can be achieved by specifying a subset F ⊆ N of the nonterminals N of G.

We want to formalize how a context-free grammar describing some language can be
adapted, or transformed, to be useable in a grammar-based modularization approach.
That is, formalize the steps to enable the possibility of (i) defining fragments, (ii) defin-
ing explicit slots in fragments and (iii) restricting what kind of fragments may be de-
fined. These issues have been addressed and discussed separately in the above, but here
we formally define how these steps can be brought together.

We recall that the SLOT-grammar defines the nonterminals 〈slot’〉 and 〈ident’〉 (as-
sumed to be disjoint from any nonterminal set in any addressed grammar), and is
reusable for any grammar adaptation. The SLOT-grammar, together with the appli-
cation of the function ψ, and the specification of a subset of nonterminals from the
base grammar to restrict the specifiable fragment types, essentially make up the adap-
tation. We call such an adapted grammar for a context-free reuse grammar, however,
initially without considering the restriction of different fragment types.

Definition 2.3. (Context-free reuse grammar) Let Islot = (Ns,Σs,Ps,Ss) be the SLOT-
grammar, and G = (N,Σ,P,S) a base CFG to be adapted. Given a set Nslot ⊆ N of
nonterminals representing constructs for which we want to be able to define slots, we
apply the following steps:

1. Construct the grammar G′ = (N∪Ns,Σ∪Σs,P∪Ps,S), from the SLOT-
grammar Islot and the base grammar G.

2. For pairwise different i1, . . . , in ∈ Nslot , where |Nslot |= n, apply:

ψ(ψ(. . .ψ(G′, i1) . . . , in−1), in) = G′′

Then, the grammar G′′ is a context-free reuse grammar.

Notice that the start symbol of the SLOT-grammar Islot is of no interest. Also notice
that the reuse grammar has the start symbol S of G as its start symbol. But, because of
our need to be able to handle several different fragment types, a grammar adaptation
actually results in a family of grammars, where each family member only differs in the
start symbol used. The size of the family generated from one particular base grammar
is equal to the number of desired valid fragment types.

Definition 2.4. (Context-free reuse grammar family) Let R =(Nr,Σr,Pr,S) be a context-
free reuse grammar as defined in Definition 2.3, and G = (N,Σ,P,S) the base CFG
from which R was derived. Given a set N f rgmt ⊆ N of desired fragment types, where

2.2. UNIVERSAL GRAMMAR-BASED MODULARIZATION 39

s1, . . . ,sn ∈ N f rgmt are pairwise different and |N f rgmt | = n, we define a context-free
reuse grammar family as:

G = {(Nr,Σr,Pr,s1), . . . ,(Nr,Σr,Pr,sn)}

We can also write such a grammar family as: G = (Nr,Σr,Pr,{s1, . . . ,sn}). The
appropriate grammar in a reuse grammar family is used to handle the appropriate frag-
ment type. As such, a context-free reuse grammar family captures our full adaptation
to a grammar-based modularization approach for a given base context-free grammar.

Definition 2.4 is not a new or strange thing to a formal language theorist, since
CFGs are sometimes defined in this way directly. And in practice we never have
to generate a family of grammars since modern parsing libraries and systems (e.g.
ANTLR [72]) allow to dynamically specify the start symbol when parsing a piece of
source code. A context-free grammar G generates a (possibly infinite) set of strings
L(G). An analogue set can be defined for a context-free reuse grammar family: a
context-free grammar family G = {G1, . . . ,Gn} generates a (possibly infinite) set of
strings defined by L(G) = L(G1)∪ . . .∪ L(Gn).10 A string in L(G) is called a well-
formed sentence, or valid sentence, wrt. G . When there is no confusion we will refer
to a reuse grammar family G simply as a reuse grammar G (that may have several start
symbols).

The reason we highlight the grammar family is that it formally captures—from a
grammar-based modularization and composition point of view—what a grammar adap-
tation to GBM constitutes in our approach. We observe:

If the reuse grammar G is derived from base grammar G, then G dictates the
valid GBM components for L(G) – both their valid structure and interfaces.

Thus, G dictates both how valid modules look (strings of a certain form), but also
how they may be accessed (specified using the slot construct).

Example 2.2. (Business rules for small company) This example considers business
rules for a small company, written in our rule language RL (grammar from Exam-
ple 2.1). The company wants to be able to define reusable units that can be assembled
in a fragment system. Suppose the following fragment is wanted to be defined, stating
that employees, subject to an unspecified condition(s), receive a yet unspecified bonus:

bonus(X, « value ») :- employee(X), « condition ». (2.11)

The above fragment can be reused by binding the two slots. First, by providing a
qualifying condition for receiving a bonus at all (slot condition), and then by binding
the unspecified bonus value (slot value). For example, by binding the slot value
with Pnum-program "200", and by binding the slot condition with Patom-program
"efficient(X)". This would result in the rule:

bonus(X, 200) :- employee(X), efficient(X). (2.12)

The rule below could also be constructed from the one in (2.11), by binding the
fragment "100" to slot value and the fragment "overtime(X,Y), lg(Y,50)" to slot

10Remember that G1, . . . ,Gn only differ in their start symbol.

40 CHAPTER 2. UNIVERSAL GBM

condition:

bonus(X, 100) :- employee(X), overtime(X,Y), lg(Y,50). (2.13)

The binary predicate lg in (2.13) represents the “larger than” relationship. Notice
that we are able to replace the single slot condition with two atoms since they appear
as part of a list construct, namely, the body list of the rule [63, pp. 263–264].

Notice that the composed rules above are valid rules of the original grammar from
Example 2.1. To adapt the grammar from Example 2.1 such that the above frag-
ments can be defined, and appropriately transformed via slots, we create a context-
free reuse grammar according to Definitions 2.3–2.4. As an example, we define:
Nslot = {num,atom} and N f rgmt = {prgm,num,atom}.11 To generate the needed reuse
grammar, we apply ψ two times (for each member of Nslot). The result is the grammar
G′ = (N,Σ,P,S):

〈prgm〉 ::= 〈stmt〉*
〈stmt〉 ::= 〈rule〉 | 〈fact〉
〈rule〉 ::= 〈head〉 :- 〈body〉 .
〈head〉 ::= 〈atom〉
〈fact〉 ::= 〈atom〉 .
〈body〉 ::= 〈atom〉 (, 〈atom〉)*
〈atom’〉 ::= 〈predname〉

(〈term〉 (, 〈term〉)*)

〈term〉 ::= 〈const〉 | 〈var〉 | 〈num〉
〈atom〉 ::= 〈atom’〉

〈atom〉 ::= 〈slot’〉
〈num〉 ::= 〈num’〉
〈num〉 :: 〈slot’〉
〈slot’〉 ::= « 〈ident’〉 »
〈ident’〉 ::= STRING

〈predname〉 ::= STRING

〈const〉 ::= STRING

〈var〉 ::= CAP_STRING

〈num’〉 ::= NUM_STRING

The grammar G′ = (N,Σ,P,{prgm,num,atom}) is created from N f rgmt to complete
the adaptation. To better demonstrate how this grammar encodes our intensions, we
split it into a grammar family:

G ′ = {G′1 = (N,Σ,P, prgm),G′2 = (N,Σ,P,num),G′3 = (N,Σ,P,atom)}

We give three examples of how the above fragments do (not) belong to the language
generated by G ′:

1. Fprgm-program "bonus(X, «value») :- employee(X), «condition»." can
be generated from G′1 (occasionally skipping derivation steps indicated by the
number above the derivation arrow):

<prgm> 2−→ <rule> 1−→ <head> :- <body>. 4−→ bonus(<var>, <term>) :-
<body>. 2−→ bonus(X, <num>) :- <body>. 1−→ bonus(X, <slot’>) :- <body>.

5−→ bonus(X, «value») :- <atom’>, <slot’>. ∗−→ bonus(X, «value») :- em-
ployee(X), «condition».

2. From G′3 the Patom-program "efficient(X)" can be generated:

11The potential relation between the sets Nslot and N f rgmt is discussed in Section 3.2.1 (p. 69).

2.2. UNIVERSAL GRAMMAR-BASED MODULARIZATION 41

f
1

f
2

f
3

f
4

f
m

. . .

v
1

v
2

v
3

v
4

v
n

1 1 1 1 *

. . .
1

= fragment being configured

= fragment used as value

Legend:

composed programintermediate fragment

FIGURE 2.3: The composition process can be seen as a composition chain where each
link in the chain—binding fragments to slots—contributes to the final result.

<atom> 1−→ <atom’> 1−→ <predname>(<term>) 2−→ efficient(<var>) 1−→
efficient(X)

3. The Pvar-program "Z" cannot be specified and should produce an error in the
fragment system. This is because none of the grammars in G ′ can generate the
string "Z".

�

In the above we have described how a language, in particular its grammar, can be
adapted such that it may be used for grammar-based modularization. This includes
defining what appropriate fragments are and exactly where slots may appear in such
fragments.

2.2.2 Generic fragment language – FLABS

In a grammar-based modularization system, the combination of fragments into the fi-
nal result often takes a number of composition steps, resulting in a composition chain
(illustrated in Figure 2.3). Each such step is a slot application, that is, the binding of a
slot with a fragment. The exact fragments being put together—which slot applications
to carry out—must be specified by a developer using some formalism, or fragment
language. Programs of the fragment language are called composition programs. By
analyzing the specialized fragment language from the Mjølner fragment system, the
following fundamental fragment language requirements can be identified:

1. Fragment declaration. It must be possible to define and declare fragments that
should be used in the composition process.

2. Slot application. The language must support the basic fragment assembly tech-
nique: binding fragments to slots. That is, the notion of slot application must be
available as a construct.

3. Result specification. It should be possible to specify which fragment is consid-
ered the result of the composition.

42 CHAPTER 2. UNIVERSAL GBM

The above represents essential constructs for any fragment language for grammar-
based modularization. The Mjølner fragment system itself has its own special way of
supporting the above requirements. Fragment-forms define and declare fragments. Slot
applications are specified using the origin construct and by using the same name for a
fragment-form as the slot to which it is intended to be bound. Slot applications are thus
specified implicitly using name convention (or merging of names during composition).
Result specification is also done implicitly: there exists one fragment-form on which
no other fragment-form depends, and this fragment-form makes up the result of the
composition. This ‘output’ fragment-form often contains boiler-plate code required to
properly setup the BETA execution environment.

In our framework approach we want to use a single fragment language irrespective
of the underlying grammar. For such an approach to work, information that cannot be
presupposed in the fragment language must instead be given in the composition pro-
grams. This includes which grammar (language) is being worked on and what kind of
fragments are being declared. In the following our goal is to use the above identified
fragment language construct requirements to define the foundations for a generic frag-
ment language. The defined fragment language is generic in the sense that it does not
care about the language used to write the actual fragments. The goal here is to define
a simple language, using intuitive concrete syntax, which should be seen as a template
or straw man for a more concrete realization and implementation. For this reason, we
refer to the language as being ‘abstract’, and call it FLABS. The superscript ABS of
the language name symbolizes this. The fragment language can concretely be realized
in any existing programming language, as long as it supports the same constructs as
described in the abstract language. For example, it can be implemented as an API, or
designed as a standalone language.

Declaring a fragment of our example rule language RL (from Example 2.1) of syn-
tactic category var can look like in (2.14).

fragments (rl,var) myfrag = file:myvar.var . (2.14)

The declaration in (2.14) associates the name myfrag with the fragment(s) in the
file file:myvar.var. Notice how the type of the fragment is declared: both a grammar
(rl) and a specific syntactic category (var) from that grammar is given. That is, the
“types” of fragments in this fragment language are tuple types: grammar × syntactic
category. In practical terms this allows a system implementing the framework, where
the fragment language is used, to know which grammar, and which start symbol, to use
when parsing. The syntactic category used in (2.14) (var) must be supported by the
assumed existing reuse grammar.

Abstractly a slot application can be expressed as in (2.15), where F is the target
fragment and F ′ is the resulting fragment after binding value fragment f to the slot
slot in F .

F
(slot, f)

↪−−−−→ F ′ (2.15)

Formally speaking, a slot application amounts to replacing a sequence of terminal
symbols in F , that represent the slot, with the string f . The resulting string F ′ may,
or may not, belong to the language of the considered reuse grammar. Here we only
concern ourselves with the actual string replacement, but in the next section we shall
discuss what a safe slot application can be considered to be. Also, (2.15) can be seen
as an expression that evaluates to the resulting string. That is, (2.15) evaluates to F ′,
the result fragment.

2.2. UNIVERSAL GRAMMAR-BASED MODULARIZATION 43

〈prgm〉 ::= 〈stmt〉*
〈stmt〉 ::= 〈fdecl〉 | 〈bind〉 | 〈print〉
〈fdecl〉 ::= fragments (〈ident〉 , 〈ident〉) 〈ident〉 = 〈ref 〉 .
〈bind〉 ::= bind 〈ident〉 in 〈ident〉 with 〈ident〉 .
〈print〉 ::= print 〈ident〉 to 〈file〉 .
〈ref 〉 ::= 〈file〉 | 〈inline〉
〈inline〉 ::= " 〈text〉 "
〈ident〉 ::= STRING

〈file〉 ::= LOCATION

〈text〉 ::= TEXT

TABLE 2.3: Grammar for the generic fragment language FLABS.

Consider the fragment F in (2.16). Let us call fragment "200" for f and fragment
"efficient(X)" for g.

bonus(X, « value ») :- employee(X), « condition ». (2.16)

Then the resulting fragment F ′′ of the abstract sequence of slot applications in
(2.17) is as expected (cf. (2.12)).

F
(value, f)

↪−−−−−→ F ′
(condition,g)

↪−−−−−−−→ F ′′ (2.17)

In this case the resulting string F ′′ is a valid RL rule. However, the slot application
sequence in (2.17) results in an invalid RL statement if we change the value fragment
g to "X", since this would create the string in (2.18).

bonus(X, 200) :- employee(X), X. (2.18)

We introduce this abstract notation because it can be convenient to use when ex-
plaining slot applications, and we will make use of it later. More concretely we can
write slot applications (cf. (2.15)) as shown in (2.19), where slot is the name of a slot
in F and f is a declared fragment.

bind slot in F with f . (2.19)

For specifying which fragment is considered the result of the composition program,
the print construct can be used:

print frag to file:out.prgm . (2.20)

where frag is the resulting fragment and file:out.prgm the desired output file.
The grammar of our generic fragment language FLABS can be found in Table 2.3. The
first production rule in the grammar in Table 2.3 says that composition programs con-
sist of a sequence of statements. A statement is either a fragment declaration (〈fdecl〉),

44 CHAPTER 2. UNIVERSAL GBM

1 fragments (rl,rule) myrule = file:rprgm.rule .
2 fragments (rl,num) bonus = "200" .
3 fragments (rl,atom) cond = "efficient(X)" .
4

5 bind value in myrule with bonus .
6 bind condition in myrule with cond .
7

8 print myrule to file:outprgm.rule .

LISTING 2.1: Simple composition program composing three fragments.

a slot application (〈bind〉), or a print statement (〈print〉). Declarations reference frag-
ments (defined by nonterminal 〈ref 〉) either via a file location (〈file〉) or an inline frag-
ment definition (〈inline〉). An inline fragment definition means that a string containing
the fragment is specified (see Lines 2–3 in Listing 2.1).

Example 2.3. (Simple composition program) We revisit the rule in (2.21) written in
an extension of our rule language (referred to as rl). Let us assume it is located at
file:rprgm.rule.

bonus(X, « value ») :- employee(X), « condition ». (2.21)

Assume we want to compose the program in (2.22).

bonus(X, 200) :- employee(X), efficient(X). (2.22)

The composition program in Listing 2.1 would achieve this. The first statement
in Listing 2.1 declares the fragment in (2.21). The second and third statements define
and declare two inline fragments. The two bind statements then realizes the simple
composition.

�

The above fragment language is able to declare fragments and put them together
using sets of slot applications. It is generic by not making assumptions on the lan-
guage used to define fragments. This genericity is achieved at the expense of forcing
programmers to precisely declare which grammar is considered, as well as which syn-
tactic categories are used.

2.3 Grammar types and safe slot applications
When constructing software from smaller parts (components), it is important to be
able to provide some kind of guarantees wrt. the correctness of the resulting software.
There are two well-known levels of correctness that can be distinguished. We here
briefly discuss them and their differences, particularly in the setting of grammar-based
modularization. In this work we will mainly focus on the first.

1. Context-free syntactical correctness. The most basic kind of guarantee that we
would like to provide when composing software fragments is that the resulting
program is syntactically correct wrt. the underlying language. This means that

2.3. GRAMMAR TYPES AND SAFE SLOT APPLICATIONS 45

the resulting program belongs to the language L(G) generated by the base gram-
mar G. If this is the case, not only do we have a possibly meaningful program,
but the composed programs can also be used and understood by existing tools de-
veloped for the underlying language, such as editors, parsers, interpreters, com-
pilers, reasoners, analyzers.

2. Context-sensitive syntactical correctness. Ideally, one would also be able to
guarantee other properties of the composed program. For example, that it not
only is syntactically correct, but that it also will compile (if it is to be compiled)
or execute (if it is executable) as expected or without errors. Such properties have
to do with the semantics of the program. It could for example be checked—
statically (without executing or interpreting the program)—that a variable has
been defined before it is used. Informing the programmer of such errors is clearly
very helpful.

In this work we consider the first case from above, context-free syntactical correct-
ness. The second case is outside the scope of this work. Context-sensitive syntactical
correctness is first of all very dependent on the particular language in which the frag-
ments are written, which makes it hard to deal with in a generic manner. It is also
difficult to make such guarantees during composition of fragments since it is not well-
defined when the checks are to be performed (for certain fragment transformations they
might not make sense). It can be checked when the composition is complete, but then
it is difficult to know which exact composition step caused the error.

In a grammar-based modularization system, software is constructed by compos-
ing source code fragments. In general we want to guarantee that the final composed
program is a well-formed program of the underlying language. In particular we want
to ensure that every single composition step is a safe and valid one. Not giving such
guarantees would enable programmers to construct useless software. In our generic
approach it is important that safeness guarantees can be handled, or formalized, inde-
pendently of any particular language instantiating our framework. Or rather, we need
a general understanding of how a base grammar can be used to construct the required
safety conditions. We will define safeness guarantees wrt. the formalism on which our
framework is based, namely, context-free grammars and the languages they generate.

2.3.1 General safeness conditions
Before we give general safety conditions for compositions we look at a simple example.

Example 2.4. (Syntactically correct compositions) Consider RL’s grammar from Ex-
ample 2.1 extended by allowing atoms to be “slotable”, and prgms, atoms and vars to
be defined as fragments. Then the following fragment can be defined:

« consequence » :- tiger(X). (2.23)

Binding the slot named consequence with Pvar-program "Y" should render an er-
ror since the resulting program is not in the language generated by neither the base
grammar, nor the reuse grammar. Thus (where ↪→ reads “composes into”, and 6↪→
reads “cannot be composed into”):

« consequence » :- tiger(X). 6↪→ Y :- tiger(X). (2.24)

46 CHAPTER 2. UNIVERSAL GBM

However, binding the same slot with the Patom-program "mammal(X)" should be
allowed, since the resulting fragment would be in the language generated by the base
grammar. That is:

« consequence » :- tiger(X). ↪→ mammal(X) :- tiger(X). (2.25)

Notice that when only ensuring context-free syntactical correctness, the following
would also be allowed:

« consequence » :- tiger(X). ↪→ mammal(Y) :- tiger(X). (2.26)

The resulting program is a syntactically well-formed sentence of the rule language,
but it is not semantically sound since the variable used in the rule head does not ap-
pear in the rule body. Such semantical considerations could be specified in the static
semantics of the language, but, as mentioned, we do not cover such safety conditions.

�

Intuitively, for any composition result to be syntactically correct wrt. the base lan-
guage (that is, to be a string generated by the base grammar), each fragment bound to
a slot must belong to the set of strings generated by the nonterminal for which the slot
is a representative. That is, there is a clear connection between slots simulating sen-
tential forms and fragments replacing such slots. In a grammar-based modularization
approach, context-free syntactical correctness of composition results can be guaranteed
by referring to the underlying grammar.

To clarify and formalize our intuition we introduce the notion of grammatical types,
both for fragments and slots, which make up the formalism for our notion of safe
compositions. Whenever we refer to the type of a fragment or a slot, we shall mean its
grammatical type.

Definition 2.5. (Grammatical types for fragments) Given a context-free grammar G =
(N,Σ,P,S), a context-free reuse grammar G′ derived from G, and a fragment F, every
nonterminal n ∈ N that F can be derived from (wrt. G′) is a grammatical type of F,
and its set is denoted τ(F).

τ(F) = {n ∈ N | n ∗−−→
G′

F}

As can be noticed by Definition 2.5, a fragment can have several types. The reason
we use the reuse grammar G′, rather than base grammar G, for deriving F is that we
also have to consider fragments with slots (not possible if we derive wrt. G). While
G′ is used for deriving F in the definition, notice that only members of N (of G) are
considered types, not the nonterminals of G′. The SLOT-grammar nonterminal 〈slot’〉,
for example, is never considered a grammatical type. When no reuse grammar is under
consideration, then the same definition holds using the base grammar G as a condition
for deriving fragments (see Example 2.5).

Example 2.5. Consider the rule language RL’s grammar from Example 2.1, call it G,
and the following fragment F :

tiger(sherekhan). (2.27)

Then F has three grammatical types wrt. G, namely, τ(F) = {prgm,stmt, fact}. All
these nonterminals of G can generate F (F is a program, a statement, and a fact).

2.3. GRAMMAR TYPES AND SAFE SLOT APPLICATIONS 47

�

Often a fragment will be declared a specific, single, type by a programmer. If the
type set τ(F) for a fragment F is required, it can be computed using, for example, the
CYK12 algorithm [56]. Other more efficient algorithms could also be used, but we do
not further investigate this here. Next we define grammatical types for slots.

Definition 2.6. (Grammatical types for slots) Assume a context-free reuse grammar
G ′ = (N′,Σ′,P′,{s1, . . . ,sp}) derived from the base grammar G = (N,Σ,P,S), a frag-
ment F well-formed wrt. G ′, and a slot V in F. A nonterminal n ∈ N, generating a set
of strings L(n), where each string in L(n) can replace V in F while keeping the result
F ′ in L(G ′) is a grammatical type of V . That is, n ∈ N is a grammatical type of V , if:

∀ f ∈ L(n) : (F
(V, f)

↪−−→ F ′) ∈ L(G ′)

The set of all such nonterminals is called the grammatical types of V , and its set is
denoted τ(V):

τ(V) = {n ∈ N | ∀ f ∈ L(n) : (F
(V, f)

↪−−→ F ′) ∈ L(G ′)}

An example illustrates the definition.

Example 2.6. Consider the rule language RL’s grammar from Example 2.1, call it G,
and its reuse extension G′. Assume the following fragment F to be valid wrt. G′:

bonus(X, « value ») :- employee(X). (2.28)

Then the slot value has four grammatical types: τ(value)= {term,var,const,num}.
Any string generated by these nonterminals can replace value while keeping F valid
wrt. G′ (and in this case also G). This essentially means that the slot is dynamically
typed by the base grammar; the appropriate type can be assumed for the slot depending
on the exact type of an actual fragment being bound to it.

A word of warning should be mentioned here. The fragment in (2.28) is assumed
to belong to the language generated by G′. However, for this particular fragment, the
needed extension G′ can be derived from G by applying ψ in several different ways.
Suppose the person creating the reuse grammar wanted to make variables “slotable”
and performed ψ(G,var) = G′. Fragment (2.28) can now be authored, but according
to Definition 2.6 the slot is associated with several types and not only the expected
type var. We shall come back to a discussion on this seeming conundrum later in this
section.

�

As mentioned, the composition of some software artifact can take a number of
steps, where each step transforms the involved software entities is some particular way
(see the composition chain in Figure 2.3). In our grammar-based modularization frame-
work each such step is a slot application, for which we would like to have some guar-
antees of its correctness. Given a base grammar G and its reuse grammar G′, our safety
conditions should guarantee that:

12Cocke-Younger-Kasami

48 CHAPTER 2. UNIVERSAL GBM

S1 Each building block (each fragment used) should be a well-formed sentence wrt.
G′.

S2 For each step i in a composition chain (see Figure 2.3), given that the fragment fi
is a well-formed sentence wrt. G′, fragment fi+1 is also a well-formed fragment
wrt. G′.

S3 The last fragment in a composition process (chain), the composition result, must
not only be a well-formed sentence wrt. reuse grammar G′, but also a well-
formed sentence wrt. its corresponding base grammar G.

The first safety condition holds for a fragment F if F ∈ L(G′) where G′ is the
context-free reuse grammar under consideration. We shall assume that this always
holds for fragments. Below we will deal with ensuring that every fragment resulting
from a slot application results in a valid sentence of the reuse language. Later we shall
come back to the last safety condition.

Definition 2.7. (General type safety) Let G′ be a context-free reuse grammar, F and
f fragments valid wrt. G′, and V a slot in F, then:

F
(V, f)

↪−−→ F ′ if and only if τ(V)∩ τ(f) 6= /0

That is, the composition step (slot application) is safe if and only if the slot and the
fragment replacing the slot have at least one common type. Notice that Definition 2.7
is a very general notion of a safe slot binding, which hardly would be used in practice.
This since it is not easy (if possible at all) to calculate the set τ(V). And even though
the set τ(f) can be calculated, it might not always be desirable. However, the condition
intuitively formalizes a safe composition step, and we will make use of this definition
in more restricted cases, where we do not have to calculate the type sets. In practical
settings, we will do one of the following:

1. Execute F
(V, f)

↪−−→ F ′ and if F ′ 6∈ L(G′) where L(G′) is the reuse language, the
composition step results in an error.

2. The type(s) of the slot V and the value fragment f slot can be declared, and in
this case we can check the condition in Definition 2.7 (we shall see cases like
this below).

Example 2.7. (Slot application safety) Consider our rule language RL’s grammar from
Example 2.1, call it G, and its reuse extension G′. Assume the fragment (2.29), call it
F , is valid wrt. G′.

bonus(X, « value ») :- employee(X). (2.29)

The types for the slot value is τ(value) = {term,var,const,num}. Suppose we
want to bind the slot value with the G′-valid P-program "200", call it f :

F
(value, f)

↪−−−−−→ F ′ (2.30)

The types of f are τ(f) = {term,num}. Since τ(f)∩ τ(value) = {term,num} 6= /0

this composition step is safe. The result F ′ is shown in (2.31).

bonus(X, 200) :- employee(X). (2.31)

Binding the same slot with P-program "efficient(X)", call it g, would result in
an error. This is because τ(g) = {atom,head}∩ τ(value) = /0.

2.3. GRAMMAR TYPES AND SAFE SLOT APPLICATIONS 49

�

The above has explained and demonstrated general composition safety, where the
safety conditions are based on grammar types from the considered language grammar.
The conditions are defined in terms of the standard semantics of context-free grammars,
that is, the languages they generate. Every safe slot application keeps the result in the
language generated by the considered reuse grammar. In this general setting slots are
not explicitly associated with syntactic categories, rather implicitly via the context-
free grammar semantics. This is a difference from the approach taken by the Mjølner
system where slots are always defined with a syntactic category (type).

In Definition 2.6 we are strict in our definition of which nonterminals are considered
types for slots. Only a nonterminal n whose every language member (that is, is in
L(n)) may syntactically replace the slot is considered a type. So, if only a subset
L(n)− ⊆ L(n) syntactically may replace the slot, n is not considered a type. The safety
condition in Definition 2.7 is in this sense an over-approximation. This simply means
that if the safety condition was to be checked statically, certain non-erroneous slot
applications would be disallowed. We explain by an example.

Example 2.8. Consider the RL fragment below:

«fact» . (2.32)

The types of the slot fact are {head,atom}. However, the nonterminal 〈body〉may
also generate strings that could be bound to fact while retaining the result valid wrt.
RL’s grammar. But body is not considered a type of fact since 〈body〉 also generates
strings that cannot replace fact while keeping the result valid wrt. RL’s grammar. The
string “atom1(a), atom2(b)” is an example.

�

At times it can be desirable to give programmers more control over what is con-
sidered “safe” for their fragments. Consider, for example, the fragment from (2.28).
From our intuitive understanding of the example it is clear that the author of that frag-
ment does not intend for a variable to be bound to the slot value. Rather, the author
clearly intends for a number (the bonus amount) to be bound to the slot. Nonetheless,
the general typing conditions stated above would permit a variable to be bound to the
slot. The reason for this is that the exact transformation of the base grammar via ψ is
not considered by the safety condition. (For example, in this case, there is no differ-
ence between transforming the base grammar G by ψ(G,var) or ψ(G, term).) Instead,
the safety condition so-far specified only ensures syntactical correctness throughout
the composition process. We would hence like to enable fragment authors to be more
precise in how they expect their fragments to be transformed during composition. This
can essentially be done in two ways:

1. User-restricted slot applications. Allow fragment authors to associate a slot with
an expected fragment type (syntactic category).

2. Syntax-restricted slot applications. Provide specific syntax for each nonterminal
representative (slot type).

In the first case the type of the slot is declared by the user, while in the second
case the slot type is mandatory and implicitly chosen depending on the particular slot
construct that is being used (in this case several different slot constructs might be avail-
able). We will consider both options below, followed by summary of their advantages
and disadvantages.

50 CHAPTER 2. UNIVERSAL GBM

〈slot’〉 ::= « 〈ident’〉 (: 〈ident’〉 (, 〈ident’〉)*)? »

TABLE 2.4: Alternative slot construct with possibility to constrain slot applications.

2.3.2 User-restricted slot applications
Giving fragment programmers the possibility to explicitly specify a desired type for a
slot would give authors more control over how their fragments are used. Imagine that
the fragment author would specialize the fragment from (2.28) into the one in (2.33).

bonus(X, « value : num ») :- employee(X). (2.33)

The added information to the declared slot in (2.33) would restrict fragments trans-
forming the slot value to belong to the syntactic category num. The safety condition
as defined in Definition 2.7 still holds. Notice that in general a programmer could
associate not only one, but several types with a slot.

Example 2.9. Consider the rule language RL’s grammar from Example 2.1, call it G,
and its reuse extension G′. Assume that the fragment (2.33), call it F , is valid wrt. G′.
The types for the slot value is, according to the specified type restriction, τ(value) =
{num}. Suppose we want to bind the slot value with the G′-valid P-program "200",
call it f . The types of f are τ(f) = {term,num}. Since τ(value)∩ τ(f) = {num} 6= /0,
the composition step in (2.34) is safe.

F
(value, f)

↪−−−−−→ F ′ (2.34)

Trying to bind value with P-program "X" on the other would be disallowed since
τ(value)∩{term,var}= /0.

�

One condition on such slot annotations is that the specified type(s) must be in the
set of the slot’s general types. Consider the fragment in (2.33). The explicitly specified
type for the slot value must belong to the set {term,var,const,num}, the general types
for value (see Definition 2.6).

Definition 2.8. (Type annotated slots) A type annotated slot is a slot with an explicitly
specified type. For a slot V , its annotated type is denoted ↓ τ(V) and is subject to the
condition:13

↓ τ(V)⊆ τ(V)

Concretely allowing fragment programmers to restrict the types of slots can be
achieved by redefining the 〈slot’〉 nonterminal in the SLOT-grammar. This is done in
Table 2.4, where the declaration of a specific type(s) is optional.

The kind of restrictions discussed above can be extremely useful for programmers.
However it is still possible to transform the RL grammar G by ψ(G,var) = G′ and
restrict a slot by num as in (2.33). But, as long as Definition 2.8 is honored the restric-
tion desired by the programmer is achieved. Still, as can be seen, there is somewhat

13It makes sense to sharpen this restriction to: ↓ τ(V)⊆ τ(V)∩Nslot where Nslot is the set of nonterminals
used to create the considered reuse grammar. This since the restriction should also respect the reuse grammar.

2.3. GRAMMAR TYPES AND SAFE SLOT APPLICATIONS 51

〈n-slot’〉 ::= « 〈ident’〉 : #n# »

TABLE 2.5: Special slot construct for a nonterminal 〈n〉 of some base grammar.

of an anomaly wrt. the grammar transformation function ψ. This in particular since it
seemed that the very purpose of ψ was to allow the definition of slots as representatives
for very particular nonterminals of the base grammar. Instead, ψ has mainly been used
to enable the definition of fragments containing slots, and not to ensure that only slots
of particular syntactic categories may be defined. This impression of a gap appears
because the safety conditions are defined in terms of the languages the grammars gen-
erate, and not how the initial base grammars are transformed. The benefit of such a lax
coupling between ψ and the safety conditions is that the same construct—the slot—can
syntactically be used for every slot without requiring one new language construct for
every nonterminal representative (slot type) desired.

However, it would also be possible to maintain the grammar transformation infor-
mation in fragments by hard-coding the type in the syntax. Thus, for every n ∈ N for
a grammar G on which we apply ψ(G,n), we can introduce a new construct to act as
n-representatives in fragments. The type of the n-specific slot is then not (dynamically)
given in fragments, but always assumed to be n.

2.3.3 Syntax-restricted slot applications
Assume that a developer wants to make numbers in the RL rule language (denote its
grammar G) variable via the explicit slot mechanism. The developer would then per-
form ψ(G,num) = G′. The definition of ψ could be changed to instead of introducing
the general slot construct discussed above, introduce a num-specific slot construct with
a pre-defined type. We refer to this modified grammar transformation as ψ∗. As an ex-
ample, consider the fragment in (2.35) where the slot value is assumed to be defined
using the newly introduced num-slot construct.

bonus(X, « value : #num# ») :- employee(X). (2.35)

Here #num# is assumed to be concrete syntax, part of the slot construct and not a
user-defined type. Different syntax could be used if found to be more appropriate. The
type τ(value) of the num-slot value is thus the set {num}, consistent with the modified
ψ∗-transformation. Based on this example transformation it would not be possible to
author a fragment with a slot that was intended to bind variables. A system enforcing
the safety conditions would have to understand the relationship between syntax and
types, but could then use the same typing condition as in Definition 2.7 to enforce
them.

Generating such n-slots could be achieved by introducing n-slot constructs for each
n ∈ N for grammar G on which ψ∗(G,n) is performed. Hence, the slot construct in
Table 2.5 is used for each n instead of the more general slot construct as defined in the
SLOT-grammar (where n corresponds to the particular nonterminal being considered).
Other than this the transformation as defined by ψ is the same. The slots introduced by
ψ∗ corresponds to the slots in the Mjølner system.

Example 2.10. Consider the RL grammar from Example 2.1, call it G, and its reuse
extension ψ∗(G,num) = G′. Then the following grammar rule will be in G′:

52 CHAPTER 2. UNIVERSAL GBM

〈num-slot’〉 ::= « 〈ident’〉 : #num# »

That is, the grammar rule from Table 2.5 has been instantiated for nonterminal
〈num〉. Then the following fragment F is valid wrt. G′.

bonus(X, « value : #num# ») :- employee(X). (2.36)

The types for the slot value is now τ(value) = {num}. The single type num is asso-
ciated with the slot because the fragment programmer has used the num-slot construct.
This type exactly correlates with the grammar transformation ψ∗. The only fragments
that can now be bound to the slot value are fragments having num as one of their types.
Notice that having only performed the single transformation ψ∗(G,num) = G′, we can
only formulate slots of the kind in (2.36) (only the slot name can be changed).

�

Summary

The above has considered and discussed different levels of granularity wrt. how gram-
mars are transformed into reuse grammars, and how the safety conditions deployed
during composition of fragments relate to such reuse grammars. Using a single slot
construct, even for different nonterminal representatives, gives flexibility to program-
mers as they do not need to specify syntactic categories with each slot declaration.
The possibility of restricting slot applications using slot annotations is still left open
as an option. However, if the exact grammar transformations via ψ are desirable to
be reflected in fragments, then the more specific transformation function ψ∗ can be
deployed. The main difference is whether the safety conditions should be dictated by
developers creating the reuse grammars—statically—or whether these conditions are
more dynamic, in the sense that they are loosened from the reuse grammars and certain
responsibility is left to fragment users and programmers. Regardless of the preferred
approach, it should be stressed that the safety conditions are always formally defined
wrt. the languages generated by the considered grammars: Any intermediate composi-
tion result must belong to the set of strings generated by the reuse grammar.

BETA essentially uses syntax-restricted slot applications in its approach, but for a
fixed and predefined set of nonterminals from the BETA grammar. Moreover, BETA’s
type restrictions are based on name matching between the specified syntactic categories
of the fragment-forms and their slot applications. We instead define the restrictions wrt.
the languages generated by the considered grammars.

Safety conditions on composition results

It is not only important to be able to guarantee certain form of the composition result
at each subsequent step through the composition process, it is also important to have
some guarantee on the form of the final composition result. We add the following to
the safety requirement list.

S3 The last fragment in a composition process (chain), the composition result, must
not only be a well-formed sentence wrt. reuse grammar G′, but also a well-
formed sentence wrt. its corresponding base grammar G.

2.4. SUMMARY 53

See fragment fm in Figure 2.3 for an illustration. Being able to guarantee that the
final composition result is a sentence of the underlying base grammar allow for existing
tools to work with the result (compilers, interpreters etc.). If a composed fragment F
is a sentence of the base grammar, we call F for bound.

Definition 2.9. (Composition result safety) Let G be a base grammar, G′ a context-
free reuse grammar derived from G and Fi a fragment well-formed wrt. G′ (during
some step i of the composition process). If Fi belongs to the language generated by G,
then Fi is said to be bound. That is, if:

Fi ∈ L(G)

The interface of a bound fragment is “exhausted.” It should be noted that in general
the exhaustion of a fragment can be the result of binding all its slots, or possibly by
removing unbound slots (if allowed by the base grammar).

2.4 Summary
Let us recap what we accomplished in this chapter. We started from the desire to de-
velop a universal and lightweight approach to grammar-based modularization. That is,
an approach able to address arbitrary languages, albeit with certain limitations com-
pared to earlier approaches (e.g. no support for separate compilation of fragments, as
in [63]).

– Grammar adaptations for GBM interfaces. We specified a simple method—
captured by the function ψ—for how grammars can be adapted safely such that
it is possible to author the kind of interfaces used in a grammar-based modular-
ization approach: fragments configurable via slots.

– Lightweight fragment systems. We formalized the encoding of fragment sys-
tems in reuse grammar (families). That is, a reuse grammar dictates the kind of
fragments that may be specified in the fragment system it encodes. Towards use-
able fragment systems we also described the minimal requirements for a generic
fragment language, summarized in the exemplary language FLABS.

– Safe composition. An important parts covered in this chapter was how imperative
safety conditions can be given based on the base language specifications (gram-
mars). The composition conditions ensure that the result after each composition
step remains a well-formed fragment of the considered adapted grammar G′, and
that the final composition result is a well-formed fragment wrt. the base grammar
G (where G′ is a reuse grammar derived from G).

– Alternative grammar adaptations. Concerning grammar adaptations and safe-
ness of compositions wrt. such adapted grammars, we discussed two different
approaches:

1. General grammar transformation (using a single slot construct) via ψ with
two alternative options wrt. composition safety:

(a) General safeness conditions. Implicit typing of slots. Slot applications
must adhere to the conditions posed by the associated reuse grammar.

54 CHAPTER 2. UNIVERSAL GBM

(b) User-restricted slot applications. Enables the possibility for program-
mers to explicitly restrict slot applications using slot annotations.

2. Specific grammar transformation via ψ∗ using syntactic category specific
slot constructs.

3
Universal Invasive Software Composition

Invasive Software Composition (ISC) is a composition approach that composes soft-
ware by transforming and adapting source code fragments, ISC’s notion of compo-
nents [5]. ISC is a static approach, meaning that composition never takes place at run-
time. At its foundation, ISC has many commonalities with the modularization tech-
nique discussed in Chapter 2—grammar-based modularization (GBM). From a con-
ceptual point of view, the most striking difference is that ISC generalized GBM by not
only considering explicit fragment interfaces—named locations in form of slots—but
also implicit interfaces. That is, in ISC a fragment may be transformed in places not
intended, or explicitly declared, by its programmer. Such implicit access can be com-
pared to aspect-oriented programming (AOP) approaches such as ASPECTJ [52]. The
AOP community essentially calls this phenomenon for obliviousness [30]—fragment
programmers are oblivious to, not aware of, possible transformations of their programs
(hopefully to their benefit).

COMPOST [87], the demonstrator system of ISC, has showcased its composition
techniques and abilities on Java (we will refer to this particular system as COMPOST/J).1

Adding another language to COMPOST’s repertoire is time-consuming since support
for the considered language can only be achieved through a manual process. Manual
and hand-coded language adaptations are attractive in the sense that they can be highly
specialized for the addressed language, but at the same time they hinder a wider and
faster adoption of the composition approach. Due to the strong similarities between
ISC and GBM, it would be beneficial if the contributions of Chapter 2 could be further
extended and applied to ISC. This means, to provide a methodology for how ISC can
be made applicable to, and work with, arbitrary languages. This would mean that the
effort spent implementing the techniques of ISC for a new language could greatly be
reduced. We call such an approach for Universal ISC (U-ISC).

The main contribution of this chapter is an extension of the GBM approach pre-
sented in Chapter 2. The extension adheres to the particulars of the more general and
flexible composition approach taken by ISC. We believe several important things will

1Work has partly also been carried out on bringing ISC to XML (here referred to as COMPOST/XML).

55

56 CHAPTER 3. UNIVERSAL ISC

be achieved:

1. We can make ISC a truly grammar-based approach. This means that we can
automize the process of adapting ISC to a new language (based on its grammar),
rather than having to manually tailor the adaptation for each specific language
(grammar, e.g. Java’s).

2. By extending the ‘universal’ approach to GBM from Chapter 2 to also include
ISC, we can better understand the detailed relationship between the two ap-
proaches to composition.

3. By more conveniently being able to use ISC with different languages we will be
in a better position to understand the limits and qualities of ISC as a composition
approach, and hence be able to map out important research directions for the
future.

In the same way that generalizing GBM in Chapter 2 lost some of its system-
specific capabilities (e.g. separate compilation of fragments in the Mjølner system),
generalizing ISC will require similar trade-offs from tailored solutions provided by
COMPOST. For example, COMPOST/J can sometimes take advantage of Java’s type
system for finding errors in how fragments are assembled. We will not be able to
achieve this because we are not tailoring a solution for Java.2 However, the advantages
gained by a more general approach allure, especially with how quickly ISC can be
applied to arbitrary languages.

This chapter is structured as follows. In Section 3.1 we introduce ISC in more detail
and discuss the idea of composition systems. In Section 3.2 we universalize ISC and
discuss its connection to universalized GBM. In Section 3.3 we discuss what is needed
to concretely develop composition systems. In Section 3.4 we give an overview of
REUSEWARE/AIR: the concrete tooling that is used to develop composition systems.
In Section 3.5 we give examples of two composition systems, one for our rule language
RL and one for a subset of Java. Finally, in Section 3.6, we summarize the achievements
of the chapter.

3.1 Background

Below we first give an introduction to ISC and then in Section 3.1.2 we discuss basic
requirements for composing software.

3.1.1 Invasive Software Composition (ISC)

Invasive Software Composition (ISC) [5] is a static composition approach where pieces
of source code (fragments) are transformed into usable programs, the composition re-
sults. The entities being composed are programs, or partial programs, of a particular
language. Such entities are, in ISC terminology, called fragment boxes (or simply
boxes). As an example, a box containing a Java method—a Java “method box”—is
shown in Listing 3.1. This particular method (setTimeStamp()), when invoked, as-
signs the class variable time the current time value and prints an informative message

2A more COMPOST-like approach could be achieved, by paying the price of a more manual adaptation.

3.1. BACKGROUND 57

1 public void setTimeStamp() {
2 this.time = new java.util.Date().getTime();
3 System.out.println("Time set at: " + this.time);
4 }

LISTING 3.1: A Java method box defined by an assignment and a print statement.

1 public class Contract extends BankEntity {
2 // attributes ...
3 // methods ...
4 Contract() { }
5 }

LISTING 3.2: A Java class box for a bank contract (attributes and methods not shown).

to standard output. The method cannot be used by itself (e.g. compiled by a Java com-
piler), but composed into a larger program it can provide certain functionality and can
be reused across different Java classes and programs.

Not only method boxes may be defined and used, but also other kind of boxes that
can be imagined to be useful: perhaps larger entities such as elaborate Java class boxes.
Listing 3.2 shows a (potentially complex) Java class box with class name Contract (at-
tributes and methods are intensionally left out). But also simpler boxes can be defined.
As an example of a less elaborate box, Listing 3.3 shows a Java attribute box defining
an attribute named time of primitive type long.

The kind of boxes that may be defined is governed by an associated component
model. We shall shortly return to the issue and importance of component models. In
order for boxes to be reusable, there must be methods in place for adapting the envi-
ronment, that is, the context where they will be reused. ISC boxes—like any software
components—need composition interfaces that can be exploited during reuse adapta-
tion.

While many existing composition techniques mainly rely on only one kind of com-
position interface, ISC amalgamates two different kinds of interfaces: explicit and im-
plicit interfaces. The possible implicit interfaces for boxes directly depend on the
underlying language in which the boxes are defined. For example, if we consider the
Java method box from Listing 3.1, we can imagine that it would be possible to insert
another statement after the print statement. It is clear that this may not be intended by
the author of the method box, but it is nonetheless possible. Hence, it is an implicit
variation point of the box. Or why not insert debugging code, e.g. print statements, to
be executed as soon as the method is entered and exited? In order to do this, we need
to know something about the underlying language, for example that there are methods
and that they contain statement lists. While this clearly is the case for Java, it might
not be true for some other language. Hence, implicit interfaces directly depend on the
underlying language in which boxes are written and capture how they can be adapted

1 public long time;

LISTING 3.3: A Java attribute box defining an attribute named time, of type long.

58 CHAPTER 3. UNIVERSAL ISC

1 public class Contract extends genericSupertypeSuperClass {
2 // attributes ...
3 // methods ...
4 Contract() { }
5 }

LISTING 3.4: A Java contract class box with unspecified super-class (a hook in ISC).

1 public class CompositionProgram {
2 public static void main(String argv[]) {
3 // load a classbox, methodbox and an attributebox
4 ClassBox cBox = new ClassBox("Contract");
5 MethodBox mBox = new MethodBox("setTimeStamp");
6 AttributeBox aBox = new AttributeBox("time");
7

8 // bind super−type hook
9 cBox.findGenericSuperClass("Supertype").bind("CarRentalEntity");

10 // extend class attribute list with attribute
11 cBox.findHook("Contract.members").extend(aBox);
12 // extend class method list with method
13 cBox.findHook("Contract.members").extend(mBox);
14 }
15 }

LISTING 3.5: Composition specification for composing a contract class with time-
stamping capabilities using ISC.

during composition, even if this is not mentioned or intended by the box author. How-
ever, in ISC, boxes can also be adapted to new contexts using explicit interfaces, called
(explicit) hooks in ISC lingo. The explicit interfaces of boxes make plain to their users
which points can, or must, be modified before reuse. Explicit interfaces thus intension-
ally generalize boxes, such that they can be refined, or configured, for new and different
purposes.

For example, we might realize that the Java class in Listing 3.2 can be used for
different kinds of contracts, not only bank contracts (e.g. car rental contracts). For this
reason, we would like to specify the same contract class, but without having to, a priori,
commit to a specific super-type entity. However, we want to signal users (or systems
supporting the users) that there needs to be a super-class specified when the class is
reused. Hence, we want to make the super-class an explicit hook, which is possible in
ISC. To make super-classes recognizable as hooks in ISC, their names need to conform
to the naming convention (or naming schema) for super-class hooks. In COMPOST/J
this convention is generic + [hook name] + SuperClass. The super-class specified
in Listing 3.4, for example, is a super-class hook with name Supertype.

One of the results from work on ISC was the distillation of two simple, yet fun-
damental, composition operators for boxes: bind() and extend(). These two operators
comply with the observation in software composition and reuse in general of two piv-
otal composition and reuse styles: parameterization and extension. Hence, these two
operators correspond to composition phenomena observable in almost any language,
and are as such very general. When executed, these composition operators work by
transforming the abstract syntax trees (ASTs) of the fragment boxes they are applied
to.

3.1. BACKGROUND 59

1 public class Contract extends CarRentalEntity {
2 // attributes ...
3 public long time;
4 // methods ...
5 Contract() { }
6 public void setTimeStamp() {
7 this.time = new java.util.Date().getTime();
8 System.out.println("Time set at: " + this.time);
9 }

10 }

LISTING 3.6: Composed class for car rental contracts with time stamping functionality.

As an example, we will use the above-mentioned Java fragments to compose a
usable and compilable Java class. Imagine that we want to use the generic contract class
(Listing 3.4) to model car rental contracts. Furthermore, we want to be able to time
stamp such contracts. We could implement this functionality directly in the contract
class, but separating the two also allows to reuse the time stamping functionality in
other applications. To achieve this, the method box of Listing 3.4 can be modified for
reuse using both its implicit and explicit interface. The Java program in Listing 3.5,
the language of choice in COMPOST/J [5] for describing compositions, details the steps
needed to achieve the result.3

First the fragment boxes are declared such that they are accessible (Lines 4–6). On
Line 9 the super-class is bound, on Line 11 the class member list is extended with the
attribute box (Listing 3.3), and on Line 13 the same member list is extended with the
time-stamping method (Listing 3.1). The result of this composition can be found in
Listing 3.6. The resulting class now sub-classes CarRentalEntity, contains an at-
tribute holding the time stamp and a method to set it. The above was a simple example
not intended to show how to solve a problem not solvable by other designs or meth-
ods, but it demonstrated the use of both implicit and explicit interfaces, as well as the
primitive operators bind() and extend(), which are the cornerstones of ISC.

3.1.2 Understanding composition: composition systems

In order to compose software in any given composition approach, a composition sys-
tem is required [5]. A composition system describes a particular compositional setting
and is made up of three distinct parts: a composition language, a composition tech-
nique and a component model (see Figure 3.1). The composition language is used to
specify exactly which components should be put together, and in what way. (In GBM,
the composition language is called fragment language.) The composition language is
thus used to write composition programs (e.g. programs like the one in Listing 3.5).
The composition technique describes how components are joined, while the component
model describes what kind of components may be defined (what they may look like)
and how they are allowed to be accessed and transformed during composition (their
interfaces).

In general, different composition languages may exist and be used, but their exis-
tence is crucial since it must be possible for programmers to detail how reusable units
are put together. A component model is essential to a composition system since it is the

3Certain details of the specification have been left out for space and comprehensibility reasons.

