4,959 research outputs found

    Annotated revision programs

    Get PDF
    Revision programming is a formalism to describe and enforce updates of belief sets and databases. That formalism was extended by Fitting who assigned annotations to revision atoms. Annotations provide a way to quantify the confidence (probability) that a revision atom holds. The main goal of our paper is to reexamine the work of Fitting, argue that his semantics does not always provide results consistent with intuition, and to propose an alternative treatment of annotated revision programs. Our approach differs from that proposed by Fitting in two key aspects: we change the notion of a model of a program and we change the notion of a justified revision. We show that under this new approach fundamental properties of justified revisions of standard revision programs extend to the annotated case.Comment: 30 pages, to appear in Artificial Intelligence Journa

    The Contextual Character of Modal Interpretations of Quantum Mechanics

    Get PDF
    In this article we discuss the contextual character of quantum mechanics in the framework of modal interpretations. We investigate its historical origin and relate contemporary modal interpretations to those proposed by M. Born and W. Heisenberg. We present then a general characterization of what we consider to be a modal interpretation. Following previous papers in which we have introduced modalities in the Kochen-Specker theorem, we investigate the consequences of these theorems in relation to the modal interpretations of quantum mechanics.Comment: 21 pages, no figures, preprint submitted to SHPM

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page

    A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

    Full text link
    FASILL (acronym of "Fuzzy Aggregators and Similarity Into a Logic Language") is a fuzzy logic programming language with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity. FASILL integrates and extends features coming from MALP (Multi-Adjoint Logic Programming, a fuzzy logic language with explicitly annotated rules) and Bousi~Prolog (which uses a weak unification algorithm and is well suited for flexible query answering). Hence, it properly manages similarity and truth degrees in a single framework combining the expressive benefits of both languages. This paper presents the main features and implementations details of FASILL. Along the paper we describe its syntax and operational semantics and we give clues of the implementation of the lattice module and the similarity module, two of the main building blocks of the new programming environment which enriches the FLOPER system developed in our research group.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    Generalized probabilities in statistical theories

    Get PDF
    In this review article we present different formal frameworks for the description of generalized probabilities in statistical theories. We discuss the particular cases of probabilities appearing in classical and quantum mechanics, possible generalizations of the approaches of A. N. Kolmogorov and R. T. Cox to non-commutative models, and the approach to generalized probabilities based on convex sets

    Many worlds and modality in the interpretation of quantum mechanics: an algebraic approach

    Get PDF
    Many worlds interpretations (MWI) of quantum mechanics avoid the measurement problem by considering every term in the quantum superposition as actual. A seemingly opposed solution is proposed by modal interpretations (MI) which state that quantum mechanics does not provide an account of what `actually is the case', but rather deals with what `might be the case', i.e. with possibilities. In this paper we provide an algebraic framework which allows us to analyze in depth the modal aspects of MWI. Within our general formal scheme we also provide a formal comparison between MWI and MI, in particular, we provide a formal understanding of why --even though both interpretations share the same formal structure-- MI fall pray of Kochen-Specker (KS) type contradictions while MWI escape them.Comment: submitted to the Journal of Mathematical Physic
    • …
    corecore