60 CHAPTER 3. UNIVERSAL ISC

Composition system

Composition techniqueComposition language

Component model

Composition
System

FIGURE 3.1: A composition system consists of a composition language, composition
technique and a component model.

main instrument for controlling and restricting compositions. The component model
of an ISC composition system aimed for Java could, for example, state that it is only
possible to define method and class boxes (controlling how components may look).
Furthermore, the component model could dictate that only method names may be vari-
able (controlling how components may be transformed, defining their interfaces). The
exact restrictions posed by a component model often differs between composition sys-
tems, depending on their precise requirements. The composition technique details how
reusable units are joined together. The composition technique of ISC essentially con-
stitutes integrating source code fragments (boxes) into other boxes via source code
transformations, using their interfaces. That is, replacing boxes’ variation points with
other boxes (or fragments) used as values. The actual transformation of the code is
performed by the provided basic composition operators bind() and extend(). The com-
position technique of ISC—and the same holds for GBM—is very general in the sense
that it can be reused for many different composition systems. Figure 3.2 illustrates the
main composition system parts for a generic composition system based on ISC.

Decomposition of composition systems Here we describe two previously discussed
composition systems and see how they can be described according to the three parts:
component model, composition technique and composition language. The Mjølner
fragment system is described in Table 3.1, while a previously discussed composition
system based on RL is described in Table 3.2.

Comparing ISC with grammar-based modularization
As ISC and GBM are conceptually closely related techniques, it is worthwhile high-
lighting their differences and similarities. Unavoidably, certain comments relate to
the main demonstrator systems of the techniques, COMPOST and the Mjølner system,
respectively.

– Terminology. The units of deployment—virtually the same: source code frag-
ments of some underlying language—are in GBM called fragment-forms, and
in ISC fragment boxes. Furthermore, explicit variation points are called slots in
GBM and hooks in ISC.

3.1. BACKGROUND 61

ISC
Composition

System

ISC composition system

Fragments with hooks
+

Restrictions

Declare fragments
and execute basic

composition
operators

Basic composition
operators (algebra)
transform fragments
(source code)

Composition language Composition technique

Component model

FIGURE 3.2: A composition system for ISC has special requirements for the three
parts of a general composition system (cf. Figure 3.1).

The Mjølner fragment system

– Component model. The component model is similar to ISC’s in the sense
that fragments are considered as modules. The Mjølner fragment system
imposes several restrictions in its component model: slots may only appear
in certain places in fragments and be of certain carefully selected syntac-
tic categories (ObjectDescriptor, Attributes, DoPart, and MainPart [29, p.
213]). As a consequence, only fragment-forms of the same selected syn-
tactic categories may be defined as modules. Furthermore, only slots in
fragment-forms may be transformed during composition, while the other
parts are fully encapsulated. Also, the component model requires that the
syntactic categories of slot applications and slot declarations are the same.

– Composition technique. The composition technique could be described as
unifying slot declarations with slot applications via matching of names,
and upon successful matching replacing the slots with the corresponding
fragment-forms.

– Composition language. The composition language provides constructs for
defining fragment-forms (seen using a graphical syntax in, for example,
(2.5)). The binding of fragment-forms with slots is partly done using the
origin construct, and partly specified implicitly based on the use of similar
names for fragment-forms and slots. Some other constructs are provided for
more detailed control of the composition process, but they are not further
discussed here.

TABLE 3.1: Dissection of the Mjølner fragment system.

62 CHAPTER 3. UNIVERSAL ISC

Reuse grammar from Example 2.2 (p. 39)

– Component model. The component model is formalized by the reuse gram-
mar family G ′. It describes how fragments may look, and the slot con-
struct (〈slot’〉 in the grammar) explains where the fragment interfaces may
appear, and hence how fragments may be accessed. Furthermore, G ′ con-
strains compositions since any intermediate composition results have to be
well-formed sentences wrt. G ′.

– Composition technique. The composition technique is essentially the same
as for the Mjølner fragment system: Slots are replaced by fragments treated
as values.

– Composition language. The composition language could be the generic frag-
ment language FLABS from Section 2.2.2.

TABLE 3.2: Dissection of a reuse-grammar–based composition system for RL.

A further note on terminology: In Chapter 2 we used terms such as ‘fragment
language’ and ‘fragment system.’ We did this to stay close to the terminology of
the Mjølner system. In this chapter however, we will use the terms ‘composition
language’ and ‘composition system,’ to stay close to the terminology of ISC.

– Explicit variation points. Slots are in GBM programmed using a special slot con-
struct, while ISC (as realized in COMPOST) uses naming conventions on exist-
ing (thus, overloaded) constructs of the underlying language for marking hooks.
These are however merely design choices made by the demonstrator systems and
could be different.

– Implicit variation points. ISC allows for implicit access of fragment boxes. This
is not possible in GBM which solely considers explicit slots. As implicit varia-
tion points—by definition—are not marked by programmers, the permitted im-
plicit access points are in ISC dictated by a component model specialized for the
addressed underlying language.

– Static vs. dynamic. GBM, as implemented in the Mjølner fragment system,
allows for separate compilation of fragments. Thus, fragment-forms can in prin-
ciple be bound at run-time. Since COMPOST/J overloads language constructs
for marking slots, certain box types can also be compiled in COMPOST/J (those
coinciding with Java’s compilation units, e.g. class boxes). However, ISC does
not provide means for binding fragments at run-time, or by composing at the
level of Java byte-code. Hence, ISC does not provide for separate compilation
of fragment boxes such that the composition semantics is maintained.

– Parameterization and extension. Both ISC and GBM support fragment parame-
terization using hooks and slots, respectively. ISC supports extension explicitly
via its extend() composition operator. Although less obvious, GBM also supports
extension. If allowed by the underlying language, a single slot can be extended
with several fragment-forms (e.g. if the slot appears in a statement list, cf. Ex-
ample 2.2). Once the slot is removed, however, that particular location cannot

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 63

further be transformed. In ISC this is however possible using the fragment box’s
implicit interface.

3.2 Universal Invasive Software Composition

In contrast to other composition techniques, ISC allows for more flexible component
adaptations by supporting both explicit and implicit component interfaces. Aspect-
oriented programming with ASPECTJ [52], for example, is based on purely implicit
interfaces. The Mjølner fragment system, as we have discussed, only supports explicit
interfaces [63]. It is worth noting that an implicit interface only means that the reuse
context is not declared, and should not be made equivalent to unrestricted component
(fragment) access and transformation.

The main drawback of the COMPOST realization of ISC is its manually specified
component models. By this we here mean the manual programming of each supported
fragment box type, and the manual declaration and specification of how they may be
transformed. Manual specification of a component model in with way is a tedious task
and makes it very cumbersome to develop composition systems for various languages.
So, while ISC is a general technique applicable to many different languages, the main
question is how to realize this genericity in a manageable fashion. That is, how can the
adaptation to ISC for a given language be automated?

The root cause as to why COMPOST requires manual specification of component
models is that COMPOST is not grammar-driven. To address this problem—and allow
for ISC to be more widely usable—we will leverage the grammar-based and automated
adaptation techniques presented in Chapter 2 and extend it to also cover ISC. We will
discuss these issues in the following section.

3.2.1 Grammar adaptation for ISC

The goal in this section is to extend the formalization of the GBM concepts from Chap-
ter 2 to also accommodate ISC. As the main divergence from GBM is ISC’s use of
implicit interfaces, we need to adapt and extend our approach accordingly. This goal is
illustrated in Figure 3.3 where a reuse grammar can be adapted to an ISC-reuse gram-
mar. The adaptation step constitutes “annotating” the reuse grammar with restrictions
for how fragments of the reuse grammar can be transformed implicitly. Then, instead of
only requiring a simple fragment language (cf. Figure 2.1) we will discuss an extended
language also able to access implicit interfaces, subject to restrictions as specified by
the grammar annotations.

We do not need to extend the reuse grammar with additional syntactical constructs
since implicit interfaces are never—by definition—marked in fragments. We would
however like to be able to restrict how fragments can be transformed implicitly, as
specified by composition programs. From a composition system perspective this can

64 CHAPTER 3. UNIVERSAL ISC

G'

Reuse grammars
(defining modular languages)

Fragment language + Implicit access language

Invasive Software Composition (dual interfaces)

Composition system

"ISC-reuse grammar"
(defining ISC-reuse

language)

adapt grammar (via function !)

G''

FIGURE 3.3: Grammars adapted for GBM can be further adapted to ISC by also con-
sidering implicit interfaces. Such an adapted grammar is called an ISC-reuse grammar
wrt. the reuse grammar.

essentially be done in two ways:

1. Preemptive. Provide programmers (end-users) with a predefined set of constructs
they may use to access fragments implicitly. Access of points in fragments not
supported by such constructs is prevented, since means for doing so are not avail-
able.

2. Non-preemptive. Allow programmers (end-users) to access all locations in frag-
ments—in principle—but declare restrictions that will be enforced on such ac-
cesses.

The COMPOST/J system follows the first alternative. For example, COMPOST/J
provides the <scope>.methodEntry reference for implicitly accessing method entries
in Java class boxes, where <scope> is a particular Java class and method name. Such
a reference is just a declared name that is understood by the implementation of the
composition system, somewhere linked to a manually written procedure that knows
how to access such points in Java code. Other names exist for other implicit points
(<scope>.imports, <scope>.superClass etc.). All other points in fragments are in-
accessible in an implicit manner. By providing programmers with such a vocabulary,
they have a language for talking and reasoning about the software entities in a mean-
ingful way. Such capabilities are extremely useful to programmers, and are possible
to provide when tailoring a composition system for a particular language. Again, this
vocabulary simultaneously restricts programmers in what they can do, which is also
the purpose.

In a generic approach, not making assumptions of the underlying language, such
useful vocabularies cannot be predefined (there might not be any methods, hence no

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 65

〈vpoint’〉 ::= 〈slot’〉

TABLE 3.3: Construct for general variation points in fragments.

〈vpoint’〉 ::= 〈slot’〉
〈slot’〉 ::= « 〈ident’〉 »
〈ident’〉 ::= STRING

TABLE 3.4: The ISC-grammar.

method entries). But without a meaningful vocabulary, we cannot know how to restrict
implicit fragment access. Leaving it entirely unrestricted—for example by allowing
programmers to freely traverse fragments’ abstract syntax trees, or similar—is not a
viable solution since it leads to uncontrolled composition.

As a result, we will follow a middle way between the two approaches. We will
not presume the kind of implicit interfaces that are desirable for fragments of different
languages, and hence not predefine any such restrictions. We will, however, allow de-
velopers of composition systems to dictate the kind of implicit interfaces that should
be possible to specify on fragments for a particular system. This will be done by “an-
notating” the grammars that the fragments being composed conform to. The grammar
annotations serve two different purposes, arguably equally important:

1. Conceptual. By annotating grammars as a means for restricting implicit frag-
ment access we can formalize and explain the restrictions by referring to the
formalism of context-free grammars.

2. Practical. For practical purposes we can make use of such grammar annotations
for generating constructs for users of composition systems. The set of generated
constructs appropriately limits the users in accessing fragments implicitly, in a
similar way as is done in COMPOST/J.

In the following we discuss the conceptual part, while the practical part is addressed
in Section 3.2.3 and Section 3.3.

For the conceptual part we build upon our work from Chapter 2 where the ex-
tended base grammar—the reuse grammar—captures the component model of the base
language, that is, describing how modules (fragments) look and are accessed.

We will in the following refer to implicit interfaces simply as (implicit) variation
points. As a variation point is a rather vague notion, simply meaning a point in a
fragment that is part of its composition interface, we could say that slots are kinds of
variation points. We do this by augmenting the previously defined SLOT-grammar with
the nonterminal 〈vpoint’〉 (assumed not to previously exist in any base grammar). Its
definition can be found in Table 3.3. We call this extension of the SLOT-grammar for
the ISC-grammar. The complete ISC-grammar is shown in Table 3.4.

To mark a certain base language construct as a valid variation point we trans-
form the corresponding base grammar nonterminal via function: ν : (CFG,n)→CFG,
where n is a nonterminal of the input CFG. To which nonterminals this function is

66 CHAPTER 3. UNIVERSAL ISC

applied has to be specified by a developer. For a given input base grammar G, and
nonterminal n, ν is defined by the following transformation steps, resulting in grammar
G′:

1. Union the ISC-grammar with G in the same way as for ψ (cf. Section 2.2.1).4

2. Introduce the new unit production rule: 〈vpoint’〉 ::= 〈n〉.

Note that in G′, after a single application of ν, nonterminal 〈vpoint’〉 generates the
same set of strings as 〈n〉.

Theorem 3.1. (Safe grammar annotation) Given CFG, say G, and nonterminal n
defined in G, let ν(G,n) = G′. Then G and G′ generate the same languages, that is,
L(G) = L(G′).

Proof. We need to show that (i) any string generated by G can also be generated by
G′, and (ii) that G′ does not generate any additional strings. To understand that (i)
holds we simply need to recognize that no production rules from G are modified by ν.
Hence the exact same derivation sequence used to derive a string l with G, S ∗−→

G
l, can

be used to derive l with G′, S ∗−→
G′

l, where S is the start symbol of both G and G′. To

convince ourselves that (ii) holds we acknowledge that the only additional derivation
rule in G′, compared to G, is the one unit production rule defining 〈vpoint’〉. Under the
assumption that 〈vpoint’〉 is disjoint from the set of nonterminals N of G, it is not used
by any of the original production rules from G, now in G′. Hence, starting from S we
cannot derive any strings with G′ that cannot be derived with G.

Theorem 3.1 says that ν does not change the language generated by the input gram-
mar. That is, ν is in a sense safe. This is the case since 〈vpoint’〉 is assumed not to exist
in the input grammar G, and the start symbol of G is not changed in G′. This means that
〈vpoint’〉 is never used in the derivation of any string starting from the start symbol in
G′. Hence, the introduction of the one unit production rule does not affect the generated
language. So, what is really the point of its introduction? As mentioned, the intension
of the grammar transformation function ν is to annotate grammars with information
that can be used during composition to forbid certain fragment transformations. Thus,
such annotations play a role for composition systems executing compositions, where
users can be informed of forbidden, or unable to perform certain, fragment transforma-
tions.

While restricting compositions is important, in practical terms the grammar anno-
tations do not necessarily have to result in grammar transformations. It is nonetheless
important that the considered composition system “remembers” the specified restric-
tions (annotations) and enforces them during composition. The reason we introduce
these fragment access restrictions as grammar annotations is that we can then explain
the full ISC interface semantics wrt. the semantics of context-free grammars. Intu-
itively, we explain it like this: in a transformed grammar G′, the nonterminal 〈vpoint’〉
generates a set of strings, and every string in this set, when appearing in a fragment
valid wrt. G′, can be considered part of the fragment’s interface.

Example 3.1. Consider the rule language RL’s grammar from Example 2.1, call it
G. Assume we want to say that atoms are accessible during composition as implicit

4Note that if this has already been done for the grammar (during some other step), it is not repeated.

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 67

variation points (that is, they are not marked in some special way in concrete fragments,
but are still allowed to be modified during composition). So, we perform ν(G,atom)→
G′. When composing fragments of G′, the component model would allow us to use the
implicit interfaces to perform the following transformation:

bonus(X,10) :- employee(X). → bonus(X,10) :-

employee(X), friendly(X).
(3.1)

but not the following:

employee(john). 6→ employee(john, 200). (3.2)

The reason is that nonterminal 〈num〉 representing numbers is not “annotated” via
the ISC-grammar in G′, but nonterminal 〈atom〉 is. Hence, a user trying to perform the
second transformation would get an error from the composition system, or simply be
unable to do so.

�

We recall that a reuse grammar family G from Chapter 2 formally describes the
component model for the language of the original base grammar. We want to extend
this formal description of the component model when moving to ISC. That is, we
want to integrate the grammar annotations restricting implicit fragment access with
the notion of reuse grammars. We call such an augmented reuse grammar an ISC-reuse
grammar.

Definition 3.1. (Context-free ISC-reuse grammar) Let G = (N′,Σ′,P′,{s1, . . . ,sn})
be a reuse grammar, assumed to have used the ISC-grammar rather than the SLOT-
grammar during its construction from the base grammar G = (N,Σ,P,S). Let Iimpl ⊆N
be a set of nonterminals subject to annotations. Then we transform G by the following
step:

1. For pairwise different j1, . . . , jm ∈ Iimpl , where |Iimpl |= m, apply:

ν(ν(. . .ν(G , j1) . . . , jm−1), jm) = G ′

Then, the grammar G ′ is a context-free ISC-reuse grammar.

The ISC-reuse grammar G ′ captures and describes the full adaptation to ISC. It
describes how fragments of the base language may look and how they may be accessed,
both explicitly and implicitly. That is:

If the ISC-reuse grammar G ′ is derived from base grammar G, then G ′ dictates
the valid ISC components for L(G) – both their valid structure and interfaces.

That is, a ISC-reuse grammar G ′ = (N,Σ,P,{s1, . . . ,sn}) created from a base gram-
mar G captures the component model for L(G) and its composition system through the
following observations:

1. The language L(G ′) contains all valid fragments of L(G).

68 CHAPTER 3. UNIVERSAL ISC

2. The nonterminal vpoint ′ ∈ N of G ′ (coming from the ISC-grammar) generates
all strings accessible in fragments of L(G), both explicitly and implicitly. That
is, if s is a string representing a fragment valid wrt. G ′, then a substring t of s is
accessible during composition, if and only if:

t ∈ {x | vpoint ′ ∗−−→
G ′

x}

Composing abstract syntax trees (ASTs) In Chapter 2 we were not very detailed
on how fragments concretely were transformed, only assuming that strings represent-
ing fragments could be transformed by substituting substrings representing slots. ISC,
however, traditionally does not manipulate strings, but composes fragments by trans-
forming their abstract syntax trees (ASTs). We will in the following also assume that
all composition takes place on fragments’ ASTs. Remember that the Mjølner sys-
tem [63] supports separate compilation of fragments with slots, and hence handle slots
in a particular way. In contrast, we support slot constructs by introducing them into the
relevant grammars. This allows us to parse fragments—including slots—into ASTs.
This can be done for any grammar. Also, parser generation tools such as ANTLR can
generate parsers that construct ASTs as the result of parsing fragments. When trans-
forming slots in fragments, we transform nodes in ASTs that correspond to slots. When
we transform implicit variation points, we transform “normal” AST nodes, that is, non-
slot nodes. We call such a non-slot node for a reference node.

The types for slots was defined in Definition 2.6 (p. 47). The types for implicit
variation points are slightly different, and in particular depend on the reference node
and the chosen set Iimpl representing implicit variation points.

Definition 3.2. (Grammatical types for implicit variation points) Let G′ be a ISC-
reuse grammar derived from base grammar G = (N,Σ,P,S) using the set Iimpl ⊆ N for
representing valid implicit variation points. Let F be a fragment valid wrt. G′ and IV P
a reference node in the AST representing F. Then, the subtree with IV P as root node
represents a substring s of F. Let τ+(IV P) represent the set:

τ+(IV P) = {n ∈ N | ∀ f ∈ L(n) : (F
(s, f)

↪−−→ F ′) ∈ L(G′)}

The type of IV P can then be defined as follows:

τ(IV P) = τ+(IV P)∩ Iimpl

Notice that the definition of τ+(IV P) above is similar to the defined notion of types
for slots (cf. Definition 2.6 (p. 47)). The above definition intuitively says the following.
The type of an implicit variation point IV P is the intersection of two sets:

1. Grammar specific. The set Iimpl chosen as valid implicit interfaces for the entire
ISC-reuse grammar.

2. Fragment specific. The types of the reference node. This is defined as the set of
nonterminals N′ ⊆ N such that for each n ∈ N′:

∀ f ∈ L(n) : (F
(IV P, f)

↪−−−−→ F ′) ∈ L(G′)

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 69

Notice that Definition 3.2 ensures that the resultant fragment after an implicit com-
position step is valid wrt. the considered ISC-reuse grammar. Furthermore that the
safety condition relates to the fragment being transformed and its grammar, rather than
the precise structure of the fragment’s AST.

Example 3.2. (Implicit variation point safety) Let’s build on Example 2.7, where the
fragment in (3.3) was composed.

bonus(X, 200) :- employee(X). (3.3)

Assume that atoms are annotated to be variation points in the ISC-reuse grammar
G′—hence Iimpl = {atom}—and that we want to transform the fragment from (3.3) us-
ing its implicit interface. First remember that ISC composes fragments by transforming
their abstract syntax trees (ASTs). Also remember that, in contrast to explicit slots, im-
plicit variation points are not defined by names (we will discuss this in Section 3.2.3).
Let the fragment F ′ in (3.4) be the same one as in (3.3), but where we, for the sake of
this example, have made the node in the fragment’s AST we want to transform explicit,
and refer to it using the name condition.

bonus(X, 200) :- employee(X)︸ ︷︷ ︸
condition

. (3.4)

The types for the implicit point condition is τ(condition) = {atom,head,body}∩
Iimpl = {atom}. Suppose we want to extend the rule body via its implicit interface
(here: condition) with the G′-valid P-program g: "efficient(X)". The types of g are
{atom,head,body}. Since τ(g)∩ τ(condition) 6= /0, this composition step is safe. The
result F ′′ is shown in (3.5).

bonus(X, 200) :- employee(X), efficient(X). (3.5)

In contrast, assume we want to extend the body list of (3.4) with the (assumed)
G′-valid P-program "X", call it g′, whose types are τ(g′) = {term,var}. Since τ(g′)∩
τ(condition) = /0, the composition step is unsafe, and hence invalid.

�

Related sets of nonterminals for component models A final note on constructing
reuse grammars. In Chapter 2, when constructing reuse grammars, we chose a subset
Nslot ⊆ N, and a subset N f rgmt ⊆ N, wrt. a base grammar G = (N,Σ,P,S), as desir-
able “slotable” constructs and valid fragment types, respectively. In this chapter, when
constructing ISC-reuse grammars, we chose a subset Iimpl ⊆ N to represent accessible
implicit variation points. All these sets are naturally closely related. As an example,
consider the grammar of RL. If we defined Nslot = {atom}, then it seems natural that
we should also have atom ∈ N f rgmt : If we want to bind atoms to slots, we must be able
to define atoms. Likewise, if we want to transform vars implicitly, for example to re-
name a variable, we would have var ∈ Iimpl , and also require var ∈ N f rgmt . In general,
for the construction of a ISC-reuse grammar, we would have:

Nslot ∪ Iimpl = N f rgmt (3.6)

The constraint in (3.6) is however only an intuitive and useful guideline, and not
strictly enforced. We could also, for example, define Nslot = {term}, Iimpl = /0 and
N f rgmt = {var}, which does not conform to (3.6). This would mean that we can declare

70 CHAPTER 3. UNIVERSAL ISC

Interface Operator Usage Comment
Explicit bind() Parameterization Slot application
Implicit bind() Parameterization Replaces sub-fragments

extend() Extension Extends list constructs

TABLE 3.5: The ISC composition operators and their usages.

slots where terms may appear, but we can only define fragments of syntactic category
〈var〉. Note, however, that we will mainly rely on the constraint in (3.6).

3.2.2 Aligned composition algebra
When defining ISC in a grammar-driven fashion, and as an extension of GBM, it is
useful to align the concepts and terminologies of their composition algebras. As can
be seen in Example 3.2, ISC can transform fragments implicitly, as long as there is a
way to reference the points in fragments that the composition algebra should operate
on. It is the task of the composition language to support means of addressing implicit
variation points in fragments. We will discuss this in Section 3.2.3. In this section
we instead study exactly how the composition algebra of ISC goes beyond the one of
GBM.

We recall that GBM supports parameterization of fragments through explicitly de-
clared slots. Less obvious, but important to realize, is that GBM also supports exten-
sion. If the value fragment to be bound to a slot consists of a collection of fragments
with valid types, then the target fragment is effectively extended. Hence, GBM sup-
ports both parameterization and extension, but only via explicit interfaces. In addition,
each time an explicit interface is used, it is “consumed” and cannot be used again.

Example 3.3. (Extension using slots) Consider the RL fragment below with a slot in
the rule body:

bonus(X, 200) :- employee(X), « condition ». (3.7)

Then the slot condition can be bound by the fragment set:

overtime(X,Y)
gt(Y,50)

(3.8)

to produce the fragment:

bonus(X, 200) :- employee(X), overtime(X,Y), gt(Y,50). (3.9)
�

The intuitive semantics behind slots is that they declare points in fragments that
should be replaced, once, during composition. And this can be done using bind(),
regardless if it is for simple parameterization or fragment extension. But in contrast to
GBM, ISC has an explicit notion of extension via the extend() operator. However, as
seen, there is never any need for the extend() operator to work on explicit interfaces.5

5If not for being able to extend fragments while leaving the slot operated on in place (as opposed to
bind() which would remove it). But, as we regard this to be opposed to the understood semantics of slots,
we disallow it. If a slot is desired to be left behind after a transformation, the value fragment may introduce
a new slot.

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 71

AST Node

Slot

bind() extend()

parameterizes/
extends

parameterizes/
extends

extends

AST Node

Slot

bind() extend()

parameterizes

parameterizes
extends

append | prepend | default

operational modes

FIGURE 3.4: The operator bind() can work on both explicit and implicit interfaces for
simple parameterization or fragment extension. The extend() operator only works on
implicit interfaces for the purpose of extension.

By recognizing that parameterization via bind() can be used for fragment extension,
we shall assign a very particular meaning to ISC’s extension operator: true extension –
extend() never replaces parts of fragments, but only always extends them. This means
that extend() will only work on nodes of fragments’ ASTs. But bind() can also be
used on fragments’ AST nodes, hence, working directly on their implicit interfaces. In
this case, rather than replacing a slot in a fragment, a node in the fragment’s AST is
replaced. Such a replaced node in a fragment AST represents a sub-fragment. Again,
this can be used both for simple parameterization and for fragment extension. Table 3.5
summarizes the ISC composition operators and their usages. By ‘parameterization’
in Table 3.5 we mean the replacement of something in the target fragment (a slot or
an AST node), and by ‘extension’ we mean that nothing is replaced, but the target
fragment is only extended.

Example 3.4. (Using bind() on implicit interfaces) Consider the fragment below,
where we use the name condition for the node in the fragment’s AST corresponding to
the second atom in the rule body:

bonus(X, 200) :- employee(X), efficient(X)︸ ︷︷ ︸
condition

. (3.10)

Then we can transform the fragment using bind() is a similar way as was done in
Example 3.3 (cf. (3.9)).

�

The only contribution of the extend() operator is to allow for extension of list-
like constructs using implicit interfaces. That is, when we do not want to replace
anything in the target fragment, but only extend it. These different possibilities for the
bind() and extend() operators, that are at the heart of the ISC algebra, are visualized
in Figure 3.4. As can be noticed in Figure 3.4, there are three different operational
modes that extend() can operate in: append, prepend and default. The reason we need

72 CHAPTER 3. UNIVERSAL ISC

them is the following. Both bind() and extend(), when working on implicit interfaces,
operate wrt. some reference node in the considered fragment’s AST. For this reason,
when applying extend() on such a reference node—which must be a node in a list-
structure—it is not clear if the value fragment should be inserted before or after the
reference node. That is, if the value fragment should be appended or prepended. The
operational modes append and prepend control this. The default operational mode tries
to be “smart”; it prepends if the reference node is the first node in the list-structure, and
appends when the reference node is the last node. If the reference node is neither first,
nor last, then the value fragment is appended (in the default mode).

Example 3.5. (Extension using extend() on implicit interfaces) Consider the fragment
below, where we use the name condition for the reference node in the fragment’s AST
corresponding to the second atom in the rule body:

bonus(X, 200) :- employee(X), efficient(X)︸ ︷︷ ︸
condition

. (3.11)

Let the following be composition statements in pseudo-code using the extend()
operator, operating in prepend, append and default mode, respectively:

prepend condition with "friendly(X)" (3.12)
append condition with "friendly(X)" (3.13)
extend condition with "friendly(X)" (3.14)

Then each of the above composition statements would result in each of the follow-
ing, respectively:

bonus(X, 200) :- employee(X), friendly(X), efficient(X). (3.15)
bonus(X, 200) :- employee(X), efficient(X), friendly(X). (3.16)
bonus(X, 200) :- employee(X), efficient(X), friendly(X). (3.17)

If the first atom in the rule body from (3.11) was selected as reference node in-
stead of the second atom, then the composition statement in (3.14) (using the default
extension mode) would result in:

bonus(X, 200) :- friendly(X), employee(X), efficient(X). (3.18)

This is because the default mode prepends when the first node in a list is used as
the reference node.

�

Recall that reference nodes are always required in fragments’ ASTs for implicit
transformations. This causes a technical problem for empty list structures, for example,
an empty method parameter list. In this case a reference node does not exist. This can
however be solved in a concrete implementation by automatically generating special
‘empty’ reference nodes.

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 73

3.2.3 Generic composition language for ISC
In this section we discuss the requirements for a generic composition language for
ISC. Notice that we used the term ‘fragment language’ in Chapter 2, while we here use
the more general term ‘composition language’ (in line with the terminology of ISC).
By ‘generic’ we here mean a composition language that can be used regardless of
the underlying component language. A component language is the language in which
fragments are written (that is, a language generated by an ISC-reuse grammar). In
Section 2.2.2 we discussed the requirements for a generic fragment language for GBM
called FLABS (only dealing with explicit interfaces). The goal here is to extend those
requirements and deliver an approach for realizing a generic composition language also
able to handle the implicit interfaces of ISC.

A good place to start is understanding what the composition language is in COM-
POST/J. First recall that the component language in COMPOST/J is Java. Composition
programs in COMPOST/J are also written in Java. So, does this mean that Java is the
composition language in COMPOST/J? Nierstrasz explains in [66] that a composition
language “supports the technical requirements of a component-oriented development
approach by shifting emphasis from programming and inheritance of classes to speci-
fication and composition of components.” [66, p. 147] This means that the true “com-
position language” in COMPOST/J is not really Java itself, but rather the Java types and
methods that allow for talking about, and composing, Java fragments. We recall Java
types such as ClassBox, and methods such as createClassBox(). So, Java is more
of a surrounding environment—a platform—where the true composition language in
form of COMPOST-provided types and methods reside. This distinction is important to
recognize, and we make it explicit with the two definitions below.

Definition 3.3. (Core composition language) We call the composition language which
provides the vocabulary for talking about the software entities being composed, and
how they should be composed, for the core composition language.

The core composition language can then be different from the language which en-
ables the core composition language:

Definition 3.4. (Host composition language) We call any composition language which
facilitates a core composition language for a host composition language.

The host language can provide useful constructs that are not essential to the core
composition language, for example, control-flow mechanisms, exception handling and
reuse abstractions (e.g. procedures). A core composition language and a host compo-
sition language can also be the same. This is the case if the core composition language
constructs are first-class entities of the host composition language. This is the case in,
for example, ASPECTJ [52]. However, in other cases, which is true for COMPOST/J,
the two are clearly different. In COMPOST/J, the host composition language is Java,
while the core composition language is a Java-based API for defining Java boxes and
for talking about their interfaces (how this API is used can be seen in Listing 3.5).

Based on this understanding, we now define two main properties of a generic com-
position language for ISC:

LR1 Relation between core composition languages and component models. The core
composition language for COMPOST/J is tightly integrated with the component
model (illustrated in Figure 3.5). It predefines means for declaring the supported
fragment types, knowledge that typically resides in the component model. For

74 CHAPTER 3. UNIVERSAL ISC

Composition technique
Component model

Composition System

Composition language

Composition technique

Component model

Host
composition language

Core
composition language

Java

Compost/J

Java
API

FIGURE 3.5: COMPOST/J uses a Java-based API as the core composition language and
has a tight connection with its component model.

example, the method createClassBox(String) exists for declaring Java class
boxes. This is not bad in itself, the problem is rather connected to the fact that
COMPOST/J’s core composition language—its provided API for working with
Java boxes—is fixed and manually specified. For our framework, there are es-
sentially two options for a useable and generic composition language:

1. The host composition language natively provides possibilities to work with
fragments and realizes the required ISC composition algebra, or

2. The host composition language is any general-purpose language, while the
core composition language is generated in accordance with the specified
component model for the particular component language.

Neither of the above is the case in COMPOST/J. First, Java does not natively sup-
port working with our notion of fragments. Second, the COMPOST-provided API
for working with Java fragments—the core composition language—is manually
specified. So, support for a different component language must be manually
specified in a similar way as for Java.

The first option is arguably not realistic for ISC since no such language exists,
and to define one is not an easy task. The second option is more feasible since
many different general-purpose languages exist that can be used as host lan-
guages. What is required is a way to generate the core composition language,
the required API that can be used together with the host composition language
for the purpose of composing fragments. Such a generative approach could be
said to realize a generic core composition language: The generation is parame-
terized by any given component language (actually, its grammar).

LR2 Accessing implicit interfaces. If there exists no predefined core composition
language, there also does not exist any predefined means of accessing implicit
variation points in fragments. Remember that (explicit) slots are accessed via
name references, but implicit variation points are by definition not named. A
core composition language often provides convenient mechanisms to access cer-
tain points in fragments of the component language. For example, ASPECTJ
provides simple means of accessing the entry and exit points of Java methods

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 75

context

context

(a) Explicit traversal with implicit context.

context

context

(b) Implicit traversal with explicit context.

FIGURE 3.6: Two different traversal techniques of ASTs: explicit and implicit.

(while the programmer has to specify exactly which methods should be consid-
ered). Without such predefined access points, the fragment programmers must
have a better understanding of the component language structure (its grammar).
Programmers must essentially traverse the abstract syntax trees (ASTs) of the
fragments themselves, since no other means of access is provided for them. Pre-
defined access points are not only attractive because of their convenience, but
also because they effectively restrict how fragments may be accessed. That is,
by assuming that there are no other means to access fragments implicitly. So, a
generic composition language needs to provide the means to (at least partially)
traverse the defined fragments’ ASTs, subject to restrictions posed by the rele-
vant component model.

In the following we focus on different ways of traversing fragments’ ASTs. To
select specific nodes in an AST, there are, generally speaking, two main ap-
proaches:

1. Explicit traversal – implicit context. The first possibility is to explicitly
specify the path in the AST to reach the desired node. This is illustrated in
Figure 3.6a where two nodes are selected via two different paths. Notice
that by explicitly specifying the path to take to reach a particular node, the
context that the node appears in is also known (implicitly). For example,
consider the following RL rule:

head(X) :- body(X). (3.19)

If the selected nodes in Figure 3.6a correspond to the two variables (named
X) in (3.19), then each of the expressions that select the nodes reveal if the
selected node corresponds to the variable in the rule head, or the rule body.

2. Implicit traversal – explicit context. Another possibility is to simply ex-
press what kind of nodes should be selected in the AST, without caring so
much about the details of how they are reached. This is illustrated in Fig-
ure 3.6b where the same nodes are selected as in Figure 3.6a, but without

76 CHAPTER 3. UNIVERSAL ISC

1 <prgm>
2 <stmt>
3 <rule>
4 <head>
5 <atom>
6 <predname>bonus</predname>
7 <term><var>X</var></term>
8 <term><num>200</num></term>
9 </atom>

10 </head>
11 <body>
12 <atom>
13 <predname>employee</predname>
14 <term><var>X</var></term>
15 </atom>
16 </body>
17 </rule>
18 </stmt>
19 </prgm>

LISTING 3.7: XML representation of the fragment in (3.20) with highlighted text
for successful matching as specified in Listing 3.8, and italicizes text for matching as
specified in Listing 3.9.

giving explicit path expressions to those nodes. That is, the traversal of the
AST is implicit. But in this case—since no explicit path expressions were
given to reach the nodes—it is not immediately clear in which contexts the
selected nodes appear. If we use the same example as above and assume
that we have selected the two variables from (3.19), then we must explicitly
query the context for each node to find out if we have selected the variable
in the rule head or in the rule body (see Figure 3.6b).

One of the tasks of the composition language in a generic ISC setting is to pro-
vide appropriate constructs for selecting nodes in fragments’ ASTs. Further-
more, the composition programs written in the composition language must ad-
here to any given component model that restricts the access to the fragments’
ASTs. Once the required (and permitted) AST nodes are selected, the ISC com-
position algebra can operate on those points to transform the fragments. In prin-
ciple any suitable query language could be deployed to select the needed AST
nodes.

3.2.3.1 Using Java as host composition language

Concretely, we will take an approach similar to the one used in COMPOST/J, but which
is more general. That is, we will use Java as the host composition language. As in
COMPOST/J, the core composition language will be a Java library, a Java API. This
is convenient since it makes it possible to vary the core composition language, while
the host composition language remains the same. Being able to vary the core com-
position language is a basic requirement of our framework approach, where different
composition systems work with different kinds of software entities, and hence require
the appropriate terms for reasoning about them.

However, in contrast to COMPOST/J, we do not provide a predefined set of APIs

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 77

1 public void compositionProgram()
2 {
3 IPrgm program = ... ;
4 program.accept(new RlVisitor() {
5

6 public boolean visit(IAtom node) {
7 // transform node
8 ...
9 return true;

10 }
11 });
12 }

LISTING 3.8: Composition program selecting all atoms in a RL program.

for particular base languages, for example, Java. We do not commit to any compo-
nent language, and instead support a language-inclusive approach by being grammar-
driven. This means that we generate the required Java APIs—the core composition
languages—based on certain specifications: component model specifications. By al-
lowing component model specifications to dictate the core composition languages, we
effectively restrict the composition programs written in those languages, which is one
of the points of the component models in the first place. Notice that providing a core
composition language as a Java API is similar to providing a DSL for composition for
a particular component language. In this view, the core composition language is a DSL
embedded in Java (the host language).

How component models are specified and how the required Java APIs are gener-
ated is covered in Section 3.3. Here we instead focus on how the core composition
languages, once they are generated, can be used for selecting the appropriate nodes in
fragments’ ASTs, such that the ISC composition algebra can operate on them. That is,
we focus on how implicit interfaces can be managed in a generic framework lacking
predefined, and language-specific, fragment access operators.

It should be noted that our technical realization is partially a consequence of choos-
ing Java as the host composition language. A different host composition language
would most likely result in a different solution, realized based on the constructs pro-
vided in that language.

We shall in the following, for demonstration purposes, use the well-known XML
serialization format to encode ASTs. The RL fragment in (3.20) can be represented
by an AST, for example by the XML-based tree-structure in Listing 3.7, where each
tag label (name enclosed by < and >) corresponds to a nonterminal of the RL language
grammar (cf. Example 2.1).

bonus(X, 200) :- employee(X). (3.20)

In trying to make the selection of implicit variation points as easy as possible for
developers, we will follow the second AST traversal possibility discussed above. That
is, we assume an implicit traversal of ASTs and allow developers to specify certain
criterion on which AST nodes should be selected. We illustrate with an example in
Listing 3.8.

The Java types IPrgm and IAtom used in Listing 3.8 belong to the core composition
language (assumed to have been generated), and allow us to work with RL programs
and atoms. The object program is assumed to contain the program in (3.20). To im-

78 CHAPTER 3. UNIVERSAL ISC

plicitly traverse the fragment’s AST (Listing 3.7) we pass a “visitor” object to the
accept(Visitor) method on the program object. The accept(Visitor) method
will automatically iterate through the AST of the fragment on which it is called. For
each AST node which is allowed to be transformed, it will invoke a visit-method on
the received visitor object, passing the visited sub-fragment as an argument (with the
visited AST node as root node). This gives the programmer an opportunity to trans-
form the fragment implicitly. The default and generated RlVisitor class provides
some empty visit-methods that can be overridden to do something useful. They all
have the following signature:

public boolean visit([Type] node)

There exists one such method for each type ([Type]) that is supported by the un-
derlying component model. If false is returned from the visit-method, the implicit
traversal is aborted, but if true is returned, it is continued. Notice that there is a con-
nection here to our previously introduced notion of “grammar annotations” in ISC-reuse
grammars. We can override visit-methods for types that correspond to annotated non-
terminals in the assumed ISC-reuse grammar. This is because the annotations indicate
that such points in fragments may be transformed implicitly, and hence should be se-
lectable. In the example in Listing 3.8, we assume that the types IPrgm and IAtom are
supported by the component model (corresponding to RL’s nonterminals 〈prgm〉 and
〈atom〉). This means that we can override the method with the specific signature:

public boolean visit(IAtom node)

The overridden method in Listing 3.8 will be invoked for the nodes in the AST
as indicated in Listing 3.7 (bold text indicates matching). That is, all the AST nodes
that correspond to atoms are selected. To avoid having to define a new class where
the appropriate methods are overridden, we have in Listing 3.8 made use of Java’s
ability to define anonymous instances, or classes. The code between Lines 4–11 in
Listing 3.8 automatically creates, and instantiates, a new class that extends RlVisitor
and contains the defined methods (here: visit(IAtom)). Again, since we here over-
ride visit(IAtom), we have a chance to transform atoms within the main fragment
(represented by the program object).

However, as mentioned, in such an implicit traversal approach, it can be necessary
to explicitly query for the context of the selected nodes. For example, we might want
to distinguish between the atom in the rule head and the atom in the rule body. This
can be achieved as demonstrated by the program in Listing 3.9. Here we query for
the context of the selected node using the inContextOf([NodeType]) method. The
method takes an AST node type as argument, which is here provided by the RlUtil
class. The query in Listing 3.9 effectively checks if the selected atom is contained in
the rule body. By querying for the context we can here avoid transforming the atom
in the rule head. This refined selection is shown in Listing 3.7, where the bold and
italicized text indicates selection.

We prefer the implicit fragment traversal approach over the explicit traversal ap-
proach since:

1. It relieves the programmer of some details of the underlying language; focus can
be directed to the interesting points from a composition perspective, instead of
having to formulate full AST path expression.

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 79

1 public void compositionProgram()
2 {
3 IPrgm program = ... ;
4 program.accept(new RlVisitor() {
5

6 public boolean visit(IAtom node) {
7 if (node.inContextOf(RlUtil.BODY)) {
8 // transform node
9 ...

10 return true;
11 }
12 }
13 });
14 }

LISTING 3.9: Composition program selecting all atoms in bodies of rules in a RL
program.

2. The approach is more declarative in nature, and hence arguably easier to under-
stand.

3. There is a clear connection between overridden visit-methods and grammar
annotations; there is a clear connection between access of implicit points and the
specified component model.

3.2.3.2 Querying contexts

The following methods are currently supported for querying contexts of nodes:

– <node>.inContextOf([NodeType])

Checks if the node operated on is in context of the node type passed as an argu-
ment.

– <node>.isFirst()

Checks if the node operated on is the first member of a list.

– <node>.isLast()

Checks if the node operated on is the last member of a list.

The isFirst() and isLast() context queries can be used to find out if, for exam-
ple, a selected RL atom is the first or last atom in a rule body.

3.2.3.3 Composition algebra and FLABS support in core composition languages

To actually transform fragments, a core composition language must support the un-
derlying ISC composition algebra. That is, the composition algebra detailed in Sec-
tion 3.2.2. For our Java-based solution this means that the methods detailed in Ta-
ble 3.6 should be provided for objects that correspond to valid fragments. The bind()
and extend() (in its three modes) operators transform by value. This means that the
value fragments being bound or extended are copies. We also provide the helper op-
erator collect() that can be used to extend a “collector” fragment by reference. This
means that if the collected fragments are transformed, this also affects the fragments

80 CHAPTER 3. UNIVERSAL ISC

Operator Parameters Comment
Explicit interface
<frgmt>.bind(s,f) Slot name s,

Value fragment f
Binds f to slots named s in frgmt

Implicit interface
<frgmt>.bind(f) Value fragment f Replaces frgmt fragment with f
<frgmt>.extend(f) Value fragment f Extends frgmt with f, using frgmt

as reference node (default mode)
<frgmt>.prepend(f) Value fragment f Extends frgmt with f, using frgmt

as reference node (prepend mode)
<frgmt>.append(f) Value fragment f Extends frgmt with f, using frgmt

as reference node (append mode)
Helpers
<frgmt>.accept(v) Visitor v Applies visitor v on frgmt
<frgmt>.collect(f) Fragment f Extends collector fragment frgmt

with f
<frgmt>.print(file) File file Prints content of <frgmt> to file

TABLE 3.6: The main methods available on generated core composition language ob-
jects representing fragments.

from which they were collected. We will see how this collector operator is used in
Section 3.5 (Listing 3.19).

Our generated core composition languages are supersets of the abstract fragment
language FLABS. The basic FLABS constructs are supported in the following way:

1. Fragment declaration. The types provided by the core composition language
API can be used to declare fragments (cf. IPrgm in Listing 3.8).

2. Slot application. The <frgmt>.bind(s,f) method enables slot applications.

3. Result specification. The <frgmt>.print(file) method enables result specifi-
cations.

3.2.3.4 Refining and enriching core composition languages

As mentioned, it can be very useful for programmers to have predefined ways of ac-
cessing often reoccurring positions in fragments. A good example in Java is method
entry and exit points. Staying with our RL language, the first and last position of rule
bodies could be useful to refer to by name, simplifying adding preconditions and post-
conditions to rules. While we, as discussed, cannot predefine such convenient ways of
accessing certain points in fragments, our Java-based solution enables an easy way to
define such names for particular composition systems (e.g. for a composition system
supporting RL).

Example 3.6. Assume we want to add preconditions and postconditions to RL rules.
In the first case this would involve prepending a condition atom to the considered rule
body atom list, while in the second case the condition atom would be appended. This
can be done in the particular places we want to accomplish this, but if we want to have
the possibility of reusing such fragment accesses across composition programs, we can
encapsulate it in a Java method. The Java method name then essentially becomes a

3.2. UNIVERSAL INVASIVE SOFTWARE COMPOSITION 81

1 public class RLLibrary {
2 public static RlVisitor precondition(final IAtom condition) {
3 return new RlVisitor() {
4 public boolean visit(IAtom node) {
5 if (node.inContextOf(RlUtil.BODY) && node.isFirst()) {
6 // prepend condition
7 node.prepend(condition);
8 }
9 return true;

10 }
11 };
12 }
13

14 public static RlVisitor postcondition(final IAtom condition) {
15 return new RlVisitor() {
16 public boolean visit(IAtom node) {
17 if (node.inContextOf(RlUtil.BODY) && node.isLast()) {
18 // append condition
19 node.append(condition);
20 }
21 return true;
22 }
23 };
24 }
25 }

LISTING 3.10: Reusable AST visitors for RL fragments. The first method accesses
the first atom of rule bodies (to add a precondition), and the second the last atom (to
add a postcondition).

term that can be used to talk about such fragment locations. In Listing 3.10 we define
two such methods encapsulating pre- and postcondition access to RL rules.

Such defined means of accessing RL fragments can be used as shown in List-
ing 3.11. The composition program in Listing 3.11 defines three RL fragments, a
program program and two atoms, precond and postcond. The program fragment
is implicitly transformed using the defined fragment access methods from Listing 3.10.

Let us assume that the fragment program corresponds to the following fragment:

p(X) :- q(X), r(X). (3.21)

Further, that precond and postcond correspond to "pre(X)" and "post(X)", re-
spectively. Then the program fragment would be the following after Listing 3.11 had
executed:

p(X) :- pre(X), q(X), r(X), post(X). (3.22)

�

Other valuable fragment access points can be defined in a similar way as in Exam-
ple 3.6, and for completely different component languages.

The possibility to define commonly used fragment access methods for specific
composition systems in reusable libraries essentially allows to refine and enrich core
composition languages using the standard generic fragment access approach (cf. List-
ing 3.10). Notice that the implementation of the enriched fragment interfaces—the

82 CHAPTER 3. UNIVERSAL ISC

1 public void compositionProgram()
2 {
3 IPrgm program = ... ;
4 IAtom precond = ... ;
5 IAtom postcond = ... ;
6

7 program.accept(RLLibrary.precondition(precond));
8 program.accept(RLLibrary.postcondition(postcond));
9 ...

10 }

LISTING 3.11: Composition program using predefined names defined in Listing 3.10.

Fragment language

bind() and extend() for implicit interfaces

Fragment AST traversal technique

builds on

builds on

Grammar-based modularization
(only explicit interfaces)

Invasive software composition
(working on implicit interfaces)

Invasive software composition
(referencing implicit interfaces)

Component

Models

Legend: = respect (languages respect component models)

FIGURE 3.7: Composition language hierarchy, from GBM to ISC.

defined and reusable methods, e.g. precondition() in Listing 3.10—still have to re-
spect the underlying component model. It is merely a means to achieve, in a generic
framework, the predefined and convenient access methods often provided by special-
ized composition systems such as COMPOST/J or ASPECTJ. A basic requirement for all
of this is naturally that the host composition language supports a notion of procedures
or methods, which is often the case for general-purpose languages.

Summary
We here briefly summarize what was achieved above wrt. composition languages (see
Figure 3.7). We started from an abstract representation of a basic fragment language
used in grammar-based modularization approaches—FLABS. To also support the im-
plicit interfaces of ISC we extended this basic language with the two additional opera-
tors bind() and extend() that work on implicit interfaces, corresponding to the missing
parts of ISC’s basic composition algebra. Regardless of the sophistication of the par-
ticular composition language, the component models restrict how compositions can be
defined.

The primitiveness of ISC’s composition algebra is due to not considering how trans-
formational points in fragments are actually accessed. The access of explicit variation
points is not the concern of the programmer since names are used to refer to such
points. The main challenge is to support ISC’s implicit interfaces in a generic frame-
work. What is needed is controlled transformation of fragment ASTs. We achieved this
by providing a visitor-like pattern as a means to reference implicit points, but where the

3.3. DEVELOPING U-ISC–BASED COMPOSITION SYSTEMS 83

usage of such patterns are controlled by the underlying component model. More ex-
amples of how composition systems can be specified and used are given in Section 3.3.
Using a generative approach we can realize a two-faced composition language: Java is
used as the host composition language, while core composition languages, specific to
composition systems, are generated as Java APIs.

Notice that our solution is based on using Java as the host composition language,
and that this choice dictates the solution. Using a different host composition language
can possibly result in a different, perhaps better, solution. A language such as Scala6

supports visitor patterns as a primitive construct and the solution could possibly have
been even simpler if Scala was used as the host composition language. This is, however,
not further investigated here.

3.3 Developing U-ISC–based composition systems
In this section we describe more practical details of how to construct composition sys-
tems based on the already discussed notions. In Section 3.3.1 we provide a concrete
language, called CmSL, for specifying the fragment-based component models of com-
ponent languages. Later we will give examples of its use.

3.3.1 Component model specification language (CmSL)
The constructs of the language presented here directly correspond to the requirements
of component model specification. That is, it provides the necessary constructs for
dictating the structure of a reuse grammar G , starting from a base grammar G.

– Base grammar declaration. First we need to declare which base grammar is
being considered. This is done using the extends construct:

〈decl〉 ::= extends 〈url〉 @ 〈ident〉 as 〈url〉 .

where the 〈url〉 nonterminal represents a URL and nonterminal 〈ident〉 a string.
The first URL is used to specify the file containing the base grammar. The identi-
fication string gives us a name to refer to the grammar in subsequent statements.
Finally, the second URL specifies the location where the transformed grammar
should be stored.

– Slot declaration. It should be possible to specify nonterminals in a grammar that
should have corresponding slot constructs. For this purpose we use the slotify
construct:

〈slotify〉 ::= slotify 〈nonterminal〉 .

where 〈nonterminal〉 represents a nonterminal in the base grammar. The slotify
construct corresponds to the ψ function as discussed in Section 2.2.1. We also
recall that there is an alternative function ψ∗ that creates type-specific slot con-
structs. Hence, we provide this function as a construct in our language as well:

〈slotify*〉 ::= slotify* 〈nonterminal〉 .

6http://www.scala-lang.org/

http://www.scala-lang.org/

84 CHAPTER 3. UNIVERSAL ISC

〈cmsl〉 ::= 〈decl〉 〈stmt〉* 〈fragtypes〉
〈stmt〉 ::= 〈slotify〉 | 〈slotify*〉 | 〈comment〉

TABLE 3.7: The main part of the CmSL-grammar.

– Fragment types. We also want to be able to dictate which fragment types are
definable according to the component model. This is done using the fragtypes
construct, using the following syntax:

〈fragtypes〉 ::= fragtypes { 〈nonterminal〉 (, 〈nonterminal〉)* }

where each nonterminal belongs to the base grammar. This construct does not
affect or transform the base grammar, but is rather used by the framework imple-
mentation to restrict fragment definitions.

Every nonterminal in the above is assumed to be preceded by an identifier followed
by a dot (.). The identifier represents the base grammar as specified using the extends
construct. This is only an implementation convention, see Listing 3.12 for an example
(p. 88). The main part of the CmSL grammar is show in Table 3.7, using the above
defined constructs. Notice that a CmSL specification is not required to specify any
slots.

As discussed, there is, in general, a difference between fragment types that are
allowed to be defined, and fragment types that may be referenced implicitly during
composition. In Chapter 2 we used a subset N f rgmt of the nonterminals of the base
grammar for the former, and in this chapter “annotations” for the latter. Here, however,
we use the fragtypes construct for both these purposes. That is, here we assume
N f rgmt = Iimpl . The reason for this is related to the implementation, where we use
the same core language Java types (e.g. IAtom), both for defining fragments (N f rgmt)
and for accessing fragments implicitly (Iimpl). This is only a limitation in the current
realization, and not a conceptual limitation. The real limitation in this case lies in the
fact that one might want to allow definition of certain fragment types (e.g. to define
fragment values for slots), but not allow implicit transformation of the same fragment
types. That is, one would perhaps like to have, for some fragment type n: n ∈ Nslot ,
n ∈ N f rgmt and n 6∈ Iimpl , which currently is not possible.

3.3.2 Component model generation from CmSL specifications

Based on a CmSL specification, a component model can be generated. Here we cover
the essentials of what is generated. First, the required slot constructs are injected,
according to ψ, into the appropriate places in the base grammar, as dictated by the
slotify constructs.7 Second, appropriate core composition language types are gener-
ated, based on what is specified using the fragtypes construct. The generated types
have the following name convention: I + [Typename]. Assume that the following
(partial) CmSL specification is given, where file:rl.gr is the location of the RL

7In the remainder we will not use the ψ∗ construct, but only the ψ construct.

3.4. TOOLING – REUSEWARE/AIR 85

grammar:

extends file:rl.gr @ rl as file:rlx.gr
...
fragtypes { x.rule, x.atom }

(3.23)

Then the two types IRule and IAtom will be generated. In fact, these types are
Java interfaces (hence the I). Their implementation classes are also be generated:
IRuleImpl and IAtomImpl (perhaps unconventionally, the I stays in the name). The
generated interfaces (types) subclass the generic interface IFragment, that defines
methods corresponding to the ISC composition algebra from Table 3.6. The imple-
mentation types, named I + [Typename] + Impl, additionally implement a static
load(String) method. This method can be used to load fragments. The load(String)
method can be used in the following way:

IRule stmt = IRuleImpl.load("p(X):- q(X).")

As an aside, a fragment type (e.g. IRule) can not only represent a single fragment,
but also a collection of fragments of the same type. A visitor class is generated that
automatically can traverse fragments’ ASTs. The naming convention of this class is:
[BaseLanguageName] + Visitor. For our rule language RL, this class would hence be
named: RlVisitor. It should be mentioned that all generated interface types (fragment
types) are equipped with an accept([Visitor]) method with a suitable signature. For
RL, the fragment types would have a method with signature accept(RlVisitor). The
grammar specific visitor class implements a set of methods that can be overridden.
One method is generated for each fragment type specified using fragtypes, and each
method look as follows:

public boolean visit(I[Typename] node){ return true; }

A visit-method returning true means that the visitation of the fragment AST
should continue after the particular visit. Returning false aborts the visitation.

Figure 3.8 exemplifies the set of generated classifiers for RL based on N f rgmt =
{rule,atom}. The classifiers generated based on N f rgmt are shaded in grey. Two addi-
tional comments: (i) The generated type interfaces (e.g. IAtom) also demands a copy
method for copying the content of fragments during composition. (ii) The visitor class
(e.g. RlVisitor) also provides a constructor taking a fragment as an argument (not
depicted in Figure 3.8). The fragment passed as the parameter to the constructor can
be accessed using the method getParamFragment(). This constructor can be used
for different purposes. How these constructs are used is demonstrated in Section 3.5.
The class RlAlgebra in Figure 3.8 is generated to contain (Java) type information that
is specific to the particular component language (in this case RL). The generic class
Algebra implements the necessary composition algebra (promised by IFragment).

3.4 Tooling – REUSEWARE/AIR

In this section we give an overview of the involved tooling for developing the de-
scribed composition systems. The techniques and ideas that have been described have
been prototyped and implemented on top of the REUSEWARE Composition Framework

86 CHAPTER 3. UNIVERSAL ISC

copy() : IRule

<<interface>>
IRule

Algebra

$ load(String) : IRule

IRuleImpl

bind()
extend()

<<interface>>
IFragment

Generated

classifiers

(for specific
composition

systems)

Generic

classifiers

(for all
composition

systems)

visit(IRule) : boolean
visit(IAtom) : boolean

RLVisitor

copy() : IAtom

<<interface>>
IAtom

$ load(String) : IAtom

IAtomImpl

accept(RLVisitor)

<<interface>>
IRLFragment

RLAlgebra

FIGURE 3.8: An illustration of the generated classifier hierarchy for a core composition
language in a composition system. Classifiers in grey are specific to what fragment
types are desired (here rule and atom from RL). The classifiers above the dotted line
are reused for each composition system, while those below are generated specifically
for a certain component language (here RL).

(or simply REUSEWARE) developed in the Software Technology group at the Techni-
cal University of Dresden [49].8 REUSEWARE in turn is built on top of the Eclipse
Modeling Framework (EMF).9 EMF includes a modeling language (called Ecore) that
can be used for describing languages as Ecore models. REUSEWARE provides func-
tionality for transforming a simple form of language grammar specification into Ecore
models. Having languages specified by Ecore models is helpful because all the tooling
provided by EMF can be used to manipulate instantiations of such models. A valid
instantiation of a language model is a program. These language models only describe
the abstract syntax of languages. REUSEWARE also provides means to describe the
concrete syntax of the languages by referring to these abstract syntax models. By
employing the parser generator framework ANTLR10, REUSEWARE can also generate
parsers for the specified languages. These components of REUSEWARE are illustrated
on the lower parts of Figure 3.9 (there called REUSEWARE/CORE), but are not further
detailed here since they are not part of the contributions of this thesis (see [49] and
http://reuseware.org for more details).

The implementation contribution of this thesis is called REUSEWARE/AIR and is

8http://reuseware.org
9http://www.eclipse.org/emf/

10http://www.antlr.org/

http://reuseware.org
http://reuseware.org
http://www.eclipse.org/emf/
http://www.antlr.org/

3.4. TOOLING – REUSEWARE/AIR 87

Grammar specification

Ecore model of grammar

Extended
Ecore model

Concrete
Syntax

Parser

Component model

C
m
SL specification

Core composition language
(Java API)

REUSEWARE/CORE

REUSEWARE/AIR

Composition algebra

Java
(host
lan-

guage)

FIGURE 3.9: Architectural overview of the REUSEWARE Composition Framework,
including both REUSEWARE/CORE and REUSEWARE/AIR. REUSEWARE/CORE pro-
vides basic functionality for modeling languages, generating parsers and manipulating
models (the Eclipse Modeling Framework is employed for this). REUSEWARE/AIR is
developed on top of REUSEWARE/CORE and contains the prototypical implementation
for the concepts discussed in this thesis.

88 CHAPTER 3. UNIVERSAL ISC

1 extends file:rl-grammar.gr @ rl as file:rlx-grammar.gr .
2

3 % 1) slot constructs
4

5 % 1a) atoms should be slotable
6 slotify rl.atom .
7

8 % 1b) we want a type specific slot construct for numerals
9 slotify* rl.num .

10

11 % 2) component model restrictions: fragment types
12 fragtypes { rl.prgm, rl.stmt, rl.rule, rl.atom, rl.num, rl.predname }

LISTING 3.12: CmSL program specifying a component model for rule language RL.

implemented on top of the REUSEWARE Composition Framework, hence makes use
of it.11 The components of this contribution is shown in the upper part of Figure 3.9.
They are the following:

1. Specification of the CmSL language for describing component models (cf. Sec-
tion 3.3.1). The interpretation of CmSL specifications has also been realized
using the REUSEWARE framework (via bootstrapping techniques), but its de-
scription is out of the scope of this presentation.

2. Creation of extended language models (based on existing REUSEWARE tech-
niques, but augmented with some technical details for the purpose of REUSE-
WARE/AIR).

3. Generation of core composition languages (cf. Section 3.3.2). That is, appropri-
ate Java APIs are generated for working with fragments on the Java platform.

4. Implementation of required composition algebra. This involves both the primi-
tive ISC algebra (based on the original implementation in REUSEWARE, but ex-
tended and adapted for the purpose of REUSEWARE/AIR), as well as the identi-
fied requirement of controlled implicit fragment transformations (cf. Section 3.2.3).

3.5 Examples: U-ISC–based composition systems
We here exemplify the development of two composition systems, one for RL and one
for a simplified version of Java, here called Java−.

3.5.1 Composition system for simple rule language
Here we will look at an example dealing with the RL language grammar (see Exam-
ple 2.1, p. 27). We will use the CmSL language presented above to specify a tailored
component model for RL. The CmSL program in Listing 3.12 defines two slot con-
structs and a list of fragment types that are considered valid (and hence also which
sub-fragments that can be accessed implicitly). The result of this grammar extension
can be found in Table 3.8. For this example we will refer to this grammar and its
component model, as specified in Listing 3.12, as G(RL).

11The name “Air” is used in light of the desire to develop a lightweight composition framework.

3.5. EXAMPLES: U-ISC–BASED COMPOSITION SYSTEMS 89

〈prgm〉 ::= 〈stmt〉*
〈stmt〉 ::= 〈rule〉 | 〈fact〉
〈rule〉 ::= 〈head〉 :- 〈body〉 .
〈head〉 ::= 〈atom〉
〈fact〉 ::= 〈atom〉 .
〈body〉 ::= 〈atom〉 (, 〈atom〉)*
〈atom’〉 ::= 〈predname〉

(〈term〉 (, 〈term〉)*)

〈term〉 ::= 〈const〉 | 〈var〉 | 〈num〉

〈atom〉 ::= 〈atom’〉 | 〈slot’〉
〈slot’〉 ::= « 〈ident’〉 (: 〈ident’〉)? »

〈num〉 ::= 〈num’〉 | 〈num-slot’〉
〈num-slot’〉 ::= « 〈ident’〉 : #num# »

〈ident’〉 ::= STRING

〈predname〉 ::= STRING

〈const〉 ::= STRING

〈var〉 ::= CAP_STRING

〈num’〉 ::= NUM_STRING

TABLE 3.8: A ISC-reuse grammar for rule language RL.

1 bonus(X, <<bonus : #num#>>) :-
2 employee(X),
3 <<bonuscondition>>.
4

5 reducepay(X, <<minus : #num#>>) :-
6 employee(X),
7 <<reducecondition>>.
8

9

LISTING 3.13: Main paycheck
program (file:main.rl).

1 employeee(X) :-
marketing_employee(X).

2 employee(X) :- sales_employee(X).
3

4 bonuseligible(X) :- hardworking(X).
5 bonuseligible(X) :- efficient(X).
6

7 reprimand(X) :- lazy(X).
8 reprimand(X) :- showsuplate(X).

LISTING 3.14: Rules for aligning
company terminology
(file:align.rl).

The valid fragment types as specified in Listing 3.12 do not appear in the concrete
grammar in Table 3.8. This information is instead used for generating the appropriate
core composition language. That is, Java types that we will use in our composition pro-
grams. The fragments in Listings 3.13–3.16 are all well-formed fragments wrt. G(RL),
and describe a rule-based paycheck management system for a small fictitious company.
Listing 3.13 contains some rules for deciding when employees receive bonuses or pay-
check cuts. Since the company consists of several different and rather independent
departments, Listing 3.14 provides rules for aligning the different terminologies used
within the different departments. Listing 3.15 is a fact base detailing the sales depart-
ment, while Listing 3.16 covers the marketing department.

1 sales_employee(steve).
2 sales_employee(marco).
3 hardworking(steve).
4 lazy(marco).

LISTING 3.15: Database for sales
department (file:sales.rl).

1 marketing_employee(john).
2 marketing_employee(sarah).
3 showsuplate(john).
4 efficient(sarah).

LISTING 3.16: Database for marketing
department (file:marketing.rl).

90 CHAPTER 3. UNIVERSAL ISC

1 public void compositionProgram() {
2

3 // −−−−−− load fragments −−−−−−
4 IPrgm program = IPrgmImpl.load("file:main.rl");
5 IPrgm align = IPrgmImpl.load("file:align.rl");
6 IPrgm sales = IPrgmImpl.load("file:sales.rl");
7 IPrgm marketing = IPrgmImpl.load("file:marketing.rl");
8

9 // −−−−−− explicit interface (with inline fragment specification) −−−−−−
10 program.bind("bonuscondition", IAtomImpl.load("bonuseligiable(X)"));
11 program.bind("reducecondition", IAtomImpl.load("reprimand(X)"));
12 program.bind("bonus", INumImpl.load("200"));
13 program.bind("minus", INumImpl.load("100"));
14

15 // −−−−−− implicit interface −−−−−−
16 program.extend(align);
17 program.extend(sales);
18 program.extend(marketing);
19

20 // −−−−−− result specification −−−−−−
21 program.print("file:paycheckprogram.dl");
22 }

LISTING 3.17: Composition program for a paycheck query program in RL.

The different fragments can be maintained and modified independently of each
other, and cover different concerns of the overall company structure. On payday the
human resource (HR) department manager wants to find out where bonuses are due,
and where pay cuts can be made. The program in Listing 3.17 accomplishes this task
by composing the involved fragments into a usable query program. The final query
program is constructed by binding the slots in Listing 3.13 with the appropriate values,
as decided by the HR manager, and then extending the same fragment with the other
fragments. The composition result can then be found in file:paycheckprogram.dl.

The composition result can be used to issue the following query: bonus(X,Y). That
is, querying who gets a bonus, and how much. The result would be:

{X = steve, Y = 200},{X = sarah, Y = 200}

The query reducepay(X,Y) would give the following result:

{X = marco, Y = 100},{X = john, Y = 100}

Notice that the composition program in Listing 3.17 adheres to the component
model G(RL).

A simple example of how we could misuse the component model would be to write
the composition program in Listing 3.18. First, G(RL) does not allow to define vari-
ables as fragments (Line 7, since nonterminal 〈var〉 was not mentioned during compo-
nent model specification using the fragtypes construct). That is, the Java types IVar
and IVarImpl are not generated and can therefore not be used. Second, even if we
were allowed to define variables as fragments, the bind operation in Listing 3.18 is not
valid since the type of any fragment bound to slot value must be of type num.

A slightly more complicated example of a correct composition program is given
in Listing 3.19. There the program fragment is implicitly transformed by extending

3.5. EXAMPLES: U-ISC–BASED COMPOSITION SYSTEMS 91

1 public void compositionProgram() {
2

3 // −−−−−− load fragments −−−−−−
4 IPrgm program = IPrgmImpl.load("file:main.rl");
5

6 // −−−−−− bind fragments −−−−−−
7 program.bind("bonus", IVarImpl.load("X"));
8 }

LISTING 3.18: Type-incorrect composition program.

rules matching a specific condition with the additional body atom specified by the
fragment advice. The condition is that the head predicate name is “bonus” (only one
rule in our fragments matches this condition). To achieve this we first have to collect
(extract) the rules that will be transformed. This is done between Lines 5–22. The
collected rules can then be transformed, and this is done between Lines 24–33. This
composition program in Listing 3.19 would transform the fragment program to start as
in Listing 3.20 (notice that only the first rule is transformed implicitly).

Notice that in Listing 3.19 we first “collected” the rules we wanted to transform
using a certain pattern:

1. Construct an empty fragment that is sent as a parameter to the constructor of
the involved visitor class (here: RlVisitor). We call this empty fragment for
the “collector fragment.” If we want to nestle further into the original fragment
(its AST), we can pass the collector fragment along by referring to it using the
getParamFragment() method.

2. When the collector fragment is to be used, it can be retrieved within the anony-
mous instance using the getParamFragment() method.

3. Collect any sub-fragments of interest by using the method collect().

Consider what would happen if we had not used collect(), but instead extend().
The “collection” would have worked the same, but transforming the collected frag-
ments would leave the original fragment, from which they were collected, unmodified.
So in that case the composition result would be the same for Listing 3.17 and List-
ing 3.19. When we want any transformations to affect the original source fragment we
have to follow the above-described pattern. We shall find the need to use it again.

3.5.2 Composition system for Java−

In this section we discuss applying our composition techniques to a subset of the Java
language. This subset allows to specify some simple Java-like constructs, such as
defining classes, methods and attributes (we will refer to self-explanatory language
constructs such as “compilation unit,” “method,” “method name,” “statement,” “super
type”). This language is presented for exemplary purposes and should only be con-
sidered as a toy language to demonstrate our composition technology. We call the
language Java− (javamm or jm in code).

A CmSL component model specification can be found in Listing 3.21. It specifies
that super types can be substituted by slots, and that we are able to define familiar
Java-like constructs (as discussed above), and hence also be able to transform them

92 CHAPTER 3. UNIVERSAL ISC

1 public void compositionProgram() {
2 // −−−−−− load and transform fragments (from Listing 3.17) −−−−−−
3 ...
4 // −−−−−− collect rules matching the specific condition −−−−−−
5 IRule rules = new IRuleImpl();
6 program.accept(new RlVisitor(rules) {
7 public boolean visit(final IRule rule) {
8 rule.accept(new RlVisitor(getParamFragment()) {
9 public boolean visit(IPredname name) {

10 // query context
11 if (name.inContextOf(RlUtil.HEAD)) {
12 // collect matching rules
13 if (name.toString().equals("bonus")) {
14 getParamFragment().collect(rule);
15 }
16 }
17 return true;
18 }
19 }) ;
20 return true;
21 }
22 });
23

24 final IAtom advice = IAtomImpl.load("friendly(X)");
25 rules.accept(new RlVisitor() {
26 public boolean visit(IAtom node) {
27 if (node.inContextOf(RlUtil.BODY) && node.isLast()) {
28 // append condition
29 node.append(advice);
30 }
31 return true;
32 }
33 });
34

35 // −−−−−− result specification −−−−−−
36 program.print("file:paycheckprogram.dl");
37 }

LISTING 3.19: Composition program using the implicit fragment interface to weave
in an additional rule condition (represented by fragment advice) on rules matching a
specific condition (having a particular head predicate).

1 bonus(X, 200) :- employee(X), bonuseligiable(X), friendly(X).
2

3 reducepay(X, 100) :- employee(X), reprimand(X).
4

5 ...

LISTING 3.20: Result from composition program in Listing 3.19.

3.5. EXAMPLES: U-ISC–BASED COMPOSITION SYSTEMS 93

1 extends file:javamm.gr @ jm as file:rjavamm.gr .
2

3 % 1) super types should be slotable
4 slotify java.Supertype .
5

6 % 2) component model restrictions: fragment types
7 fragtypes { jm.CompilationUnit, jm.Method, jm.Methodname,
8 jm.Statement, jm.Parameter, jm.Modifier, jm.Supertype }

LISTING 3.21: CmSL program specifying a component model for a simplified Java
language Java−.

1 public compositionProgram() {
2

3 // −−−−−− load fragments −−−−−−
4 ICompilationUnit cu = ICompilationUnitImpl.load("file:Machine.java");
5

6 // −−−−−− transform fragments −−−−−−
7 // −−−−−− explicit interface −−−−−−
8 cu.bind("superType", ISupertypeImpl.load("ControlSystem"));
9 // −−−−−− implicit interface −−−−−−

10 JavaFrgmtLibrary.methodExitLogWithMethodName(cu, "set\\w*", "Set:");
11

12 JavaFrgmtLibrary.methodEntry(cu, JavaFrgmtLibrary.METHOD_VIS.PUBLIC,
13 IStatementImpl.load("System.out.println(\"public method\")"));
14

15 cu.print("file:result.java");
16 }

LISTING 3.24: Composition program for Java− fragments. The program makes use of
the Java− fragment composition library detailed in Listing 3.25 in Appendix 3.A.

implicitly. We do not present the transformed grammar here, instead we focus on what
we can do as a result of this specification.

With a generated composition system based on Listing 3.21 we can write, for ex-
ample, the simple class in Listing 3.22. The class Machine defines a virtual “machine”
holding a value (value). The value can be set and retrieved using defined public meth-
ods. The class also keeps track of the most recent value (oldValue). From outside the
class, the old value can only be retrieved, and not set, since the setter (setOldValue())
is not declared to be public. The class also makes use of the possibility of leaving its
super class unspecified using a slot named superType. Suppose we want to compose
a new class based on this class. Say we would like to parameterize the class by bind-
ing the super class slot with some value, and weave in some debugging code: some
print statements giving informing as to which methods are executed. This can be ac-
complished using the composition program in Listing 3.24. This composition program
makes use of the generated core composition language resulting from the component
model specification in Listing 3.21 (e.g. Java type ICompilationUnit). The compo-
sition program also makes use of a Java− fragment composition library that has been
written using the same generated core composition language. The fragment composi-
tion library can be found in Listing 3.25 in Appendix 3.A (p. 98).

The composition program in Listing 3.24 does three main things:

94 CHAPTER 3. UNIVERSAL ISC

1 public class Machine
2 extends <<superType>> {
3

4 private int value;
5 private int oldValue;
6

7 Machine() {
8 value = 1;
9 }

10

11 Machine(int v) {
12 value = v;
13 }
14

15 public void setValue(int v) {
16

17 setOldValue(value);
18 value = v;
19

20 }
21

22 public int getValue() {
23

24 return value;
25 }
26

27 void setOldValue() {
28 oldValue = value;
29

30 }
31

32 public int getOldValue() {
33

34 return oldValue;
35 }
36 }

LISTING 3.22: Java− class defining
a machine with unspecified super
class (file:Machine.java).

1 public class Machine
2 extends ControlSystem {
3

4 private int value;
5 private int oldValue;
6

7 Machine() {
8 value = 1;
9 }

10

11 Machine(int v) {
12 value = v;
13 }
14

15 public void setValue(int v) {
16 System.out.println("public method");
17 setOldValue(value);
18 value = v;
19 System.out.println("Set: setValue");
20 }
21

22 public int getValue() {
23 System.out.println("public method");
24 return value;
25 }
26

27 void setOldValue() {
28 oldValue = value;
29 System.out.println("Set: setOldValue");
30 }
31

32 public int getOldValue() {
33 System.out.println("public method");
34 return oldValue;
35 }
36 }

LISTING 3.23: Java− class from Listing 3.22
with parameterized super class and logging
code.

3.6. SUMMARY 95

1. It binds the super type slot superType with value “ControlSystem” (Line 8).

2. It adds a logging statement as the last statement in each method whose method
name starts with “set” (Line 10). The output of such a log statement is the string
“Set:” proceeded by the method name.

3. It adds a print statement as the first statement in each public method (Line 13).

Exactly how the involved class is transformed using the generated core composition
language is captured in the reusable Java− fragment composition library (Listing 3.25
in Appendix 3.A). Notice the recurrence of the “collect fragment” pattern mentioned
at the end of Section 3.5.1. The result of the composition can be seen in Listing 3.23.

This example has demonstrated how a rather simple specification (Listing 3.21)
can give rise to flexible means of transforming fragments of the underlying component
language (here Java−). These transformations are done by relying on the underlying
approach of invasive software composition, its composition algebra and controlled ac-
cess of fragments (thanks to generation of a core composition language based on the
component model specification).

This example has just demonstrated some few possible transformations, others are
surely possible. It can be noted that this example covered two interesting and useful
means of weaving (à la aspect-oriented programming) value fragments (advices) into a
core fragment:

1. The transformation on Line 10 in Listing 3.24 selects methods based on their
names (must be prefixed by the string “set”), and includes this information in the
woven advice (here by including the method name in the log statement). That is,
the advice is parameterized by the context where it is composed.

2. The transformation on Line 13 in Listing 3.24 uses a single non-modified advice
(a print statement) in all locations in the core fragment (compilation unit cu)
where the composition context matches (the method is declared to be public).

As can be noted in the Java− fragment composition library, the solution to the above
compositions are solved a little differently. In the latter case, all the matching compo-
sition contexts can first be extracted using the “collect fragment” pattern. After this is
done, the advice can be woven into the appropriate place. In the former case, however,
all the matching composition contexts cannot be extracted as a first and separate step.
This is because we need to use the context information for configuring the advice that is
to be woven into the particular composition context. If we first collect, and then weave,
the connection between the composition context and the advice is lost, or at least made
more complicated. So, instead we deal with the advice immediately upon finding each
matching composition context (cf. method methodEntryExitLogWithMethodName/4
in Listing 3.25).

3.6 Summary
Let us recap what we accomplished in this chapter. Our goal was to extend the grammar-
driven notions from Chapter 2 to also include the approach taken by ISC. That is, to go
from specification of grammar-driven fragments systems to development of grammar-
driven invasive composition systems. We addressed the following issues:

96 CHAPTER 3. UNIVERSAL ISC

– Grammar adaptation for ISC interfaces. In contrast to GBM, ISC also considers
implicit fragment interfaces. For this reason we extended the grammar adap-
tation from Chapter 2 with the function ν. Formally, the function ν is used to
annotate nonterminals of base grammars to encode how fragments may implic-
itly be transformed. The resulting grammar is called an ISC-reuse grammar.

– ISC component models. These grammar adaptions are mainly discussed in the
context of formally encoding the component models of the languages described
by the grammars. Formally, the nonterminal 〈vpoint’〉 (from the included and
general ISC-grammar) in a ISC-reuse grammar generates all strings that may be
transformed during composition. In this way is the component model semantics
encoded in the ISC-reuse grammars. That is, a ISC-reuse grammar captures,
formally, how fragments may be composed.

– Composition algebra: GBM vs. ISC. It is important to understand the relation-
ships between the composition algebra provided in fragment systems based on
GBM, and the algebra in composition systems based on ISC. We clarified this
relationship and distilled exactly how the ISC composition algebra goes beyond
the one provided for GBM.

– Composition languages. The main difficulty for a generic and grammar-driven
ISC approach lies with the composition language. In particular, due to ISC’s
implicit interfaces. Ideally, support for implicit fragment access should directly
be provided by the used composition language. However, such a suitable and
generic composition language does not exist. To address this problem we en-
abled a usable and practical approach by generating core composition languages
for each composition system, embedded in a reusable host composition lan-
guage. In practical terms, Java is used as the host composition language, while
each generated core composition language is a Java library. The core composi-
tion languages come with a set of constructs that can be used to compose frag-
ments, using both their explicit and implicit interfaces. Most importantly, the
core composition languages support the ISC composition algebra.

– Developing composition systems. To enable the development of composition sys-
tems in practice we provided the component model specification language CmSL.
A CmSL specification can generate a core composition language that supports the
precise compositions as declared in the CmSL specification. This means that the
development of a component model dictates the possible composition programs
that can be written using the corresponding (core) composition language. We
demonstrated how composition systems can be developed and used by exempli-
fying one for the rule-based language RL, and one for a subset of Java called
Java−.

In the introduction to this chapter we mused that by universalizing ISC we will
be in a better position to understand the limits and qualities of ISC as a composition
approach. The following are some of our observations and experiences:

– Working with ISC’s fragments and composition algebra is rather primitive and
does not always feel like the ideal way of producing and building software. This
is probably even more true in our grammar-driven approach compared to the
language-tailored approach taken by COMPOST. The reason for this is that the

3.6. SUMMARY 97

programmer (user of the composition system) needs to have a very good un-
derstanding of the grammar of the component language for accessing implicit
variation points in fragments.

– We already mentioned that a generalized ISC approach will necessarily loose
some of the benefits of the tailored solution provided by, for example, COM-
POST/J. In COMPOST/J it is possible to constructs fragment boxes using a tai-
lored Java-based API. This is demonstrated with the following example:

1 // define Java compilation unit box
2 CompilationUnitBox c;
3 JavaProgramFactory factory = c.getFactory();
4 // transform: introduce a package declaration
5 c.findHook("imports").
6 bind(factory.
7 createImport(factory.createPackageReference("java.io.File")));

Here we create a Java compilation unit and introduce a package import statement
(using the ISC hook "imports"). In this case, Java’s type system can verify part
of the composition. For example, that the creation of the import statement works
correctly (Line 7). It works correctly if createPackageReference() returns
the type expected by createImport(). A similar approach to creating frag-
ments is used in [12] and [94]. In our general approach we cannot create such
detailed APIs, and hence not take advantage of Java’s type system for validat-
ing the creation of fragments. To create the import statement fragment in our
approach, we would do something like this:

1 IImportDeclaration decl =
2 IImportDeclarationImpl.load("import java.io.File");
3 ...

In this case, the construction of the fragment can only be validated when it is
parsed. Hence, we do not provide fragment creation APIs. This is one of the
benefits from COMPOST/J we give up to have a more general approach. How-
ever, from a practical viewpoint, this sacrifice does not seem very severe. De-
velopers are unlikely to want to construct fragments using a API, rather than just
specifying the fragments directly.

– What has helped when using our generated composition systems is the clarified
understanding of the differences between GBM and ISC (which is based upon
GBM) wrt. their composition algebras (cf. Section 3.2.2). This especially relates
to understanding that extension can be achieved via the binding of slots.

– COMPOST provides predefined component models and fragment composition li-
braries. What is clear when generating composition systems is the added power
given to developers: New languages can be addressed and developers are em-
powered by being able to develop and use their own fragment composition li-
braries (cf. Appendix 3.A). However, due to the grammar-driven nature of these
composition systems, the composition libraries can be quite fragile. For exam-
ple, if the grammar evolves or is modified, the composition system has to be
regenerated which might affect the consistency of any developed composition
libraries.

98 CHAPTER 3. UNIVERSAL ISC

Even though working with U-ISC–based composition systems can seem primitive,
we will make use of their flexibility and generality in the next chapter, and show how
we can make their deployment easier for end-users.

3.A Appendices
In Section 3.A a fragment composition library for composing Java− fragments can be
found. The code makes use of the core composition language (Java API) generated
from the component models specification in Listing 3.21 (these Java classes have the
namespace org.reuseware.air.language.javamm). A composition program mak-
ing use of this library can be found in Listing 3.24.

Source code for Java− composition system

1 package javamm;
2

3 import java.util.regex.Pattern;
4 import java.util.regex.PatternSyntaxException;
5

6 import org.reuseware.air.language.javamm.ICompilationUnit;
7 import org.reuseware.air.language.javamm.IMethod;
8 import org.reuseware.air.language.javamm.IMethodname;
9 import org.reuseware.air.language.javamm.IModifier;

10 import org.reuseware.air.language.javamm.IStatement;
11 import org.reuseware.air.language.javamm.algebra.JavammVisitor;
12 import org.reuseware.air.language.javamm.impl.IMethodImpl;
13 import org.reuseware.air.language.javamm.impl.IStatementImpl;
14

15 public class JavaFrgmtLibrary {
16

17 private enum METHOD_POS { ENTRY, EXIT }
18 public enum METHOD_VIS { PUBLIC, PRIVATE, PROTECTED }
19

20 /∗∗
21 ∗ Method entry point cut
22 ∗
23 ∗ @param cu
24 ∗ @param methodName
25 ∗ @param advice
26 ∗/
27 public static void methodEntry(ICompilationUnit cu, String methodName,

IStatement advice) {
28 methodEntryExit(cu, methodName, advice, METHOD_POS.ENTRY);
29 }
30

31 /∗∗
32 ∗ Method entry point cut
33 ∗
34 ∗ @param cu
35 ∗ @param methodName
36 ∗ @param advice
37 ∗/
38 public static void methodEntry(ICompilationUnit cu, METHOD_VIS visibility,

IStatement advice) {
39 methodEntryExit(cu, visibility, advice, METHOD_POS.ENTRY);
40 }
41

42

3.A. APPENDICES 99

43 /∗∗
44 ∗ Method exit point cut
45 ∗
46 ∗ @param cu
47 ∗ @param methodName
48 ∗ @param advice
49 ∗/
50 public static void methodExit(ICompilationUnit cu, String methodName,

IStatement advice) {
51 methodEntryExit(cu, methodName, advice, METHOD_POS.EXIT);
52 }
53

54 /∗∗
55 ∗ Extract matching methods
56 ∗
57 ∗ @param cu
58 ∗ @param pattern
59 ∗/
60 private static IMethod extractMatchingMethods(ICompilationUnit cu, final

String pattern) {
61

62 // extract methods
63 IMethod matchingMethods = new IMethodImpl();
64 cu.accept(new JavammVisitor(matchingMethods) {
65

66 public boolean visit(final IMethod method) {
67 method.accept(new JavammVisitor(getParamFragment()) {
68

69 public boolean visit(IMethodname mn) {
70

71 // check for pattern
72 if (matchName(pattern, mn.toString())) {
73 // extract method
74 getParamFragment().collect(method);
75 }
76 return true;
77 }
78 });
79 return true;
80 }
81 });
82

83 return matchingMethods;
84 }
85

86 /∗∗
87 ∗ Extract public methods
88 ∗
89 ∗ @param cu
90 ∗ @param methodName
91 ∗/
92 private static IMethod extractMethodsByVisibility(ICompilationUnit cu, final

METHOD_VIS visibility) {
93

94 // extract methods
95 IMethod matchingMethods = new IMethodImpl();
96 cu.accept(new JavammVisitor(matchingMethods) {
97

98 public boolean visit(final IMethod method) {
99 method.accept(new JavammVisitor(getParamFragment()) {

100

101 public boolean visit(IModifier mod) {

100 CHAPTER 3. UNIVERSAL ISC

102

103 if (visibility == METHOD_VIS.PUBLIC) {
104 if (mod.toString().equals("public")) {
105 // extract method
106 getParamFragment().collect(method);
107 }
108 }
109 return true;
110 }
111 });
112 return true;
113 }
114 });
115

116 return matchingMethods;
117 }
118

119

120 /∗∗
121 ∗ Code for method entry and exit
122 ∗
123 ∗ @param cu
124 ∗ @param methodName
125 ∗ @param advice
126 ∗ @param mode
127 ∗/
128 private static void
129 methodEntryExit(ICompilationUnit cu, final String methodName,
130 final IStatement advice, final METHOD_POS mode) {
131

132 // get methods to transform
133 IMethod matchingMethods =
134 extractMatchingMethods(cu, methodName);
135

136 // transform
137 methodEntryExitAdvice(matchingMethods, advice, mode);
138 }
139

140 /∗∗
141 ∗ Method entry point cut with method name message
142 ∗
143 ∗ @param cu
144 ∗ @param methodName
145 ∗/
146 public static void methodEntryLogWithMethodName(ICompilationUnit cu, String

methodName, String msg) {
147 methodEntryExitLogWithMethodName(cu, methodName, msg, METHOD_POS.ENTRY);
148 }
149

150 /∗∗
151 ∗ Method exit point cut with method name message
152 ∗
153 ∗ @param cu
154 ∗ @param methodName
155 ∗/
156 public static void methodExitLogWithMethodName(ICompilationUnit cu, String

methodName, String msg) {
157 methodEntryExitLogWithMethodName(cu, methodName, msg, METHOD_POS.EXIT);
158 }
159

160 /∗∗
161 ∗ Log message with method name parameterized (method entry/exit point cut)

3.A. APPENDICES 101

162 ∗
163 ∗ @param cu
164 ∗ @param methodNamePattern
165 ∗ @param advice
166 ∗ @param mode
167 ∗/
168 private static void
169 methodEntryExitLogWithMethodName(ICompilationUnit cu,
170 final String methodNamePattern, final String msg, final METHOD_POS

mode) {
171

172 // extract methods
173 cu.accept(new JavammVisitor() {
174

175 public boolean visit(final IMethod method) {
176

177 method.accept(new JavammVisitor() {
178

179 public boolean visit(IMethodname mn) {
180

181 if (matchName(methodNamePattern, mn.toString())) {
182 // construct advice
183 final IStatement advice =
184 IStatementImpl.load("System.out.println(\"" +
185 msg + " " +
186 mn.toString() + "\")");
187 // transform method
188 methodEntryExitAdvice(method, advice, mode);
189 }
190 return true;
191 }
192 });
193 return true;
194 }
195 });
196

197 }
198

199 /∗∗
200 ∗ Code for method entry and exit
201 ∗
202 ∗ @param cu
203 ∗ @param methodName
204 ∗ @param advice
205 ∗ @param mode
206 ∗/
207 private static void
208 methodEntryExit(ICompilationUnit cu, METHOD_VIS visibility,
209 final IStatement advice, final METHOD_POS mode) {
210

211 // get methods to transform
212 IMethod matchingMethods =
213 extractMethodsByVisibility(cu, visibility);
214

215 // transform
216 methodEntryExitAdvice(matchingMethods, advice, mode);
217 }
218

219 /∗∗
220 ∗ Advice methods, depending on the ’mode’ parameter (ENTRY or EXIT)
221 ∗
222 ∗ @param methods

102 CHAPTER 3. UNIVERSAL ISC

223 ∗ @param advice
224 ∗ @param mode
225 ∗/
226 private static void methodEntryExitAdvice(IMethod methods, final IStatement

advice, final METHOD_POS mode) {
227 // transform
228 methods.accept(new JavammVisitor() {
229

230 public boolean visit(IStatement stmt) {
231 // methodEntry
232 if (mode == METHOD_POS.ENTRY) {
233 if (stmt.isFirst())
234 stmt.prepend(advice);
235 }
236 // methodExit
237 else if (mode == METHOD_POS.EXIT) {
238 if (stmt.isLast())
239 stmt.append(advice);
240 }
241 return true;
242 }
243 });
244 }
245

246 /∗∗
247 ∗ Returns true if pattern matches name, false otherwise
248 ∗
249 ∗ @param pattern
250 ∗ @param name
251 ∗ @return
252 ∗/
253 private static boolean matchName(String pattern, String name) {
254

255 try {
256 if (Pattern.matches(pattern, name))
257 return true;
258 } catch (PatternSyntaxException e) {
259 System.err.println("Incorrect pattern ’" +
260 pattern + "’: " + e.getMessage());
261 }
262 return false;
263 }
264

265 }

LISTING 3.25: Fragment composition library for composing Java− fragments.

4
Embedded Invasive Software

Composition

In Chapters 2 and 3 we discussed existing generic modularization and composition
techniques and showed how they can be universalized and applied to arbitrary formal
languages. We demonstrated how (core) composition languages can be generated from
component models specifications. These generated composition languages appropri-
ately restricts the kind of components that may be defined, and effectively what kind of
compositions that may be specified by programmers. In addition, the composition lan-
guages support the underlying ISC composition algebra. The composition algebra of
ISC essentially boils down to the primitive composition operators bind() and extend(),
corresponding to the general notions of software parameterization and extension, re-
spectively. By supporting these two fundamental software composition techniques,
and being based on principles that are language-agnostic, ISC is clearly a very general
approach. A consequence of this generality is that the offered composition algebra can
be nothing but primitive. The application of ISC’s composition operators can be said
to constitute low-level composition steps. For example, extending a Java class with a
method box, or parameterizing a super-class. An example of this was given in Sec-
tion 3.5.2 (p. 91). Describing compositions on this lower level can be cumbersome and
uninviting to programmers, since such low-level steps often fail to capture any larger
meaning wrt. the overall composition. The realization of many software abstractions
require a set of low-level composition steps to be executed as a unit in a high-level
composition step. As demonstrated, this can partly be accomplished by building up
fragment composition libraries collecting high-level composition steps in methods or
procedures. Even though this is convenient, the overall construction and design of the
final result must still be done on the lower level; the developer has to think and work
on the level of fragments and ISC’s low-level operators. Aßmann has the following to

103

104 CHAPTER 4. EMBEDDED ISC

say about ISC’s low-level operators:

“[T]he basic operators are not expressive enough, since they are so general.
[...] Software designers will not like designing with a minimal pattern
language. Instead they will need languages with more domain-specific,
tailored, and adequate composition operators. [...] And I believe that such
languages will be the software construction languages of the future.”

– Uwe Aßmann, Invasive Software Composition [5, p. 278]

The “minimal pattern language” referred to here is essentially ISC’s basic com-
position operators. A good questions to ask is what “domain-specific, tailored and
adequate” means in this context. The following is our interpretation of these terms:

– Domain-specific. Ideally there should be composition operators available that
have relevance to, and a connection with, the component language in question.
Using the primitive bind() and extend() operators, for example, for both Java and
a rule-based language (e.g. RL), is not optimal.1

– Tailored. Different component languages can require different notions of frag-
ments. That is, they may need different component types or abstractions. The
composition language and approach can be considered tailored if it supports
components and compositions that are suitable for the considered component
language.

– Adequate. When it comes to supporting different component types that relate
to a particular component language, the usage and composition of those com-
ponents should correlate to their expected semantics. That is, the composition
operators need to be adequate enough to handle the expected usage of such com-
ponents.

The main contribution of this chapter is a realization of the vision for ISC stated
above. Thus, relieving software engineers of working with the “minimal pattern lan-
guage,” here equaled to ISC’s fundamental composition algebra, and instead finding a
way of providing them with more appropriate composition operators that, in summary:

1. Have a close connection to the underlying component language.

2. Satisfy the particular compositional needs, using the appropriate abstractions.

To achieve this we will leverage the stepwise ISC language adaptation from Chap-
ters 2 and 3. A consequence of enabling the development of “domain-specific, tai-
lored, and adequate composition operators” in general is that it will allow us to address
an open problem in a quite general setting: the problem of how to extend DSLs with
component-oriented constructs (new and useful abstractions). Addressing the prob-
lem based on the general composition capabilities of ISC gives us a broad platform to
stand on, and does neither restrict languages to address, nor component types desired
for different DSLs. Two applications that demonstrate this approach and provide such

1We prefer the term “domain-appropriate” over domain-specific, because we argue that we need com-
position operators that are not necessarily specific to the domain of a language, but rather appropriate for
the domain. This because composition operators should support abstractions (components), but many useful
abstractions are not necessarily domain-specific.

4.1. TAMING INVASIVE SOFTWARE COMPOSITION 105

domain-specific and adequate composition operators are discussed in detail in Chap-
ters 5 and 6. In this chapter we focus on the general motivation, methodology and
connection to the composition technology of Chapters 2 and 3.

This chapter is structured as follows. In Section 4.1 we briefly discuss what we
consider to be problematic with ISC, and hint at a solution. In Section 4.2 we discuss
what domain-appropriateness means, in particular wrt. components and composition
statements. In Section 4.3 we detail how we can connect the general ISC composition
operators with more domain-appropriate and intuitive constructs. In Section 4.4 we
explain what is needed to develop composition systems with this notion of domain-
appropriateness. Section 4.5 presents an example of such a composition system. Fi-
nally, in Section 4.6, we summarize the achievements of the chapter, and discuss some
remaining interesting issues.

4.1 Taming Invasive Software Composition
By looking at a composition program for ISC (e.g. Listing 3.5, p. 58), it is clear that
ISC is a metaprogramming approach. This means that ISC inherently assumes the users
of composition systems to consider software artifacts (programs and fragments) as data
to be transformed and operated on. There is no possibility for programmers—advanced
or beginners—of avoiding this explicit metaprogramming. Metaprogramming, while
powerful, is generally considered to be a difficult technique and has a high learning
curve. Using metaprogramming techniques, programmers do not only have to know
about the problem domain in which their programs will run, or the (hopefully) intu-
itive language constructs used to write those programs, but they also have to clearly
understand the underlying structure of the language they are programming in. Not that
metaprogramming cannot be useful, but it is clear that it adds complexity.

In a sense, ISC abstracts from any particular underlying component language and
treats them all very much the same. This is illustrated in Figure 4.1 by the abstraction
curve up to the highest point. Even with a tailored core composition language, giving
programmers the terms to define appropriate fragments, the natural connection to the
component language is lost; ISC treats source code fragments and transforms them into
desired results, all necessarily detailed by a programmer (by writing metaprograms).
One of our objectives is to regain the closeness to the base language in which the
composed fragments are written, and reduce the exposure to ISC’s metaprogramming
facilities. That is, in a sense to “tame” ISC by making it more usable, effective and
attractive to end-users. Hence, allowing programmers (cf. Figure 4.1) to work with
abstractions that are appropriate for the particular language in which the programmers
write their code (this is illustrated by the downward part of the abstraction curve in
Figure 4.1). If the language is a DSL, abstractions appropriate for the language also
(should) make them appropriate for the domain.

While ISC traditionally exposes every user to its “bare bones,” we will separate
between the developer of a composition system, and the user of the same (cf. Fig-
ure 4.1). The developer has to understand the underpinnings of ISC, while the user can
be restricted to only take advantage of the services provided by developed composition
systems. Hence, the generality and flexibility of ISC can be exploited in the construc-
tion of composition systems, while the end-user experience is greatly simplified. The
need for the general approach provided by ISC is not lessened by this separation of user
roles, since a plethora of languages are still needed to be addressed, all of which should
be catered for. Hence, the generality of ISC is needed on the developer level. However,

106 CHAPTER 4. EMBEDDED ISC

Base-language
Specific

Invasive
Software

Composition
A

b
st

ra
ct

io
n

Composition System
Developer

Composition System
User (Programmer)

Abstraction

curve

FIGURE 4.1: It is important to distinguish two abstraction levels. One where primitive
ISC concepts are handled directly by a composition system developer, and one where
programmers can work with more domain-appropriate concepts and constructs.

solving particular software engineering problems, like component-based development
for DSLs, allow us to restrict how ISC is applied on the user level.

4.2 Domain appropriateness

A crucial requirement for developing and specifying successful abstractions is domain-
appropriateness. That is, for an abstraction to be useful for, and adopted by, program-
mers, they must feel that the abstraction is related to their programming or development
activities. Fragments in the way we have defined them certainly are abstractions since
they can be configured for new reuse contexts. However, since the notion of fragments
is universal and very general—not domain-specific—that abstraction is far from be-
ing domain-appropriate. Neither in the way fragments are defined, nor how they are
composed using the available basic (low-level) composition operators.

We believe that programmers and developers ultimately do not want to design with
fragments as first-class entities. They rather want to develop with classes, libraries,
procedures, modules or packages etc. That is, they want to use notions and concepts
that are related to their work task, and that fit their vocabulary. Both BETA and COM-
POST essentially force developers to work directly with fragments and does not explic-
itly provide any other form of (reuse) abstraction. However, it should be clear that all
these mentioned abstraction forms can to a large degree be viewed as fragments, that is,
pieces of source code specifying the abstraction (see Figure 4.2). In this sense the frag-
ment serve as a universal representation for other more specific abstraction forms. We
will take advantage of this observation to allow programmers to work with intuitive
forms of reusable entities, call them abstractions or components, instead of working
with fragments explicitly. For users to work with intuitive components they must be

4.2. DOMAIN APPROPRIATENESS 107

Rule

Rule

Rule

Rule

Rule

Rule

Module

Module

Module

Module

Package

Class

Class

Class

Mixin layer

Class

FIGURE 4.2: Many well-known abstractions are collections of smaller language con-
structs.

able to:

1. Define components and describe their interfaces.

2. Make use of defined components by exploiting their interfaces.

We will look at these different issues separately. First, in Section 4.2.1, we look
at making fragments more intuitive and in Section 4.2.2 we discuss what domain-
appropriate composition operators/statements could be.

4.2.1 Domain-appropriate components
Most programming units can be seen as fragments of some sort. By unit we here mean
some fundamental block of code that a programmer views as a coherent entity. For
example, a Java class is a unit of deployment for a Java programmer. For other pro-
gramming languages, these units can take different forms. In Chapter 2 we discussed
how other kinds of units could be defined by adapting a grammar of a language. For
example, we discussed how to allow to define single rules, atoms or even variables
as deployable units for our example rule language RL. While such fragments in certain
circumstances can be desirable to define, for many languages it is often more beneficial
to define larger units of deployment. Such larger units could for example be modules
(collections or rules for a rule-based language), packages (collections of modules) or
mixin layers (collections of collaborating classes for object-oriented languages). See
Figure 4.2 for an illustration.

Such reusable entities, components, or abstractions, have an intuitive raison d’être
for programmers and developers. As can be seen, such larger entities are often collec-
tions of other smaller fragment types. In the case of modules for rule-based languages,
modules collect sets of related rules. It is furthermore not only important to be able to
define such entities, but to do so using some intuitive and informative syntax in order
to, in a natural way, encode what is being defined. This can be achieved by extend-
ing the considered base language with the needed constructs for defining the reusable
entities.

In the following we will consider the rule-based language RL from Example 2.1
and the module component type. A module is here understood as a collection of related
RL statements (rules). To provide an intuitive way of defining modules we could add
the grammar snipped in Table 4.1 to the base grammar (assuming that 〈module〉 is a
previously undefined nonterminal).

108 CHAPTER 4. EMBEDDED ISC

〈module〉 ::= MODULE 〈const〉 〈stmt〉*

TABLE 4.1: Construct for defining modules for rule-based languages.

1 MODULE sales
2

3 employee(X) :- sales_employee(X).
4

5 sales_employee(steve).
6 sales_employee(marco).

LISTING 4.1: Modules defining the employees in a sales department of a company.

The two nonterminals that 〈module〉 is defined in terms of are assumed to already
exist in the base grammar (which is the case for the RL grammar). The 〈const〉 nonter-
minal is here used to provide each module with an identifier (a string). For other base
languages and other component types this construct with its syntax will look different,
but can be defined in a similar way.

Example 4.1. The rule language module in Listing 4.1 concerns the sales department
of a small company. The module defines a set of employees that work in the department
and “contributes” this information by stating that they are also employees in a more
general sense.

The syntax provided for defining modules, here essentially the keyword MODULE,
gives intuitive understanding to programmers as to what they are defining.

�

When defining reusable components it is often desirable to associate certain prop-
erties with them. An example of such a property is encapsulation. That is, to ensure
certain separation between different components when they are composed together.
What this means in a particular situation can differ depending on the base language
and the desired component type. For our rule language and module concept it would
be desirable to ensure that predicates from different modules do not match (or unify
in logic-programming terminology). This essentially means that rules from different
modules should not depend on each other. But for modules to be put together in a use-
ful way when building larger applications it would also be desirable for programmers
to be able to explicitly break this encapsulation. That is, to define how modules can
communicate and be interfaced.

In our running example this can be achieved by not only providing syntax for defin-
ing modules, but also to provide syntax for marking the rules that are part of modules’
interfaces. To achieve this we could add the grammar snippet in Table 4.2 to the base
language grammar (in addition to the snippet from Table 4.1).

〈iface-head〉 ::= @ 〈head〉

TABLE 4.2: Construct for defining module interfaces.

4.2. DOMAIN APPROPRIATENESS 109

1 MODULE sales
2

3 @ employee(X) :- sales_employee(X).
4

5 sales_employee(steve).
6 sales_employee(marco).

LISTING 4.2: The predicate employee/1 is marked as an interface of the module.

The grammar rule above defines “interface rule heads.” To fully integrate this con-
struct into the base grammar we need to make the construct defined by 〈iface-head〉
an appropriate alternative to “normal” rule heads (represented by nonterminal 〈head〉).
Later in this chapter we will provide a language for doing exactly this. That is, making
it easier to appropriately inject such grammar snippets into a base grammar. For the
moment we can imagine that nonterminal 〈iface-head〉 is an additional choice option
in the definition of the 〈head〉 nonterminal (see grammar in Example 2.1).

Example 4.2. The rule language module in Listing 4.2 is the same as in Listing 4.1, but
where the rule defining the employee/1 predicate is marked as an interface statement
of the module.

The additional syntax (@) is used to declare which rules can be accessed from the
outside (that is, from other programs or modules). Thus, in this example all the em-
ployees from the sales department can be accessed via the first rule of the module.
However, the two facts cannot be accessed directly from the outside, since they are not
defined as part of the module interface.

�

In the above we have focused on how simple grammar extensions can provide ap-
propriate syntax for defining intuitive components. We have however not addressed
how these additional constructs are handled when executed, that is, their semantics.
We shall address these issues in the next section.

4.2.2 Domain-appropriate composition statements
We would like to declare which modules we want to use—that is, import modules—and
then be able to reference them in order to make use of the functionality they provide.
Accessing modules’ functionalities or services must be done using their user-defined
interfaces.

Example 4.3. This example will demonstrate how we would like to use modules. As-
sume that the module in Listing 4.2 can be found at location file:sales.md. Then
consider the program in Listing 4.3.

The program in Listing 4.3 first imports the previously defined module using the
IMPORT-AS construct. The construct takes two arguments: the location of the mod-
ule and a user-given name (here: sales). The first rule of the program references
this module by using the IN-MODULE construct. The IN-MODULE construct also takes
two arguments: the name of an imported module and an atom within brackets. The
IN-MODULE construct is thus provided to make use of the module-defined interfaces.
The first rule only queries the employees of the sales department, while the second rule
only queries the “local” employees (the only local employee here is john). Posing the
query bonus(X,Y) to the program in Listing 4.3 should give the following results:

110 CHAPTER 4. EMBEDDED ISC

1 IMPORT file:sales.md AS sales
2

3 bonus(X, 200) :- IN sales (employee(X)).
4 bonus(X, 100) :- employee(X).
5

6 employee(john).

LISTING 4.3: A program importing and querying a module.

〈import-as〉 ::= IMPORT 〈file〉 AS 〈predname〉
〈in-module〉 ::= IN 〈predname〉 (〈atom〉)
〈file〉 ::= LOCATION

TABLE 4.3: Definition of constructs for importing and using modules.

{X = steve, Y = 200}, {X = marco, Y = 200}, {X = john, Y = 100}

The query sales_employee(X) should give no answers (or an error). The reason is
that the queried predicate is not available, but is encapsulated in the referenced module.
The query employee(X) would give the single answer:

{X = john}

since only the local employees are directly accessible.

�

Using the modularization constructs as demonstrated in Examples 4.2 and 4.3 is
not only helpful for programmers, but doing so is also intuitive. The program in List-
ing 4.3 can be authored by augmenting the base grammar with appropriate constructs.
For example, by introducing the grammar snippet in Table 4.3. The 〈predname〉 and
〈atom〉 nonterminals are assumed to be defined in the base grammar, which they are
for RL. The 〈predname〉 nonterminal is here chosen to represent the module name, but
a different nonterminal could also be chosen as long as it generates the desired set of
strings. Again, for proper integration the constructs defined in Table 4.3 need to be
appropriately injected into the base grammar. For example, the IMPORT-AS construct
should be a valid statement and the IN-MODULE construct must be a valid alternative to
〈atom〉.2

The realization of the semantics of the examples shown above can be achieved
by composition. That is, the programs and modules can be composed together such
that the intended semantics is maintained, for example, such that the intended module
encapsulation is enforced.

Charles W. Krueger describes abstractions by making a clear separation between
the abstraction specification and its corresponding realization [60]. Using this vocab-
ulary we understand that the constructs MODULE, IMPORT-AS and IN-MODULE provide

2As a remark, such injections might make the language generated by the extended grammar unintention-
ally large. For example, due to the structure of the base grammar we might be allowed to use the IN-MODULE
construct in the head of rules, something which is not intended. For a discussion, see Section 4.6.

4.3. DOMAIN-APPROPRIATE COMPOSITION OPERATORS 111Complex Composition Operators

Basic
composition
operators

Specialized
composition
operators

extend()bind()

0..*0..*

...f1 f2 fn

= fragmentLegend: = composition operator

Complex operator

FIGURE 4.3: A complex composition operator is defined in terms of the more basic
operators bind() and extend() and can also contain internal fragments.

means to specify the module abstraction, while its composition would constitute the
corresponding realization. The exact realization technique is a design issue and can
be very different for varying component types and base languages. There can also ex-
ist different realization techniques for the same language and component type. In the
context of our composition framework, it is important to remember that the abstraction
realization must be encoded in the base language. We recall that our framework dictates
that the composition results must belong to the languages generated by the base gram-
mars. Hence, an abstraction realization must be programmable using the base language
itself. For example, the discussed module encapsulation must be encoded in instances
of the RL language. This could for example be achieved by renaming predicate names,
or by more fanciful inventions.

In the following section we will discuss how to use ISC and our defined framework
to make the connection between introduced abstraction specification constructs and
implementation procedures for the abstraction realization.

4.3 Domain-appropriate composition operators

The realization of an abstraction—appropriate transformations to handle the compo-
nent type and ensure certain properties such as encapsulation—can often be a non-
trivial task. However, the overall transformation task can often be broken up into a
number of smaller tasks. These smaller transformation tasks, or composition steps,
can be executed by ISC’s basic composition operators bind() and extend(). Thus, the
full realization of an abstraction can then be described by a set of collaborative calls
to ISC’s basic operators. We call such a set a complex composition operator, or just
complex operator (see Figure 4.3 for an illustration).

A complex operator is atomic and always assumed to be executed in its entirety, or
not at all. It should also be noted that a complex operator does not only contain calls to
ISC’s basic operators, but can also contain internal fragments that are needed for the
realization of the abstraction the operator is implementing (see fragments f1, . . . , fn in
Figure 4.3). An example of such an internal fragment could be a fragment containing

112 CHAPTER 4. EMBEDDED ISC
Complex Composition Operators

extend()bind()

0..*0..*

...f1 f2 fn

IN-MODULE

Complex operator
<in-module>

::= IN <predname> (<atom>)

...

Extended grammar:

General Composition FrameworkSpecific Composition System

explicit connection

= fragment

Legend:

= composition operator

FIGURE 4.4: A complex composition operator is connected to an active syntax con-
struct in an extended grammar.

an identifier (a name) which is used in some renaming scheme during composition (for
example, for renaming predicate names for our above-discussed modules).

In Section 4.2 we made the distinction between domain-appropriate components
and domain-appropriate composition statements. It can be said that this overall domain-
appropriateness was achieved by adorning the base language with additional syntax
for the purpose of component-based development. We can separate these syntactical
adornments into the following two categories:

1. Passive syntax. This is syntax that is used by the programmer to define com-
ponents or describe how they should be used. For our rule-based modules the
MODULE and @ (module interface) constructs are examples of passive syntax.

2. Active syntax. This is syntax that is used to deploy components and that takes an
active part in the composition of those components. For our rule-based modules
the IMPORT-AS and IN-MODULE constructs are examples of active syntax.

The notion of active syntax is closely related to complex composition operators.
The relation is that an active syntax construct (e.g. IMPORT-AS) delegates its work to a
complex composition operator. Or seen the other way around, a complex composition
operator implements an active syntax construct. The passive syntax constructs are not
composition operators, but are used to guide the composition and hence play an equally
important role.

The relation between an active syntax construct and a complex composition oper-
ator has to be made explicit by a developer. This is done on the grammar level. For
example, since the IN-MODULE construct defined above is an active syntax construct,
it should be connected to some complex composition operator implementing its func-
tionality. This is illustrated in Figure 4.4.

A complex composition operator can use our introduced framework to implement
the intended semantics of its corresponding active syntax construct. This allows the
complex operator to make use of both explicit and implicit fragment interfaces in its
implementation, and to use ISC’s generic composition algebra. This essentially means
that a complex composition operator is a special kind of composition program. The
only difference being that this kind of composition program takes some external input,

4.3. DOMAIN-APPROPRIATE COMPOSITION OPERATORS 113

Language level Instance level

(2) compose

conforms to

= DSL

Legend:

= program

conforms to

(1) extend

Extended language with
domain-appropriate

modularization constructs

Base language with
domain-specific constructs

Key phases: extension and composition

FIGURE 4.5: A language (in particular a DSL) can be (1) extended to provide for cer-
tain modularization constructs. By defining special composition programs in the style
of ISC we can then (2) compose programs of the extended language into semantically
equivalent programs of the non-extended language.

in form of the fragments it is supposed to be working on. This external input directly
relates to the definition of the active syntax construct that the complex operator is im-
plementing. For example, the IN-MODULE construct from Table 4.3 would need to know
the name of the referred module, as well as the atom querying the module, represented
by nonterminals 〈predname〉 and 〈atom〉, respectively. Since we are using Java as our
host composition language, these special composition programs can be realized as Java
methods. Considering our module extension to RL and an appropriately generated core
composition language, the signature of a complex composition operator method imple-
menting the IN-MODULE construct would be (possibly using a different name):

public IAtom inModuleOperator(IPredname name, IAtom atom)

The parameter types directly correspond to the definition of the IN-MODULE con-
struct. The fragment returned from a complex composition operator replaces the active
syntax that invoked it. So, the return type must belong to the set of (grammatical) types
of the location of the active syntax. In the above the return type is specified to be IAtom.
This will be type correct since the IN-MODULE construct was defined as an alternative
to atoms (represented by the core composition language type IAtom). Hence, an IAtom
can replace an IN-MODULE. In Section 4.4 we will see how these complex operators
can be defined in practice, and how they explicitly can be related to nonterminals in an
extended grammar.

Summary
Let us recall our objectives and summarize the suggested approach. We are driven by
two issues:

1. Address the important problem of finding a universal way of enabling component-
based development for DSLs.

2. Realize the vision for ISC of providing “domain-specific, tailored and adequate”
composition operators for users of composition systems.

We argued that the ‘fragment’ is not the ideal abstraction. Instead we are aiming for
more domain-appropriate abstractions. Such abstractions can arguably be achieved and

114 CHAPTER 4. EMBEDDED ISC

allowed to be specified by appropriate language extensions (cf. Section 4.2). Hence,
we propose to employ small language extensions to enable “domain-appropriate” and
“tailored” composition opportunities, essentially to be able to define suitable compo-
nent types (“abstraction specifications” in the words of Krueger). Then, by exploiting
the composition technology underlying ISC and our framework, we allow for the defi-
nition of “adequate” composition operators (“abstraction realizations” in the words of
Krueger) that composes programs of the extended language into semantically equiva-
lent programs of the non-extended base language. This is illustrated in Figure 4.5. By
doing this we can address both issues enumerated above.

4.4 Developing E-ISC–based composition systems
In the previous chapters and sections we have discussed—quite independently—several
different issues: how to adapt a language to the basic ideas of ISC, how to write com-
position programs addressing both explicit and implicit interfaces, how to extend the
language’s grammar with domain-appropriate and component-oriented constructs, and
finally how to define complex composition operators. In this section we intend to
combine our solutions and explain how they can be brought together for developing a
domain-appropriate composition system.

First, in Section 4.4.1, we introduce an extension of the component model specifica-
tion language CmSL. In Section 4.4.2 we then describe the overall composition system
development process. Finally, in Section 4.5, we give a concrete example where we
develop a composition system for our example rule language RL.

4.4.1 Extended component model specification language (CmSL+)
This section describes an extension of the CmSL language from Section 3.3.1, called,
CmSL+. The extended language, CmSL+, needs to be able to do three main things that
was not possible with CmSL:

1. Define grammar snippets that correspond to the abstract syntax of required lan-
guage extensions. The constructs defined in a language extension are intended
to be used to specify the desired abstractions.

2. Define how the newly defined constructs relate to the base grammar.

3. Separate between active and passive syntax. Active syntax constructs are marked
such that the resulting composition system knows when complex composition
operators are to be executed.

These requirements are addressed by the CmSL+ constructs definition, injection
and annotation, respectively. Thus, beyond the constructs in CmSL, the following are
provided by CmSL+:

– Construct definition. It should be possible to define new domain-appropriate
constructs, such that components and compositions can be specified in an in-
tuitive way. Traditional EBNF-like grammar snippets can be defined using the
definition construct:

〈definition〉 ::= 〈nonterminal〉 ::= 〈nonterminal〉 (, 〈nonterminal〉)* .

4.4. DEVELOPING E-ISC–BASED COMPOSITION SYSTEMS 115

where the first nonterminal is not previously defined in the base grammar, but
where the nonterminals to the right of ::= (separated by ,) might belong to
the base grammar (if a nonterminal is not defined in the base grammar, it must
be defined in the same specification). Notice that in the above we only consider
abstract syntax. Concrete syntax is also possible to specify, but is here left out for
simplicity reasons.3 As in EBNF, the nonterminals to the right of ::= (separated
by ,) can also be annotated with cardinality restrictions (i.e. *, +, or ?). We can
also define choices:

〈definition〉 ::= 〈nonterminal〉 ::= 〈nonterminal〉 (| 〈nonterminal〉)* .

where all the nonterminals to the right of ::= (separated by |) have been defined
by the definition construct, and are not annotated with cardinality restrictions.

– Construct injection. When defining new constructs, they need to be “injected”
into the base language such that they can be used. By “injection” we here mean
intrusive re-definition of base language constructs to make way for newly defined
constructs. For this purpose, the injection construct is used:

〈injection〉 ::= 〈nonterminal〉 <> 〈nonterminal〉 .

where the first nonterminal is defined using the definition construct introduced
above, and the second nonterminal is defined in the base grammar. Using the
injection construct makes the left-hand side nonterminal a valid alternative for
the right-hand side (already defined) nonterminal. This injection is done in a
similar way to how slots were introduced into grammars (cf. Section 2.2.1).

– Construct annotation. Nonterminals defining constructs that correspond to ac-
tive syntax must be annotated using the annotation construct:

〈annotation〉 ::= 〈nonterminal〉 -> @Composer .

The nonterminal is assumed to have been defined using the definition construct
described above. Annotating a nonterminal in this way lets the composition
system know that a complex composition operator is to be executed when the
annotated construct is used in composition programs or components.

– Fragment types. The fragtypes construct from the CmSL language is extended
to not only allow nonterminals from the base grammar, but also nonterminals that
are defined in the same specification (using the definition construct introduced
above).

The following are some additional notes about the above constructs, mainly related
to the REUSEWARE and REUSEWARE/AIR realizations, but presented here to be able
to provide concrete examples:

– Base language references. In the above, nonterminals that refer to the base gram-
mar are preceded by a reference to the base grammar. For example:

base.NonTerminal

3This is made possible by REUSEWARE (cf. Section 3.4).

116 CHAPTER 4. EMBEDDED ISC

where base has been associated with the base grammar using the extends con-
struct from CmSL.

– Abstract syntax role names. As mentioned, the definition construct is only used
to specify abstract syntax. To make it easier to annotate abstract syntax specifica-
tions with concrete syntax, each nonterminal in a definition construct is preceded
by a role name. This looks as follows:

rolename:NonTerminal or rolename:base.NonTerminal

depending on whether a newly defined nonterminal, or a base grammar non-
terminal, is referenced, respectively. This is done to be compatible with the
REUSEWARE tooling and framework on which these language extensions rely
(cf. Section 3.4). This technique of separating abstract and concrete syntax us-
ing role names is detailed in [65, Chapter 3].

– Automatically resolved locations. In component-based development, it is often
the case that the basic units of discourse reside in separate files on the file system,
or as URLs on the Web. Consider, for example, our RL modules. Intuitively, it is
desirable to store each module definition in a separate file (cf. Listing 4.2). While
defined separately, module definitions will be integrated into larger programs
during deployment. We recall that modules should be encapsulated, and it is the
task of the module import construct (IMPORT-AS) to achieve this. When using
the IMPORT-AS construct, we want to refer to a location, rather than a module
definition:

IMPORT file:module.dl AS mod

But the IMPORT-AS construct is active syntax and its semantics will be imple-
mented by a complex composition operator. Since this complex operator will
transform a module definition, it is appropriate that it receives a module defi-
nition as input, rather than the location of the module. As mentioned, in our
realization, complex composition operators will be implemented as Java meth-
ods. An appropriate signature for a Java method implementing the active syntax
construct IMPORT-AS would be:

IStatement importAs(IModule mod, IPredname name)

where mod is the imported module definition, and name is the shorthand name
for the module. Clearly, there is a gap between how a construct is to be used,
and how it is to be implemented. To close this gap, and make the notion of
a “location” transparent—something automatically resolved by the system—we
allow nonterminals in definitions to be annotated to say that they represent con-
structs that actually will reside in separate files. This is exemplified below for
the definition of the IMPORT-AS construct (defining nonterminal ImportAs):

ImportAs = location:Module [@Location], name:rl.Predname .

4.4. DEVELOPING E-ISC–BASED COMPOSITION SYSTEMS 117

Base grammar

Adapt base

grammar to ISC

Introduce domain-

appropriate syntax

and constructs

Generate

component model

Implement complex

composition

operators
D1

D2D4

D5

Separate active

from passive syntax

D3

D0

Base grammar

Specify component
model

Concretize required
abstraction

specification

Generate core
composition language

(component model)

Implement complex
composition operators

R2

D1

D3

D4

D2

R1

Development

Cycle

Requirement

Cycle

Decide on intuitive
syntax corresponding

to R1

FIGURE 4.6: The process steps for developing a composition system for a particular
language.

where Module is the nonterminal defining module definitions. This will automat-
ically create a language construct which, syntactically, expect a location, rather
than a module definition as one of its arguments. However, when calling the im-
plementing composition operator method, this location is automatically resolved
into a fragment of the appropriate type (Module, or IModule in the generated
core composition language).

Extended Component Models Extending a language for the purpose of component-
based development in this way can be seen as defining extended component models
wrt. the component models as defined in Chapters 2–3. These extended component
models do not only cover the primitive fragment interfaces from GBM and ISC, but
captures higher-level types of interfaces. This especially holds true for passive syntax.
That is, extended component model specifications may introduce (passive) syntax for
defining component interfaces that are intuitive to understand for end-users (cf. the
@ interface construct for RL). Active syntax constructs certainly complements these
interfaces by providing constructs for using them. We shall again see examples of this
in Sections 4.4.2–4.5.

4.4.2 Development process

Below we describe the complete process of developing a domain-appropriate compo-
sition system, or an embedded invasive software composition (E-ISC) system. We will
demonstrate the process using our example rule language RL and augment it with the
already discussed module component type.

118 CHAPTER 4. EMBEDDED ISC

The illustration in Figure 4.6 shows the main steps required to develop a composi-
tion system that addresses a particular language. The main steps are:

D0 Base grammar. Since the development process is grammar-driven, it always
starts with a base grammar, specifying the language of interest.

D1 Adapt the grammar to ISC. This step essentially involves specifying how frag-
ments are allowed to look, by introducing slot constructs, and how they are al-
lowed to be transformed by providing grammar annotations for certain nontermi-
nals. This is done using the CmSL+ language for component model specification
(or the more basic CmSL language).

D2 Introduce domain-appropriate syntax and constructs. This step involves intro-
ducing both passive and active syntax for the benefit of the programmer. These
constructs should correspond to the language extension being considered. This
is done using the CmSL+ language. Furthermore, it should be specified how
the newly defined constructs relate to the base language by using the injection
construct from CmSL+.

D3 Separate active from passive syntax. It is important to distinguish the two, since
they play different roles during composition. Active syntax must be annotated
using the annotation construct from CmSL+.

D4 Generate component model. When the full component model has been specified
in steps D1−D3, the component model can be generated. This will trigger the
core composition language to be generated.

D5 Implement complex composition operators. The extended constructs correspond-
ing to active syntax must be given compositional semantics, which is done by
implementing their corresponding complex composition operators. This can be
done since the core composition language was generated in the previous step.

To make things clearer we shall go through the above steps using the rule language
RL as the base language and extend it with the concept of modules.

4.5 Example: E-ISC–based composition system
Here we go through the different development steps for our example rule language RL.

D0 Base grammar. Our base grammar is RL’s grammar. However, we here specify a
variant which more closely resembles the grammar that is running in our demon-
strator. We here only provide the abstract syntax, but the concrete syntax can be
assumed to be the one used in all examples throughout Chapters 2–4.

〈RL〉 ::= 〈Unit〉
〈Unit〉 ::= 〈Program〉
〈Program〉 ::= 〈Statement〉+
〈Statement〉 ::= 〈Rule〉 | 〈Fact〉 | 〈Comment〉
〈Rule〉 ::= 〈Head〉 〈Body〉
〈Fact〉 ::= 〈Head〉

4.5. EXAMPLE: E-ISC–BASED COMPOSITION SYSTEM 119

1 extends file:rl.gr @ rl as file:rrl.gr .
2

3 % i) passive syntax
4 Module = moduleName:rl.Predname, moduleStmt:rl.Statement* .
5 Module <> rl.Unit .
6

7 OutInterface = interface:rl.Head .
8 OutInterface <> rl.Head .
9

10 % ii) active syntax
11 ImportAs = moduleLocation:Module [@Location],
12 moduleName:rl.Predname .
13 ImportAs <> rl.Statement .
14 ImportAs -> @Composer .
15

16 InModule = moduleName:rl.Predname, interface:rl.Atom .
17 InModule <> rl.Atom .
18 InModule -> @Composer .
19

20 % iii) fragment types
21 fragtypes { rl.Program, rl.Statement, rl.Rule, rl.Head, rl.Atom, rl.Variable,
22 rl.Predname, Module, OutInterface }

LISTING 4.4: CmSL+ specification for extending the rule language RL with constructs
supporting the notion of a ‘module.’

〈Head〉 ::= 〈Atom〉
〈Body〉 ::= 〈Atom〉+
〈Atom〉 ::= 〈Predname〉 〈Term〉+
〈Term〉 ::= 〈Variable〉 | 〈Constant〉 | 〈Num〉
〈Predname〉 ::= STRING

〈Variable〉 ::= CAP_STRING

〈Constant〉 ::= STRING

〈Num〉 ::= NUM_STRING

〈Comment〉 ::= STRING

D1-3 Adapt base grammar to ISC, define domain-appropriate constructs and sepa-
rate out active syntax. The CmSL+ specification in Listing 4.4 extends the base
grammar for the purpose of working with modules.

The component model specification in Listing 4.4 achieves three things: i) It
defines passive syntax for defining rule modules and their interfaces, ii) It de-
fines active syntax for importing modules (IMPORT-AS) and for querying mod-
ules (IN-MODULE), and iii) It allows constructs corresponding to a set of nonter-
minals to be defined as fragments, as well as to be accessed implicitly during
composition. The concrete syntax for the newly defined constructs is not given
here, but can be assumed to be the one used in Section 4.2.

The language extension specified above will allow to author programs such as
can be found in Listings 4.2 and 4.3.

D4 Generating component model. The next step is to generate the component model.
This essentially involves generating the core composition language, as described

120 CHAPTER 4. EMBEDDED ISC

1 IMPORT file:sales.md AS sales
2

3 bonus(X, 200) :-
4 IN sales (employee(X)).
5 bonus(X, 100) :- employee(X).
6

7 employee(john).

LISTING 4.5: Rule program importing
a module.

1 MODULE sales
2

3 @ employee(X) :-
4 sales_employee(X).
5

6 sales_employee(steve).
7 sales_employee(marco).

LISTING 4.6: Rule module at
file:sales.md.

in Section 3.3.2. This will generate the appropriate Java types for implementing
the complex composition operators corresponding to the active syntax constructs
as defined in Listing 4.4.

D5 Defining composition operators for active syntax constructs. The next step in the
development process is to associate composition operators with the active syntax
constructs introduced in the previous steps. We notice that there are two such
constructs, defined by the nonterminals ImportAs and InModule. Hence, we
must define composition operators for these constructs. They have the following
signatures (method names can vary):

IStatement importAs(IModule mod, IPredname name)
IAtom inModule(IPredname mod, IAtom atom)

Notice that the signature of each operator can be derived from the CmSL+ spec-
ification in Listing 4.4. The definition constructs define the parameters, while
the injection constructs define the return types. In general, the return type could
be different from what is specified using the injection construct. For example,
we could inject an active syntax construct as an alternative for RL’s Term, but
return a Var from the implementation method corresponding to the active syntax
construct. What is important, however, is the following: Since the result of a
composition operator replaces the active syntax that invoked it, this replacement
must be valid wrt. the extended language. Hence, the safety conditions from
Chapter 2 still apply.

The definition of the operators can be found in Listing 4.8 in Appendix 4.A.

Execution of composition In the following we look at how the above specified com-
position system is used and how the involved fragments are transformed. That is, we
try to give an intuitive understanding of how the RL module system is realized, and
how the defined composition operators work. Assume we have the programs shown in
Listings 4.5 and 4.6.

The program in Listing 4.5 is a program that imports the module in Listing 4.6.
Intuitively, the programs in Listings 4.5 and 4.6 specify an abstraction. The goal of the
composition is to define the abstraction realization. This abstraction realization should
ensure properties associated with the abstraction. One such property is encapsulation.
We choose to realize the encapsulation via renaming of predicate names:

1. Module encapsulation. This transformation scheme is used for atoms in mod-
ules that are not part of the module interface, that is, local atoms. The following
string is added as a suffix to the predicate names of such atoms:

4.5. EXAMPLE: E-ISC–BASED COMPOSITION SYSTEM 121

1 <Module>
2 <stmt>
3 <rule>
4 <InterfaceOut>
5 <head>
6 <atom>
7 <const>employee</const>
8 <term><var>X</var></term>
9 </atom>

10 </head>
11 </InterfaceOut>
12 <body>
13 <atom>
14 <const>
15 sales_employee
16 </const>
17 <term><var>X</var></term>
18 </atom>
19 </body>
20 </rule>
21 </stmt>
22 <!−− snip −−>
23 </Module>

1 <Module>
2 <stmt>
3 <rule>
4 <head>
5 <atom>
6 <const>
7 employee_sales_out
8 </const>
9 <term><var>X</var></term>

10 </atom>
11 </head>
12 <body>
13 <atom>
14 <const>
15 sales_employee_sales_priv
16 </const>
17 <term><var>X</var></term>
18 </atom>
19 </body>
20 </rule>
21 </stmt>
22 <!−− snip −−>
23 </Module>

FIGURE 4.7: Part of the AST of the fragment in Listing 4.5. The left-hand side before
composition, the right-hand side after composition (to ensure encapsulation).

_[module name]_priv

2. Module interfaces. This transformation scheme is used for atoms that are part
of module interfaces. This holds both for the head atoms in statements pro-
ceeded by the @ module interface construct, and for body atoms used with the
IN-MODULE construct. The following string is added as suffix to the predicate
names of such atoms:

_[module name]_out

The above renaming scheme is quite simple and could be replaced by a more in-
volved method, but this suffices here. The renaming scheme is encoded in the com-
position operators that are used to define the composition. The importing program
(Listing 4.5) can be seen as a composition program that is connected to composition
operators via its use of active syntax constructs, which triggers the composition. As
there are two active syntax constructs in the composition program, two composition
operators will be executed. The first operator to be executed is the IMPORT-AS op-
erator, which corresponds to the first operator specified in Listing 4.8. The operator
receives two arguments, the definition of the module that is to be imported, and the
shorthand name for the module. The module is then transformed using its implicit in-
terface. Part of the transformation of the module’s AST is shown in Figure 4.7. The
left-hand side of Figure 4.7 shows the original AST, while the right-hand side shows
the transformed AST.

The transformed set of statements of the module are returned from the composition
operator and replaces the IMPORT-AS construct of Listing 4.5. In the same manner,
the call to the IN-MODULE operator in Listing 4.5 transforms the atom being passed

122 CHAPTER 4. EMBEDDED ISC

1 % −− module −−
2 employee_sales_out(X) :- sales_employee_sales_priv(X).
3

4 sales_employee_sales_priv(steve).
5 sales_employee_sales_priv(marco).
6

7 % −− main program −−
8 bonus(X, 200) :- employee_sales_out(X).
9 bonus(X, 100) :- employee(X).

10

11 employee(john).

LISTING 4.7: The result of composing the programs in Listings 4.5 and 4.6.

to it according to the second operator in Listing 4.8 (p. 126), before replacing itself
with the result from the operator. The composed result is shown in Listing 4.7 (with
transformed statements in italics, and comments added for clarity).

The rule program in Listing 4.7—valid wrt. the original RL grammar—is thus the
realization of the abstraction used in Listings 4.5 and 4.6. This realization is not in-
tended to be seen or worked on by programmers directly, but represents the program
that will be interpreted by the rule engine developed for the base language.

Roles in composition systems. As we mentioned in the introduction of this chapter,
we aimed to separate between a developer who has to understand the details of ISC, and
a user who can take advantage of the benefits of ISC, without having to understand all
the intricate details of fragments, their interfaces and primitive composition operators.
This is the general goal of embedded ISC (E-ISC) systems. By specifying compo-
sition systems in CmSL+ and implementing composition operators for active syntax
constructs using a generated core composition language, exactly this can be achieved.
The developer of the embedded composition system has to use CmSL+ and write the
composition operators (cf. Listing 4.8, p. 126). The user on the other hand can write
program with intutive and appropriate syntax, programs like the ones in Listings 4.5
and 4.6.

4.6 Summary and Discussion
Let us recap what was achieved and discussed in this chapter, as well as point to some
open issues.

1. A remedy for the primitiveness of ISC. We recognized the primitiveness of ISC’s
composition operators and concluded that working on that level of detail is not
optimal, or even desirable, for programmers. To address this situation, we also
realized the need to separate between different user roles wrt. composition sys-
tems. We distinguish between composition system developers, and composition
system users. This has the effect that users can employ ISC that is “embedded”
in their normal languages. The embedded ISC provide intuitive abstraction con-
structs that the users only have to know how to use, not how they are realized
using ISC. The developer on the other hand has to know how to realize the same
abstraction constructs, that is, how to implement their semantics.

4.6. SUMMARY AND DISCUSSION 123

2. Domain appropriateness. We identified the need to have a generic approach to
working with fragments (in order not to exclude languages), but also to have the
ability to connect this generic approach with language-tailored and more specific
constructs suitable for certain languages. This led to the notion of extending a
base language with two kinds of syntax:

(a) Passive syntax – this is syntax that is intended to make it more natural to
define “components” and their interfaces, whatever this might mean for a
particular language.

(b) Active syntax – this is syntax that correspond to composition operators,
statements or expressions that appropriately transform components, that is,
implement composition operator semantics (or component realization).

3. Complex composition operators. To bridge any domain-appropriate constructs
that are introduced into a base language with the general composition approach
provided by universal ISC, we introduced the concept of complex composition
operators. Complex operators connect active syntax constructs with particular
kinds of composition programs. Since active syntax constructs trigger the exe-
cution of complex operators, programs written in an extended language can be
seen as composition programs by the framework.

4. Embedded invasive software composition. The overall achievement of this chap-
ter was to introduce embedded invasive software composition (E-ISC). Using
all the notions mentioned above, E-ISC makes it possible to abstract from the
primitiveness of ISC and its universal notion of fragments.

5. Extended component model specification language — CmSL+. We provided an
extended component models specification language – CmSL+. This language
can be used to specify components models for embedded ISC systems.

6. Development process. We described the overall development process for creating
embedded ISC systems.

As a concluding remark, it can be said that most DSLs provide appropriate con-
structs for “programming in the small” [27]. That is, they provide constructs for de-
veloping the core parts of their programs. However, as discussed, many DSLs lack
constructs for “programming in the large,” or at least language-appropriate constructs
for doing so (if the DSLs is embedded, it has to use whatever is provided by the host
language, which might not always be ideal). Nonetheless, such “programming in the
large” constructs are often needed for organizing the smaller parts of a larger program
in the appropriate way. Furthermore, it enables reuse of already specified program
parts. With our embedded ISC approach it is possible to provide these “programming
in the large” opportunities after the core language is already specified and developed.
We are here mainly thinking of the non-embedded DSLs that do not even have the op-
portunity of reusing constructs from a host language. In these embedded ISC systems,
ISC and its composition technique is used as a core component. In addition, with this
approach we have in a sense acknowledged the vision of the need for more “domain-
specific, tailored and adequate” composition operators [5, p. 278], and we exemplified
how this insufficiency can be remedied.

124 CHAPTER 4. EMBEDDED ISC

Discussion
Below we discuss certain points of interest:

1. Unintended language extensions. Injecting new constructs into a base language
can sometimes make the extension larger than was intended. As an example,
consider our rule language example and its module extension. Suppose part of
the RL grammar looks as follows:

〈rule〉 ::= 〈head〉 :- 〈body〉 .
〈head〉 ::= 〈atom〉
〈body〉 ::= 〈atom〉 (, 〈atom〉)*
〈atom〉 ::= 〈predname〉 (〈term〉 (, 〈term〉)*)

Now, suppose we want the IN-MODULE construct from the module extension to be
an alternative for atoms in rule bodies. If we inject IN-MODULE as an alternative
for atom, we would get something like this:

〈atom〉 ::= 〈atom’〉 | 〈in-module〉
〈atom’〉 ::= 〈predname〉 (〈term〉 (, 〈term〉)*)

However, this would also allow IN-MODULE constructs to appear in rule heads,
which we do not want. Hence the extension is too large. A solution to avoiding
this would be to modify the base grammar specification. We could modify the
definition of the 〈body〉 nonterminal and introduce an explicit construct repre-
senting things in rule bodies, something like:

〈body〉 ::= 〈body-part〉 (, 〈body-part〉)*
〈body-part〉 ::= 〈atom〉

Then we could say that 〈in-module〉 should be injected as an alternative for
〈body-part〉s. We would get something like:

〈head〉 ::= 〈atom〉
〈body〉 ::= 〈body-part〉 (, 〈body-part〉)*
〈body-part〉 ::= 〈atom〉 | 〈in-module〉

In this case, the IN-MODULE construct would only be allowed to appear in rule
bodies, which is what we wanted. In rule heads, only atoms are allowed.

As can be seen, it is important to be aware of how the specification of the base
grammar affects any transformations done to it by component model specifica-
tions. This again shows how the approach really is grammar-driven: The speci-
fication of the base language grammar influences the construction and use of the
resulting composition system.

2. Development process. In Section 4.4.2 we described all the necessary steps in
the process of developing an E-ISC–based composition system. However, that
description was based on a ‘perfect’ development process, and not on the iterative
process that is more likely to occur in real life. Based on our experiences in
developing composition systems using our framework, the process illustrated in
Figure 4.8 is closer to what a developer would encounter. This development
process consists of two parts:

4.6. SUMMARY AND DISCUSSION 125

Base grammar

Adapt base

grammar to ISC

Introduce domain-

appropriate syntax

and constructs

Generate

component model

Implement complex

composition

operators
D1

D2D4

D5

Separate active

from passive syntax

D3

D0

Specify
base grammar

Specify
component model

Concretize required
abstraction

specification

Generate core
composition language

(component model)

Implement complex
composition operators

R2

D1

D3

D4

D2

R1

Development

Cycle

Requirement

Phase

Decide on intuitive
syntax corresponding

to R1

FIGURE 4.8: A refined development process consisting of a requirement phase and a
development cycle. The requirement phase determines the desired abstraction specifi-
cation, while the development cycle determines the realization of the same.

(a) Requirement phase (R1–2). The requirement phase consists of deciding
what the desired language abstraction is. That is, what the new abstraction
is that should enable programmers to be more productive, better understand
large specifications and reuse more of their code. In particular, how pro-
grammers should concretely specify that abstraction in the most intuitive
way.

(b) Development cycle (D1–4). The development cycle then determines how
the abstraction specification should be realized. This first involves specify-
ing the base grammar and the component model. Then the core composi-
tion language is generated, whereupon complex composition operators can
be implemented. These steps form an iterative cycle. For example, a cer-
tain fragment type might not be definable, but is found out to be required
for the implementation of a composition operator. Hence, the component
model specification must be changed, and the core composition language
regenerated. In some cases, the base grammar might have to be restruc-
tured. This cycle goes on until the abstraction realization corresponds to
the abstract specification determined in the requirement phase.

3. Trade-off between syntax and composition operators. There can be a trade-off
between intuitive abstraction specification syntax and how easy it is to realize
the abstraction. That is, having a very intuitive extended language syntax might
make the implementation of composition operators more complicated. And vice
versa, a simpler implementation of the composition operators might require the
extended syntax to be compromised with. Developers of E-ISC–based composi-
tion systems should be aware of this trade-off.

4. Composing extension to base language. The framework is based on the fun-
damental idea that a program P+ written in an extended language L+ is trans-

126 CHAPTER 4. EMBEDDED ISC

formed into an equivalent program P of the base language L (where L+ is an
extension of L). But more importantly, that the properties associated with any
components used in P+ are properly handled in P. One can question if this
assumption and approach is a reasonable one. We argue that it indeed is a rea-
sonable approach, and base this on two observations:

(a) Charles W. Krueger explains in [60] that abstractions, among other things,
can be seen from the perspective of a specification and a realization. The
specification is the view of the programmer, that is, its use, while the real-
ization is the implementation of the abstraction. In our case, components
written in the extended language L+ are abstraction specifications, while
the same components in L after composition are their respective realiza-
tions.

(b) Clemens Szyperski explains in [86, p. 10] that: “[...] from a purely formal
point of view, there is nothing that could be done with components that
could not be done without them.”

These two observations convince us that the extensions we are interested in—
extensions for abstraction specifications as explained in 4a—do not need added
expressiveness for their realization, due to the explanation in 4b.

4.A Appendices
The complex composition operators used in the modular extension of RL can be found
in Section 4.8. The constructs (active syntax) that prompt the execution of the operators
are demonstrated in, for example, Listing 4.5. The IMPORT-AS construct corresponds
to the method named importInterpreter, and the IN-MODULE construct corresponds
to the method named inModuleInterpreter. The code makes use of the core compo-
sition language (Java API) generated from the component models specification in List-
ing 4.4 (these Java classes have the namespace org.reuseware.air.language.rl).

Composition operators for RL modules

1 package org.reuseware.air.language.rl.ops;
2

3 import java.util.Hashtable;
4

5 import org.reuseware.air.algebra.fragment.FragmentSystem;
6 import org.reuseware.air.coconut.IComplexOperator;
7 import org.reuseware.air.coconut.ReusewairComposer;
8 import org.reuseware.air.language.rl.IAtom;
9 import org.reuseware.air.language.rl.IHead;

10 import org.reuseware.air.language.rl.IModule;
11 import org.reuseware.air.language.rl.IOutInterface;
12 import org.reuseware.air.language.rl.IPredname;
13 import org.reuseware.air.language.rl.IStatement;
14 import org.reuseware.air.language.rl.algebra.RlVisitor;
15 import org.reuseware.air.language.rl.impl.IHeadImpl;
16 import org.reuseware.air.language.rl.impl.IPrednameImpl;
17 import org.reuseware.air.language.rl.impl.IStatementImpl;
18

19 import de.tudresden.reuseware.language.rl.RlPackage;
20 import de.tudresden.reuseware.language.rrl.RrlPackage;

4.A. APPENDICES 127

21

22 public class Composers implements IComplexOperator {
23

24 // internal fragments
25 private static IPredname interfacePrivate;
26 private static IPredname interfaceOut;
27 private static String sep = "_";
28

29 // communication information between operators
30 static Hashtable<String,String> names = new Hashtable<String,String>();
31

32 /∗∗
33 ∗ Required by IComplexOperator
34 ∗
35 ∗/
36 public void initialize() {
37

38 FragmentSystem.getInstance().setGrammar("rrl");
39 // clear names
40 names.clear();
41 }
42

43 public Composers() {
44

45 FragmentSystem.getInstance().setGrammar("rrl");
46

47 interfacePrivate = IPrednameImpl.load("priv");
48 interfaceOut = IPrednameImpl.load("out");
49 }
50

51 /∗∗
52 ∗ IMPORT STATEMENT COMPOSER
53 ∗
54 ∗/
55 @ReusewairComposer("ImportAs")
56 public static IStatement importStmt(IModule module, final IPredname name) {
57

58 // 1) Extract module statements
59

60 IStatement stmt = new IStatementImpl();
61 module.accept(new RlVisitor(stmt) {
62

63 public boolean visit(IStatement node) {
64 getParamFragment().extend(node);
65 return true;
66 }
67

68 /∗∗
69 ∗ For composer communication
70 ∗
71 ∗/
72 public boolean visit(IPredname node) {
73

74 if (node.inContextOf(RrlPackage.Literals.MODULE) &&
75 !node.inContextOf(RlPackage.Literals.STATEMENT)) {
76 /∗∗
77 ∗ Save the connection between the prefix name and
78 ∗ the name as defined by the module
79 ∗/
80 if (!names.containsKey(name.toString()))
81 names.put(name.toString(), node.toString());
82 }

128 CHAPTER 4. EMBEDDED ISC

83 return true;
84 }
85 });
86

87 // 2) Transform module statements
88

89 // encapsulate
90 stmt.accept(new RlVisitor() {
91

92 public boolean visit(IPredname node) {
93

94 if (!node.inContextOf(RrlPackage.Literals.IN_MODULE) &&
95 !node.inContextOf(RrlPackage.Literals.IMPORT_AS)) {
96

97 if (node.inContextOf(RrlPackage.Literals.OUT_INTERFACE)) {
98 IPredname pred =
99 IPrednameImpl.load(node.toString() + sep +

100 names.get(name.toString()) + sep +
101 interfaceOut.toString());
102 node.bind(pred);
103 } else {
104 IPredname pred =
105 IPrednameImpl.load(node.toString() + sep +
106 names.get(name.toString()) + sep +
107 interfacePrivate.toString());
108 node.bind(pred);
109 }
110 }
111 return true;
112 }
113 });
114

115 // replace passive syntax
116 stmt.accept(new RlVisitor() {
117

118 public boolean visit(IOutInterface node) {
119 IHead head = new IHeadImpl();
120 node.accept(new RlVisitor(head) {
121

122 public boolean visit(IHead node) {
123 getParamFragment().bind(node);
124 return true;
125 }
126 });
127

128 if (head.isLoaded()) {
129 node.bind(head);
130 }
131 return true;
132 }
133 });
134 return stmt;
135 }
136

137 /∗∗
138 ∗ IN−MODULE COMPOSER
139 ∗
140 ∗/
141 @ReusewairComposer("InModule")
142 public static IAtom inModule(final IPredname module, final IAtom atom) {
143

144 atom.accept(new RlVisitor() {

4.A. APPENDICES 129

145

146 public boolean visit(IPredname node) {
147 // check if we are given information from the Import operator
148 if (names.containsKey(module.toString()))
149 node.bind(IPrednameImpl.load(node.toString() + sep +
150 names.get(module.toString()) + sep +
151 interfaceOut.toString()));
152 // default
153 else {
154 System.err.println("The module name ’" + module.toString() + "’

has not been declared");
155 node.bind(IPrednameImpl.load(node.toString() + "_err_" +
156 interfaceOut.toString()));
157 }
158 return true;
159 }
160 });
161 return atom;
162 }
163 }

LISTING 4.8: Composition operators specified to properly transform fragments during
composition of rule modules.

130 CHAPTER 4. EMBEDDED ISC

Part III

Applications / Evaluation

131

5
Query Components: Modules for Xcerpt

[This chapter is closely based on [6], but extended with more detailed
explanations, further developed examples, parameterized modules and
specification of the composition system implementing the module system.]

As the amount and diversity of data available on the Web is constantly increasing,
querying this great abundance of information is becoming more and more important.
In fact, it is becoming less important to possess certain knowledge, but more important
to know how to acquire it—know how to formulate a precise query to find the desired
information. Query languages for different purposes are emerging in multitude. The
survey in [10] mentions some existing query and transformation languages for Web and
Semantic Web data, identifying 14 textual XML query languages and 24 for RDF [55]
metadata.

Yet, many of these languages provide very little support to cope with the dramatic
increase in information size and diversity. Increasing information diversity—data mod-
eled according to standard, non-standard or exotic data schemata—results in increase
of query size and complexity, which can weigh down even experienced query program-
mers. It must be easy for users to partition (both conceptually and from an evaluation
point of view) query programs and to make such partitioning flexible enough to allow
for reuse in different contexts. This is not the case unless the query language provides
some means to separate large and complex query programs into smaller, properly iso-
lated, and reusable fragments—modules. If we in addition provide usable interfaces
to such modules, they allow for separation of concern of query programs via standard
means of encapsulation. That is, we can hide the detail of how the modules are realized
and instead have programmers rely on their interfaces.

Modules and their interfaces allow to “localize” the effect of the introduction of
additional data sources or query tasks in query programs. By localizing a query task
and moulding it into a module we essentially create a query service that can be reused
across query programs and applications. There are different kinds of services that can
be useful to query programmers and Web applications. For example, one part of a Web
application is often concerned with extracting data from a set of sources, such as a set of
Web pages, and possibly syndicating that data into a common view and format. Based
on this syndicated data some transformations could be done, or new implicit data could
be derived. Finally, the resulting data set should be generated into an appropriate for-

133

134 CHAPTER 5. MODULES FOR XCERPT

Query
programmer

Microformat
view

RSS view

HTML:
Table view

...

Reasoning:
SubClassOf

Reasoning:
InstanceOf

Filter: Query
internal format

...

RDF(1) ! RDFS

RDF(2) ! RDFS

Amazon.com !

Internal format

...

Extract/Syndicate Process Present Query activities

Activity
examples

Data
Display

Data
Processing

Desired
Format

Partial
View

GOALWeb

pages

(Web)

Database

Query

program

FIGURE 5.1: In general, querying covers certain activities, each for which reusable
entities (modules) can be created.

mat, for example, by being generated into HTML for display in a Web browser. These
different activities, illustrated in Figure 5.1, have to do with different concerns of the
overall query application realization, such as data extraction (Extract/Syndicate), data
management (Process) and data generation (Present). Without the possibility of using
modules, each of these concerns have to be coded into a monolithic query program.
Not only does this hamper reuse, but such a program can be very hard to maintain
since a change in some part invariably affects some other part. It is valuable to localize
and encapsulate knowledge about queries to minimize the impact of changes.

The main contribution of this chapter is Modular Xcerpt, a component-oriented
extension of the rule-based query language Xcerpt [77]. The extension is focused on
the module concept and allow programmers to define and deploy modules in their query
programs. The contribution consists of two parts:

1. Composition framework validation. We show how the module extension to
Xcerpt can be realized by instantiating the composition framework detailed in
Chapters 2–4. The following issues are involved in this instantiation:

(a) Embedded Invasive Software Composition. The module extension of Xcerpt
is realized through Embedded ISC (E-ISC, cf. Chapter 4). This means that
we leverage the ideas and techniques introduced in Chapters 2–4, and ap-
ply them for a particular language, Xcerpt. This gives us an opportunity
to evaluate the composition framework. E-ISC allows to provide intuitive
constructs for the purpose of a software composition approach. For Modu-
lar Xcerpt, this means intuitive constructs for defining and deploying mod-
ules. The benefit is that programmers already familiar with Xcerpt have
little new to learn, which holds promise for fast adoption.

(b) Abstraction realization via composition. We define a composition system
for Modular Xcerpt. This includes defining the language extension, as well
as defining the composition operators that implement the semantics of the

5.1. BACKGROUND: WEB QUERY LANGUAGE XCERPT 135

extension. That is, we use our composition framework to specify the re-
alization of the module abstraction. Since the composition framework re-
quires that programs of the extended language (Modular Xcerpt) are com-
posed into equivalent programs of the base language (Xcerpt), we must
explain how this composition is done. We introduce the notion of “stores”
to ensure separation of modules in composed results, and hence to ensure
a correct realization of the module abstraction.

2. Modular Web querying. We demonstration how Xcerpt can benefit from the
module concept, both by partitioning query programs into logical reuse units,
and as a consequence, by partitioning the execution of programs. This is demon-
strated by several examples of how modules are defined, and how they are used
in query programs.

This chapter is organized around these contributions. Following a brief introduction
to Xcerpt, in Section 5.2 we discuss the benefits of modules by considering different
use-cases and query scenarios. In Section 5.3 we then introduce the constructs we need
to realize the use-cases and similar cases. In Section 5.4 we present a set of exam-
ples involving modules. In Section 5.5 we discuss how separation of modules can be
ensured in composition results by introducing the notion of “stores.” Section 5.6 then
defines a concrete composition system that realizes the module extension to Xcerpt.
Section 5.7 discusses related work and Section 5.8 concludes the chapter.

5.1 Background: Web query language Xcerpt
Xcerpt is a rule-based language for querying semi-structured data, for example XML
or RDF (which has an XML serialization). The language follows, or is closely related
to, the Logic Programming (LP) paradigm (see, for example, [68] for an introduction
to LP). There are many publications on Xcerpt (see, e.g., [21, 22, 77]). Here we recall
the basic constructs needed to understand our module extension. An Xcerpt program
consists of a finite set of Xcerpt rules. The rules of a program are used to define data,
or to derive new data from existing data (i.e. the data being queried). In Xcerpt, two
different kinds of rules are distinguished: construct rules and goal rules. Their syntax
are given in Listings 5.1 and 5.2, respectively, where anything enclosed between angle
brackets (< and >) will be explained later. We will simply refer to (Xcerpt) rules when
we do not distinguish between the two kinds of rules.

Construct rules are used to produce intermediate results while goal rules make up
the output of programs. Rules have a head and optionally a body. Intuitively, rules are
to be read: if body holds, then head holds. A rule lacking a body is interpreted as a
fact, that is, the rule head always holds.

1 CONSTRUCT
2 <head>
3 FROM
4 <body>
5 END

LISTING 5.1: A construct rule.

1 GOAL
2 <head>
3 FROM
4 <body>
5 END

LISTING 5.2: A goal rule.

136 CHAPTER 5. MODULES FOR XCERPT

1 GOAL
2 authors [all author [var X]]
3 FROM
4 book [[author [var X]]]
5 END
6

7 CONSTRUCT
8 book [title ["White Mughals"], author ["William Dalrymple"]]
9 END

10

11 CONSTRUCT
12 book [title ["Stanley"], author ["Tim Jeal"]]
13 END

LISTING 5.3: The construct rules define data about books and their authors and the
goal rule queries this data for authors.

While Xcerpt works directly on XML data, it also has its own data format. Xcerpt
data terms model XML data and there is a one-to-one correspondence between the two
notions. While XML uses labeled “tags,” Xcerpt data terms use a square bracket no-
tation. The data term book [title ["White Mughals"]], for example, corre-
sponds to the <book><title>White Mughals</title></book> XML snippet. The
data term syntax provides a more readable XML syntax to use in queries.

Formally, the head of a rule is a construct term and the body is a query. A
query is a set of query terms joined by some logical connective (e.g. or or and).
Query terms are used for querying data terms and intuitively describe patterns of data
terms. Query terms are used with a pattern matching technique to match data terms.1

Query terms can be configured to take partialness and/or ordering of the underlying
data terms into account during matching. Square brackets are used in query terms
when order is of importance, otherwise curly brackets may be used. E.g. the query
term a [b [], c []] matches the data term a [b [], c []] while the query
term a [c [], b []] does not. However, the query term a { c [], b [] }
matches a [b [], c []] since ordering is said to be of no importance in the query
term. Partialness of a query term can be expressed by using double, instead of sin-
gle, brackets (i.e. [[...]] or {{ ... }}). Query terms may also contain log-
ical variables (denoted by capitalized identifiers preceded by keyword var, for ex-
ample, var X). If so, successful matching with data terms results in variable bind-
ings used by rules for deriving new data terms. For example, matching the query
term book [title [var X]] with the XML snippet above results in the vari-
able binding {X / "White Mughals"}. Construct terms are essentially data terms
with variables. The variable bindings produced by queries in the body of a rule can be
applied to the construct term in the head of the rule in order to derive new data terms.
In the rule head, construct terms including a variable can be prefixed with the keyword
all to group the possible variable bindings around the specific variable.

An example Xcerpt program relating to books is shown in Listing 5.3. The last
two rules are facts and define two books, each with a title and an author. The first
rule—a goal rule—defines the output of the program. It queries authors of books, and
constructs a list of all found authors. The program in Listing 5.3 would result in the
following data term as output:

1This technique is called simulation unification, please consult [78] for details.

5.2. USE CASES—MODULAR QUERYING 137

1 GOAL
2 <head>
3 FROM
4 in { resource { "file:db.xml", "xml" },
5 <query>
6 }
7 END

LISTING 5.4: A program with a single rule querying an external resource.

authors [author ["William Dalrymple"], author ["Tim Jeal"]]

Both authors are in the answer because of the grouping construct (all) used in the
construct term of the goal rule. Furthermore, the query in the goal rule matches the
two facts by not considering the book titles since the partialness construct is used
([[...]]).

A rule can also query an external resource, for example, a Web page or an XML
database stored as a file. An example in given in Listing 5.4 where the XML file
file:db.xml is being queried by a not further detailed query (<query>). The con-
struct term of the rule is also omitted (<head>).

5.2 Use cases—Modular Querying
We will now look at the details of two query scenarios where the encapsulation of
query tasks in modules is helpful. The constructs needed to realize these studied query
scenarios will be introduced in the next section. While we will be more precise about
what we mean by an Xcerpt module in subsequent sections, we shall here simply as-
sume that a module is the encapsulation of a query task with appropriate interfaces to
make use of the service.

The first scenario, presented in Section 5.2.1, deals mainly with encapsulation of
schema information. That is, how localization of data schemata is helpful for managing
query programs. For the second scenario in Section 5.2.2 we discuss more generic
query services that can be encapsulated as modules.

5.2.1 Encapsulating and reusing schema information
The illustration in Figure 5.2 shows the three query activities mentioned above (Extrac-
t/Syndicate, Process and Present). This scenario mainly focuses on using modules for
the purpose of simplified extraction of data and for presenting the result of a query (first
and third activities). Any XML querying deals with data schemata at some level, but
these two query activities are especially fragile since they deal with data structures and
formats that are either i) dictated by a third-party, for example a Web page beyond the
control of the query programmer, or ii) dictated by certain output devices or platforms,
for example the rendering format of a mobile device.

1. Schema querying. Assume a set of query programs part of an online Web ser-
vice/application that query a Web site for information. (It could also be a Web
service providing XML-serialized output.) For sake of familiarity, let’s assume
it is the Amazon.com Web site (http://www.amazon.com). With non-modular

http://www.amazon.com

138 CHAPTER 5. MODULES FOR XCERPT
I. Use-case 1: Overview figure

II. Use-case 2: Overview figure

Extract/Syndicate Process Present

= Xcerpt module = Active Xcerpt moduleLegend:

Web

page Result

Data flow

Query direction
...

B&N

Borders

Amazon.com

...

RSS

Cell Phone

Desktop

Browser

Extract/Syndicate Process Present

= Xcerpt moduleLegend:

ResultRDF/XML RDF/XML
RDF(S)

Reasoner
Ontol-

ogy

Data flow

FIGURE 5.2: The encapsulation of data schemata is beneficial since it allows for reuse
and can localize the effect of schemata change.

Amazon.com

Program 1

Result

Program 2

Amazon Query

Result

Amazon Query

Amazon.com

Result

Amazon Query

Result

Program 1 Program 2

(a) Non-modular querying (b) Modular querying

= Query part = Unspecified queryLegend: = Data flow = Output

Result

Data Query

filter graphics

Result

no filter

Platform 1

(Desktop)

Platform 2

(Mobile)

I. Use-case 1a: Overview figure

II. Use-case 1b: Overview figure

= Query partLegend: = Data flow = Output

FIGURE 5.3: The cost of maintaining query programs is reduced by encapsulating the
details of how to access certain data (done in (b), but not in (a)).

querying, the structure of the Amazon.com Web site has to be encoded in every
program wishing to query the site. Should those queries fail due to a change in
the structure of the Web site (illustrated by the zig-zagged line in Figure 5.3),
every program querying the site has to be modified and fixed, which leads to
costly and difficult maintenance. If instead the queries to Amazon.com could be
localized to a reusable query component (module) we would benefit from reuse
and easier maintenance. This is illustrated in Figure 5.3 (b) by having a single
and reusable Amazon Query component instead of having such queries encoded
directly into each query program (as in Figure 5.3 (a))

2. Schema provision. Not only is it beneficial to encapsulate how data is accessed,
as was discussed above, but often the same data set has to be displayed differently
due to technical issues such as display devices, or because of social factors such
as the target audience etc. When displaying queried data in a Web browser on a

5.2. USE CASES—MODULAR QUERYING 139

Amazon.com

Program 1

Result

Program 2

Amazon Query

Result

Amazon Query

Amazon.com

Result

Amazon Query

Result

Program 1 Program 2

(a) Non-modular querying (b) Modular querying

= Query part = Unspecified queryLegend: = Data flow = Output

Result

Data Query

filter graphics

Result

no filter

Platform 1

(Desktop)

Platform 2

(Mobile)

I. Use-case 1b: Overview figure

II. Use-case 2b: Overview figure

= Query partLegend: = Data flow = Output

FIGURE 5.4: Modules can be useful to encapsulate how certain data should be dis-
played.

desktop computer, all of the data can possibly be displayed. However, when the
same data should be displayed on a smaller device, for example a mobile phone,
certain data, e.g. large graphics, might have to be filtered out.

Being able to quickly and effortlessly switch between those output formats and
styles, based on the same data query, can be very helpful. This can be achieved
by specifying the different filtering mechanisms in separate provided query pro-
grams (can also be seen as modules), illustrated in Figure 5.4, and encapsulating
the data query as a module (Data Query in Figure 5.4).

The query scenarios discussed above have mainly been about separating and mod-
ularizing how data is either queried or presented as a final result. Thus:

QR1 It must be possible to define and encapsulate modules—thus localizing schemata
information (both for querying and outputting)—such that they can be reused
across query programs.

In both cases discussed above, either the input or the output data is fixed wrt. some
external format that is not directly controllable or changeable by the query program-
mer. We can also consider more generic transformational query modules that are not
connected to external data formats, but given certain input data, as dictated by the mod-
ule programmer, they provide the services they implement as output. We shall consider
the possible use of such modules in the following section.

5.2.2 Encapsulating and reusing data processing services
Within a query program itself—regardless of external data schemata—certain trans-
formations of intermediate results may be required. Certain such transformations can
be likened to services and be generalized and usable in many different query appli-
cations. An example of such a transformation service is a simple ontology reasoning
service. A common purpose of an ontology is to arrange the central concepts of a mod-
eled domain in a taxonomy (class hierarchy) using subclass-of relationships. Ontology
reasoners can then be employed to infer any implicit subclass-of relationships.

A class hierarchy can be specified using a simple ontology language, for example
RDF(S) [18]. Since RDF(S) ontologies have XML-serializations (RDF/XML), a query

140 CHAPTER 5. MODULES FOR XCERPT

I. Use-case 1: Overview figure

II. Use-case 2: Overview figure

Extract/Syndicate Process Present

= Xcerpt module = Active Xcerpt moduleLegend:

Web

page Result

Data flow

Query direction
...

B&N

Borders

Amazon.com

...

RSS

Cell Phone

Desktop

Browser

Extract/Syndicate Process Present

= Xcerpt moduleLegend:

ResultRDF/XML RDF/XML
RDF(S)

Reasoner
Ontol-

ogy

Data flow

FIGURE 5.5: Generic query tasks, such as a simple ontology reasoner (e.g. an RDF(S)
document serialized in RDF/XML), can be valuable services that should be reusable
across applications.

program could access the explicit information contained in such an ontology document
and compute the implicit subclass-of relationships [77, pp. 126–128]. Such compu-
tations can be formulated as a query task and be made into a module such that it can
be reused across applications in need of that service. The input for the module (ser-
vice) would be a list of explicit subclass-of relationships, and the output would be the
same list but extended with any derived implicit subclass-of relationships. This query
service idea is illustrated in Figure 5.5. Other such transformation services could be
imagined. Thus, as a second query requirement, we have:

QR2 It must be possible to define generic and reusable data transformation services
that, given a certain input, provides the expected output.

In the next section we shall discuss the language constructs needed for Xcerpt
to support and realize the above-mentioned query scenarios wrt. modularization and
reuse.

5.3 Requirements and constructs for Modular Xcerpt

The previous section discussed how modular querying can be useful and how separat-
ing query tasks into reusable modules makes life easier for Web query programmers.
The query language Xcerpt does not, however, at the time of writing, support a module
concept.

The only programming abstraction provided by Xcerpt is the rule. A rule can query
an external resource or data constructed by another rule. An Xcerpt program is thus
a set of rules with certain implicit dependencies. The programmer has the freedom of
splitting the overall query task into any number of rules. During evaluation of a query
program the same rule can be used several times and is in this sense reused for that
particular query evaluation. Xcerpt does not, however, provide a way of reusing rules
across programs. Nor does Xcerpt provide means to reuse larger query tasks (sets of
collaborating and related rules). For reuse of rules or query tasks, we introduce the
notion of Xcerpt modules.

5.3. REQUIREMENTS AND CONSTRUCTS FOR MODULAR XCERPT 141

Definition 5.1. (Xcerpt module (Informal)) An Xcerpt module is a set of rules that
can be imported and reused across programs. A module defines interfaces dictating
how the module may successfully be used.

The interfaces are defined by adorning construct terms or queries of the module’s
rules. Adorned query terms are part of the required interface and adorned construct
terms are part of the provided interface. Modules can contain both construct and goal
rules, but construct terms of goal rules cannot be part of module interfaces since goal
rules only result in program output.

Definition 5.2. (Xcerpt module (Formal)) Let Q represent a query, C a construct term
in a construct rule, and G a construct term in a goal rule. We denote C←Q a construct
rule, and G← Q a goal rule. Then the following is an Xcerpt module consisting of n
rules:

Ĉ1← Q1, . . . ,Gk← Qk, . . . ,Cn← Q̂n

where each Ci or Q j adorned with a ̂ (hat) is part of the module interface. The
following properties hold for a module: (i) No Qi or Q̂ j will match any Ĉk, and (ii)
No Q̂i will match any C j or Ĉk. That is, no rule in the module depends on a rule with
an adorned construct term, and adorned queries can only match rules outside of the
module.

In general a module can have several input and output interfaces. A module with at
most one input and one output interface—at most one adorned query and one adorned
construct term—seems to be a particularly common and useful case. Most of our ex-
amples will have one output interface, and possibly one input interface. Below we
define and discuss concrete constructs needed to define modules and for making use of
them in programs. It should be noted that it is also possible for modules to make use
of other modules, called module nesting.

1. Defining modules – constructs for module programmers. Module program-
mers need constructs for defining sets of rules as modules and ways of declaring
their interfaces.

(a) Module definition. We can group sets of rules into modules and give such
a set a mnemonic identifier using the module construct.

〈module〉 ::= MODULE 〈module-id〉 〈import〉* 〈rule〉*

The 〈module-id〉 construct is a simple string identifier, the 〈import〉 con-
struct is defined below and the 〈rule〉 construct is the rule construct of
Xcerpt. The import constructs inform us that a module can in turn import
any number of other modules. The module construct is assumed, along
with the program, to be a fundamental unit formulable by programmers.

(b) Module interfaces. A module is considered to have a required interface
if any of its rules are meant to query data produced by rules outside of
the module. This can be allowed by adorning a top-level query with the
public keyword.

〈interface-in〉 ::= public 〈top-level-query〉

142 CHAPTER 5. MODULES FOR XCERPT

The 〈top-level-query〉 construct is defined in Xcerpt and represents a query
that is either a query contained directly in the rule body, or the top-most
query term inside a complex query (conjunction or disjunction). Similarly,
a module will require an provided interface if the data produced by the
module is intended to be further processed. To achieve this, the public
keyword may adorn a top-level construct term.

〈interface-out〉 ::= public 〈top-level-construct-term〉
The 〈top-level-construct-term〉 construct is again defined by Xcerpt, and
is a construct term directly contained in a rule head. Both the 〈interface-
in〉 and the 〈interface-out〉 constructs are assumed to be valid alternatives
for the constructs they encompass. That is, where a 〈top-level-query〉 can
be programmed, an 〈interface-in〉 construct can be placed. The equivalent
holds for 〈interface-out〉.

Thus, a module programmer defines a set of rules, gives them a suitable name,
and possibly defines the input and output interfaces of the module, all depending
on the programmer’s intension with the module.

2. Deploying modules – constructs for module users. Module users need to be
able to (a) declare which modules they want to use in a program, to (b) query
those declared modules, and to (c) provide data to the same modules, if required.

(a) Module import. We can import modules into other modules or programs.
This is done using the IMPORT-AS construct, defined by:

〈import〉 ::= IMPORT 〈module-ref 〉 AS 〈alias-id〉
The 〈module-ref 〉 is the location or unique identifier of the module, while
the 〈alias-id〉 is a string identifier. The 〈alias-id〉 can be used in the same
program to refer to the declared module. The IMPORT-AS construct can be
used before the rules of the module (or program) being defined.

(b) Module querying. We can query the data produced by a module using the
IN-MODULE construct:

〈in-module〉 ::= IN 〈alias-id〉 (〈query〉)
The 〈alias-id〉 construct represents the precise module to query and the
〈query〉 represents the actual Xcerpt query. The query can only match
against data produced by provided interfaces of the referred module. The
IN-MODULE construct can be used where an Xcerpt 〈query〉 construct is al-
lowed.

(c) Module provision. We can feed, or provision, data to a module using the
TO-MODULE construct:

〈to-module〉 ::= TO 〈alias-id〉 (〈top-level-construct-term〉)
The 〈alias-id〉 construct represents the precise module to feed data into.
The data produced by the TO-MODULE construct can only be matched by
rules in the referred module that are part of its required interface, that is,
rules with they keyword public used in its body. The TO-MODULE construct
can be used where top-level-construct-terms are allowed.

Below we present a simple example making use of the above introduced constructs,
and briefly study the consequences in terms of module encapsulation.

5.3. REQUIREMENTS AND CONSTRUCTS FOR MODULAR XCERPT 143

1 MODULE participants
2 IMPORT file:student.mx AS stud
3

4 CONSTRUCT
5 public
6 participants [
7 all name [var N]
8]
9 FROM

10 IN stud (
11 students [[
12 name [var N]
13]]
14)
15 END

LISTING 5.5: Module A: Participants
module in file file:particip.mx.

1 MODULE student
2

3 CONSTRUCT
4 public students [
5 name ["John Rowlands"],
6 name ["Henry Stanley"],
7 name ["Edmund Morel"],
8 name ["Roger Casement"]
9]

10 END
11

12 CONSTRUCT
13 students [
14 name ["William Sheppard"]]
15 END

LISTING 5.6: Module B: Student data
module in file file:student.mx.

1 IMPORT file:particip.mx AS part
2

3 GOAL
4 results [all name [var Name]]
5 FROM
6 IN part (
7 participants [[
8 name [var Name]]]
9)

10 END

LISTING 5.7: Program P: The main
query program.

1 results [
2 name [
3 "John Rowlands"],
4 name [
5 "Henry Stanley"],
6 name [
7 "Edmund Morel"],
8 name [
9 "Roger Casement"]

10]

LISTING 5.8: The result of executing
the query program P.

Example 5.1. (Simple Xcerpt modules and their usage) This example deals with two
modules and a main program. Module A (Listing 5.5) imports module B (Listing 5.6)
and is itself imported into the main program P (Listing 5.7). We thus have the following
dependency between the modules and the program (where−→ denotes the dependency
relation):

P−→ A−→ B

Module B defines data about students, their names in particular. Some of the data is
declared to be part of the module interface, namely, where the construct term is adorned
with the public keyword. Module A imports module B and queries it for student names
using the IN-MODULE construct. Furthermore, module A “exports” the matched names,
but in a different format. Again, this is the case since the construct term is adorned
with the public keyword. The result of executing the main query program P is shown
in Listing 5.8 (in Xcerpt’s internal data term format).

The simple modules and query program in this example essentially passes the pub-
lic data declared in module B into the main program P, via module A, as can be seen in
the query result in Listing 5.8. Notice that the name "William Sheppard" is not part
of the result since this data is not declared to be part of the interface of module B.

144 CHAPTER 5. MODULES FOR XCERPT

1 IMPORT file:student.mx AS stud
2

3 GOAL
4 access_allowed []
5 FROM
6 IN stud (
7 students [[
8 name ["William Sheppard"]]]
9)

10 END

LISTING 5.9: Failing to query
module B.

1 IMPORT file:student.mx AS stud
2

3 GOAL
4 intrusion_achieved []
5 FROM
6 students [[
7 name [
8 "Roger Casement"]
9]]

10 END

LISTING 5.10: Failing to query
module B.

The programs in Listings 5.9 and 5.10 are constructed to test the encapsulation
capabilities of the module system. Both the programs in Listings 5.9 and 5.10 return
<error>no results</error> (empty results), but for different reasons. The program
in Listing 5.9 correctly uses the IN-MODULE construct, but queries data that is not part
of the interface of the imported module (cf. module in Listing 5.6). The program
in Listing 5.10 queries data that is “visible” wrt. the imported module, but fails to
actually query the imported module using the provided IN-MODULE construct. Hence,
both queries return empty answers.

�

5.4 Examples: Modular Xcerpt

This section contains two main Modular Xcerpt examples. The first deals with modules
for ontology reasoning. The second deals with a small query application for presenting
music album information in different ways.

5.4.1 Ontology reasoning

In this section we show some Xcerpt modules that can be used for simple ontology
reasoning. A common reasoning task is to derive implicit subclass-of relationships.
The module in Listing 5.11 has been designed for this purpose, and is assumed to exist
in file file:rdfssubclassof.rxcerpt. Given a set of explicit subclass-of relation-
ships, it derives all the implicit ones. Note that this reasoning module calculates the
transitive closure of some relationship and is in this sense general. However, to stay
with the problem domain we use the special subclass-of relationship here. The actual
calculation is of course done by Xcerpt, but what our module extension allows us to do
is to define a set of reusable rules as a logical and reusable unit with interfaces.

The module consists of four rules. Informally they say the following, in order of
definition:

1. Data terms related via subclassof-deriv are passed as the module output
(public), consumable by modules or programs using this module.

2. Every class is its own subclass.

5.4. EXAMPLES: MODULAR XCERPT 145

1 MODULE subclassOf
2

3 CONSTRUCT public output [all subclassof [var Sub, var Sup]]
4 FROM subclassof-deriv [var Sub, var Sup]
5 END
6

7 CONSTRUCT subclassof-deriv [var Cls, var Cls]
8 FROM or { declsubclassof [var Z, var Cls],
9 declsubclassof [var Cls, var Z] }

10 END
11

12 CONSTRUCT subclassof-deriv [var Sub, var Sup]
13 FROM or { declsubclassof [var Sub, var Sup],
14 and { declsubclassof [var Sub, var Z],
15 subclassof-deriv [var Z, var Sup]
16 }
17 }
18 END
19

20 CONSTRUCT declsubclassof [var Sub, var Sup]
21 FROM public input [[subclassof [var Sub, var Sup]]]
22 END

LISTING 5.11: Xcerpt module for deriving implicit subclass-of relationships
from explicitly given ones. The module is assumed to be defined in file
file:rdfssubclassof.rxcerpt.

3. Derived subclass-of relationships are either: declared subclass-of relationships
(declsubclassof), or (recursively) calculated as the transitive closure of the
subclassof-deriv relationship, starting from a declared subclass-of relation-
ship.

4. Subclass-of relationships given as input (public) are declared subclass-of re-
lationships (declsubclassof).

The program in Listing 5.12 imports the module defined in Listing 5.11 and consists
of two rules that say the following (in order of definition):

1. Give as output of the program all subclasses of the class named "Vehicle".
The imported module is queried (using IN) to get all the subclasses, including
implicitly specified ones.

2. Query the OWL [73] file in file:data/vehicles.owl for explicitly declared
subclass-of relationships, and give them as input to the imported reasoning mod-
ule (using TO).

Let us assume that the file file:data/vehicles.owl contains the OWL ontology
specified in Listing 5.13.2 By composing the program in Listing 5.12 and executing

2This is not a standard OWL [73] serialization, but a simplified version. This is not only done for sim-
plicity reasons, but due to limitations in the current Xcerpt prototype.

146 CHAPTER 5. MODULES FOR XCERPT

1 IMPORT file:rdfssubclassof.rxcerpt AS rdfs
2

3 GOAL vehicles [all var Sub]
4 FROM IN rdfs (output [[subclassof [var Sub, "Vehicle"]]])
5 END
6

7 CONSTRUCT
8 TO rdfs (input [subclassof [var Sub, var Sup]])
9 FROM

10 in { resource { "file:data/vehicles.owl", "xml" },
11 owl {{
12 class {{ attributes { id { var Sub } },
13 subclassof {{ attributes { about { var Sup } } }}
14 }}
15 }}
16 }
17 END

LISTING 5.12: Program making use of an Xcerpt module to calculate implicit
subclass-of relationships.

1 <?xml version="1.0" ?>
2 <owl>
3 <class id="Vehicle" />
4 <class id="Twowheelers"> <subclassof about="Vehicle" /> </class>
5 <class id="Fourwheelers"> <subclassof about="Vehicle" /> </class>
6 <class id="Car"> <subclassof about="Fourwheelers" /> </class>
7 <class id="Truck"> <subclassof about="Fourwheelers" /> </class>
8 <class id="Motorcycle"> <subclassof about="Twowheelers" /> </class>
9 <class id="Harley"> <subclassof about="Motorcycle" /> </class>

10 <class id="Moped"> <subclassof about="Twowheelers" /> </class>
11 </owl>

LISTING 5.13: An OWL class hierarchy in a simplified serialization format.

5.4. EXAMPLES: MODULAR XCERPT 147

1 MODULE owlschema
2

3 CONSTRUCT
4 public output [all subclassof [var Sub, var Sup]]
5 FROM
6 in { resource { << file >>, "xml" },
7 owl {{
8 class {{ attributes { id { var Sub } },
9 subclassof {{ attributes { about { var Sup } } }}

10 }}
11 }}
12 }
13 END

LISTING 5.14: Module querying a yet unspecified (« file ») external resource
(OWL document) for subclass-of relationships. The module is assumed to exist in file
file:owlflatsubclass.rxcerpt.

the result, we obtain the following result, all subclasses of the class "Vehicle":

vehicles ["Vehicle", "Twowheelers", "Fourwheelers" "Car",
"Truck", "Motorcycle", "Moped", "Harley"

]

In the example above we showed how to reuse a simple ontology reasoning module.
To make the module as general and reusable as possible, we did not include the OWL
schema in the module. Instead we required the users of the module to first query the
ontology document and then to “push” the needed information into the module using
the TO-MODULE construct. Ideally, we would also be able to reuse the schema querying
the OWL document. We could put the relevant rule(s) into a module and reuse that
across programs. The problem with this is however that we would also have to include
the external resource (i.e. the OWL file location) in the module. This is because Xcerpt
does not provide for a means to separate the resource to query from the query itself (cf.
Listing 5.12). Without a possibility to separate the two we would end up with a module
with rather limited reusability, since it can only be used for querying one particular
ontology.

Even though we did not mention this as a requirement in Section 5.3, we will
here show how this issue can be address by using the notion of a slot (cf. Chapter 2).
Consider the module in Listing 5.14 (in file file:owlflatsubclass.rxcerpt). It
contains a single rule querying an unspecified (<<file>>) external resource (pre-
sumed to be an OWL document) for subclass-of relationships. In this case, the schema
information contained in the module is truly reusable. Making use of the module in
Listing 5.14, we can now rewrite the program in Listing 5.12 to the one in Listing 5.15.

In Listing 5.15 we import the module in Listing 5.14 and parameterize (WITH) it
with the particular file we want to reason on (here: "file:data/vehicles.owl").
The result from executing the program is the same as before. So, in this example, we
make use of two general and reusable modules to achieve our goal. The modules con-
tain query parts that otherwise would have had to be included in a monolithic program,
without reusable entities.

Let us continue to develop the current example. It can also be useful to query an
OWL document for individuals (instances). The module in Listing 5.16 accomplishes
this, and is assumed to exist in file file:owlindividuals.rxcerpt.

148 CHAPTER 5. MODULES FOR XCERPT

1 IMPORT file:rdfssubclassof.rxcerpt AS rdfs
2 IMPORT file:owlflatsubclass.rxcerpt AS owl
3 WITH (file => "file:data/vehicles.owl")
4

5 GOAL vehicles [all var Sub]
6 FROM IN rdfs (output [[subclassof [var Sub, "Vehicle"]]])
7 END
8

9 CONSTRUCT TO rdfs (input [subclassof [var Sub, var Sup]])
10 FROM IN owl (output [[subclassof [var Sub, var Sup]]])
11 END

LISTING 5.15: Further modularized program for finding all subclasses of “Vehicle.”

1 MODULE owlindividuals
2

3 CONSTRUCT
4 public output [all individual [var Name, var Type]]
5 FROM
6 in { resource { << file >>, "xml" },
7 owl {{
8 individual {{ attributes { id { var Name } },
9 type {{ attributes { about { var Type } } }}

10 }}
11 }}
12 }
13 END

LISTING 5.16: Module querying a yet unspecified (« file ») external resource
(OWL document) for individuals. The module is assumed to exist in file
file:owlindividuals.rxcerpt.

5.4. EXAMPLES: MODULAR XCERPT 149

1 IMPORT file:rdfssubclassof.rxcerpt AS rdfs
2 IMPORT file:owlflatsubclass.rxcerpt AS owl
3 WITH (file => "file:data/vehicles-with-indiv.owl")
4 IMPORT file:owlindividuals.rxcerpt AS ind
5 WITH (file => "file:data/vehicles-with-indiv.owl")
6

7 GOAL result [all instances [var Name, var Sup]]
8 FROM and { IN ind (output [[individual [var Name, var Type]]]),
9 IN rdfs (output [[subclassof [var Type, var Sup]]]) }

10 END
11

12 CONSTRUCT TO rdfs (input [subclassof [var Sub, var Sup]])
13 FROM IN owl (output [[subclassof [var Sub, var Sup]]])
14 END

LISTING 5.17: Query program deriving types of declared instances.

1 <individual id="honda1500"> <type about="Motorcycle" /> </individual>
2 <individual id="volvoxc90"> <type about="Car" /> </individual>

LISTING 5.18: Declaration of two OWL individuals: honda1500 and volvoxc90.

We can now write a query program that makes use of three modules: 1) one for
deriving implicit subclass-of relationships, 2) one that extracts declared subclass-of re-
lationships, and 3) one that extracts instance declarations. The program in Listing 5.17
derives implicit class memberships for declared instances. The construct rule provides
data for the subclass-of reasoning module. The goal rule queries the result of the rea-
soning module, as well as the module querying the instance declarations.

Let us assume that the declarations in Listing 5.18 are added to the specification in
Listing 5.13, assumed to exist in file file:data/vehicles-with-indiv.owl. Two
individuals are declared: a motorcycle honda1500, and a car volvoxc90. Now, if we
execute the composition result of Listing 5.17, we get the following result:

result [
instances ["honda1500", "Motorcycle"],
instances ["honda1500", "Twowheelers"],
instances ["honda1500", "Vehicle"],
instances ["volvoxc90", "Car"],
instances ["volvoxc90", "Fourwheelers"],
instances ["volvoxc90", "Vehicle"]

]

That is, honda1500 is a motorcycle, a two-wheeler, and a vehicle, while volvoxc90
is a car, a four-wheeler, and a vehicle.

In this section we looked at how data processing services (OWL reasoning) and
schema encapsulation can be useful for query programmers. In the next section we
give another example of benefits with modular queries, but relating to querying and
publishing Web page data.

150 CHAPTER 5. MODULES FOR XCERPT

Amazon

Stylesheet
Creator

Amazon.com

Mobile
Layout

HtmlCreator

Extract/Syndicate Process Present

= Web pageLegend: = module = Data flow

Data

RssCreator

Desktop
Layout

RssLayout

1

2

1

2

3

3

= module selection

FIGURE 5.6: Illustration of query modules for extracting Web data, transforming it in
different ways, and generating the results in different formats.

1 IMPORT file:import/Amazon.rxcerpt AS Amazon
2 IMPORT file:html/layout/MobileLayout.rxcerpt AS Layout
3 IMPORT file:html/HtmlCreator.rxcerpt AS Creator
4

5 GOAL out { resource {"file:result.html", "xml"}, var Data }
6 FROM IN Creator (var Data)
7 END
8

9 CONSTRUCT
10 TO Creator (
11 creator [title ["Music Library"], style ["data/yellowstyle.css"],
12 data [var Data]])
13 FROM IN Layout (var Data)
14 END
15

16 CONSTRUCT TO Layout (input [all var Cdinfo])
17 FROM IN Amazon (var Cdinfo -> cd [[]])
18 END
19

20 CONSTRUCT TO Amazon (var Data)
21 FROM in { resource { "file:data/pixel_revolt.html", "xml" }, var Data }
22 END
23

24 CONSTRUCT TO Amazon (var Data)
25 FROM in { resource { "file:data/the_letting_go.html", "xml" }, var Data }
26 END

LISTING 5.19: Modular query program that queries HTML pages for music album
information and displays the result according to modules Creator and Layout.

5.4. EXAMPLES: MODULAR XCERPT 151

FIGURE 5.7: Final output from the modular query program in Listing 5.19 (corre-
sponding to path (1) in Figure 5.6). The display of the two music albums is in a format
suitable for mobile devices.

5.4.2 Web Music Library
The example presented in this section concerns a simple modular query application for
extracting and presenting information about music. The query modules involved in the
example are illustrated in Figure 5.6. There are modules for extracting information
from Web pages (Amazon), modules for processing information (e.g. MobileLayout
and RssLayout), as well as modules for presenting the final result data in some par-
ticular format (HtmlCreator and RssCreator). Each of the modules illustrated in
Figure 5.6 can be found in Appendix 5.A.

In this example we will create three different end results, essentially by substituting
certain modules for others. Each result will present information extracted from the Web
about music albums, but in different ways. More precisely, the following:

1. In HTML, but intended for devices will small displays (e.g. a mobile device).

2. In HTML, intended for normal desktop browsers (i.e. for a large screen).

3. An RSS3 file with an item for each music album.

The program for the first output (1) is shown in Listing 5.19. The program imports
the three modules Amazon, MobileLayout and HtmlCreator. Two Web pages are
queried that correspond to two albums. The Web pages are assumed to be Amazon
Web pages, but are in this example local and simplified versions (hence the file:
protocol). The content of the pages are sent to the Amazon module for extraction of
the Amazon-specific data into an internal format (common between certain modules).
The Amazon module is then queried and the data is passed to the layout module (here:
MobileLayout). Then the processed data is passed to the HtmlCreator module to
create a HTML document. As a final step, the result of the program is constructed and
directed to the file file:result.html.

By first composing and executing the program in Listing 5.19, and then displaying
the resulting file file:result.html in a Web browser, you would see something like
Figure 5.7. This display format of the two albums is suitable for a smaller device,
where the most important information is present.

What if we want to achieve the second output (2) from above? By simply re-
placing some of the used modules, we can get a different result. Let’s replace the
MobileLayout module with the DesktopLayout module. This means changing Line 2
in Listing 5.19 into:

IMPORT file:html/layout/DesktopLayout.rxcerpt AS Layout

3Real Simple Syndication. See, e.g., http://cyber.law.harvard.edu/rss/rss.html.

http://cyber.law.harvard.edu/rss/rss.html

152 CHAPTER 5. MODULES FOR XCERPT

1 <rss>
2 <channel>
3 <title>Music Library</title>
4 <item>
5 <title>John Vanderslice - Pixel Revolt</title>
6 <description>No description</description>
7 </item>
8 <item>
9 <title>Bonnie ’Prince’ Billy - The Letting Go</title>

10 <description>No description</description>
11 </item>
12 </channel>
13 </rss>

LISTING 5.20: RSS output file with music album information (corresponding to path
(3) in Figure 5.6).

If we re-compose the program, execute it again, and re-display the output file in the
Web browser, we would see something like Figure 5.8. That is, the DesktopLayout
module uses a different layout mechanisms and includes more information (such as
album art), since this makes sense when displaying on a larger screen.

To achieve the third output (3) option discussion above, we again do not have to
change much. We can simply replace the second and third import statement from
Listing 5.19 by the following (and rename the output file to file:result.rss):

IMPORT file:rss/RssLayout.rxcerpt AS Layout
IMPORT file:rss/RssCreator.rxcerpt AS Creator

In this case, instead of generating a Web page displaying the album information,
we end up with an RSS file as shown in Listing 5.20. The resulting RSS file here
does not contain very much information, but more interesting data could naturally be
included. The interesting thing here is that by changing remarkably small amounts of
code, essentially replacing some query modules for others, we can completely change
the result and map it to our current needs. This is the power of modules in rule-based
Web query languages.

5.5 Composing Modular Xcerpt programs
Our goal is to realize the semantics of Modular Xcerpt programs (cf. Section 5.4) via
composition. In Section 5.6 we develop a concrete composition system for this pur-
pose, where we deploy the composition techniques presented in Chapters 2–4. The
composition framework requires programs and modules of Modular Xcerpt to be com-
posed into plain Xcerpt programs, while retaining the semantics of the original pro-
grams/modules. This enables the reuse the existing Xcerpt interpreter for Modular
Xcerpt. Before we go into the details of composition systems, we present the composi-
tion strategy without discussing how it concretely is realized. In particular, we explain
how module encapsulation can be retained in the composition result via the notion of
“stores.”

The purpose of the store is to ensure proper module encapsulation. A store can be
likened to a virtual (XML) database associated with a unique identifier. Every module

5.5. COMPOSING MODULAR XCERPT PROGRAMS 153

FIGURE 5.8: Final output from the modular query program in Listing 5.19 using the
DesktopLayout module instead of the MobileLayout module (corresponding to
path (2) in Figure 5.6).

154 CHAPTER 5. MODULES FOR XCERPT

Section Data stored in the section

out Data part of the provided interface – data to be queried using the
IN-MODULE construct.

private
Data for the internal use of the module – not accessible from outside
the module.

in Data injected using the TO-MODULE construct and used by the required
rules of the module.

TABLE 5.1: A store consists of three sections: out, private and in.

is assumed to be associated with a store. A store is divided into three sections: out,
private and in. See Table 5.1 for their explanations.

In order for a module to be properly encapsulated, every data term internally con-
structed by the module (not part of the module’s interface) should only be usable by
other rules of the same module. If this is not the case then the encapsulation of the mod-
ule is violated. Or, if rules within the module can query rules outside the module that do
not intentionally provide data to the module, then encapsulation is also violated. By di-
recting any data terms constructed into the suitable section of the considered module’s
store, proper separation, and hence encapsulation, can be ensured.

The extended constructs (IMPORT-AS, IN-MODULE, TO-MODULE) that the module
programmers make use of are responsible for directing rules to the correct section of
the considered module’s store.

– Module import. When importing a module using the IMPORT-AS construct, every
top-level construct term and query term of each rule is directed to the appropriate
section of the module’s store. This is in general done by transforming each
module rule in the following way:

1 CONSTRUCT
2 <head>
3 FROM
4 <body>
5 END

−→
1 CONSTRUCT
2 <STORE: <head> >
3 FROM
4 <STORE: <body> >
5 END

where each construct enclosed within < and > is as of yet unspecified. In general
the <STORE: <term> > construct can be expanded to the following:

store [id [<module-id>], section [<section>], <term>]

where <module-id> is a string containing a unique identifier of the module (a
URI or the location of the module), <section> a string indicating which section
of the store is being referred to (out, private or in), and <term> is the construct
term or query term considered. We refer to a term when it is irrelevant if we mean
a construct or a query term.

If the considered term is not part of the module interface, then the section used is
private. If the term is a construct term adorned with the public keyword, and
is hence part of the provided interface, then we use the out section of the store.

5.5. COMPOSING MODULAR XCERPT PROGRAMS 155

In the same manner, if we consider an adorned query, then we use the in section.
The following is an example of a single rule with an adorned construct term:

1 CONSTRUCT
2 public data_out [
3 var X
4]
5 FROM
6 data [
7 var X
8]
9 END

−→

1 CONSTRUCT
2 store [id [<module-id>],
3 section ["out"],
4 data_out [var X]]
5 FROM
6 store [id [<module-id>],
7 section ["private"],
8 data [var X]]
9 END

– Module querying. The IN-MODULE construct is provided for querying specific
modules. Such queries are meant to query the data terms constructed by a module
as part of its provided interface, and are hence referred to the out section of the
referred module’s store. The following transformation is done:

1 CONSTRUCT
2 ...
3 FROM
4 IN mod (
5 <query>
6)
7 END

−→

1 CONSTRUCT
2 ...
3 FROM
4 store [id [<module-id>],
5 section ["out"],
6 <query>]
7 END

– Module provision. The TO-MODULE construct can be used for providing data to
be used by a module. For this data to be made available to the module, it needs to
be directed to the in section of the module’s store. This is done via the following
transformation:

1 CONSTRUCT
2 TO mod (
3 <construct term>
4)
5 FROM
6 ...
7 END

−→

1 CONSTRUCT
2 store [id [<module-id>],
3 section ["in"],
4 <construct term>]
5 FROM
6 ...
7 END

Example 5.2. (Simple module composition) The following example makes use of a
simple identity module, that is, a module that simply returns the data terms it receives
as input (Listing 5.22). The identity module could be implemented using a single rule,
but we use two rules to show how the internal communication (between the two rules)
is directed to the private section of the module’s store.

The program in Listing 5.21 makes use of the identity module by sending it some
data, expecting to get the same output as result when querying the module. The result
of the query program is, as expected:

result ["value"]

The query program and the module, written in the Modular Xcerpt language, are
composed to the plain Xcerpt programs show in Listings 5.23 and 5.24, respectively.

Notice that all the constructs belonging to the extended language, Modular Xcerpt,
have been removed in the composed results. The programs in Listings 5.23 and 5.24
can be merged into a single program and executed by the Xcerpt interpreter to yield

156 CHAPTER 5. MODULES FOR XCERPT

1 IMPORT file:ident.mx AS ident
2

3 GOAL
4 result [
5 var X
6]
7 FROM
8 IN ident (ident_out [var X])
9 END

10

11 CONSTRUCT
12 TO ident (ident_in ["value"])
13 END

LISTING 5.21: A query program using
the identity module.

1 MODULE identity_module
2

3 CONSTRUCT
4 public ident_out [var X]
5 FROM
6 internal [var X]
7 END
8

9 CONSTRUCT
10 internal [var X]
11 FROM
12 public ident_in [var X]
13 END

LISTING 5.22: An identity module at
file:ident.mx.

1 GOAL
2 result [
3 var X
4]
5 FROM
6 store [
7 id ["file:ident.mx"],
8 section ["out"],
9 ident_out [var X]

10]
11 END
12

13 CONSTRUCT
14 store [
15 id ["file:ident.mx"],
16 section ["in"],
17 ident_in ["value"]
18]
19 END

LISTING 5.23:
Program in Listing 5.21 composed to
Xcerpt.

1 CONSTRUCT
2 store [id ["file:ident.mx"],
3 section ["out"],
4 ident_out [var X]]
5 FROM
6 store [id ["file:ident.mx"],
7 section ["private"],
8 internal [var X]]
9 END

10

11 CONSTRUCT
12 store [id ["file:ident.mx"],
13 section ["private"],
14 internal [var X]]
15 FROM
16 store [id ["file:ident.mx"],
17 section ["in"],
18 ident_in [var X]]
19 END

LISTING 5.24: Module in Listing 5.22
composed to Xcerpt.

5.5. COMPOSING MODULAR XCERPT PROGRAMS 157

the expected result shown above. Thus, the composed and merged program is the
realization of the abstractions used in Listings 5.21 and 5.22. The realization ensures
that modules are encapsulated using the concept of stores.

�

Certain special cases are handled while composing modular query programs:

1. External resources. If a module queries an external resource, then the query is
not transformed, since the query must match the format of that resource.

2. Complex queries. We remember that queries are not simply query terms, but sets
of query terms joined by logical connectors, such as or or and. When trans-
forming a conjunctive or disjunctive query, the transformations are done on the
top-level of each involved query term. The following example illustrates the
transformation:

1 CONSTRUCT
2 ...
3 FROM
4 or {
5 <qt1>,
6 and { <qt2>,
7 <qt3> } }
8 END

−→

1 CONSTRUCT
2 ...
3 FROM
4 or {
5 <STORE: <qt1> >,
6 and { <STORE: <qt2> >,
7 <STORE: <qt3> > } }
8 END

where <qt1>, <qt2> and <qt3> are query terms and <STORE: ...> is the ap-
propriate store specification.

3. Module nesting. It is possible for modules to import other modules, so-called
module nesting. During the transformation of a module, encountered IN-MODULE
and TO-MODULE constructs are transformed wrt. the modules they are referring
to.

5.5.1 Refined module encapsulation

The store concept described above ensures basic encapsulation capabilities for Modular
Xcerpt and is attractive for its simplicity. However, there are certain situations where
associating one store per module is not sufficient. Consider the situation where two
modules (A,B) imports a third one (C) and both A and B injects data into the store
associated with C. In such a case, after module C has processed the data, module A
may receive data initially injected by module B. As such, modules A and B are not kept
separate, which violates the encapsulation property of our module concept. A similar
problem can also occur when the same module is imported more than once in the same
program. This is not a limit of the store approach, but due to the assumption of the
existence of one store per module.

To address this problem, we can associate stores not with a module, but with a
module import. This can be seen as instantiating a store for each module import with
a unique identifier. In our simple example we would thus end up with the two stores
C<#1> and C<#2> for module C, due to two imports of it. The #1 and #2 represents the
unique identifiers generated for the purpose of the separation of the involved stores.

158 CHAPTER 5. MODULES FOR XCERPT

5.6 Framework Evaluation: Composition System
In this section we specify a composition system for Modular Xcerpt by instantiating
the framework described in Chapters 2 and 4. We recall the development process men-
tioned in Section 4.4.2 and go through the same development steps below.

D0 Base grammar. We first assume the existence of the grammar of the base lan-
guage, in this case, Xcerpt’s grammar. We do not present the complete grammar
here, but provide the overall structure that is needed to understand the component
model specification in the next step. Furthermore, we only specify the abstract
syntax.

〈XcerptUnit〉 ::= 〈XcerptProgram〉
〈XcerptProgram〉 ::= 〈XcerptStatement〉+
〈XcerptStatement〉 ::= 〈GoalRule〉 | 〈ConstructRule〉
〈GoalRule〉 ::= 〈GoalQueryRule〉 | 〈GoalFact〉
〈ConstructRule〉 ::= 〈ConstructQueryRule〉 | 〈ConstructFact〉
〈GoalQueryRule〉 ::= 〈ConstructTerm〉 〈QueryTerm〉
〈GoalFact〉 ::= 〈ConstructTerm〉
〈ConstructQueryRule〉 ::= 〈ConstructTerm〉 〈QueryTerm〉
〈ConstructFact〉 ::= 〈ConstructTerm〉

The above has defined the main Xcerpt constructs, namely, the different kinds of
rules. Next we define construct terms:

〈ConstructTerm〉 ::= 〈Identifier〉 | 〈OutResource〉 | 〈Variable〉 | 〈StructuredCt〉
〈OutResource〉 ::= 〈Resource〉 〈Type〉 〈ConstructTerm〉
〈StructuredCt〉 ::= 〈Identifier〉 〈ChildrenListCt〉
〈ChildrenListCt〉 ::= 〈OrderedChildrenListCt〉 | 〈UnorderedChildrenListCt〉
〈OrderedChildrenListCt〉 ::= 〈ConstructTerm〉+
〈UnorderedChildrenListCt〉 ::= 〈ConstructTerm〉+
〈Variable〉 ::= 〈Name〉
〈Identifier〉 ::= STRING

〈Name〉 ::= STRING

〈Resource〉 ::= LOCATION

〈Type〉 ::= QUOTED_STRING

Query terms can be joined by logical connectors, we only show this aspect here:

〈QueryTerm〉 ::= ... | 〈ConditionQt〉
〈ConditionQt〉 ::= 〈ConjunctionQt〉 | 〈DisjunctionQt〉
〈ConjunctionQt〉 ::= 〈QueryTerm〉+
〈DisjunctionQt〉 ::= 〈QueryTerm〉+

The remaining part of the Xcerpt grammar is not needed to understand the fol-
lowing description, nor, in fact, to write the required composition operators. In-
terested readers can find full specifications in, for example, [20]. The above is a
simplification of those specifications, but enough to create useful examples and
demonstrate proof-of-concept.

5.6. FRAMEWORK EVALUATION: COMPOSITION SYSTEM 159

D1–3 Adapt base grammar to ISC, define domain-appropriate constructs and separate
out active syntax. The CmSL+ specification in Listing 5.25 extends the Xcerpt
base grammar for the purpose of working with modules. The extension intro-
duces intuitive constructs for defining and deploying modules, in line with the
constructs defined in Section 5.3.

As can be seen, we introduce slots for three constructs, namely: QueryTerm,
ConstructTerm and Resource.4 The first two slot constructs are introduced to
simplify the implementation of the composition operators, especially for han-
dling encapsulation using stores (cf. Section 5.5). For example, a store can
abstractly be defined as:

store [id [<module-id>], section [<section>], <term>]

The <module-id>, <section> and <term> parts are then replaced with appro-
priate values. In the implementation we will define the above abstract specifica-
tion as a concrete internal fragment, and each of the unspecified parts as slots.
Such an internal fragment will look something like:

store [id [«id»], section [«section»], «term»]

Such an internal fragment can then be used in the composition operator imple-
mentations to construct appropriate store terms. Slots help us to do this in an
easy way. An example of how this is done is shown in Listing 5.26. Slots for
the Resource construct are introduced due to our desire to properly encapsulate
schema information (cf. Listing 5.14).

D4 Generating component model. Once the component model has been specified,
it can be generated. This involves generating the core composition language—
a Java API for Xcerpt composition—enabling us, for example, to define query
terms using the Java type IQueryTerm. This also allows us to process query
terms within other fragments, thus, to access them implicitly. The kind of frag-
ments that will be available to a developer in this manner are the ones enumerated
using the fragtypes construct in Listing 5.25.

Notice that all the passive syntax constructs are listed in the fragtypes state-
ment. This is so because we need to work with them in order to compose them
into constructs of the base language.

D5 Defining composition operators for active syntax constructs. The next step in
the development process is to associate composition operators with the active
syntax constructs introduced in the previous step. We notice that there are four
such constructs defined by the nonterminals ImportStatement, ImportWith,
InModule and ToModule. Hence, we must define composition operators for
these constructs. The operator implementations can be found in the appendix of
this chapter. Here we look at one of them in detail, and leave the study of the
others to the reader. The operator definition in Listing 5.26 corresponds to the
IN-MODULE construct.

Notice that the implementation method signature directly corresponds to the syn-
tactical definition of the construct in the component model (cf. Listing 5.25).

4Resources are Xcerpt’s external resources. That is, the specifications of which files to query.

160 CHAPTER 5. MODULES FOR XCERPT

1 extends file:xcerpt.gr @ x as file:mxcerpt.gr .
2

3 % slots constructs
4 slotify x.QueryTerm .
5 slotify x.ConstructTerm .
6 slotify x.Resource .
7

8 % passive syntax
9

10 ModuleDefinition = moduleName:x.Name, moduleStmt:x.XcerptStatement* .
11 ModuleDefinition <> x.XcerptProgram .
12

13 OutInterface = interface:x.ConstructTerm .
14 OutInterface <> x.ConstructTerm .
15

16 InInterface = interface:x.QueryTerm .
17 InInterface <> x.QueryTerm .
18

19 % active syntax
20

21 % IMPORT <loc> AS <mod>
22 ImportStatement = moduleLocation:ModuleDefinition [@Location],
23 moduleName:x.Name .
24 ImportStatement <> x.XcerptStatement .
25 ImportStatement -> @Composer .
26

27 % IMPORT <loc> AS <mod> WITH (<slot> => <value>, ...)
28 ImportWith = moduleLocation:ModuleDefinition [@Location],
29 moduleName:x.Name, slot:x.Name, value:x.Resource .
30 ImportWith <> x.XcerptStatement .
31 ImportWith -> @Composer .
32

33 % IN <mod> (<query>)
34 InModule = moduleName:x.Name, interface:x.QueryTerm .
35 InModule <> x.QueryTerm .
36 InModule -> @Composer .
37

38 % TO <mod> (<cterm>)
39 ToModule = moduleName:x.Name, interface:x.ConstructTerm .
40 ToModule <> x.ConstructTerm .
41 ToModule -> @Composer .
42

43 fragtypes { x.Name, x.XcerptStatement, x.QueryTerm, x.ConstructTerm, x.Resource,
44 OutInterface, InInterface, ModuleDefinition }

LISTING 5.25: CmSL+ specification for extending Xcerpt with a module concept.

5.7. RELATED WORK 161

1 public static IQueryTerm inModule(IName name, IQueryTerm queryTerm) {
2

3 // use internal fragment
4 final IQueryTerm localQueryTerm =
5 IQueryTermImpl.load("store [id [<<id>>], section [<<vis>>],

<<qTerm>>]");
6 // check if we are given information from the Import operator
7 if (names.containsKey(name.toString())) {
8 // get the name of the module (using a Hashtable ’names’)
9 final String id = "\"" + names.get(name.toString()) + "\"";

10 // construct the internal fragment
11 localQueryTerm.bind("id", IQueryTermImpl.load(id));
12 localQueryTerm.bind("vis", IQueryTermImpl.load("visout[]"));
13 localQueryTerm.bind("qTerm", queryTerm);
14 } else {
15 System.err.println("The module name ’" + name.toString() +
16 "’ has not been declared");
17 }
18 // return and replace queryTerm with the local fragment
19 return localQueryTerm;
20 }

LISTING 5.26: Composition operator specified for the active syntax construct
IN-MODULE.

The implementation of this construct is quite simple. First, it defines an internal
fragment of type QueryTerm, which looks like this:

store [id [«id»], section [«vis»], «qTerm»]

This is the query term that finally will replace the call of the operator. As can be
seen, the internal fragment defines three slots, such that it can be parameterized
with the proper values. The id slot should be bound to the identifier of the refer-
enced module. This is achieved by looking up the module identifier in the hash
table names (not defined, only used, in Listing 5.26). This hash table contains
all alias-identifier pairs for all imported modules (if the alias is not contained in
the hash table, an error message is given). Once the module identifier has been
found, the slot id is bound with it. Then the appropriate visibility is associated
with the internal fragment, which corresponds to the appropriate store section (cf.
Section 5.5). For the IN-MODULE construct this is always the out section. Notice
that in this concrete implementation we use a term instead of a string to indicate
the store section. For example, visout[], visin[] and vispriv[] instead of
"out", "in", and "private", respectively. Finally, the slot qTerm is bound with
the query term operated on by the IN-MODULE construct (here queryTerm which
is passed as an argument to the operator). As a last step, the transformed internal
fragment is returned to replace the location where the operator was invoked.

5.7 Related Work
Though many rule languages for the Web fail to provide modules, this is not true for
the two preeminent Web query languages, XSLT [24] and XQuery [13]. XSLT can
be considered a rule language, however using precedence rather than union semantics

162 CHAPTER 5. MODULES FOR XCERPT

for multiple applicable rules. Rule precedence is also the dominating issue for XSLT’s
module system which provides intricate mechanisms for determining the precedence
of rules from different modules. Nevertheless, the resulting module system is con-
siderably less powerful (no scoped import, limited parameterization: apply-imports)
yet needs a more complex semantics than module-free XSLT, quite in contrast to our
approach.

It is worth mentioning that XQuery also provides a module system, however with-
out parameterization, but as a function programming language requires explicit flow
control in all cases. SPARQL [75], finally, the recently proposed RDF query language,
has no concept of user defined program units (such as rules, functions, procedures,
etc.) and thus no use for a module concept in the sense of our approach. However,
rule-based extensions for SPARQL (in the spirit of Datalog) could certainly profit from
the module system illustrated here using Xcerpt.

The arguably most comprehensive treatment of modules in logic programming is
presented in [19]. It is far more expressive than our approach but at the price of a
complex semantics and several operations with, in our opinion, little practical use (such
as module intersection or renaming). We believe that a single well-designed union
operation with clear interfaces together with a strong reliance on views as a core feature
of rule languages is not only easier to grasp but also easier to realize.

5.8 Summary

In this chapter we have presented and discussed Modular Xcerpt, an extension of the
Web query language Xcerpt with modules. We argue that one way of coping with
the diversity of information on the (Semantic) Web is modular query authoring and
execution. We have shown, through several examples, how modules can help query
programmers in better understanding their programs (by separating out parts into self-
sustainable units, that is, through support for separation of concern), while at the same
time enable reuse of already developed functionality.

The realization of the module concept was achieved through composition. We em-
ployed our composition framework—with its techniques and methodology—to achieve
this goal. Xcerpt modules can be called components in the more traditional sense of
the word; they have clearly defined interfaces, ensure separation of concern and can
be composed. In particular, a module programmer does not have to know about ISC,
or ever hear the term ‘fragment,’ but can instead intuitively understand how to make
use of this additional and convenient functionality by relying on more familiar notions
such as ‘modules,’ and their ‘input’ and ‘output.’

If the reader can be convinced that modules, as defined in this chapter, are useful
tools for Web query developers—whether for separation of concern, reuse, or both—
then it is interesting to consider the relatively small effort that went into enabling them.
We deployed our presented composition framework, specified a component model and
implemented the required composition operators. Being able to acquire an arguably
important language feature by investing comparatively little is a powerful notion.

There are several improvements that could be done to Modular Xcerpt. The seem-
ingly most interesting enhancement would be to be able to statically check the usage of
modules. That is, to be able to inform query programmers of incorrect module usage.
We will discuss this further in Section 8.2.

5.A. APPENDICES 163

5.A Appendices
The first part of the appendix contains Xcerpt modules used in examples in this chapter.
The second part contains the specification of the composition operators for the U-ISC–
based composition system that realizes the Xcerpt modules.

Xcerpt modules
The following contains Xcerpt modules used in examples in this chapter. The location
of the module as used in the examples is also indicated.

Amazon module: file:import/Amazon.rxcerpt

1 MODULE Amazon
2

3 CONSTRUCT
4 public cd [
5 artist [var Artist],
6 title [var Title],
7 coverlink [var Coverlink],
8 songs [all song [var Songtitle]]
9]

10 FROM
11 public html [
12 head [[]],
13 body [[
14 var Artist, br [],
15 var Title, br [],
16 img {
17 attributes {
18 src { var Coverlink }
19 }
20 },
21 table [[
22 tr [th [[]]],
23 tr[
24 td [var Songtitle],
25 td [[]]
26]
27]]
28]]
29]
30 END

MobileLayout: file:html/layout/MobileLayout.rxcerpt

1 MODULE MobileLayout
2

3 CONSTRUCT
4 public table [
5 all tr [td [attributes { class { "artist" } }, var Artist],
6 td [var Title]]]
7 FROM
8 public input [[
9 cd [[

10 artist [var Artist],
11 title [var Title]

164 CHAPTER 5. MODULES FOR XCERPT

12]]]]
13 END

DesktopLayout: file:html/layout/DesktopLayout.rxcerpt

1 MODULE DesktopLayout
2

3 CONSTRUCT
4 public table [
5 attributes { class { "maintable" } },
6 all var Data
7]
8 FROM
9 reordereddata [[dataset [[var Data]]]]

10 END
11

12 CONSTRUCT
13 reordereddata [
14 all dataset [
15 tr [
16 attributes {
17 class { "heading" }
18 },
19 td [
20 attributes {
21 colspan { "2" }
22 },
23 var Artist, ":", var Title
24]
25],
26 tr [
27 attributes {
28 class {"value"}
29 },
30 td [
31 img[
32 attributes {
33 src { var Coverlink },
34 width { "250" },
35 height { "250" }
36 }
37]
38],
39 td [
40 table [
41 attributes {
42 class { "SongTitles" }
43 },
44 all tr [
45 td [var Song]
46]
47]
48]
49]
50]
51]
52 FROM
53 public input [[
54 cd [[
55 artist [var Artist],

5.A. APPENDICES 165

56 title [var Title],
57 coverlink [var Coverlink],
58 songs [[song [var Song]]]
59]]
60]]
61 END

StylesheetCreator: file:html/style/Stylesheet.rxcerpt

1 MODULE StyleSheet
2

3 CONSTRUCT
4 public link [
5 attributes {
6 rel { "Stylesheet" },
7 type { "text/css" },
8 href { var Style }
9 }]

10 FROM
11 public style [var Style]
12 END

RssLayout: file:rss/RssLayout.rxcerpt

1 MODULE RssLayout
2

3 CONSTRUCT
4 public item [
5 title [var Artist, "-", var Title],
6 description ["No description"]
7]
8 FROM
9 public input [[

10 cd [[
11 artist [var Artist],
12 title [var Title]
13]]]]
14 END

HtmlCreator: file:html/HtmlCreator.rxcerpt

1 MODULE HtmlCreator
2 IMPORT file:html/style/Stylesheet.rxcerpt AS StyleSheet
3

4 CONSTRUCT
5 public html [
6 attributes {
7 xmlns { "http://www.w3.org/1999/xhtml" },
8 lang { "en" }
9 },

10 head [var Title, optional var Style],
11 var Body
12]
13 FROM
14 or {
15 webpagedata [var Title, var Body],

166 CHAPTER 5. MODULES FOR XCERPT

16 style [var Style]
17 }
18 END
19

20 CONSTRUCT
21 webpagedata [var Title, var Body]
22 FROM
23 public creator [[
24 var Title -> title [[]],
25 var Body -> data [[]]
26]]
27 END
28

29 CONSTRUCT
30 style [var Style]
31 FROM
32 IN StyleSheet (var Style)
33 END
34

35 CONSTRUCT
36 TO StyleSheet (var Data)
37 FROM
38 public creator [[var Data -> style [[]]]]
39 END

RssCreator: file:rss/RssCreator.rxcerpt

1 MODULE RssCreator
2

3 CONSTRUCT
4 public rss [
5 channel [var Title, all var Item]
6]
7 FROM
8 rssdata [var Title, var Item]
9 END

10

11 CONSTRUCT
12 rssdata [var Title, var Item]
13 FROM
14 public creator [[
15 var Title -> title [[]],
16 data [var Item]
17]]
18 END

Modular Xcerpt composition operators

1 package org.reuseware.air.language.xcerpt.ops;
2

3 import java.util.Hashtable;
4

5 import org.reuseware.air.algebra.fragment.FragmentSystem;
6 import org.reuseware.air.coconut.IComplexOperator;
7 import org.reuseware.air.coconut.ReusewairComposer;
8 import org.reuseware.air.language.xcerpt.IConstructTerm;
9 import org.reuseware.air.language.xcerpt.IInInterface;

10 import org.reuseware.air.language.xcerpt.IModuleDefinition;

5.A. APPENDICES 167

11 import org.reuseware.air.language.xcerpt.IName;
12 import org.reuseware.air.language.xcerpt.IOutInterface;
13 import org.reuseware.air.language.xcerpt.IQueryTerm;
14 import org.reuseware.air.language.xcerpt.IResource;
15 import org.reuseware.air.language.xcerpt.IXcerptStatement;
16 import org.reuseware.air.language.xcerpt.algebra.XcerptVisitor;
17 import org.reuseware.air.language.xcerpt.impl.IConstructTermImpl;
18 import org.reuseware.air.language.xcerpt.impl.IQueryTermImpl;
19 import org.reuseware.air.language.xcerpt.impl.IXcerptStatementImpl;
20

21 import de.tudresden.reuseware.language.rxcerpt.RxcerptPackage;
22 import de.tudresden.reuseware.language.xcerpt.XcerptPackage;
23

24 public class Composers implements IComplexOperator {
25

26 // communication information between operators
27 static Hashtable<String,String> names = new Hashtable<String,String>();
28

29 /∗∗
30 ∗ Required by IComplexOperator
31 ∗/
32 public void initialize() {
33

34 FragmentSystem.getInstance().setGrammar("rxcerpt");
35 names.clear();
36 }
37

38 /∗∗
39 ∗ Constructor
40 ∗/
41 public Composers() {
42 FragmentSystem.getInstance().setGrammar("rxcerpt");
43 }
44

45 /∗∗
46 ∗ ImportStatement Composer
47 ∗/
48 @ReusewairComposer("ImportStatement")
49 public static IXcerptStatement importStatement(IModuleDefinition module, final

IName name) {
50

51 /∗∗
52 ∗ 1) Extract module statements
53 ∗
54 ∗/
55 IXcerptStatement stmt = new IXcerptStatementImpl();
56 module.accept(new XcerptVisitor(stmt) {
57

58 public boolean visit(IXcerptStatement node) {
59 getParamFragment().extend(node);
60 return true;
61 }
62

63 /∗∗
64 ∗ For composer communication
65 ∗/
66 public boolean visit(IName node) {
67

68 if (node.inContextOf(RxcerptPackage.Literals.MODULE_DEFINITION) &&
69 !node.inContextOf(XcerptPackage.Literals.XCERPT_STATEMENT)) {
70 /∗∗
71 ∗ Save the connection between the prefix name and

168 CHAPTER 5. MODULES FOR XCERPT

72 ∗ the name as defined by the module
73 ∗/
74 if (!names.containsKey(name.toString()))
75 names.put(name.toString(), node.toString());
76 }
77 return true;
78 }
79 });
80

81 /∗∗
82 ∗ 2) Transform module statements (encapsulate)
83 ∗/
84 stmt.accept(new XcerptVisitor() {
85

86 /∗
87 ∗ Construct Terms
88 ∗/
89 public boolean visit(IConstructTerm node) {
90

91 //
92 if (node.inContextOf(RxcerptPackage.Literals.IN_MODULE) ||
93 node.inContextOf(RxcerptPackage.Literals.TO_MODULE))
94 return true;
95

96 boolean isTopLevel =
97 node.isContainedIn(XcerptPackage.Literals.CONSTRUCT_QUERY_RULE) ||
98 node.isContainedIn(XcerptPackage.Literals.CONSTRUCT_FACT);
99

100 if (isTopLevel) {
101 final String id = "\"" + names.get(name.toString()) + "\"";
102

103 // use internal fragment
104 final IConstructTerm localConstructTerm =
105 IConstructTermImpl.load("store [id [<<id>>], section [<<vis>>],

<<cTerm>>]");
106

107 // check if we are given information from the Import operator
108 if (names.containsKey(name.toString())) {
109 localConstructTerm.bind("id", IConstructTermImpl.load(id));
110 localConstructTerm.bind("cTerm", node);
111 // set visibility
112 if (node.inContextOf(RxcerptPackage.Literals.OUT_INTERFACE)) {
113 localConstructTerm.bind("vis", IConstructTermImpl.load("visout[]"));
114 } else {
115 localConstructTerm.bind("vis", IConstructTermImpl.load("vispriv[]"));
116 }
117 // replace
118 node.bind(localConstructTerm);
119 }
120 }
121 return true;
122 }
123

124 /∗
125 ∗ Query Terms
126 ∗/
127 public boolean visit(IQueryTerm node) {
128

129 // handle different special cases
130 if (node.isType(XcerptPackage.Literals.IN_RESOURCE))
131 return true;
132

5.A. APPENDICES 169

133 if (node.inContextOf(RxcerptPackage.Literals.IN_MODULE))
134 return true;
135

136 boolean containedInDisj =
node.isContainedIn(XcerptPackage.Literals.DISJUNCTION_QT);

137 boolean containedInConj =
node.isContainedIn(XcerptPackage.Literals.CONJUNCTION_QT);

138 boolean isTopLevel =
139 node.isContainedIn(XcerptPackage.Literals.CONSTRUCT_QUERY_RULE) ||
140 node.isContainedIn(XcerptPackage.Literals.GOAL_QUERY_RULE);
141

142 boolean isConjunction = node.isType(XcerptPackage.Literals.CONJUNCTION_QT);
143 boolean isDisjunction = node.isType(XcerptPackage.Literals.DISJUNCTION_QT);
144

145 if ((containedInDisj && !isConjunction) ||
146 (containedInConj && !isDisjunction) ||
147 (isTopLevel && !(isConjunction || isDisjunction)) ||
148 (node.isContainedIn(RxcerptPackage.Literals.IN_INTERFACE)))
149 {
150

151 // use internal fragment
152 final IQueryTerm localQueryTerm =
153 IQueryTermImpl.load("store [id [<<id>>], section [<<vis>>],

<<qTerm>>]");
154 final String id = "\"" + names.get(name.toString()) + "\"";
155

156 // check if we are given information from the Import operator
157 if (names.containsKey(name.toString())) {
158 localQueryTerm.bind("id", IQueryTermImpl.load(id));
159 localQueryTerm.bind("qTerm", node);
160 // set visibility
161 if (node.inContextOf(RxcerptPackage.Literals.IN_INTERFACE)) {
162 localQueryTerm.bind("vis", IQueryTermImpl.load("visin[]"));
163 } else {
164 localQueryTerm.bind("vis", IQueryTermImpl.load("vispriv[]"));
165 }
166 // replace
167 node.bind(localQueryTerm);
168 }
169 }
170 return true;
171 }
172 });
173

174 // replace passive syntax
175 stmt.accept(new XcerptVisitor() {
176

177 public boolean visit(IOutInterface node) {
178 IConstructTerm cTerm = new IConstructTermImpl();
179 node.accept(new XcerptVisitor(cTerm) {
180

181 public boolean visit(IConstructTerm node) {
182 if (node.inContextOf(RxcerptPackage.Literals.OUT_INTERFACE))
183 getParamFragment().bind(node);
184 return true;
185 }
186 });
187

188 if (cTerm.isLoaded())
189 node.bind(cTerm);
190

191 return true;

170 CHAPTER 5. MODULES FOR XCERPT

192 }
193

194 public boolean visit(IInInterface node) {
195 IQueryTerm qTerm = new IQueryTermImpl();
196 node.accept(new XcerptVisitor(qTerm) {
197

198 public boolean visit(IQueryTerm node) {
199 if (node.inContextOf(RxcerptPackage.Literals.IN_INTERFACE))
200 getParamFragment().bind(node);
201 return true;
202 }
203 });
204

205 if (qTerm.isLoaded())
206 node.bind(qTerm);
207

208 return true;
209 }
210 });
211 // default
212 return stmt;
213 }
214

215 /∗∗
216 ∗ ImportStatement Composer
217 ∗/
218 @ReusewairComposer("ImportWith")
219 public static IXcerptStatement importWith(IModuleDefinition module, final

IName name,
220 IName slot, IResource resource)
221 {
222 // do the standard import
223 IXcerptStatement stmt = importStatement(module, name);
224 // bind slot
225 stmt.bind(slot.toString(), resource);
226

227 return stmt;
228 }
229

230 /∗∗
231 ∗ InModule Composer
232 ∗/
233 @ReusewairComposer("InModule")
234 public static IQueryTerm inModule(IName name, IQueryTerm queryTerm) {
235

236 // use internal fragment
237 final IQueryTerm localQueryTerm =
238 IQueryTermImpl.
239 load("store [id [<<id>>], section [<<vis>>], <<qTerm>>]");
240 final String id = "\"" + names.get(name.toString()) + "\"";
241

242 // check if we are given information from the Import operator
243 if (names.containsKey(name.toString())) {
244 localQueryTerm.bind("id", IQueryTermImpl.load(id));
245 localQueryTerm.bind("vis", IQueryTermImpl.load("visout[]"));
246 localQueryTerm.bind("qTerm", queryTerm);
247 } else {
248 System.err.println("The module name ’" + name.toString() + "’ has not been

declared");
249 }
250 return localQueryTerm;
251 }

5.A. APPENDICES 171

252

253 /∗∗
254 ∗ ToModule Composer
255 ∗/
256 @ReusewairComposer("ToModule")
257 public static IConstructTerm toModule(IName name, IConstructTerm

constructTerm) {
258

259 // use internal fragment
260 final IConstructTerm localConstructTerm =
261 IConstructTermImpl.
262 load("store [id [<<id>>], section [<<vis>>], <<cTerm>>]");
263 final String id = "\"" + names.get(name.toString()) + "\"";
264

265 // check if we are given information from the Import operator
266 if (names.containsKey(name.toString())) {
267 localConstructTerm.bind("id", IConstructTermImpl.load(id));
268 localConstructTerm.bind("vis", IConstructTermImpl.load("visin[]"));
269 localConstructTerm.bind("cTerm", constructTerm);
270 } else {
271 System.err.println("The module name ’" + name.toString() + "’ has not been

declared");
272 }
273 return localConstructTerm;
274 }
275 }

172 CHAPTER 5. MODULES FOR XCERPT

In order for ontologies to have the
maximum impact, they need to be
widely shared. In order to minimize
the intellectual effort involved in devel-
oping an ontology they need to be re-
used. In the best of all possible worlds
they need to be composed.

OWL Web Ontology Language Guide
(2004)

6
Ontology Components: Role Models for

Ontologies
[This chapter is closely based on [41] and [74], with slight refinements and
a concrete specification of a composition system for role models.]

The term ‘ontology’ originates from philosophy and describes the dealings with
the nature of being. In the context of software/system engineering, the term is used
to describe formalized vocabularies (terminologies), or to represent shared domain de-
scriptions [35]. Ontologies are already deployed in the life sciences and the Semantic
Web, but are expected to be deployed in many other areas in the near future—for ex-
ample, in software development. As the use of ontologies becomes commonplace, they
will be constructed more frequently and also become more complex. To cope with this
issue, modularization paradigms and reuse techniques must be defined for ontologies
and supported by ontology languages. One issue that always must be tackled when
dealing with modularization is the question of what constitutes a module; what are the
appropriate units from which larger ontologies can be built? In this chapter we propose
to use role models from conceptual modeling for this purpose, and show how they can
be used to define ontological reuse units and enable modularization.

In conceptual modeling it has long been known that there is a fundamental distinc-
tion between different kinds of concepts: some stand on their own (e.g. Person), while
others depend on the existence of some other concept (e.g. Borrower, who must be
related to the borrowed item). Making this distinction explicit is favored in the role
modeling community (see e.g. [83, 84] and references therein), with successful appli-
cations, for example, in object-oriented programming [44]. In role modeling, concepts
that can stand on their own are called natural types, while dependent concepts are called
role types. Even though considered an important and fundamental conceptual differen-
tiation, current ontology languages, such as OWL DL [73], do not support it (nor does
the OWL 2 working draft [26]). The Description Logics (DLs) community—providing
much of the foundations for OWL DL—is however aware of the differentiation and
refers to role types as relationship-roles [8].1 The DL handbook even supports the

1The DL community uses the term ‘role’ for binary properties. To avoid confusion with conceptual roles

173

174 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

Professor Student

advises

Professor Student

father

Advisor AdviseeLegend: = class (concept)

(a) (b)

can play role can play role

= role concept

Child Parent

advises

father
Child ParentPerson !

(a) (b)

appoints
Appointer Advisor Advisee

advises

father
Child Parent

father
Child ParentPerson !

(a) (b)

appoints
Appointer Advisor Advisee

advises

produces
Producer Product Consumer

consumes

FIGURE 6.1: A simple role model describing three related role types and their rela-
tionships.

idea for the ontology development process by encouraging its readers to “distinguish
independent concepts from relationship-roles.” [8, p. 379]

Distinguishing different kinds of concepts is not only important for a better under-
standing of the modeled domain, but also for ontology reuse. This second application
of role types has—to the best of our knowledge—never been investigated by the ontol-
ogy community. Related role types and their relationships form abstraction units that
can be studied and defined on their own. Such abstraction units are traditionally called
role models. As role models often transcend domains, they can be reused in different
ontologies.

Consider, for example, the simple role model in Figure 6.1. It describes the role
types Producer, Product, and Consumer, and their relationships.

This role model could be integrated in ontologies covering topics as different as
foods, wines, consumer electronics, or car dealerships. For example, a consumer elec-
tronics company modeling their infrastructure and their business processes can (re)use
the generic description captured in the role model in Figure 6.1.

Role modeling can be seen as a design methodology, or process, allowing to break
a larger description into smaller, reusable units—the role models. But to successfully
deploy design processes for reuse, the underlying languages must support them. To
quote Kiczales et. al. [51]: “Software design processes and programming languages
exist in a mutually supporting relationship.” Clearly ‘programming languages’ can here
be substituted with ‘ontology languages.’ They go on to explain that the design pro-
cesses allow to break a system down into smaller and smaller (reusable) units, and that
“a design process and a programming language work well together when the program-
ming language provides abstraction and composition mechanisms that cleanly support
the kinds of units the design process breaks the system into.” [51] It would hence be
advantageous—from a reuse point of view—if ontology languages supported the defi-
nition of role models and provided constructs for composing role models into complete
ontologies.

In this chapter we describe how ontology languages enabled with constructs for
role modeling can provide for an important and little investigated reuse opportunity—
in form of role models. We also discuss the consequences of supporting the underlying
role modeling semantics. The contribution of this chapter consists of two parts:

1. Role models as reuse units for ontology languages. Regarding modularization of
ontologies we make the following contributions:

(a) We demonstrate the viability of role models as ontological reuse units.

(b) We propose a formalization for what role modeling means for current on-
tology languages.

(c) We explain the consequences of introducing the semantics of role mod-
eling into ontology languages. That is, the possible reasoning effects the

(relationship-roles) we will instead use the term dl-role to refer to them.

6.1. BACKGROUND 175

ontology engineer has to be aware of.

(d) We describe how the role modeling semantics can be realized by reduc-
ing role modeled ontologies into ontologies expressed in standard ontology
languages. This enables the reuse of reasoning engines.

2. Composition framework validation. This work on ontology role modeling has
been carried out in the light of the composition technology outlined in Chap-
ters 2–4. We show how role modeling for ontology languages can be real-
ized by instantiating our composition framework. That is, we demonstrate how
component-based development for ontologies can be provided by embedded in-
vasive software composition (E-ISC, and the underlying technologies on which
it builds; see Chapter 4).

This chapter is structured as follows. In Section 6.1 we first introduce role mod-
eling as a modeling paradigm, and then briefly the ontology language OWL and its
underlying logical formalism. In Section 6.2 we motivate the use of role models for
ontology languages, both conceptually and via an example. In Section 6.3 we describe
two different semantics for role modeling in ontology languages, and discuss their dif-
ferent characteristics. In Section 6.4 we develop a composition system for composing
role models and role-based ontologies. In Section 6.5 we discuss related work, and
finally in Section 6.6 we conclude the chapter.

6.1 Background
This section gives background knowledge for the rest of the chapter. First, we introduce
role modeling as it is known from conceptual and software modeling. Then, we discuss
Description Logics, the formal underpinning of many current ontology languages.

6.1.1 Role Modeling
In modeling, types (or concepts) abstract over sets of individuals.2 Role modeling at
its core argues for the existence of two inherently distinguishable abstractions: natural
types and role types, a terminology first introduced by Sowa [81]. Intuitively, natural
types describe the part of individuals that are essential to their identity while role types
describe accidental or temporal relations to other individuals.

A common example is the natural type Person and its associated role type Actor. In
this case, a person is said to play the role of an actor. Along with being an actor comes,
for example, giving performances led by stage managers and attending rehearsals led
by directors. Hence, in the role of being an actor (instance of concept Actor) one
stands in certain relations to individuals of other role types, such as StageManager and
Director.

Guarino defines natural types and role types using the notions of founded types and
semantically rigid types [36]. A type is founded if all of its individuals have to be
related to an individual of another type, where the relation is not part-of. For example,
one could say that an actor necessarily has to be related to a director in order to be an
actor. A type is semantically rigid if it contributes to the identity of its individuals. For
instance, the name and date of birth of persons are part of their identity. This means

2In object-oriented modeling, the terms class and object are used instead.

176 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

Property Comment
S1. A role comes with its own properties

and behavior.
Roles are types.

S2. Roles depend on relationships. A role is particularly meaningful in
context of a relationship.

S3. An object may play different roles
simultaneously.

Since roles are types, this means
multiple classification.

S4. An object may play the same role
several times, simultaneously.

Each occurrence of an object in a
role is associated with a different
state.

S5. An object may acquire and abandon
roles dynamically.

S6. The sequence in which roles may be
acquired and relinquished can be
subject to restrictions.

For example, a person can become a
teaching assistant only after having
been a student.

S7. Objects of unrelated types can play
the same role.

S8. Roles can play roles. For example, a person can play the
role of an employee, who in turn
can play the role of a project leader.

S9. A role can be transferred from one
object to another.

For example, the role of president
can be transferred from one person
to the next.

S10. The state of an object can be role-
specific.

The state of an object may vary de-
pending on the role in which it is
being addressed.

S11. Features of an object can be role-
specific.

Attributes and behavior of an object
may be overloaded on a role-basis.

S12. Roles restrict access. When addressed in a specific role,
part of the object is invisible.

S13. Different roles may share structure
and behavior.

Role definitions can inherit from
each other.

S14. An object and its roles share iden-
tity.

An object and its roles are the same.

S15. An object and its roles have differ-
ent identities.

An object and its roles are not the
same (contradictory to 14).

TABLE 6.1: Steimann’s 15 role modeling properties.

6.1. BACKGROUND 177

Static Undecided Dynamic
S1, S2, S3, S4, S7, S8, S12, S13 S10, S11, S14, S15 S5, S6, S9

TABLE 6.2: Static vs. dynamic role properties.

that a human being cannot drop the type Person, but ceasing to be an instance of Actor
is possible. Using these two notions, we can define natural types and role types:

• A natural type is non-founded and semantically rigid.

• A role type is founded and semantically non-rigid.

Although the notion of roles seems intuitively clear, different definitions exist in
the literature. Steimann summarizes—repeated in Table 6.1—the fifteen most com-
mon characteristics the research community associates with roles in object-oriented
and conceptual modeling [83].

One often recurring characteristic of roles is their dynamism, or connection to
behavior (at least properties S5, S6, S9, possibly S10, S11). That is, that objects
constantly change between the different roles they can play. This notion also comes
through in the often used simile of modeled objects participating in a play, acting out
their respective (dramatic) roles, and switching roles depending on the particular scene.
Another set of commonly used properties focuses rather on what it means to play a role
and if there are restrictions in doing so; but perhaps in particular which relations an ob-
ject stands in with other objects when playing the particular role (at least properties S1,
S2, S3, S4, S7, S8, S12, S13, possibly S14, S15). The separation of Steimann’s role
categorizations along this dimension—dynamic vs. static—is depicted in Table 6.2.

As an ontology describes a static view of the world, those referring to dynamic
aspects observable in software systems are not our focus. Among the remaining, we
consider the S1, S2, S3 and S14 to be the most fundamental. This because they cap-
ture what roles are (S1), and that role types are inherently connected to relationships,
which is, as we shall see, important for reuse (S2; S3 implies the possibility of multiple
relationships). Finally, we consider S14 to be innate to the underlying notion of role
playing—an individual is the same when playing a role.

Roles alone are beneficial to separate inherent and accidental characteristics of
individuals. But, encapsulating several related roles into a role model is where role
modeling truly becomes useful. Results from the object-oriented software commu-
nity [42, 76] show that role models are interesting units of abstraction, for mainly two
reasons: First, role models focus on one specific concern of a domain, and hence,
help in separating concerns. Second, role models are often reusable across domain
boundaries because they can describe relations between individuals on a more general
(non–domain-specific) level than natural types can. In this chapter we will focus on the
second point, reuse of role models, and show how role models can serve as ontological
reuse units.

An often discussed question is the relation of natural types and role types. Intu-
itively, natural types are related to role types via the “can play role” relationship, but
the question is what semantics to associate with it. We will here use the N B R notation
for the “can play role” relation, where N is a natural type and R a role type. Sowa orig-
inally proposed that role types are subtypes of natural types [82]. That is, we would

178 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

use the subsumption relationship (“IS-A”) to explain B, such that:

N B R ≡ Rv N

where v represents the IS-A relationship. This interpretation is quite intuitive and
works remarkably well, but not in all situations as we discuss in Section 6.3.3.

An alternative way of representing roles are separate individuals that are attached
to individuals of natural types in some way. However, this is inconsistent with role
feature S14, since a role-playing individual would be split into at least two separate
individuals. For a detailed discussion, the reader is referred to [83].

6.1.2 Description Logics and OWL
Description Logics (DLs) are a family of knowledge representation formalisms, where
most members are sub-languages of first-order logics. DLs are used to capture the
important concepts and relations (roles in DL parlance) between individuals of the
modeled domain. We will refer to (binary) relations in DL as dl-roles to distinguish
them from the conceptual role types. Concepts and dl-roles can be described by com-
plex concept (resp. dl-role) descriptions using the construction operators available in
the particular DL.

The most widely used DL is the one underlying OWL DL [73]. To simplify the
presentation, we do not cover datatypes here. An OWL DL interpretation is a tuple
I = (∆I , ·I) where the individual domain ∆I is a nonempty set of individuals, and ·I is
an individual interpretation function that maps (i) each individual name o to an element
oI ∈ ∆I , (ii) each concept name A to a subset AI ⊆ ∆I , and (iii) each dl-role name RN
to a binary relation RNI ⊆ ∆I ×∆I .

Valid OWL DL concept descriptions are defined by the DL syntax:

C ::= > | ⊥ | A | ¬C | CuD | CtD | {o} | ∃R.C | ∀R.C |> mR |6 mR

The interpretation function ·I is extended to interpret >I = ∆I and ⊥I = /0. The con-
cept > (⊥) is called owl:Thing (owl:Nothing) in OWL. The interpretation function can
further be extended to give semantics to the remaining concept and dl-role descriptions
(see [73] for details).

An OWL DL ontology consists of a set of axioms, including concept axioms, dl-
role axioms and individual axioms.3 A DL knowledge base consists of a TBox, an
RBox and an ABox. A TBox is a finite set of concept inclusion axioms of the form Cv
D, where C,D are concept descriptions. An interpretation I satisfies CvD if CI ⊆DI .
An RBox is a finite set of dl-role axioms, such as dl-role inclusion axioms (Rv S). The
kinds of dl-role axioms that can appear in an RBox depend on the expressiveness of
the ontology language. An interpretation I satisfies R v S if RI ⊆ SI . An ABox is a
finite set of individual axioms of the form a : C, called concept assertions, or 〈a,b〉 : R,
called dl-role assertions. An interpretation I satisfies a : C if aI ∈CI , and it satisfies
〈a,b〉 : R if 〈aI ,bI 〉 ∈ RI .

Let C,D be concept descriptions, C is satisfiable wrt. a TBox T iff there exist an
interpretation I of T such that CI 6= /0; C subsumes D wrt. T iff for every interpretation
I of T we have CI ⊆ DI . A knowledge base Σ is consistent (inconsistent) iff there
exists (does not exist) an interpretation I that satisfies all axioms in Σ.

3Individual axioms are called facts in OWL.

6.1. BACKGROUND 179

Human-readable syntax – Manchester OWL Syntax OWL has several syntaxes,
but OWL ontologies are most commonly represented by XML serializations. Such
serializations are machine readable, which is good for tooling and interoperability, but
less appealing to end-users and ontology designers. Many end-users prefer to use the
Manchester OWL syntax [46], which is more user friendly for non-logicians, and also
supported by ontology editors such as Protégé.4 In short, the Manchester syntax “tries
to minimize syntactic constructs that are difficult to enter or understand” [46, p. 3].
For example, the conjunction (disjunction) of concepts C and D, rather than using the
mathematical symbol u (t), can be written:

C and D (C or D)

Other concept constructors have similar intuitive English words that can be used.
Ontology axioms can also be represented. The axiom defining concept C as a sub-
concept of D (C v D) can be written:

Class: C SubClassOf D

The more complex concept definition:

Student v Personu (= 1hasAge)u (= 1hasGender)u∀hasGender.{male, f emale}5

stating that all students are persons, having only one age, a single gender which can
only be male or female, can be written as:

1 Class: Student
2 SubClassOf: Person
3 and hasAge exactly 1
4 and hasGender exactly 1
5 and hasGender only {male, female}

There are other Manchester OWL constructs not detailed here, but they are intuitive
to understand when seen in an example. More detail on the Manchester OWL syntax
can be found in [46].

Modularization in OWL OWL is only equipped with, at best, rudimentary modular-
ity constructs and support for component-based ontology development. OWL natively
provides some facilities for reusing ontologies and ontology parts. First, a feature in-
herited from RDF [55] (upon which OWL is layered) is linking—loosely referencing
distributed Web content and other ontologies using URIs. Second, OWL provides an
owl:imports construct which syntactically includes the complete referenced ontol-
ogy into the importing ontology. The linking mechanism is convenient from a mod-
eling perspective, but is semantically not well-defined—there is no guarantee that the
referenced ontology or Web content exists. Furthermore, the component (usually an
ontology class) is small and often hard to detach from the surrounding ontology in a
semantically well-defined way. Usually a full ontology import is required since it is un-
clear which other classes the referenced class depends on. The owl:imports construct
can only handle complete ontologies and does not allow for partial reuse. Overall,
OWL seems to be inflexible in the kind of reuse provided, especially regarding the
granularity of components.

4http://protege.stanford.edu/
5Here = is obviously the combination of ≤ and ≥.

http://protege.stanford.edu/

180 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

6.2 Role Modeling for Ontology Languages
The main purpose of this section is to give an intuitive understanding of why role
models are reusable entities and how they can be beneficial to ontology engineers.
But before looking at an example of an ontological role model in Section 6.2.1, it
is worthwhile asking the question if role modeling should be adopted for ontology
languages irrespective of any reuse opportunities and benefits.

The by far most common usage of ontologies today is capturing a shared under-
standing of information between people and software agents (∼70%), and to enable
reuse of domain knowledge (∼56%) [23]. In both cases, ontological modeling in large
parts constitutes modeling the real world; possibly arbitrary real world occurrences in
the first case (information) and specific areas of the real world in the second (domains).
Modeling the world is the process of capturing the essential concepts in a certain area
of interest and describing how they relate to each other. As in this process the “truth lies
in the world” [7], it seems reasonable that any ontology language should provide con-
structs that correspond to the observed real world phenomena. This is also supported
by research on the design of adequate conceptual modeling languages [38]. Hence,
it is a reasonable question to ask if this is the case for today’s ontology languages, in
particular, OWL.

Investigating the most natural ways of expressing and talking about the world goes
all the way back to formalizations of natural language, but more recently in the devel-
opment of database models in the 60’s and 70’s. One data model—perhaps not widely
known—is Bachman’s role data model. He had the following to say about it ([9] as
cited in [84]):

“The basic claim of the role model is that it more closely represents the
real world than the network model or any other well known model. [...]
It is a model where the person describing the data can say more about the
data and thus provides a better understanding of that data [...]”

To have the ability to “say more about the data” seems to be valuable for today’s
ontology languages, since they are used to represent the real world. In conclusion:
since today’s role modeling ideas are based on Bachman’s role data model, it seems
worthwhile to attempt to join those ideas with today’s ontology languages, in particular
with OWL.

6.2.1 Ontology Modularization with Role Models

We now give an example of an ontological role model and discuss the consequences of
a role modeling approach to ontology design. Then, in Section 6.3, we discuss the se-
mantics of such ontologies. The examples are written in Manchester OWL syntax [46],
which has been extended for the purpose of defining and composing role models; the
keywords of the extended constructs are underlined.

Listing 6.1 shows an ontology that models a faculty, introducing main concepts
such as Professor, FacultyMember, and PhDStudent. The faculty is managed by a
board which is described in the role model in Listing 6.2. A board consists of board
members that elect a chairman.6 The chairman can appoint one of the members as
secretary. The ontology in Listing 6.1 imports the board role model and can so use

6A ‘chairman’ is here a person designated to preside over a meeting.

6.2. ROLE MODELING FOR ONTOLOGY LANGUAGES 181

1 Ontology: http://ex.org/Faculty
2 ImportRoles: http://ex.org/Board
3 Class: FacultyMember
4 CanPlay: BoardMember’
5 Class: Professor
6 SubClassOf: FacultyMember
7 CanPlay: ChairMan’
8 Class: PhDStudent
9 SubClassOf: FacultyMember

10 Individual: smith
11 Types: Professor, Chairman’
12 Individual: mike
13 Types: PhDStudent, BoardMember’

LISTING 6.1: Role-based ontology.

1 RoleModel: http://ex.org/Board
2 Role: BoardMember’
3 Role: Chairman’
4 SubClassOf: BoardMember’ and
5 electedBy’ some BoardMember’
6 Role: Secretary’
7 SubClassOf: BoardMember’
8 ObjectProperty: electedBy’
9 Domain: Chairman’

10 Range: BoardMember’
11 ObjectProperty: appointedBy’
12 Domain: Secretary’
13 Range: Chairman’

LISTING 6.2: Role model.

the concepts it defines. Concepts and properties defined in the role model are marked
with ’ to distinguish them from the concepts introduced in the base ontology.

One might ask why the board is described in a role model. The reason is that boards
have a recognizable structure with a typical set of relationships that hold between enti-
ties in that context, regardless of the particular underlying domain. It therefore makes
sense to detach the description of the board from the faculty ontology.

The ontology in Listing 6.1 is made up of standard DL constructs, save the Im-
portRoles and CanPlay constructs. The meaning of the ImportRoles construct is the
obvious, making the role model available to the ontology. The CanPlay constructs are
crucial since they define the relations between the base ontology and the role model.
We refer to such connecting statements as bridge axioms. The role model in Listing 6.2
makes use of two additional constructs, RoleModel and Role that have the obvious
meaning (defining a role model and a role, respectively). The URL of a RoleModel can
be used to import it using the ImportRoles construct.

6.2.2 Methodology
Role modeling provides a methodology for developing ontologies, a methodology that
we claim encourages good design and supports reuse. The following are the intuitive
development steps that we propose for constructing a role-based ontology:

1. Define base concepts. Define a base ontology that contains the main concepts
of the modeled domain. These concepts correspond to natural types of the do-
main. That is, each concept in the base ontology should be semantically rigid
and non-founded. In our example, an ontology modeler would start by defining
basic concepts of a faculty, such as Professor and PhDStudent. Notice that, in a
different universe of discourse, Professor may itself be a role type (for example,
for an underlying natural type Person).

2. Identify role models. Identify accidental or temporal relationships that individ-
uals, abstracted by the base concepts, may participate in. Then, identify the
contexts that those relationships appear in and what concepts (role types) are
involved. Such contexts should be described in separate role models to be inte-
grated into the base ontology.

http://ex.org/Faculty
http://ex.org/Board
http://ex.org/Board

182 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

(a) If a role model for the desired relationships already exists, it can be reused.

(b) If no fitting role model exists, then define it. This involves capturing the
important role types in the context and defining the relationships between
them. There will exist relationships, since role types are by definition se-
mantically non-rigid and founded. For instance, the board role model con-
tains the role types Chairman’ and BoardMember’, which are related by
the electedBy’ property.

To ensure reusability of role models they have to be self-contained. In particular,
each property defined in a role model must have its domain and range restricted
to a role type from the same role model. This guarantees that each individual that
participates in such a property actually belongs to a role type of the role model.

3. Define bridge axioms. Describe how the identified role models should be inte-
grated into the base ontology by defining appropriate bridge axioms. A bridge
axiom can bind a role type to a natural type, assert that an individual belongs to a
certain role type, or assert two individuals to be connected via a property that is
part of a role model. For example, we connect Professor and Chairman’ through
a CanPlay axiom, and the individual smith is asserted to be a Chairman’.

6.2.3 Role Models vs. Base Ontologies

We argue that it is beneficial to separate role models from base ontologies during the
ontology design process. In particular, following the above methodology brings the
following advantages:

• Modularization during development:

– Base ontology development can focus on the main domain concepts and
their hierarchical relations.

– Role models can be defined, and refined, without necessarily focusing on
the domain concepts, because role models typically transcend domains.

– A role model focuses on a single context and important relationships hold-
ing between entities in this context.

• Reuse of role models:

– As role models concentrate on a single concern, reuse is more likely than
with complete ontologies that intermingle different concerns.

– Role models constitute ontological modules. A base ontology can use role
type names and property names of a role model, but not redefine them.
Hence, a role model provides an interface, via the names of its role types
and properties.

The role-based ontology in Listing 6.3 demonstrates the reusability of the board
role model from Listing 6.2. The role model is being deployed in a different setting,
this time in an ontology modeling a company, instead of a university. Since the concern
that is captured in the role model appears in both domains, it can be reused.

6.3. SEMANTICS OF ONTOLOGICAL ROLE MODELING 183

1 Ontology: http://ex.org/Company
2 ImportRoles: http://ex.org/Board
3 Class: President
4 CanPlay: ChairMan’
5 Class: VicePresident
6 CanPlay: Secretary’
7 Class: CompanyAdvisor
8 CanPlay: BoardMember’
9 Individual: donald

10 Types: President, Chairman’
11 Individual: jane
12 Types: VicePresident, BoardMember’

LISTING 6.3: Role-based ontology reusing the role model from Listing 6.2.

6.3 Semantics of Ontological Role Modeling
In Section 6.3.1 we formalize ontological roles and role models. Then, in Sections 6.3.2
and 6.3.3, we propose two possible semantics for the role modeling constructs used in
the preceding section. The two semantics cover different aspects of role modeling and
are realized by mapping role-based ontologies to different DL constructs.

6.3.1 Formalization of Role-Based Ontologies
We formalize role-based ontologies in three parts, based on the methodology described
in Section 6.2. A base ontology only contains natural types. Role models define role
types and their relationships. We use bridge axioms to combine a base ontology with
role models into a role-based ontology.

Definition 6.1. (Base ontology) A base ontology is a finite set of axioms in some DL,
capturing concepts that are assumed to correspond to natural types.

A base ontology is assumed to capture concepts that provide semantic rigidity for
individuals of the modeled domain. Naturally, any properties that inherently relate
such concepts are also introduced, as are concrete individuals. We do not commit to a
particular DL, since this definition is general enough to cover many DLs.

Definition 6.2. (Ontological role model) An ontological role model is a TBox where
each concept name is considered a role type. Each concept name must be “related” to
another concept name in the role model, either via a dl-role, or by at least one axiom
(e.g. a subsumption axiom). All dl-roles must be domain and range restricted to a type
from the role model.

The restriction of “related” concept names prevents role models from being divided
into subparts with pairwise disjoint signatures.7 If such a division is possible, the role
model should be split into separate role models. Intuitively, this restriction ensures that
a role model only describes one concern.

Definition 6.3. (Role-based ontology) A role-based ontology O = (N ,R ,B) is a
triple where N is a base ontology, R is a finite set of role models and B a finite

7What “related” means is not formalized. We recognize this formalization as important future work, but
here stay with the intuitive notion, as described.

http://ex.org/Company
http://ex.org/Board

184 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

set of bridge axioms. The base ontology and the role models have pairwise disjoint
signatures. The bridge axioms in B are of the form:

1. N B R (terminological bridge axiom), or

2. R(a) or S(a,b) (assertional bridge axiom)

where N is an arbitrary concept description, and a,b are individuals, in N , and
where R is a concept name (role type), and S a dl-role, in one of the role models in R .

The B symbol reads “can play” and specifies that instances of a natural type can
play a role of a certain role type. Assertional bridge axioms define individuals to belong
to certain role types, or to be related to other individuals via some dl-role.

To be able to reuse existing tools, most importantly, reasoners, we define the seman-
tics of role-based ontologies via reduction to the underlying DL. Thus, the reduction
algorithm unambiguously defines the semantics of role-based ontologies by referring
to the already understood model-theoretic semantics of DLs.

6.3.2 Conjunctive Role Modeling Semantics
The goal is to define a semantics for role-based ontologies that cover desirable proper-
ties of role modeling as a discipline. As a minimal requirement, the semantics should
cover the Steimann criteria S1, S2, S3, and S14 described in Section 6.1.1. More im-
portantly, we need to account for the differentiation between natural and role types
according to the distinction made by Guarino [36]. That is, natural types are semanti-
cally rigid, while role types are not, and do not provide identity for its instances. We
will address this by acknowledging that individuals cannot only be instances of role
types. This suggests that role types that are not explicitly related to some natural type
should—by definition—be unsatisfiable (empty in all models of the ontology). In this
case, unbound role types can conveniently be detected by deploying standard ontol-
ogy reasoners. Relations between natural and role types should explicitly be modeled
by ontology engineers using terminological bridge axioms (that is, using the CanPlay
construct).

The semantics of a role-based ontology O = (N ,R ,B) is here given by a transfor-
mation to an ontology O ′ in the DL of N according to the following transformation:

O ′ = N ∪R
∪ {Rv N|N B R ∈ B}
∪ B \{N B R|N B R ∈ B}
∪ {Rv⊥|R ∈ R ∧¬∃N : N B R ∈ B}

As can be seen, the translation scheme consists of four steps:

1. Integration. The base ontology and the role models (with pairwise disjoint sig-
natures) are combined.

2. Terminological bridge axioms. Here we use the semantics proposed by Sowa for
realizing the B relationship [82]. That is, if instances of a natural type N can
play a role of a role type R, we specify R to be subsumed by N.

3. Assertional bridge axioms. All other bridge axioms are incorporated into O ′.
That is, all the assertional bridge axioms.

6.3. SEMANTICS OF ONTOLOGICAL ROLE MODELING 185

1 Ontology: http://ex.org/Faculty
2 Class: FacultyMember
3 Class: Professor
4 SubClassOf: FacultyMember
5 Class: PhDStudent
6 SubClassOf: FacultyMember
7 Class: BoardMember’
8 SubClassOf: FacultyMember
9 Class: Chairman’

10 SubClassOf: BoardMember’ and
11 electedBy’ some BoardMember’
12 and Professor
13

14 Class: Secretary’
15 SubClassOf: BoardMember’ and
16 owl:Nothing
17 ObjectProperty: electedBy’
18 Domain: Chairman’
19 Range: BoardMember’
20 ObjectProperty: appointedBy’
21 Domain: Secretary’
22 Range: Chairman’
23 Individual: smith
24 Types: Professor, Chairman’
25 Individual: mike
26 Types: PhDStudent, BoardMember’

LISTING 6.4: Translation of a role-based ontology into the underlying ontology
language.

4. Unbound role types. Role types that are not related to any natural type through
B subsume ⊥ (owl:Nothing in OWL), that is, they are unsatisfiable.

We will illustrate the transformation using the example from Listings 6.1 and 6.2.
Applying the transformation yields the ontology in Listing 6.4. This ontology only
uses standard ontology constructs. It must be highlighted that the ontology in List-
ing 6.4 only captures the meaning of the ontology units from Listings 6.1 and 6.2. The
ontology engineer is never expected to continue working on the “compiled” ontology.
The abstractions gained through explicit role modeling are lost in the compilation step,
making the resulting ontology more difficult to maintain. At the same time, because
the compilation result is expressed in a standard DL, existing ontology reasoners can
handle it directly.

For instance, the role type Secretary’ is not bound to any natural type, and hence,
defined as a subtype of owl:Nothing (⊥). To understand the consequences of this trans-
lation, let us consider two scenarios:

1. Assume an additional assertion, stating that mike is an instance of Secretary’. As
Secretary’ is unbound, and thus, unsatisfiable, the resulting ontology would be
inconsistent.

2. Assume another role type relies on instances of Secretary’. For instance, Chair-
man’ could be a subclass of the concept (assistedBy’ some Secretary’).
As there can be no instances of Secretary’, Chairman’ would also become un-
satisfiable.

Obviously, our translation scheme for unbound role types helps in finding situa-
tions where role types are misused as natural types. The logical solution to repair our
ontology for the two scenarios would be an additional bridge axiom FacultyMember B
Secretary’. In this case, Secretary’ is no longer unsatisfiable and, as a consequence, the
above illustrated inconsistencies do not occur.

Finally, let us come back to the four crucial properties of Steimann from Sec-
tion 6.1.1. As we define roles as concepts that can be described by constructs of the
underlying DL, we fulfill S1. The second property, S2, is also supported, since we
require that the context of each role type is captured in its surrounding role model. The

http://ex.org/Faculty

186 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

second kind of bridge axiom in Definition 6.3 can be used arbitrarily often, hence, al-
lowing one individual to be an instance of multiple role types (S3). The last property
(S14) is supported as we do not represent roles as additional individuals but combine
them with natural types using subsumption.

We refer to the above-described semantics as conjunctive role modeling semantics
because a role type R played by different natural types N1, . . . ,Nn is interpreted as a
subtype of the conjunction of the natural types, that is, Rv N1u . . .uNn. This follows
immediately from defining B using standard subsumption. While simple, this seman-
tics does not come without problems from a role modeling perspective. We investigate
this further in the next section.

6.3.3 Disjunctive Role Modeling Semantics
Another arguably critical role modeling feature from Steimann’s overview paper [83]
is S7, repeated below:

S7 Objects of unrelated types can play the same role.

While Steimann claims that this property is “not acknowledged by all authors,” it
is a rather intuitive and useful modeling notion. Imagine, for example, that we replace
the class Professor, from Listing 6.1, with the two classes FullProfessor and Assistant-
Professor. Imagine, furthermore, that they are declared to be disjoint (natural, since
you cannot be both). Suppose we want to express that both kinds of professors can be
chairmen in a board. Not only is this a natural thing to express, but doing so would also
enable us to discuss the properties of a chairman (defined by Chairman’), regardless of
which kind of professor it is. To do this, we would issue the following bridge axioms:

FullPro f essor BChairman′

AssistantPro f essor BChairman′

While the above axioms are intuitive to understand and write, the conjunctive role
modeling semantics, based on Sowa’s original interpretation of B, does not work as
we perhaps would like. The reason is that the above gets interpreted as Chairman′ v
FullPro f essoruAssistantPro f essor, which renders Chairman′ unsatisfiable. This is
the case since the intersection of FullPro f essor and AssistantPro f essor is necessarily
empty, since they are disjoint. In general, the conjunctive role modeling semantics
can result in unexpected results when types that are not related via subsumption (e.g
FullPro f essor and AssistantPro f essor in the above example) are related to the same
role type via B.

To be able to address S7, we provide an alternative semantics by letting role types
be subsumed by the union of all natural types they are bound to. For the above example,
this results in Chairman′ v FullPro f essortAssistantPro f essor, which in this case
does not make Chairman′ unsatisfiable. We call this the disjunctive role modeling
semantics and its formal realization is as follows:

O ′ = N ∪R
∪ {Rv N1t . . .tNn|{N1, . . . ,Nn}= {N|N B R ∈ B}}
∪ B \{N B R|N B R ∈ B}
∪ {Rv⊥|R ∈ R ∧¬∃N : N B R ∈ B}

The above definition only diverge from the corresponding definition for conjunctive
semantics in the translation of terminological bridge axioms. Therefore, disjunctive

6.4. FRAMEWORK EVALUATION: COMPOSITION SYSTEM 187

1 ...
2 Class: FullProfessor
3 SubClassOf: FacultyMember
4 Class: AssistantProfessor
5 SubClassOf: FacultyMember
6 ...
7 Class: Chairman’
8 SubClassOf: BoardMember’ and
9 electedBy’ some BoardMember’ and

10 (FullProfessor or AssistantProfessor)
11 ...

LISTING 6.5: Translation of a role-based ontology into the underlying ontology
language using disjunctive role modeling semantics.

semantics only differs from the conjunctive in cases where several natural types are
bound to the same role type. In the case from the previous section with a single concept
Professor bound to role type Chairman’, both semantics are equivalent. In contrast,
the two semantics give different results if both FullProfessor and AssistantProfessor
are bound to the role type Chairman’. While we obtain an inconsistency with the
conjunctive semantics, disjunctive semantics allow for a consistent interpretation. The
result is shown in Listing 6.5 (parts that are equal to Listing 6.4 are left out).

The disjunctive role modeling semantics satisfies S7, as well as the previously dis-
cussed role modeling requirements. Being able to connect unrelated, possibly disjoint,
natural types to the same role type can be valuable from a modeling perspective. How-
ever, fulfilling S7 turns out to have a drawback: In contrast to standard DLs, the dis-
junctive semantics is non-monotonic. A logic is monotonic if adding a new axiom
never falsifies assertions that were true before adding the axiom.

Theorem 6.1. Ontological role modeling under disjunctive semantics is non-monotonic.

The reason for this is that adding assertional bridge axioms can redefine previous
knowledge. Consider the following role-based ontology O = (N ,R ,B), with:

N = {FullPro f essoruAssistantPro f essor v⊥,

FullPro f essor(smith),AssistantPro f essor(jones)}
R = {Chairman′ = electedBy′ some BoardMember′}

B = {FullPro f essor BChairman′}

Based on the disjunctive role modeling semantics we have O |=¬Chairman′(jones).
But adding the bridge axiom AssistantPro f essor B Chairman′ to B , this is not the
case anymore, that is, O 6|= ¬Chairman′(jones). As we have to retract knowledge
when adding a bridge axiom, role modeling under the disjunctive semantics is non-
monotonic.

6.4 Framework Evaluation: Composition System
In this section we specify a composition system for role modeling in Manchester OWL
by instantiating the framework described in Chapters 2 and 4. We recall the devel-

188 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

opment process defined in Section 4.4.2 and go through the same development steps
below.

D0 Base grammar. We first assume the existence of the grammar of the base lan-
guage, in this case, Manchester OWL’s grammar. We do not present the complete
grammar here, but provide the overall structure that is needed to understand the
component model specification in the next step. We only specify the abstract
syntax.

〈Ontology〉 ::= 〈Identifier〉? 〈OntologyStatement〉*
〈OntologyStatement〉 ::= 〈ClassDescription〉 | 〈ObjectProperty〉 |

〈IndividualAssertion〉
〈ClassDescription〉 ::= 〈NamedType〉 〈Description〉*
〈Description〉 ::= 〈SubClassOf 〉 | 〈EquivalentTo〉 | 〈DisjointWith〉
〈SubClassOf 〉 ::= 〈ClassExpression〉
〈EquivalentTo〉 ::= 〈ClassExpression〉
〈DisjointWith〉 ::= 〈ClassExpression〉
〈ClassExpression〉 ::= 〈AtomicExpression〉 | 〈Conjunction〉 | 〈Disjunction〉 |

〈Existential〉 | 〈Universal〉
〈AtomicExpression〉 ::= 〈NamedType〉
〈Conjunction〉 ::= 〈ClassExpression〉+
〈Disjunction〉 ::= 〈ClassExpression〉+
〈Existential〉 ::= 〈NamedProperty〉 〈ClassExpression〉
〈Universal〉 ::= 〈NamedProperty〉 〈ClassExpression〉
〈ObjectProperty〉 ::= 〈NamedProperty〉 〈NamedType〉 〈NamedType〉
〈IndividualAssertion〉 ::= 〈NamedIndiv〉 〈IndividualTypes〉? 〈IndividualFacts〉?
〈IndividualTypes〉 ::= 〈NamedType〉+
〈IndividualFacts〉 ::= 〈IndividualFact〉+
〈IndividualFact〉 ::= 〈NamedProperty〉 〈NamedIndiv〉
〈Identifier〉 ::= STRING

〈NamedType〉 ::= STRING

〈NamedProperty〉 ::= STRING

〈NamedIndiv〉 ::= STRING

The full Manchester OWL syntax defines some additional constructs, but these
are not needed for our examples, or for understanding the following composi-
tion system definition. For more details on the Manchester OWL syntax, please
consult [46].

D1–3 Adapt base grammar to ISC, define domain-appropriate constructs and separate
out active syntax. The CmSL+ specification in Listing 6.6 extends the Manch-
ester OWL base grammar for the purpose of working with role modeling and role
models. The extension introduces intuitive constructs for defining and deploy-
ing role models, in line with the constructs used in Section 6.2 (see in particular
Listings 6.1 and 6.2).

We only introduce one slot construct for NamedType. We will make use of this
slot construct during the implementation of the composition operators. An ex-
ample of this is shown in Listing 6.10.

6.4. FRAMEWORK EVALUATION: COMPOSITION SYSTEM 189

1 extends file:owlm.gr @ o as file:rowlm.gr .
2

3 % slots
4 slotify o.NamedType .
5

6 % passive syntax
7 RoleModel = modelID:o.NamedType, stmts:RoleStatement* .
8 RoleStatement = RoleDefinition | RoleObjectProperty .
9 RoleDefinition = roleID:o.NamedType, descriptions:o.Description* .

10 RoleObjectProperty = roleprop:o.ObjectProperty.
11

12 % active syntax
13 ImportRoles = rolemodel:RoleModel [@ Location] .
14 ImportRoles <> o.OntologyStatement .
15 ImportRoles -> @Composer .
16

17 CanPlay = roleID:o.NamedType .
18 CanPlay <> o.Description .
19 CanPlay -> @Composer .
20

21 fragtypes { o.Ontology, o.OntologyStatement, o.ClassDescription,
22 o.ClassExpression, o.ObjectProperty, o.Description, o.NamedType,
23 RoleModel, RoleDefinition, CanPlay }

LISTING 6.6: CmSL+ specification for extending Manchester OWL with a notion of
role models.

D4 Generating component model. Once the component model has been specified,
it can be generated. This involves generating the core composition language—
a Java API for Manchester OWL composition—enabling us, for example, to
define ontology statements using the Java type IOntologyStatement. The kind
of fragments that will be available to a developer in this manner are the ones
enumerated using the fragtypes construct in Listing 6.6.

As an aside, it is perhaps interesting to note that an active syntax construct is
listed in the fragtypes statement, namely, CanPlay. The reason for this is that
the implementation of the composition operator for CanPlay needs to traverse
the AST of the fragment being operated on. We discuss this issue further in
Appendix 6.A, along with the definition of the composition operators (p. 194).

D5 Defining composition operators for active syntax constructs. The next step in
the development process is to associate composition operators with the active
syntax constructs introduced in the previous step. We notice that there are two
such constructs defined by the nonterminals ImportRoles and CanPlay. Hence,
we must define composition operators for these constructs. The operator imple-
mentations can be found in the appendix of this chapter. Here we look at one
of them in detail, and leave the study of the other to the reader. The operator
definition in Listing 6.10 corresponds to the ImportRoles construct. Notice,
yet again, that the active syntax construct’s implementation method signature
directly corresponds to its definition in the component model.

The operator performs two main tasks:

1. Role types as classes. All role types in the imported role model are in-
troduced as classes in the importing ontology. Each such role type is in

190 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

1 Ontology: file:Base.owlm
2 ImportRoles: file:Products.rowlm
3

4 Class: Computer
5 Class: Laptop
6 SubClassOf: Computer

LISTING 6.7: Base ontology.

1 RoleModel: file:Products.rowlm
2 Role: Product
3 Role: Warehouse
4 ObjectProperty: storedIn
5 Domain: Product
6 Range: Warehouse

LISTING 6.8: Role model.

1 Ontology: file:Base.owlm
2 Class: Product
3 SubClassOf: owl:Nothing
4 Class: Warehouse
5 SubClassOf: owl:Nothing
6 ObjectProperty: storedIn
7 Domain: Product
8 Range: Warehouse
9 Class: Computer

10 Class: Laptop
11 SubClassOf: Computer

LISTING 6.9: Composed ontology.

addition stated to subsume owl:Nothing (as the default state, until some
natural type is bound to it). An internal fragment is defined to accomplish
this (Line 8). It looks like this:

Class: «rolename» SubClassOf: owl:Nothing

When a role type is encountered in the imported role model, its name is
bound to the slot rolename in the internal fragment (Line 15). In addition
to creating a class for each role type, its existing definitions must be trans-
ferred (e.g. subclass-of declarations). This is done on Lines 19– 31. This
whole task happens between Lines 6 and 36.

2. Transfer object properties. A role model does not only contain role type
definitions, but also object properties relating the role types. These object
properties must be made available in the resulting ontology and are hence
transferred from the role model. This happens on Lines 38–42.

Notice that all the statements that are to be made available in the resulting ontol-
ogy are “collected” into the stmts fragment (defined on Line 3). This collection
of ontology statements is then returned as the result of the execution of the import
operator (ImportRoles), and hence replace the call of the operator.

To clarify, let us look at a simple example. The base ontology in Listing 6.7
imports the role model in Listing 6.8

The result after composing the ontology in Listing 6.7—according to the com-
position operator implementation for ImportRoles in Listing 6.10—is the on-
tology in Listing 6.9 (in plain Manchester syntax).

The composed ontology is further transformed if CanPlay statements are speci-
fied. The operator implementation for CanPlay can be found in the appendix of
this chapter.

6.4. FRAMEWORK EVALUATION: COMPOSITION SYSTEM 191

1 public static IOntologyStatement importRoles(IRoleModel roleModel) {
2

3 IOntologyStatement stmts = new IOntologyStatementImpl();
4 roleModel.accept(new OwlmVisitor(stmts) {
5 // introduce roles as classes
6 public boolean visit(IRoleDefinition role) {
7 // internal fragment
8 IOntologyStatement cls = IOntologyStatementImpl.load(
9 "Class: <<rolename>> SubClassOf: owl:Nothing");

10

11 role.accept(new OwlmVisitor(cls) {
12 // bind role type name
13 public boolean visit(INamedType name) {
14 if (name.isContainedIn(RowlmPackage.Literals.ROLE_DEFINITION))
15 getParamFragment().bind("rolename", name);
16 return true;
17 }
18 // transfer class descriptions
19 public boolean visit(final IDescription desc) {
20 if (desc.isContainedIn(RowlmPackage.Literals.ROLE_DEFINITION)) {
21 ((IOntologyStatement)getParamFragment()).accept(new

OwlmVisitor() {
22 public boolean visit(IDescription d) {
23 // only extend once!
24 if (d.isLast())
25 d.prepend(desc);
26 return true;
27 }
28 });
29 }
30 return true;
31 }
32 });
33 // extend collector fragment with statement
34 getParamFragment().extend(cls);
35 return true;
36 }
37

38 public boolean visit(IObjectProperty prop) {
39 // extend collector fragment with object property statement
40 getParamFragment().extend(prop);
41 return true;
42 }
43 });
44 // return all statements
45 return stmts;
46 }

LISTING 6.10: Composition operator specified for the active syntax construct
ImportRoles that imports a role model into a base ontology.

192 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

6.5 Related Work
Reuse is an important part in the ontology development process. A structured reuse
opportunity is presented by upper-level ontologies (e.g. [67]). Upper-level ontologies
typically describe generic concepts related to notions such as time, space, matter, and
have a high reuse value since they span many different domains. Role models also
span different domains, but their reuse usage is different from upper-level ontologies.
In general, upper-level ontologies reside “above” the base ontology and reuse is ac-
complished by declaring a base concept B as a subclass of the upper-level concept U ,
that is, B vU in DL syntax. Role models on the other hand reside “below” the base
ontology and the reuse relationship is inverted from the upper-level one. That is, reuse
is in general accomplished using axioms such as R v B, where R is a role type from
a role model. As such, role models are complementary to upper-level ontologies. The
main incentive for upper-level ontologies is to achieve base ontology integration and
reuse is a condition for its success. For role models, reuse is the incentive.

Apart from the above comparison to the well-known idea of upper-level ontologies,
our related work can in general be divided along two lines. First, the work can be
aligned to other role modeling approaches. Then, it can also be compared to other
approaches to ontology modularization. We make this separation below.

Role Modeling for Ontologies The OntoClean methodology proposed by Guarino
shares a number of ideas with our approach [37]. The paper describes common misuses
of the subsumption concept, for instance, to represent part/whole relations, instantia-
tions, or meta-level relationships, and proposes to identify them using meta-properties
for ontological classes. The two basic meta-properties of a class are essence and rigid-
ity. Properties of a class belong to its essence, if they must hold for an instance (in
contrast, for example, to properties of a role type, which can hold). Rigidity means
that the properties of the class must hold for all instances. Our approach relates to this
work as essential and rigid classes correspond to natural types, while non-essential and
non-rigid classes are role types. Based on the meta-properties, Guarino proposes to im-
pose constraints on subsumption relationships, for instance, forbidding a rigid concept
to be subsumed by a non-rigid concept. This constraint is enforced in our approach by
translating the terminological bridging axiom into R v C, where a non-rigid concept
R is always subsumed by a rigid concept C. Furthermore, OntoClean claims that each
ontology has a backbone taxonomy with its rigid classes and their subsumption rela-
tionships. Such a backbone taxonomy roughly corresponds to our base ontology that
exclusively consists of natural types.

The work in [85] proposes, similarly to us, to discriminate role concepts from basic
concepts to overcome the gap between the recognition of different types of concepts
and what is provided in standard ontology languages. The approach builds upon three
notions: role concepts, equivalent to our role types, potential players, which roughly
correspond to classes bound to a role type via a CanPlay relationship, and role-holder,
that is, instances actually playing a role. The authors argue for two distinct type hi-
erarchies and emphasize the relation of a role to its context. Furthermore, the paper
describes compound roles that are built from primitive roles, realizing ideas that are
similar to roles playing roles as in [83]. In contrast to our approach, the authors im-
plement roles in their own ontology framework, including an ontology language and
custom-built tools.8 Instead, we propose to embed roles into existing languages using

8http://www.hozo.jp

http://www.hozo.jp

6.6. SUMMARY AND OUTLOOK 193

syntactic extensions that can be translated into the underlying ontology language.

Ontology Modularization Modularizing ontologies and finding appropriate ontol-
ogy reuse units are becoming important issues. Since one of our motivations is mod-
ularization of ontologies, we here mention some works addressing these issues, most
having a strong formal foundation.

One work in this direction proposes a new import primitive: semantic import [70].
Semantic import differs from owl:imports (referred to as syntactic import) by al-
lowing to import partial ontologies and by additionally enforcing the existence of any
referred external ontologies and ontology elements by the notion of ontology spaces.
The goal in this work is controlled partial reuse of ontologies; the reuse units are con-
cepts, properties or individuals. The work in [25] defines a logical framework for
modular integration of ontologies by allowing each ontology to define its local and
external signature (that is, classes, properties etc.). The external signature is assumed
to be defined in another ontology. Two distinct restrictions are defined on the usage of
the external signatures. The first syntactically disallows certain axioms which are con-
sidered harmful, while the second restriction generalizes the first by taking semantical
issues into consideration. The general goal, apart from a formal framework, is to allow
safe merging of ontologies in a ‘black-box’ manner. The authors of [34] describe a
technique for automatic partitioning of ontologies into reusable modules, under certain
safeness conditions on the ontology. One interesting requirement put on such modules
is that it should describe a well-defined subject matter, that is, be self-contained from a
modeling perspective.

The first two mentioned approaches aim at reusing partial ontologies—entities de-
fined within ontologies, in some sense meaning—rather than whole ontologies. Only
the last approach seems to have an explicit desire for an ontology module to be a self-
contained description of some subject matter (albeit not necessarily user-defined, but
automatically constructed by the partition algorithm). In contrast, role models for on-
tologies are not units extracted from existing contexts and ontologies, but are defined
by a modeler for the very purpose of being reused and deployed in varying contexts.
Role models are also reuse units more coarse-grained than classes, resulting in ontolo-
gies constructed from fewer and larger parts. Most importantly, a role model has an
intuitive reason for being a reusable part, which we argue is an essential feature for any
modularization units of a modeling language.

6.6 Summary and Outlook
Ontologies are increasingly often applied in real-life scenarios, where they are used
for modeling large knowledge domains. Perhaps the most prominent example to name
here is the Gene Ontology [89] with its almost 25.000 terms (as of January 2008). To
successfully develop and maintain such large ontologies, powerful modularization and
reuse techniques are required.

In this chapter we have discussed the notion of roles as explicit modeling constructs.
Roles have been discussed in the domain of conceptual modeling for some time, but
never really utilized in ontology languages. We have shown how making roles explicit
concepts—instead of encoding them implicitly in dl-roles—enables us to encapsulate
role models and reuse them in different ontologies, even across domain boundaries. A
role model in this context is an ontology consisting of role concepts and relationships
between them. We have shown how to construct role-based ontologies from a base

194 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

ontology, a role model and a set of bridging axioms relating natural concepts from the
base ontology to role concepts from the role model via a CanPlay relationship. The
semantics of this new relationship has been defined by translating role-based ontologies
to equivalent ontologies in a standard DL. We have discussed two such semantics:
conjunctive semantics and disjunctive semantics. The former is simpler, but does not
allow individuals of disjoint natural concepts to play the same role, which may be
counterintuitive to ontology designers. The latter semantics allow such situations, but
at the cost of a non-monotonic logic. It is at this stage not possible to recommend one
of the semantics as canonical—they serve different purposes. We first need to study
how role models are used and applied in practice to better understand which semantics
is more intuitive to ontology engineers. Finally, we have instantiated our composition
framework for providing an initial feel of using role models and role modeling for
ontology design and construction.

In conclusion, we suggest to integrate explicit role concepts with ontology lan-
guages, such as OWL, as they offer a unique reuse and modularization opportunity that
goes beyond currently available mechanisms for ontology reuse. Role models form
components; their role types define a component interface enabling to check correct
usage of the component—for example, every used role type must be assigned to some
base concept. A notion of components that allows checking for correct usage is lack-
ing in today’s ontology languages. This gap can be closed by role modeling. Role
modeling goes beyond upper-level ontology reuse, as it allows more specific ontolo-
gies to be reused and also allows reusing multiple role models within one ontology.
Role models are, therefore, an important tool in every ontology designer’s tool box.
Steimann concludes his oft-cited article on roles with the following explanation and
challenge [83]:

“The challenge of defining a suitable role concept is to integrate it into
existing modelling frameworks causing as little redefinition as necessary,
while capturing as much of its semantics as possible.”

– Friedrich Steimann [83, p. 104]

One can view the referred modeling framework as consisting of ontology languages,
in particular OWL and its underlying DL formalism. We argue that our approach of
having roles as first-class constructs, but without extending the underlying formalism,
is an initial answer to Steimann’s challenge for ontology languages.

Of course, more work is needed. It would be advantageous to perform a larger
case study of applying role models to re-factoring, modularizing, and partially reusing
a large ontology. Role modeling should be supported by ontology modeling tools that
can transform the role-based ontologies before applying reasoners. Furthermore, it will
be interesting to study other applications of role models in ontologies—for example,
where ontologies are used for describing situations in an action calculus [62].

6.A Appendices

This appendix contains the specification of the composition operators for the U-ISC–
based composition system that realizes role modeling for Manchester OWL.

6.A. APPENDICES 195

Role modeling composition operators
Below, the composition operators that correspond to the two active syntax constructs
ImportRoles and CanPlay can be found. The code makes use of the core composition
language (Java API) generated from the component models specification in Listing 6.6
(these Java classes have the namespace org.reuseware.air.language.owlm).

Discussion – active syntax constructs in fragtypes statement As promised, we
will here briefly discuss the reasoning for including CanPlay in the fragtypes con-
struct in the component model specification (cf. Listing 6.6).

To best support end-users and ontology engineers, it is desirable to have an intu-
itive syntax for working with role models. When extending an underlying language,
any additional syntactical constructs should blend well together with the syntax of the
underlying language. The syntax that needs to be taken into consideration for this ex-
ample is the syntax of Manchester OWL. The CanPlay construct—binding role types
to natural types—was decided to be a kind of Manchester OWL description. Exist-
ing Manchester OWL descriptions include SubClassOf and EquivalentWith. This
means that we can use CanPlay in the following manner:

Class: NaturalType CanPlay: RoleType (6.1)

That is, wherever we can have a SubClassOf construct, we can have a CanPlay
construct.

In addition, we decided that CanPlay should be an active syntax construct. This
means that when a CanPlay construct is encountered during composition, its corre-
sponding implementation method will be invoked on its arguments. The arguments in
this case is the role type name to which the class should be bound (in (6.1) RoleType
should be bound to NaturalType). What we actually want to do—to properly realize
the defined role-modeling semantics—is to transform the imported role model where
RoleType is defined (to define RoleType as subclass of NaturalType). And now
comes the crux. In the implementation of CanPlay, the only real visible scope of the
overall composing ontology (remember, composition is in progress) is the role type
name (provided as an argument to the implementing method). But this operator needs
to transform the composing ontology beyond this scope. How can this be dealt with?
To get around this, we provide two additional methods that are defined, not on the nor-
mal fragment types (e.g. INamedType), but on the composition system specific algebra
type (<Grammar>Algebra, cf. Section 3.3.2). In the case of Manchester OWL, the
grammar name is assumed to be Owlm, so the Manchester OWL specific algebra type
is named OwlmAlgebra. The two discussed methods defined on this type are:

OwlmAlgebra.getContainer()
OwlmAlgebra.getRoot()

(6.2)

However, the normal fragment types are subclasses of their corresponding algebra
type, so the getContainer() method from (6.2) can be used as follows:

INamedType nt = ...
ICanPlay play = (ICanPlay)((OwlmAlgebra)nt).getContainer()

(6.3)

This gives the possibility to step outside of the current fragment scope. In (6.3) we
went from a named type (here the name of a role type in a CanPlay construct) to the

196 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

surrounding CanPlay construct. The reason we want to do this is to find out how to
transform the composing ontology (in this case we eventually want to know the nat-
ural type that the role type is specified to be bound to, cf. the composition operator
implementation below). However, it order to be able to do this, the surrounding con-
struct type we are inspecting must be supported by the underlying component model.
Hence, in our case, we were forced to specify CanPlay in the fragtypes construct
in the component model specification. If this is done, we can do something like (6.3).
The getRoot() method inspects the top-most contextual construct – essentially the
root node of the current abstract syntax tree.

Below follows the actual composition operator specifications.

1 package org.reuseware.air.language.owlm.ops;
2

3 import org.reuseware.air.algebra.fragment.FragmentSystem;
4 import org.reuseware.air.coconut.IComplexOperator;
5 import org.reuseware.air.coconut.ReusewairComposer;
6 import org.reuseware.air.language.owlm.IClassDescription;
7 import org.reuseware.air.language.owlm.IClassExpression;
8 import org.reuseware.air.language.owlm.IDescription;
9 import org.reuseware.air.language.owlm.INamedType;

10 import org.reuseware.air.language.owlm.IObjectProperty;
11 import org.reuseware.air.language.owlm.IOntologyStatement;
12 import org.reuseware.air.language.owlm.IRoleDefinition;
13 import org.reuseware.air.language.owlm.IRoleModel;
14 import org.reuseware.air.language.owlm.algebra.IOwlmFragment;
15 import org.reuseware.air.language.owlm.algebra.OwlmAlgebra;
16 import org.reuseware.air.language.owlm.algebra.OwlmVisitor;
17 import org.reuseware.air.language.owlm.impl.IClassExpressionImpl;
18 import org.reuseware.air.language.owlm.impl.IDescriptionImpl;
19 import org.reuseware.air.language.owlm.impl.INamedTypeImpl;
20 import org.reuseware.air.language.owlm.impl.IOntologyStatementImpl;
21

22 import de.tudresden.reuseware.language.owlm.OwlmPackage;
23 import de.tudresden.reuseware.language.rowlm.RowlmPackage;
24

25 public class Composers implements IComplexOperator {
26

27 /∗∗
28 ∗ Required by IComplexOperator
29 ∗
30 ∗/
31 public void initialize() {
32 FragmentSystem.getInstance().setGrammar("rowlm");
33 }
34

35 /∗∗
36 ∗ Constructor
37 ∗
38 ∗/
39 public Composers() {
40 FragmentSystem.getInstance().setGrammar("rowlm");
41 }
42

43 /∗∗
44 ∗ Methods corresponding to composers should be annotated with
45 ∗ the following annotation: @ReusewairComposer, e.g.:
46 ∗
47 ∗ @ReusewairComposer("[Name of composer construct]")
48 ∗
49 ∗/

6.A. APPENDICES 197

50

51 /∗∗
52 ∗ ImportStmt Composer
53 ∗
54 ∗/
55 @ReusewairComposer("ImportRoles")
56 public static IOntologyStatement importRoles(IRoleModel roleModel) {
57

58 IOntologyStatement stmts = new IOntologyStatementImpl();
59 roleModel.accept(new OwlmVisitor(stmts) {
60 // introduce roles as classes
61 public boolean visit(IRoleDefinition role) {
62 // internal fragment
63 IOntologyStatement cls = IOntologyStatementImpl.load(
64 "Class: <<rolename>> SubClassOf: owl:Nothing");
65

66 role.accept(new OwlmVisitor(cls) {
67 // bind role type name
68 public boolean visit(INamedType name) {
69 if (name.isContainedIn(RowlmPackage.Literals.ROLE_DEFINITION))
70 getParamFragment().bind("rolename", name);
71 return true;
72 }
73 // transfer class descriptions
74 public boolean visit(final IDescription desc) {
75 if (desc.isContainedIn(RowlmPackage.Literals.ROLE_DEFINITION)) {
76 ((IOntologyStatement)getParamFragment()).accept(new OwlmVisitor() {
77 public boolean visit(IDescription d) {
78 // only extend once!
79 if (d.isLast())
80 d.prepend(desc);
81 return true;
82 }
83 });
84 }
85 return true;
86 }
87 });
88 // extend collector fragment with statement
89 getParamFragment().extend(cls);
90 return true;
91 }
92

93 public boolean visit(IObjectProperty prop) {
94 // extend collector fragment with object property statement
95 getParamFragment().extend(prop);
96 return true;
97 }
98 });
99 // return all statements

100 return stmts;
101 }
102

103 /∗∗
104 ∗ Plays Composer
105 ∗
106 ∗/
107 @ReusewairComposer("CanPlay")
108 public static IDescription canPlay(final INamedType namedType) {
109

110 // get the contexts
111 ICanPlay playContainer =

198 CHAPTER 6. ROLE MODELS FOR ONTOLOGIES

112 (ICanPlay)((OwlmAlgebra)namedType).getContainer();
113 IClassDescription clsContainer =
114 (IClassDescription)((OwlmAlgebra)playContainer).getContainer();
115

116 // natural type
117 INamedType naturalType = new INamedTypeImpl();
118 clsContainer.accept(new OwlmVisitor(naturalType) {
119

120 public boolean visit(INamedType clsName) {
121 if (clsName.isContainedIn(OwlmPackage.Literals.CLASS_DESCRIPTION)) {
122 getParamFragment().bind(clsName);
123 }
124 return true;
125 }
126 });
127

128 // make the natural type a superclass of the appropriate role type
129 // get the main ontology
130 IOwlmFragment ontology = ((OwlmAlgebra)namedType).getRoot();
131

132 ontology.accept(new OwlmVisitor(naturalType) {
133

134 public boolean visit(final IClassDescription cls) {
135

136 cls.accept(new OwlmVisitor(getParamFragment()) {
137

138 public boolean visit(INamedType clsName) {
139 if (clsName.isContainedIn(OwlmPackage.Literals.CLASS_DESCRIPTION)) {
140 if (clsName.toString().equals(namedType.toString())) {
141 // found the role type definition
142 cls.accept(new OwlmVisitor(getParamFragment()) {
143 public boolean visit(IClassExpression atom) {
144 // check if there is already a disjunction
145 if (atom.isContainedIn(OwlmPackage.Literals.DISJUNCTION)) {
146 // only extend once!
147 if (atom.toString().equals("owl:Nothing")) {
148 atom.extend(IClassExpressionImpl.load(
149 getParamFragment().toString()));
150 }
151 }
152 // if not we can create a disjunction
153 else if (atom.isType(OwlmPackage.Literals.ATOMIC_EXPRESSION)) {
154 if (atom.toString().equals("owl:Nothing"))
155 atom.bind(IClassExpressionImpl.load("(owl:Nothing or " +
156 getParamFragment() + ")"));
157 }
158 return true;
159 }
160 });
161 }
162 }
163 return true;
164 }
165 });
166 return true;
167 }
168 });
169 // return something logically benign
170 return IDescriptionImpl.load("SubClassOf: Top");
171 }
172 }

Part IV

Summary

199

7
Related Work

This chapter discusses related work. The by far most related works are GBM as demon-
strated in the Mjølner system [63], and ISC as realized by COMPOST [5]. Since we
build upon and extend these works we do not further discuss them here. As explained,
our approach is grammar-driven and relies on the existence of a base grammar. This is
well in line with the declaration of the need of a more disciplined study of grammar-
based software [54]:

– Grammarware. The authors of [54] call for a disciplined study of the role
of grammars in engineering, or for the creation of an engineering discipline
for “grammarware.” Grammars are defined in an inclusive manner and cover
context-free grammars, algebraic signatures and regular tree and graph gram-
mars. The focus is on grammars as structural descriptions. Hence, the de facto
interpretation of context-free grammars as sets of strings is not seen as valu-
able in this context since it does not emphasize the grammar’s role to serve as a
structural description. Interpreting a context-free grammar as the set of all valid
derivation trees, however, does preserve the grammatical structure and is pre-
ferred. Our approach is labeled meta-grammarware since it “supports concrete
grammar use cases by some means of metaprogramming.” [54, p. 12]. Tradi-
tional meta-grammarware is a program generator that takes a possibly enriched
grammar and produces an actual software component, e.g. a parser or a program
transformer. Our deployment of the meta-grammarware concept is to take an
enriched grammar (a base grammar and a component model specification) and
produce a fragment-based composition system.

While [54] enumerates different applications for grammar-based software, com-
position is not one of them. Nonetheless, our work clearly follows the spirit of
grammarware.

Metaprogramming and (syntactic) program transformations are wide and active re-
search areas, covering many different methods and approaches. Below we highlight
works that we deem closely related and interesting to mention for comparison reasons.

201

202 CHAPTER 7. RELATED WORK

We divide the presentation into three different categories: Software transformation or
generation techniques, Macro systems and Software composition approaches.

Software transformation or generation techniques. There are several interesting
works on extending host languages with DSLs (e.g. [12, 17, 45, 90]). The host lan-
guages are most often general-purpose languages, such as Java or Scala. There are
several benefits to be gained from such an embedment approach. For example, reuse
of existing functionality and constructs, existing language semantics can be exploited
for the embedded language and existing infrastructure can be reused. The argument is
that general-purpose languages already provide mechanisms for abstraction and mod-
eling, while domain-specific languages offer dedicated constructs for expressing spe-
cific and domain-related notions. Thus, integrating an already rich host language with
domain-specific constructs provides the required expressiveness and suitable syntax
for the problem at hand. This stands in stark contrast to our original goal: extend non-
embedded domain-specific languages, that lack more general constructs often found in
general-purpose languages, with domain-appropriate (possibly non–domain-specific)
abstractions.

– Jakarta Tool Suite (JTS). JTS is a tool suite for implementing DSLs [12]. It
consists of two main parts: Jak and Bali. Jak is an extensible superset of Java
that supports metaprogramming. Bali is a tool for composing grammars. A JTS
component consists of a Bali grammar file defining the syntax of a language
or extension, and a set of Jak files that define the semantics of the extension
as syntactic transformations. The Bali tool can generate a set of Java classes
corresponding to a specified grammar, that is, the AST structure of the grammar.
These classes are then manually sub-classed to provide the reduction semantics
of the Bali-specified extension. Using a predefined set of tree-traversal methods,
Jak can then traverse ASTs and perform needed transformations. There are no
restrictions on how the ASTs may be transformed.

In comparison to complex composition operators that define the semantics of our
language extensions, we do not implement the semantics via subclassing, and we
have a component model that defines restrictions on how ASTs can be traversed.
As regards Jak, adding support for metaprogramming with a new language is
a manual process. Constructs are supported for particular languages (mainly
Java) to build ASTs that are deployed during metaprogramming (e.g. AST_Exp,
AST_Stmt, AST_Class). In contrast, we do not provide such tailored constructs
to build ASTs (see concluding remarks in Section 3.6, p. 95).

– ableJ. The ableJ [90] framework can be used for extending a given host language
with domain-specific constructs. The work aims at a tightly integrated and final
composed language where problems can be formulated and solved with con-
structs most suitable for the job. Several language extensions can be added to
the host language and the idea is that programmers are able to select the required
extensions and have them automatically integrated. The host and extension lan-
guages are specified as attribute grammars in the Silver framework [96]. These
specifications allow for semantical analysis across the different involved lan-
guages. [90] uses Java as the host language. Programs of a composed language
are compiled to plain Java before byte compilation is performed by native Java
compilers.

203

– METABORG. The work presented in [17] describes a method of integrating
domain-specific languages in a host language. The approach is referred to as
METABORG and integrates several other tools, for example, the Syntax Def-
inition Formalism (SDF) [91] and Stratego/XT [92]. SDF is a formalism for
specifying grammars, while Stratego/XT is a program transformation formal-
ism. METABORG is based on the idea of extending a general-purpose host lan-
guage with domain-specific constructs, and defining assimilations that describe
how the extended constructs are mapped to the host language. The assimila-
tion phase implements the introduced domain abstractions in terms of existing
host language APIs, thus in a way bringing APIs to the language level. The
assimilated code is guaranteed to syntactically fit the point of assimilation. It
should be noted that the approach is not bound to a particular host language. The
METABORG approach is powerful and useful for embedding DSLs in different
host languages. METABORG itself is however a particular pattern of usage of
other tools, in particular the mentioned SDF and Stratego/XT. In comparing to
our work, Stratego/XT is of most interest and we discuss it below.

– Stratego/XT. Stratego/XT is a framework for implementing software transforma-
tion systems [92], used for example in [17] and [53]. Stratego consists of two
parts: Stratego and XT. Stratego is the core of Stratego/XT and is a language
for software transformation based on the paradigm of rewriting strategies. XT
is a set of tools for generating parsers and pretty-printers etc. A Stratego spec-
ification is a set of term rewriting rules. Each rule, when matched on a certain
input, produces the specified output. Stratego is very general and is a powerful
language for transforming different kinds of formal texts into other formats. It is
not limited to traditional executable programs. Stratego can for example be used
to transform Java code into Java documentation (using Java’s documentation an-
notations).

The main divergence from our composition approach is the lack of a component
model, or lack of transformational restrictions. We always employ a component
model that restricts how entities may be transformed. From a transformational
viewpoint, Stratego is a more general and powerful approach since it considers
arbitrary transformations. Stratego/XT is not a component or composition ap-
proach. While the entities being transformed can be fragments, they are in no
way components, and in particular lack any notion of interfaces.

– Template engines. A technique related to GBM is presented by template engines.
One of the more prominent template engines today is STRINGTEMPLATE [71].
In STRINGTEMPLATE, a template specification can be seen as an output gram-
mar. It is a logic-free specification of an output language. If the template is
‘context-free,’ it generates a context-free language. A template can contain
attributes and template applications. Attributes can in this sense be seen as
slots, which can be varied depending on the data being bound to them. The
main application area for STRINGTEMPLATE is code-generation and Web page
generation. For example, STRINGTEMPLATE allows for a clean separation be-
tween a Web page view, and the data populating the page. Template engines
such as STRINGTEMPLATE are however more than just “documents with holes.”
STRINGTEMPLATE supports, for example, side effect-free expressions, template
application to a list of data objects and nested template applications. There are
some main differences between templates and GBM (or U-GBM). First, the ap-

204 CHAPTER 7. RELATED WORK

plication areas are completely different and the approaches are developed for
different purposes. Second, U-GBM is grammar-driven and founded on the exis-
tence of a base grammar that is adapted for composition. A template on the other
hand is a manually specified output grammar for a specific language. Third, a
template is usually an exemplar for an output, parameterized with particular data,
and hence typically already contains many terminal symbols. A grammar used
in GBM is a grammar in the more traditional sense, according to which some ter-
minal strings are then later parsed. For a particular language (and its grammar),
it seems reasonable that a template engine such as STRINGTEMPLATE could be
used to achieve something similar to GBM, but somewhat awkwardly. Finally,
template engines only consider explicit interfaces, while we move on from GBM
to also consider implicit interfaces in the style of ISC.

Some of the above-mentioned approaches (in particular [17]) could in principle
be used to achieve similar results as we do in E-ISC–based composition systems.
However, they are general program transformation approaches, while we strive for
a fragment-based composition approach (where fragments are components with inter-
faces).

Macro systems. Macro systems are closely related to the approach presented in this
thesis. In particular, E-ISC–based language extensions can be seen as deploying a
macro system. An overview of several macro systems and their properties is given
in [15]. Macros allow to define new syntactical constructs that are transformed at pre-
compile time. A macro application is replaced by its, possibly parameterized, defini-
tion. This process is called macro expansion. An example macro definition in Clojure
is shown below:1

(defmacro times [x y] ‘(* ∼x ∼y))

Each location where the macro is called is replaced by the macro definition. For
example, (times 2 3) will be replaced by the expression (* 2 3) before it is eval-
uated. One main difference between macros and functions is that function arguments
are always evaluated before the function is called. This is however not the case with
macros.2 In the above example, the arguments 2 and 3 are not evaluated in the macro
call. In a more complex macro definition, this can allow the macro to transform its
arguments before returning an expression.

Macros can roughly be divided into lexical and syntactical [15]. Lexical macros
do not consider any underlying language, in particular any grammar, during expansion.
A problem in this case is that the macro expansion might result in a syntactically ill-
defined program. A well-known example of such a macro system is the one available
in the C programming language [50]. Syntactical marco systems on the other hand en-
sure that the result of a macro expansion is well-formed wrt. the underlying language,
and from here on we only consider such macros. Macros define syntactic abstractions
and operate on unevaluated code fragments, usually their AST representations. Hence,
a macro accepts AST arguments and generates a new AST that replaces the macro
invocation, at which point the evaluation/compilation of the program continues. One

1http://clojure.org
2One should avoid using macros where functions can be used.

http://clojure.org

205

approach to syntactical macros is presented in [15] and is closely related to our ap-
proach. While some macro systems only allow, and guarantee syntactical safety for,
macros in certain positions in programs, the authors of [15] state that:

“The ideal macro language would allow all nonterminals of the host lan-
guage grammar to be extended with arbitrary new productions, defining
new constructs that appear to the programmer as if they were part of the
original language.”

– Brabrand and Schwartzbach [15, p. 34]

This goal is closely related to our work on E-ISC (cf. Chapter 4), both wrt. provid-
ing new constructs appearing to be part of the original language, and allowing to work
on arbitrary positions in programs (hence, the reference to all nonterminals of the un-
derlying language grammar). An example macro definition from [15] is the following:

syntax <stmt> si (<expr E>) <stmt S> ::= {
if (<E>) <S>

}
(7.1)

where stmt and expr are nonterminals from the underlying language grammar.
The syntax ... ::= { ... } part is the concrete syntax for defining macros.
The above macro defines an alternative if-statement, called si. The definition says that
the si-construct takes two arguments of types expr and stmt, and returns a code frag-
ment of type stmt (indicated by <stmt> between syntax and si). What is interesting
in comparison to our approach is that this syntactical macro definition, with its types,
directly corresponds to an active syntax construct (cf. Section 4.3, p. 111), defined as
follows:

extends file:base.gr @ b as file:reuse.gr
Si ::= ex:b.expr, st:b.stmt .
Si <> b.stmt .
Si -> @Composer

(7.2)

In our case we only define the abstract syntax of the construct, but the idea is the
same. The macro definitions in [15] must start with a keyword (in this case si), while
we do not impose such restrictions (as long as it is possible to generate a parser for the
extended language). In the same way as (7.1), (7.2) defines a construct (Si) taking two
arguments of types expr and stmt and returning a stmt (determined by the “injection”
construct). Macros always correspond to active syntax. Hence, in our approach, Si is
a composer. The approaches differ much more in how the newly defined constructs
are interpreted. In (7.1) a fragment template of the base language is specified with
“holes” (the if-statement). Once the macro body template has been instantiated using
the passed arguments as values, the system has to check that the resulting fragment can
be parsed into a valid stmt. An equivalent macro interpretation would look something

206 CHAPTER 7. RELATED WORK

like this in our approach:

public static IStmt interpretSi(IExpr ex, IStmt st){
IStmt stmtFrag =

new IStmtImpl.load("if (<<e:expr>>)<<s:stmt>>");
stmtFrag.bind("e", ex);
stmtFrag.bind("s", st);
return stmtFrag;

}

(7.3)

As can be seen in (7.3), the macro expansion in this case consists of a set of explicit
bindings. In (7.1) the macro template instantiation is not type safe, but the marco
system then guarantees that the AST returned is of type stmt (checked during parsing
of the marco body before returning it). In (7.3) the parsing is done as a first step, while
the bindings of the parameters are guaranteed to be safe.

Clearly, the definitions in (7.2) and (7.3) are more verbose than the compact defi-
nition in (7.1). However, our approach has some benefits. One of them is that we have
a “programmable” macro definition language. The bodies of macro definitions are in
many approaches, including the one in [15], code templates (cf. (7.1)). At the other
extreme, the macro system in Lisp allows arbitrary transformations [33]. It is clear that
the expressiveness of the macro definition language is important. Our approach falls
between these two extremes:

code templates < REUSEWARE/AIR < arbitrary transformations

The reason is that we always have an underlying component model. The component
model specifies how the involved code fragments (their ASTs) may be transformed. By
changing the component model, the expressiveness of the macro definition language is
effectively changed. Hence, the macro definition language can be tailored depending
on the needs of the system. In addition, we use Java as the language to write the macro
definitions and as such do not give any termination guarantees as is done in [15] (the
usefulness of which is questioned in [17, p. 380]).

The system in [15] introduces metamorphisms for the purpose of allowing arbi-
trarily long macro parameter lists. In our approach this is also possible, on the macro
syntax definition side, but currently not on the macro implementation side (this is how-
ever only a technical limitation in the current realization, and not a conceptual one).

It should be added that we do not take static semantics of the macro expanded result
into account, and neither does [15]. The approach in [15] needs to be implemented for
each host language. In contrast, our approach is grammar-driven. With the help of
the REUSEWARE framework, our approach can quickly integrate with different base
languages. The work in [16] extends the work in [15] by allowing to easier work with
different languages. Special parsing algorithms are developed for this purpose (called
specificity parsing), while we rely on the existence of standard parsing libraries (such
as ANTLR [72]).

One important property of macro systems is that they are “hygienic.” A hygienic
macro system guarantees not to cause collisions with existing symbol definitions (iden-
tifiers). If this is not guaranteed, unexpected and unwanted results can follow from
macro expansions. This problem is usually solved by automatic renaming of symbol
names used within macro definitions [12]. Our system does not provide such guar-
antees, since we do not currently see the need for them in our approach. The reason

207

why this is not directly needed is that we take a more metaprogramming approach
where introduced identifiers (e.g. stmtFrag in (7.3)) reside in a different namespace
from the actual fragments returned as results of macro expansions. In contrast, in
e.g. [12, 15, 33] the macros are defined in a language closely related to the host lan-
guage, and code in the macro definitions will end up at the locations of the macro
invocations. That is, Lisp macros are defined in Lisp etc. We define, for example,
Xcerpt macros in Java. Even if we composed Java fragments, the macro definitions
would be specified on a meta-level. However, complications could arise from the use
of internal fragments (cf. (7.3)). Hygienic guarantees must in this case be specified for
each macro definition, or in a language-specific fragment composition library, since the
general system does not know about identifiers in Java, or symbols in Lisp etc.

Other works on macros exists, but are less relatable to our work. These include [11,
31, 94]. Maya, presented in [11], describes a powerful method for extending Java
syntax and reinterpreting its syntactic constructs. This system goes beyond traditional
macro systems by also allowing to reinterpret base constructs.

While macro system have ideas in common with our approach, they are different in
some fundamental ways. Our main aim is not merely to allow for the definition of new
syntactic sugar. Instead, we aim to extend languages with constructs that can be used
for component-based development, and specify their semantics using a controllable
mechanism. This involves three issues not usually discussed in macro systems:

1. We allow for the definition of ‘passive syntax,’ which can be used to define com-
ponents (whatever they may be) and their interfaces. Traditional macros only
define ‘active syntax.’

2. Extended language semantics is provided by the implementation of composi-
tion operators that correspond to active syntax. These composition operators are
implemented in a controlled way, as dictated by a component model. This com-
ponent model can quickly be changed, thus altering the implementation possibil-
ities. Traditional macro systems have predefined constructs for specifying macro
expansions, or it is left completely unrestricted.

3. For the realization of a component-oriented language extension, the overall ex-
tended language semantics can be realized by a set of collaborating composition
operators. Macros are traditionally specified independently.

Nonetheless, our composition framework can be used to realize a kind of macros,
although not as conveniently as some existing macro systems. The reason for this is
that the approaches have different goals.

Software composition approaches. Next we study software composition approaches
that relate to ours.

– Aspect-oriented techniques. Aspect-oriented programming (AOP) is a technique
that increases modularization capabilities by allowing for the separation of dif-
ferent intermingled concerns [51]. A concern captures a particular part of the
overall software realization. Such concerns can sometimes be sprinkled across
the source code base, or intermingled with other concerns in the code. By sepa-
rating out such concerns into cohesive units, they become understandable, main-
tainable and reusable. A concern formalized into an encapsulated unit is called
an aspect. Common examples are aspects for logging and authentication. The

208 CHAPTER 7. RELATED WORK

main demonstrator for AOP is the ASPECTJ system built for Java [2, 52, 61].
However, aspects are also investigated in other areas of software engineering, for
example software modeling and product-line engineering (see e.g. [40]). How-
ever, we shall mainly relate to ASPECTJ in the following.

An aspect is integrated into the base code through a process called weaving. The
implementation of the weaving is called crosscutting, since the weaving “cuts
across” multiple modules in a systematic way. There are two types of crosscut-
ting: static and dynamic. Dynamic crosscutting weaves new behavior into the
execution of a program, while static crosscutting modifies the static structure of
the system. The perhaps most important concept in AOP is the join point model.
The join point model specifies which points in a system are identifiable for mod-
ification. The join point model for ASPECTJ is predefined and exposes the most
important join points for Java. Locations in programs not supported by the join
point model are not accessible. Join points also carry contexts with them. For
example, a call to a join point in a method has access to the caller object, target
object and arguments of the method. ASPECTJ is tightly connected to Java and
contains many powerful constructs to support AOP on that platform.

Aßmann explains in [5] that ISC can be used to simulate AOP. ISC is a purely
static technique that operates on the structure of source code. Hence, any cross-
cutting performed in a ISC-based system will be static. An example of a static
crosscut is to weave an extra parameter into a method signature. However, many
dynamic crosscuts can be simulated using static crosscutting. For example, we
can alter the execution of a method by weaving in additional statements. Con-
sider the following weaving:

1 void method(int x) {
2

3 ...
4 }

weave into−−−−−−−→
1 void method(int x, int y) {
2 System.out.println("Msg: ");
3 ...
4 }

Strictly speaking, the weaving of the statement above is dynamic (since it trans-
forms the behavior). However, this weaving can be achieved statically by al-
tering the code structure. In general you are ill advised to think about dynamic
crosscuts as static, because it takes away from the abstraction that is provided
by the aspect (not illustrated in the above example). Nonetheless, we can per-
form useful and interesting crosscuts using a static method such as ISC. With the
universalization of ISC we make the following observations:

– In a grammar-driven approach we can quickly introduce aspect-oriented
notions to different languages. Admittedly not to the level of detail at which
a tailored system such as ASPECTJ operates. But enough concepts can
be introduced (or simulated) to perform a feasibility study for an aspect-
oriented approach for a particular language.

– Through component model specifications we can quickly alter the assumed
join point model. Hence, we can be allowed to more easily experiment with
different restrictions on the considered join point model. The join point
model is essentially defined by which implicit variation points are allowed.
The actual selection of join points is done by traversing ASTs. Weaving is
done by transforming ASTs using the ISC algebra.

209

– We do not automatically have context information for join points as in AS-
PECTJ. Instead the generic mechanisms provided in a U-ISC–based com-
position system must be deployed to traverse the involved ASTs to retrieve
the context information (this is demonstrated in Section 3.5.2, p. 91).

– Fragment composition libraries can be developed that make exposed join
points easier to select for end-users. This is also demonstrated in Sec-
tion 3.5.2, p. 91.

In conclusion, the AOP capabilities of ISC have been universalized along with
the universalization of ISC. This holds promise for interesting prototyping of
aspect-oriented ideas for different languages.

– Syntactic units. Our notion of fragment components is comparable to the notion
of syntactic units presented in [64]. Syntactic units are arranged in syntactic unit
trees that can be likened to composition programs. In this approach, so-called
extension spots can be defined as alternatives for any fragment of code derivable
from a nonterminal. Compared to our approach, there is no formalization of
language extensions which allows for tailored extension of a language (to only
allow the desired amount of variability). Furthermore, only explicit variation
points are considered. Syntactic unit trees are mainly envisioned to be used in
product-line engineering.

There are other software composition approaches that can be mentioned, for exam-
ple Hyperspaces [69], CaesarJ [48], ObjectTeams/J [43] and others. However, many of
these approaches are focused on separation of concern for object-oriented languages.
We believe that at least a subset of such approaches can be realized using our compo-
sition technology. However, these approaches are not really related work as concerns
our composition framework, hence we do not further comment on them here.

210 CHAPTER 7. RELATED WORK

8
Outlook

In this chapter we discuss two possible extensions to our composition framework, and
outline the initial investigations in these directions. First, in Section 8.1, we inves-
tigate the possibility of reusing component-oriented language extensions. Then, in
Section 8.2, we discuss the possibilities of improving composition safety for specific
composition systems.

8.1 Reusable language extensions
We are interested in component-oriented language extensions for DSLs, or languages in
general in need of modularization capabilities. Two examples that we have discussed in
this thesis are modules for RL, and modules for Xcerpt (cf. Section 4.5 and Chapter 5,
respectively). In this section we will discuss the possibility of reusing such common
language extensions—e.g. modules—for different languages.

Both these languages are rule-based in the style of logic-programming [68], and
programs consist of sets of rules. As we have discussed, languages like these can
benefit from support of reusable modules, which can also be defined as sets of rules.
Simple modules for each of the languages are shown in Listings 8.1 and 8.2. Both
modules are conceptually identical, but specified in their own languages. Both define
two workers named steve and marco, and each module defines a rule stating that
“workers are employees.”

By studying the modules in Listings 8.1 and 8.2—and recalling our previous dis-
cussions about modules for rule-based languages—we can draw the following basic
conclusions about what is needed to define modules:

MD1 Module Naming. Modules should be given names, or identifiers (sales is used
for this in Listings 8.1 and 8.2).

MD2 Module Definition. Modules collect sets of rules of the underlying language.

In order to make use of the modules in Listings 8.1 and 8.2 we would need to import
them:

211

212 CHAPTER 8. OUTLOOK

1 MODULE sales
2

3 employee(X) :-
4 worker(X).
5

6

7 worker(steve).
8 worker(marco).

LISTING 8.1: A RL module
(file:sales.mrl).

1 MODULE sales
2

3 CONSTRUCT employee [var X]
4 FROM worker [var X]
5 END
6

7 CONSTRUCT worker ["steve"] END
8 CONSTRUCT worker ["marco"] END

LISTING 8.2: An Xcerpt module
(file:sales.mx).

1 IMPORT file:sales.mrl
2

3 bonus(X, 100) :-
4 employee(X).
5

LISTING 8.3: Importing a RL module.

1 IMPORT file:sales.mx
2

3 CONSTRUCT bonus [var X, "100"]
4 FROM employee [var X]
5 END

LISTING 8.4: Importing an Xcerpt
module.

MI1 Module Import. It should be possible to import modules from programs or other
modules.

An example of how the modules in Listings 8.1 and 8.2 can be imported and used
is shown in Listings 8.3 and 8.4.

However, we recall that we have also been discussing important properties asso-
ciated with modules, primarily encapsulation. Hence, we would like to refine our
modules to the ones in Listings 8.5 and 8.6 (different syntax is used for the different
modules, but their meaning is the same). Now, only the “employees” are accessible
from the outside, and not the “workers” directly. Once we are able to encapsulate parts
of modules, that is, define interfaces, we must be able to make use of those interfaces.
For example, as shown in Listings 8.7 and 8.8, where the imported modules are appro-
priately queried. In addition, it might be necessary to provide data to a module for it to
be able to perform its service (cf. Section 5.4, but not further discussed here). We add
the following observations:

MD3 Module Encapsulation. It should be possible to encapsulate parts of modules

1 MODULE sales
2

3 @ employee(X) :-
4 worker(X).
5

6

7 worker(steve).
8 worker(marco).

LISTING 8.5: An encapsulated RL
module (file:sales2.mrl).

1 MODULE sales
2

3 CONSTRUCT public employee [var X]
4 FROM worker [var X]
5 END
6

7 CONSTRUCT worker ["steve"] END
8 CONSTRUCT worker ["marco"] END

LISTING 8.6: An encapsulated Xcerpt
module (file:sales2.mx).

8.1. REUSABLE LANGUAGE EXTENSIONS 213

1 IMPORT file:sales2.mrl AS sales
2

3 bonus(X, 100) :-
4 IN sales (employee(X)).
5

LISTING 8.7: Importing and querying
an encapsulated RL module.

1 IMPORT file:sales2.mx AS sales
2

3 CONSTRUCT bonus [var X, "100"]
4 FROM IN sales (employee [var X])
5 END

LISTING 8.8: Importing and querying an
encapsulated Xcerpt module.

Basic module

Module encapsulation

Module provision

Module Naming (MD1)

Module Definition (MD2)

Module Import (MI1)

Module Encapsulation (MD3)

(provided interfaces)
Module Querying (MI2)

Module Provision (MI3)Module Encapsulation (MD3)

(required interfaces)

In
c
re

a
s
e

d
 l
e

v
e

l
o

f
s
o

p
h

is
ti
c
a

ti
o

n

extends

extends

FIGURE 8.1: We can separate the module concept for rule languages into three levels
of sophistication: basic module, module encapsulation and module provision.

by defining provided and required interfaces that define how the modules can be
used.

MI2 Module Querying. It should be possible to make use of provided module inter-
faces, hence to query modules appropriately.

MI3 Module Provision. It should be possible to make use of required module inter-
faces, hence to provide module with data appropriately.

By studying the above module requirements, and recognizing the module definition
and deployment similarities between the two languages, we make two observations:
(1) There are different levels of module sophistication that can be deployed, and hence
different sophistication of the involved language extensions. (2) Due to the similarities
of how modules are defined and used for RL and Xcerpt, the “module extensions” can
be defined in an abstract manner and reused for both, and possibly other, languages.
We will elaborate on these observations below:

1. Module sophistication levels. For the module concept we have discussed, we
define three levels of module sophistication, illustrated in Figure 8.1:

(a) Basic module (MD1–2, MI1). The most basic module concept is to have
the possibility to collect a set of rules as a module (using some intuitive
syntax), give the module a name or identifier, and be able to import that
module from a program or another module.

214 CHAPTER 8. OUTLOOK

1 extends file:<basegrammar>.gr @ x as file:<reusegrammar>.gr .
2

3 % i) passive syntax
4 Module = moduleName:x.<identifier>, moduleStmt:x.<statement>* .
5 Module <> x.<unit> .
6

7 OutInterface = interface:x.<out-interface> .
8 OutInterface <> x.<out-interface> .
9

10 % ii) active syntax
11 ImportAs = moduleLocation:Module [@Location],
12 moduleName:x.<identifier> .
13 ImportAs -> @Composer .
14 ImportAs <> x.<statement> .
15

16 InModule = moduleName:x.<identifier>, interface:x.<reference> .
17 InModule -> @Composer .
18 InModule <> x.<reference> .

LISTING 8.9: Generic CmSL+ specification defining modules.

(b) Module encapsulation (MD1–3,MI1–2). Beyond simply being able to de-
fine modules as reusable units, we can consider the possibility of encapsu-
lating them. The most basic requirement is to be able to define provided
module interfaces, and means of making use of such interfaces.

(c) Module provision (MD1–3, MI1–3). We can also allow to define required
module interfaces, and enable constructs for providing the required data,
depending on the particular module’s functionality.1

2. Reusing module extensions. An interesting question to consider is if our dis-
cussed module extensions themselves can be defined as components – abstract
“extension components” that can be reused across base languages. That is, if we
can compose a “module extension” component with a base language, resulting
in an augmented language with a module concept. Such abstract extension com-
ponents could cover any of the module sophistication levels discussed above.
We analyze the prospects of this idea by separating the problem into Krueger’s
distinction between abstraction specification and realization [60]:

(a) Reusing abstraction specifications. To be able to specify the module ab-
straction we must define the suitable language extension. Consider the gen-
eralized CmSL+ specification in Listing 8.9. Each underlined and italicized
construct enclosed in < and > belongs to a metalanguage (or can be seen as
slots in a concrete setting). This specification corresponds to the “module
encapsulation” sophistication level (the fragtypes construct has intention-
ally been left out for sake of simplicity). Both RL and Xcerpt uses the exact
same specification to achieve module encapsulation. By parametrizing the
specification for a particular language (grammar), the proper component

1We have defined module provision as a more sophisticated concept than module querying. This decision
can be debated. In Xcerpt’s case we mainly use modules without goal rules. Module provision only makes
sense without module querying if the module in question contains at least one goal rule. To avoid goal rules
in modules and for sake of simplicity, we have settled on this layering scheme here.

8.1. REUSABLE LANGUAGE EXTENSIONS 215

1 public I<statement> simpleImport(IModule module)
2 {
3 I<statement> stmts = new I<statement>Impl();
4 module.accept(new <basegrammar>Visitor() {
5 public boolean visit(I<statement> stmt) {
6 // collect statements
7 getParamFragment().extend(stmt);
8 return true;
9 }

10 });
11 return stmts;
12 }

LISTING 8.10: Simple generic template for extracting statements from a module.

model specification can be achieved. Let us do this for Xcerpt:

basegrammar ←− xcerpt
reusegrammar ←− rxcerpt
identifier ←− Name
statement ←− XceptStatement
unit ←− XcerptProgram
out-interface ←− ConstructTerm
reference ←− QueryTerm

(8.1)

Performing the bindings in (8.1) wrt. Listing 8.9 essentially say the fol-
lowing: (i) Our base language is Xcerpt; (ii) Use the Name construct from
Xcerpt to represent module identifiers; (iii) Module statements are Xcerpt
statements; (iv) Modules are on equal terms to Xcerpt programs; (v) Pro-
vided interfaces in modules will be defined on construct terms; and (vi)
Query terms will be used when querying a module. By doing these substi-
tutions, we will have a valid CmSL+ component models specification for
Modular Xcerpt (at the “module encapsulation” level). The “basic module”
level is even simpler, while the “module provision” level only requires two
additional grammar definitions.

(b) Reusing abstraction realizations. But we also have to define the compo-
sition semantics for the parameterized CmSL+ specifications. Hence, we
need to write the composition operators. The question is if it is possible
to write reusable composition semantics. In the same way as the abstrac-
tion specifications can have different levels of sophistication, so can the
abstraction realizations. Essentially, the implementation of the abstraction
realization should correspond to the used abstraction specification.
In our approach, the required composition operators are implemented using
generated core composition languages (Java APIs) and Java as the underly-
ing platform. Since there are different core composition languages for RL
and Xcerpt, we need a way to abstract from the particulars of the Java types
provided by their APIs. This can for example be done by template pro-
gramming. The generalized Java method in Listing 8.10 represents the im-
plementation of the IMPORT construct for the “basic module” sophistication
level. It extracts all the module statements and returns them. An actual con-

216 CHAPTER 8. OUTLOOK

crete implementation of the composition operator can be attained by using,
for example, template engines such as STRINGTEMPLATE.2 Some form of
generic programming could also be used, but Java generics is not powerful
enough to solve this particular example.3 Other solutions are also possible.
For example, having abstract base classes implementing the generic solu-
tions, which can then be sub-classed to provide language-specific solutions.
But, such investigations are left as future work.
The higher the sophistication of the module abstraction specification, the
more tightly connected the realization becomes to the underlying language.
That is, the more complex the encapsulation requirements are, the more
tailored the solution becomes to a particular language. These reusable
language extensions can in an abstract way be likened to object-oriented
software frameworks. In lightweight framework use, many default settings
can be left in place. However, for more heavyweight deployment, more
settings have to be tailored for the particular usage scenario. This observa-
tion mirrors the usage of a reusable module extension: the “basic module”
level can be achieved by simple parameterization of generic artifacts (e.g.
Listings 8.9 and 8.10), while the “module provision” level requires a more
specialized deployment.

Summary
We make the following concluding remarks:

– Language extensions that are aimed for abstraction specifications can be seen as
components, and can hence be reused for different base languages.

– Generic component models, which include the abstraction specification structure
(cf. Listing 8.9), can be parameterized by base languages (grammars) to achieve
a particular component-oriented language extension.

– The implementation of the composition operators that realize the abstraction
specification under consideration can be tightly connected to a particular base
language, and is as such hard to get for free. However, for certain simple exten-
sions, large parts of the implementation can be generated.

– Composing language extensions in this way can be seen as a special niche in the
more general topic of language engineering or language composition.

– Investigating in more detail what component-oriented language extension “com-
ponents” are seems to be an interesting research topic for the future.

8.2 Abstraction-specific composition contracts
As mentioned in Chapter 2, our presented composition framework only guarantees
context-free syntactical correctness. That is, every final composition result is guaran-
teed to be a valid instance of the considered base language. Hence, we do not support

2http://www.stringtemplate.org/
3http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html

http://www.stringtemplate.org/
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html

8.2. ABSTRACTION-SPECIFIC COMPOSITION CONTRACTS 217

1 MODULE books
2

3 CONTRACT (Input: Books, Output: Titles, Typespec: file:contract.xts)
4

5 CONSTRUCT public titles [title [var X]]
6 FROM internal {{ title [var T] }}
7 END
8

9 CONSTRUCT internal [all title [var T]]
10 FROM public books [book [title [var T], author [var A]]]
11 END

LISTING 8.11: An Xcerpt module with a contract dictating its expected input data,
and promised output data.

context-sensitive syntactical correctness, that is, conditions specified in the static se-
mantics of a language. Context-sensitive syntactical correctness is dependent on the
particular language in which the fragments are written, which makes it hard to deal
with in a generic manner. However, what if we would like to support such guaran-
tees for a particular language and composition system? But, even if we want to take
static semantics for a particular language into account, from a fragment composition
perspective it is unclear when to perform the checks. This should ideally be done at ev-
ery low-level composition step (e.g. when executing bind() or extend()). However, the
considered static semantics might not be well-defined for every low-level composition
step. Performing checks on the final composition result is still possible, but without
adequate tracing mechanisms it is difficult to identify the origin of any errors.

With the introduction of E-ISC (cf. Chapter 4) we enabled abstractions that do not
have to be seen as ‘fragments.’ An example of such an abstraction is the ‘module’
for Xcerpt (cf. Chapter 5). If it is difficult to consider static semantics on the level
of fragments, is it possible to define other kinds of safety guarantees on these new
abstractions, e.g. Xcerpt modules? In other words, the question is if it possible to
define additional composition conditions on abstractions defined in an E-ISC–based
approach – on the level of extended languages semantics, rather than on the level of
their transformations. We have investigated this for Xcerpt modules, and present the
idea here.

The idea is to use existing typing technology for Xcerpt to ensure the correct def-
inition and deployment of Xcerpt modules. One such typing technology for Xcerpt is
presented in [95]. The type checker XCERPTT is based on the theoretical work pre-
sented in [95].4 We here give a brief understanding on how this typing technology can
be used. The reader is directed to [95] for more details on typing for Xcerpt. Let Q
represent a query, C a construct term in a construct rule, and G a construct term in a
goal rule. We denote C← Q a construct rule, G← Q a goal rule, and C← in[r,Q] a
construct rule querying the external resource r. Assume we have a type specification
T , an input type I of T and an output type O of T . Given the Xcerpt program:

G1← Q1, . . . ,Cn← in[r,Qn] (8.2)

the type checker can associate the type I with the resource r, and the output type O
with the construct term G1 and check if the program is type correct. If the type checker

4http://www.ida.liu.se/~artwi/XcerptT

http://www.ida.liu.se/~artwi/XcerptT

218 CHAPTER 8. OUTLOOK

says that the program is type correct, then this means the following: if the input data is
of type I, then the output is of type O.

We can deploy this typing technology to improve Modular Xcerpt composition ro-
bustness. This is done by associating a contract with each module. This can look like in
Listing 8.11, where the contract consists of a type specification (file:contract.xts),
and an input and output type from the type specification. The type specification is an
XML Schema or DTD (Document Type Definition) document (i.e. a description of the
valid structure of XML documents). In the context of modules, the type specification is
used to specify the structure of the expected module input and output data. The precise
input and output types are specified in the contract (in Listing 8.11, Books and Titles,
respectively). Notice that such a contract is specified on the level of the module, not on
the individual low-level composition steps that realize the module concept. Hence, on
the level of the extended language semantics, not on its compositional semantics.

Given a module with a contract (cf. Listing 8.11), we can use type verification to
check the correct definition and deployment of modules. This would be done in two
steps:

1. Verify module wrt. its contract. Assume the module m to be (for sake of simplic-
ity we assume that no goal rules are present in the module):

Ĉ1← Q1, . . . ,Cn← Q̂n (8.3)

Transform the module into:

G1← Q1, . . . ,Cn← in[r,Qn] (8.4)

where G1 is the same construct term as C1, and r is some dummy resource.
Given the module m’s contract type specification, the input type and output type,
XCERPTT can now check type correctness of the program in (8.4) in the same
way as for (8.2). If the type checker confirms type correctness for (8.4), we say
that the module m (cf. (8.3)) is valid wrt. its contract. This means that: if the
module input data is of the specified input type, then the module output data is of
the specified output type. If the type checker does not confirm type correctness,
there might be a problem with the module and the module developer could be
informed.

2. Verify module usage. Let us assume that module m with associated contract
(T, I,O) is valid wrt. its contract, where T is the type specification and I and O
are the input and output types, respectively. Now, suppose we have the following
program, where m(Q1) means that module m is being queried:

G1← m(Q1) (8.5)

If we have a type specification T ′, and a type O′ of T ′ for the output of (8.5), we
can check the usage of the module by first transforming the program into:

G1← in[r,Q1] (8.6)

If we then associate the type O of m’s contract with resource r, and O′ with
the result G1, we can have the type checker verify the type correctness of the

8.2. ABSTRACTION-SPECIFIC COMPOSITION CONTRACTS 219

program in (8.6). A positive answer from the type checker would mean that the
module usage in (8.5) is valid wrt. m. This says: under the assumption that the
data provided to the module m is of input type I of the module’s contract, the
result of the composed program is of the expected type (O′). We can use the
same method for checking module provisions (i.e. when data is provided to a
module). If we do not have the type specification for (8.5), we can have the type
checker infer the resulting type, which might give hints as to whether or not the
module was used correctly.

The above has described the basic idea of a method for providing and verifying
interface contracts on the level of E-ISC–specified abstractions (components). This
can be contrasted to the inability of providing any meaningful context-sensitive safety
conditions on the level of U-GBM–based, or U-ISC–based, fragments.

Summary
We make the following concluding remarks:

– It is important to be able to provide safety guarantees that go beyond context-free
syntactical correctness. Being able to do so will improve composition robust-
ness. It is not valuable to compose programs that cannot be executed or used as
expected.

– Specifying deployment conditions on E-ISC–based abstractions is a means to
improve the quality of composition results in our framework.

– Contracts on components, as demonstrated in Listing 8.11, cannot only help in
improving composition robustness, but can also be used to provide useful docu-
mentation for such components. For example, the contract in Listing 8.11 essen-
tially explains how the module is expected to be used.

– One drawback with the example presented above is the assumption that there
exists an external tool that can be deployed for checking the contracts. For other
languages, this might not be the case. Some other languages might also have
type systems, or other useful mechanisms, but not a stand-alone tool that can be
deployed in this manner.

– More research should be conducted to investigate what other possibilities exists
for improving composition robustness. Being able to provide improved guar-
antees on composition results is essential for the success for any composition
approach.

220 CHAPTER 8. OUTLOOK

9
Conclusions

We have in the course of this thesis presented a fragment-based composition frame-
work, and two instantiations of the same. The composition framework does not commit
to any particular underlying language, while the two instantiations pertain to declara-
tive languages often found on the Semantic Web. The two addressed languages are the
rule-based query language Xcerpt [77] and the DL-based ontology language OWL [73].
The framework itself builds upon previous work in the field of fragment-based compo-
sition, namely grammar-based modularization (GBM) [63] and invasive software com-
position (ISC) [5]. We have universalized these approaches, which means that we have
investigated and described how they can be applied to arbitrary context-free languages,
based on their grammars. Hence, our universalization results in a grammar-driven
composition approach. The concrete result of this is first universal GBM (U-GBM),
and then universal ISC (U-ISC) which builds upon and extends U-GBM. Then, on top
of these generic techniques, we defined embedded ISC (E-ISC) as an approach for
applying the composition technique for a particular category of domain-specific lan-
guages (DSLs), namely non-embedded DSLs (NE-DSLs). However, the approach is
not limited to such languages.

In summarizing the presented work, and putting it in perspective, we will relate it
to two existing, popular and common software engineering disciplines and approaches:
aspect-oriented programming (AOP) and DSL embedment techniques. However, we
will not make a comparison on a technical level, but rather on a motivational level. In
comparing with AOP techniques we will motivate and highlight the importance of the
need to move from U-ISC to E-ISC. And in comparing with DSL embedment tech-
niques we will distinguish our approach from other related approaches and see how we
identify a previously largely unaddressed problem.

1. AOP techniques. AOP approaches, such as ASPECTJ, allow to weave in modu-
larized code (the aspects) into a base program such that the overall system objec-
tive is realized. The aspects are typically written in an extended language (e.g. in
ASPECTJ, which is an extension of Java). The actual weaving can take place on
the source code level, byte code level, or binary code level. Whatever the choice,

221

222 CHAPTER 9. CONCLUSIONS

Aspect
Compiler (Weaver)

Aspect Code Woven Program Execution Platform

Aspect abstraction
not available

Aspect abstraction
available

FIGURE 9.1: Aspect systems can transform programs on different levels: source code,
byte code, or binary code level. Regardless of the particular level of transformation, it
is a transformed program that is being executed in the end.

these are really technical details managed by the aspect system, or its compiler.
In the end, it is a transformed program that is being executed. This is illustrated
in Figure 9.1. Being aware of these transformations can be a good way of under-
standing what happens under the hood when using as aspect system. However,
proponents of AOP techniques, in particular ASPECTJ, warn programmers from
thinking in terms of the transformations (see e.g. [61, p. 42]). The reason for this
is clear. The purpose of an aspect is to capture an abstraction. If programmers
think in terms of how that abstraction is technically realized (e.g. how the call
stack is modified), the abstraction is partly lost and no longer fulfills its purpose.
Instead, aspect programmers are encouraged to think on the level of aspects in
the language extension provided for them – to think in the extended language
semantics.

In U-ISC there are no extended languages to think in terms of, hence no extended
language semantics. There are only source code transformations to think about,
in direct contrast to what we have learned from systems such as ASPECTJ. In this
sense, there are no real abstractions. Fragments with slots, or boxes with hooks
in COMPOST, can, as previously explained, be seen as abstractions. But we
argue that such abstractions are not directly useful or desirable by programmers.
Hence, there is clearly a need for an approach such as E-ISC to be layered on top
of U-ISC.

2. DSL embedment techniques. There have been many approaches developed for
embedding DSLs into more general-purpose host languages (GPLs), e.g. Java.
Some of the approaches are [12, 17, 45, 90]. The motivation for such embed-
ments is clear and such works are important for providing developers with better,
more integrated and appropriate languages. The lack of appropriate and domain-
specific syntax is a problem for a wide range of GPLs. Acknowledging this,
some approaches do not commit to a particular host language (e.g. [17]).

The core problem we are addressing closely mirrors the above-described prob-
lem, but is fundamentally different: We essentially aim at embedding non–
domain-specific abstractions into DSLs, in particular NE-DSLs. This differenti-
ation is illustrated in Figure 9.2.

We are, to the best of our knowledge, not aware of other approaches that clearly
have identified this problem, in particular in a general setting.1 Individual lan-
guages always evolve and are extended with new features, for example with new

1An approach with a closely related goal is Hyperspace, but mainly aimed at augmenting GPLs with
different kinds of concern separations, such as aspects, roles, views etc. [69].

223

Embedded DSL

General-purpose
language (GPL)

General-purpose
language (GPL)

language embedment

Abstraction

Non-embedded
DSL (NE-DSL)

Non-embedded
DSL (NE-DSL)

abstraction extension

Existing approaches Our approach

FIGURE 9.2: There exist approaches for embedding DSLs in general-purpose lan-
guages. In contrast, we aim for extending DSLs with new abstractions.

abilities for component-based development. For example, there is a current inter-
est in modularization constructs for ontology languages (cf. Section 6.5, p. 192).
However, this problem is always addressed in isolation for each individual lan-
guage. Our goal is to provide a general method for achieving the same. In the
same way that [17] does not commit to a particular host language for DSL em-
bedment, we do not commit to a base language to be extended.

We believe that this thesis has identified a previously unidentified and unad-
dressed problem: the need for a general method and technique for enabling new
abstractions for a range of different languages.

In this thesis we worked in recognition of the above-described issues. We have
enabled the usage of ISC-based techniques that moves away from only having to con-
sider fragment transformations. We demonstrated two component-oriented language
extensions for two different DSLs, and showed how it is possible to allow for end-users
to think and design in terms of the extended language semantics:

1. We provided modules for Xcerpt (cf. Chapter 5) where query programmers can
work with modules and their provided and required interfaces.

2. We provided role models for (Manchester) OWL (cf. Chapter 6) where ontology
designers can work with role models and their role type interfaces.

For each of these extensions, their realization uses a well-designed union compo-
sition operator that respects the involved interfaces. For both cases, the involved com-
ponents (modules and role models) are merged with the base programs, but where the
merging is carefully defined in such a way that the interfaces are used and respected.
From a technical viewpoint, the merging is achieved via composition. By using a com-
position technique that reduces programs of the extended language into programs of the
base language, we are able to reuse existing tools for the extended languages. This is a
very important benefit of our approach. Hence, it is assumed that users never work on
composition results. The composition results are instead directly sent to the involved
tools (compilers, interpreters, reasoners etc.).

We believe that union composition operators are in particular applicable to the
declarative languages we have addressed. If this is the case, there is promise for further

224 CHAPTER 9. CONCLUSIONS

applications in the area of the Semantic Web, where declarative languages are promi-
nent.

We make the following concluding remarks:

– In contrast to program transformation techniques, a composition technique must
have a well-defined component model. One of the most important ideas pre-
sented by U-ISC and E-ISC–based techniques is the flexibility in how the un-
derlying component model can be changed. Being able to quickly modify the
component model allows for experimentation and prototyping. Hence, these
techniques can be used to experiment with composition and abstraction ideas
for different languages. Such opportunities should be further exploited in the
future. Targeting the composition framework for such scenarios is an interesting
way forward.

– A drawback with easily modifiable component models is that the approach can
be considered fragile. Not only does the implementation of composition opera-
tors or fragment composition libraries already depend on a base language which
might be subject to evolution, but also on the precise component model specifi-
cation. Hence, developers must take care not to invalidate large code bases that
have committed to a base language grammar and component model specification.
This fragility property of the composition framework might hint at its suitability
for experimentation, and not for stable composition system environments.

– We discussed a realistic composition system development process in Section 4.6
(p. 124). Our experience using our composition technology has taught us that
most of the development time goes into the “requirement phase.” That is, much
time is spent considering what abstraction is describable for a particular lan-
guage. With this knowledge, it should be clear that the work going into trying
to define reusable language extensions is indeed important future work. We dis-
cussed initial ideas in Section 8.1 (p. 211).

– It is clear that it is possible to develop more powerful component approaches for
DSLs by committing to a particular base language. That is, tailored solutions
are always more powerful. However, for such tailored solutions, there are costs
involved, e.g. tool construction. We believe that a lightweight approach is often
sufficient for increased programmer productivity. Such a lightweight approach,
using our framework, can be achieved at minimal cost.

– A limitation of our approach is that we only consider context-free languages.
This means that we do not give context-sensitive safety guarantees during com-
position. This makes it possible to compose programs that, even though syn-
tactically valid, will not work as expected. Some errors that can give cause to
unexpected problems can be easy to find, but there is currently no way of find-
ing them and informing the user. However, there are some ideas to address this
for E-ISC–based compositions (see Section 8.2, p. 216). Some context-sensitive
issues can be found by the underlying tools (e.g. an interpreter), but such errors
will be found too late and it is hard to provide useful error messages to the users.
Better error handling for fragment-based compositions is certainly an important
future research task.

– In Section 2 we defined our safety conditions wrt. the languages that CFGs
generate. This was quite a natural choice since this interpretation of CFGs is

225

the de facto standard. However, other approaches are certainly possible. One
possibility is to instead define the safety conditions wrt. derivation trees. Such
derivation trees retain the underlying grammar structure. This might lead to
more practical approaches for statically calculating grammar types and verifying
safety conditions. However, this has currently not been investigated. Different
formalizations of the composition techniques could be valuable to have. This
should be considered part of future work.

226 CHAPTER 9. CONCLUSIONS

Bibliography

[1] Extended BNF. ISO Standard, 13 August 2001. Available at http://www.iso.
org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26153.

[2] The AspectJ Project, October 2008. Available at http://www.eclipse.org/
aspectj/.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[4] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling.
Prentice Hall Professional Technical Reference, 1972.

[5] U. Aßmann. Invasive Software Composition. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

[6] U. Aßmann, S. Berger, F. Bry, T. Furche, J. Henriksson, and J. Johannes. Modular
Web Queries—From Rules to Stores. 3rd International Workshop On Scalable
Semantic Web Knowledge Base Systems (SSWS’07). Vilamoura, Algarve, Portu-
gal, Nov 27, 2007, 4806/2007:1165–1175, 2007.

[7] U. Aßmann, S. Zschaler, and G. Wagner. Ontologies, Meta-Models, and the
Model-Driven Paradigm. Springer, 2006.

[8] F. Baader, D. Calvanese, and D. McGuiness(et.al.), editors. The Description
Logic Handbook. Cambridge University Press, 2003.

[9] C. W. Bachman and M. Daya. The role concept in data models. In VLDB ’1977:
Proceedings of the third international conference on Very large data bases, pages
464–476. VLDB Endowment, 1977.

[10] J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query
Languages: A Survey. Number 3564, pages 35–133. Springer-Verlag, 2005.

[11] J. Baker and W. C. Hsieh. Maya: multiple-dispatch syntax extension in Java.
In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation, pages 270–281, New York, NY, USA,
2002. ACM.

[12] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for implementing domain-
specific languages. In In Proceedings of the 5th International Conference on
Software Reuse, pages 143–153. IEEE, 1998.

[13] S. Boag, D. Chamberlin, et al. XQuery 1.0: An XML Query Language. W3C
Recommendation, 23 January 2007. Available at http://www.w3.org/TR/
xquery/.

227

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26153
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26153
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

228 BIBLIOGRAPHY

[14] D. Box and A. Hejlsberg. LINQ: .NET Language-Integrated Query, 2008. Avail-
able at http://msdn.microsoft.com/en-us/library/bb308959.aspx. Ac-
cessed 1 October 2008.

[15] C. Brabrand and M. I. Schwartzbach. Growing Languages with Metamorphic
Syntax Macros. In Proceedings ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, PEPM’02, pages 31–40. ACM,
2002.

[16] C. Brabrand and M. I. Schwartzbach. The metafront system: Safe and extensi-
ble parsing and transformation. Science of Computer Programming, 68(1):2–20,
2007.

[17] M. Bravenboer and E. Visser. Concrete Syntax for Objects: Domain-Specific
Language Embedding and Assimilation without Restrictions. In OOPSLA ’04:
Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 365–383, New York,
NY, USA, 2004. ACM Press.

[18] D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, 10 February 2004. Available at http://www.
w3.org/TR/rdf-schema/.

[19] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular logic program-
ming. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(4):1361–1398, July 1994.

[20] F. Bry, T. Furche, and S. Schaffert. Initial Draft of a Language Syntax. Technical
Report IST506779/Munich/I4-D6/D/PU/a1, Institute for Informatics, University
of Munich, 2006.

[21] F. Bry and S. Schaffert. A Gentle Introduction into Xcerpt, a Rule-based Query
and Transformation Language for XML. In Proceedings of International Work-
shop on Rule Markup Languages for Business Rules on the Semantic Web, Sar-
dinia, Italy (14th June 2002), 2002.

[22] F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Princi-
ples, Examples, and Semantics. In Revised Papers from the NODe 2002 Web
and Database-Related Workshops on Web, Web-Services, and Database Systems,
pages 295–310, London, UK, 2003. Springer-Verlag.

[23] J. Cardoso. The Semantic Web Vision: Where Are We? Intelligent Systems,
22(5):84–88, 2007.

[24] J. Clark. XSL transformations (XSLT). WWW Page, November 1999. Available
at http://www.w3.org/TR/xslt.

[25] B. Cuenca Grau, Y. Kazakov, I. Horrocks, and U. Sattler. A Logical Framework
for Modular Integration of Ontologies. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), pages 298–303, 2007.

[26] B. Cuenca-Grau and B. Motik. OWL 2 Web Ontology Language: Model-
theoretic semantics. W3C Working Draft, 2008. Available at http://www.w3.
org/TR/owl2-semantics/.

http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/owl2-semantics/
http://www.w3.org/TR/owl2-semantics/

BIBLIOGRAPHY 229

[27] F. DeRemer and H. Kron. Programming-in-the large versus programming-in-the-
small. In Proceedings of the international conference on Reliable software, pages
114–121, New York, NY, USA, 1975. ACM.

[28] A. Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

[29] E. Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and Prop-
agating, Dynamic Inheritance. PhD thesis, Department of Computer Science,
University of Aarhus, Århus, Denmark, 1999.

[30] R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is Quantification
and Obliviousness. Technical Report 01.12, 2000.

[31] M. Flatt. Composable and compilable macros – you want it when? SIGPLAN
Not., 37(9):72–83, 2002.

[32] M. Fowler. MF Bliki: DomainSpecificLanguage. WWW Page, July 2008. Avail-
able at http://www.martinfowler.com/bliki/DomainSpecificLanguage.
html. Accessed 2 July 2008.

[33] P. Graham. On LISP: Advanced Techniques for Common LISP. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1993.

[34] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and Web On-
tologies. In P. Doherty, J. Mylopoulos, and C. A. Welty, editors, Proceedings
of KR2006: the 20th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Lake District, UK, June 2–5, 2006, pages 198–209.
AAAI Press, 2006.

[35] T. Gruber. What is an ontology? WWW Page, 1992. Available at http:
//www-ksl.stanford.edu/kst/what-is-an-ontology.html. Accessed 28
September 2008.

[36] N. Guarino. Concepts, attributes and arbitrary relations - Some linguistic and
ontological criteria for structuring knowledge bases. Data and Knowledge Engi-
neering, 8(3):249–261, 1992.

[37] N. Guarino and C. A. Welty. Evaluating ontological decisions with OntoClean.
Communications of the ACM, 45(2):61–65, 2002.

[38] G. Guizzardi. Ontological Foundations for Structural Conceptual Models. PhD
thesis, Universiteit Twente, Netherlands, 2005.

[39] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. On Language-
Independent Model Modularisation. Transactions on Aspect-Oriented Develop-
ment, Special Issue on Aspects and MDE, 2008. To Appear.

[40] F. Heidenreich, J. Johannes, and S. Zschaler. Aspect Orientation for Your Lan-
guage of Choice. In In Proceedings of Workshop on Aspect-Oriented Modeling
at MoDELS 2007, 2007.

[41] J. Henriksson, M. Pradel, S. Zschaler, and J. Z. Pan. Ontology Design and Reuse
with Conceptual Roles. In The Second International Conference on Web Reason-
ing and Rule Systems (RR’08) (to appear), Lecture Notes in Computer Science.
Springer, 2008.

http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

230 BIBLIOGRAPHY

[42] S. Herrmann. Object Teams: Improving modularity for crosscutting collabora-
tions. In In Proceedings of Net Object Days 2002, pages 248–264. Springer,
2002.

[43] S. Herrmann. Object Teams: Improving Modularity for Crosscutting Collabora-
tions. In NODe ’02: Revised Papers from the International Conference NetOb-
jectDays on Objects, Components, Architectures, Services, and Applications for
a Networked World, pages 248–264, London, UK, 2003. Springer-Verlag.

[44] S. Herrmann. A Precise Model for Contextual Roles: The Programming Lan-
guage ObjectTeams/Java. Applied Ontology, 2(2):181–207, 2007.

[45] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic Embedding
of DSLs. In To appear in Proceedings of the 7th International Conference on
Generative Programming and Component Engineering (GPCE’08). ACM Press,
2008.

[46] M. Horridge and P. F. Patel-Schneider. Manchester Syntax for OWL 1.1. In
International Workshop OWL: Experiences and Directions (OWLED ’08), 2008.

[47] P. Hudak. Building domain-specific embedded languages. ACM Computing Sur-
veys, 28(4es):196–196, 1996.

[48] M. M. Ivica Aracic, Vaidas Gasiunas and K. Ostermann. Overview of CaesarJ. In
Transactions on Aspect-Oriented Software Development I., volume 3880, pages
135–173. Springer, February 2006.

[49] J. Johannes. Complex Composition Operators for Semantic Web Languages.
Diploma Thesis, 2006.

[50] B. W. Kernighan and D. M. Ritchie. The C Programming Language, 1st edition.
Prentice Hall, 1978.

[51] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In M. Akşit and S. Matsuoka, ed-
itors, Proceedings European Conference on Object-Oriented Programming, vol-
ume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York,
1997.

[52] I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams, Indianapolis, IN,
USA, 2002.

[53] P. Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering Methodology, 2(2):176–201, 1993.

[54] P. Klint, R. Lämmel, and C. Verhoef. Toward an Engineering Discipline
for Grammarware. ACM Transactions on Software Engineering Methodology,
14(3):331–380, 2005.

[55] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/rdf-concepts/.

[56] D. C. Kozen. Automata and Computability. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1997.

http://www.w3.org/TR/rdf-concepts/

BIBLIOGRAPHY 231

[57] B. B. Kristensen, O. L. Madsen, and B. M. ller Pedersen. The when, why and
why not of the BETA programming language. In HOPL III: Proceedings of the
third ACM SIGPLAN conference on History of programming languages, pages
10–1–10–57, New York, NY, USA, 2007. ACM.

[58] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Abstrac-
tion mechanisms in the BETA programming language. In POPL ’83: Proceedings
of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 285–298, New York, NY, USA, 1983. ACM.

[59] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Syn-
tax Directed Program Modularization. In Interactive Computing Systems (ed. P.
Degano, E.Sandewall), 1983.

[60] C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183, 1992.

[61] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning Publications Co., Greenwich, CT, USA, 2003.

[62] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Reasoning about Actions using De-
scription Logics with general TBoxes. In European Conference on Logics in
Artificial Intelligence (JELIA ’06), pages 266–279. Springer, 2006.

[63] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-Oriented Program-
ming in the BETA Programming Language. Addison-Wesley, June 1993.

[64] M. Majkut and B. Franczyk. Generation of Implementations for the Model Driven
Architecture with Syntactic Unit Trees. In Proceedings of 2nd OOPSLA Work-
shop on Generative Techniques in the context of Model Driven Architecture, Oc-
tober 2003.

[65] B. Meyer. Introduction to the Theory of Programming Languages. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

[66] O. Nierstrasz and T. D. Meijler. Requirements for a Composition Language. In
ECOOP ’94: Selected papers from the ECOOP’94 Workshop on Models and
Languages for Coordination of Parallelism and Distribution, Object-Based Mod-
els and Languages for Concurrent Systems, pages 147–161, London, UK, 1995.
Springer-Verlag.

[67] I. Niles and A. Pease. Towards a standard upper ontology. In International confer-
ence on Formal Ontology in Information Systems (FOIS ’01), pages 2–9. ACM,
2001.

[68] U. Nilsson and J. Małuszyński. Logic, Programming, and PROLOG. John Wiley
& Sons, Inc., New York, NY, USA, 1995.

[69] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hy-
perspace approach. In In Proceedings of the Symposium on Software Architec-
tures and Component Technology: The State of the Art in Software Development.
Kluwer, 2000.

[70] J. Z. Pan, L. Serafini, and Y. Zhao. Semantic Import: An Approach for Partial
Ontology Reuse. In Proc. of the ISWC2006 Workshop on Modular Ontologies
(WoMO), 2006.

232 BIBLIOGRAPHY

[71] T. Parr. Enforcing strict model-view separation in template engines. In WWW
’04: Proceedings of the 13th international conference on World Wide Web, pages
224–233, New York, NY, USA, 2004. ACM.

[72] T. Parr. ANTLR — ANother Tool for Language Recognition — Parser Generator.
WWW Page, October 2008. Available at http://www.antlr.org.

[73] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL web ontology language
semantics and abstract syntax. W3C Recommendation, 10 February 2004. Avail-
able at http://www.w3.org/TR/owl-semantics/.

[74] M. Pradel, J. Henriksson, and U. Aßmann. A Good Role Model for Ontologies:
Collaborations. International Workshop on Semantic-Based Software Develop-
ment. Co-located with OOPSLA’07, Montreal, Canada, Oct 22, 2007, 2007.

[75] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Can-
didate recommendation, W3C, 2007.

[76] T. Reenskaug, P. Wold, and O. Lehne. Working with Objects, The OOram Soft-
ware Engineering Method. Manning Publications Co, 1996.

[77] S. Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the
Web. PhD thesis, Institute of Computer Science, LMU, Munich, 2004.

[78] S. Schaffert, F. Bry, and T. Fuche. Simulation Unification. Technical Report
IST506779/Munich/I4-D5/D/PU/a1, Institute for Informatics, University of Mu-
nich, 2005.

[79] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable Units
of Behaviour. In Proceedings of 17th European Conference on Object-Oriented
Programming (ECOOP), Darmstadt, Germany, July 21-25, 2003, Lecture Notes
in Computer Science, pages 248–274. Springer, 2003.

[80] Y. Smaragdakis and D. S. Batory. Mixin layers: an object-oriented implementa-
tion technique for refinements and collaboration-based designs. Software Engi-
neering and Methodology, 11(2):215–255, 2002.

[81] J. Sowa. Conceptual structures: information processing in mind and machine.
Addison-Wesley Longman Publishing Co., Inc., 1984.

[82] J. Sowa. Using a lexicon of canonical graphs in a semantic interpreter, pages
113–137. Cambridge University Press, New York, NY, USA, 1988.

[83] F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data and Knowledge Engineering, 35(1):83–106, 2000.

[84] F. Steimann. The role data model revisited. Applied Ontology, 2(2):89–103, 2007.

[85] E. Sunagawa, K. Kozaki, Y. Kitamura, and R. Mizoguchi. Role Organization
Model in Hozo. In International Conference on Managing Knowledge in a World
of Networks (EKAW), pages 67–81. Springer, 2006.

[86] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, NY, 1998.

http://www.antlr.org
http://www.w3.org/TR/owl-semantics/

BIBLIOGRAPHY 233

[87] The COMPOST Consortium. The COMPOST system. WWW Page. Available
at http://www.the-compost-system.org.

[88] The Gene Ontology Consortium. The Gene Ontology. WWW Page. Available at
http://www.geneontology.org/.

[89] The Gene Ontology Consortium. Gene ontology: tool for the unification of biol-
ogy. Nature Genetics, 25(1):25–29, May 2000.

[90] E. Van Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin. Attribute Grammar-
based Language Extensions for Java. In European Conference on Object Oriented
Programming (ECOOP), Lecture Notes in Computer Science. Springer Verlag,
July 2007.

[91] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, September 1997.

[92] E. Visser. Program Transformation with Stratego/XT: Rules, Strategies, Tools,
and Systems in Stratego/XT 0.9. In Domain-Specific Program Generation, vol-
ume Volume 3016/2004, pages 216–238. Springer Berlin / Heidelberg, 2004.

[93] P. Wegner. Varieties of Reusability. In Proceedings of Workshop on Reusability
in Programming, pages 30–44, September 1983.

[94] D. Weise and R. Crew. Programmable syntax macros. In PLDI ’93: Proceedings
of the ACM SIGPLAN 1993 conference on Programming language design and
implementation, pages 156–165, New York, NY, USA, 1993. ACM.

[95] A. Wilk. Types for XML with Application to Xcerpt. PhD thesis, Linköping
University, Sweden, 2008.

[96] E. V. Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an Extensible Attribute
Grammar System. In Proceedings of LDTA 2007, 7th Workshop on Language
Descriptions, Tools, and Analysis, 2007.

http://www.the-compost-system.org
http://www.geneontology.org/

	I Overview
	Introduction
	Problem: Component-based development for DSLs
	Thesis Contributions
	Composition Technology
	Evaluation 1: Modules for Xcerpt
	Evaluation 2: Role Models for Ontologies

	Thesis scope

	II Composition Framework
	Universal Grammar-Based Modularization (U-GBM)
	Background
	Context-free grammars and languages
	Grammar-Based Modularization (GBM)

	Universal Grammar-Based Modularization
	Grammar adaptation for GBM
	Generic fragment language -- FLABS

	Grammar types and safe slot applications
	General safeness conditions
	User-restricted slot applications
	Syntax-restricted slot applications

	Summary

	Universal Invasive Software Composition (U-ISC)
	Background
	Invasive Software Composition (ISC)
	Understanding composition: composition systems

	Universal Invasive Software Composition
	Grammar adaptation for ISC
	Aligned composition algebra
	Generic composition language for ISC

	Developing U-ISC--based composition systems
	Component model specification language (CmSL)
	Component model generation from CmSL specifications

	Tooling -- Reuseware/Air
	Examples: U-ISC--based composition systems
	Composition system for simple rule language
	Composition system for Java-

	Summary
	Appendices

	Embedded Invasive Software Composition (E-ISC)
	Taming Invasive Software Composition
	Domain appropriateness
	Domain-appropriate components
	Domain-appropriate composition statements

	Domain-appropriate composition operators
	Developing E-ISC--based composition systems
	Extended component model specification language (CmSL+)
	Development process

	Example: E-ISC--based composition system
	Summary and Discussion
	Appendices

	III Applications / Evaluation
	Query Components: Modules for Xcerpt
	Background: Web query language Xcerpt
	Use cases---Modular Querying
	Encapsulating and reusing schema information
	Encapsulating and reusing data processing services

	Requirements and constructs for Modular Xcerpt
	Examples: Modular Xcerpt
	Ontology reasoning
	Web Music Library

	Composing Modular Xcerpt programs
	Refined module encapsulation

	Framework Evaluation: Composition System
	Related Work
	Summary
	Appendices

	Ontology Components: Role Models for Ontologies
	Background
	Role Modeling
	Description Logics and OWL

	Role Modeling for Ontology Languages
	Ontology Modularization with Role Models
	Methodology
	Role Models vs. Base Ontologies

	Semantics of Ontological Role Modeling
	Formalization of Role-Based Ontologies
	Conjunctive Role Modeling Semantics
	Disjunctive Role Modeling Semantics

	Framework Evaluation: Composition System
	Related Work
	Summary and Outlook
	Appendices

	IV Summary
	Related Work
	Outlook
	Reusable language extensions
	Abstraction-specific composition contracts

	Conclusions

