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Abstract

Revision programming is a formalism to describe and enforce updates of belief sets and databases.
That formalism was extended by Fitting who assigned annotations to revision atoms. Annotations
provide a way to quantify the confidence (probability) that a revision atom holds. The main goal of
our paper is to reexamine the work of Fitting, argue that his semantics does not always provide results
consistent with intuition, and to propose an alternative treatment of annotated revision programs. Our
approach differs from that proposed by Fitting in two key aspects: we change the notion of a model
of a program and we change the notion of a justified revision. We show that under this new approach
fundamental properties of justified revisions of standard revision programs extend to the annotated
case. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Revision programming is a formalism to specify and enforce constraints on databases,
belief sets and, more generally, on arbitrary sets. Revision programming was introduced
and studied in [10,11]. The formalism was shown to be closely related to logic
programming with stable model semantics [11,13]. In [9], a simple correspondence of
revision programming with the general logic programming system of Lifschitz and Woo
[8] was discovered. Roots of another recent formalism of dynamic logic programming [1]
can also be traced back to revision programming.
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(Unannotated) revision rules come in two forms ofin-rules andout-rules:

in(a) ← in(a1), . . . , in(am),out(b1), . . . ,out(bn) (1)

and

out(a) ← in(a1), . . . , in(am),out(b1), . . . ,out(bn). (2)

Expressionsin(a) andout(a) are calledrevision atoms. Informally, the atomin(a) stands
for “a is in the current set” andout(a) stands for “a is not in the current set”. The rules (1)
and (2) have the following interpretation: whenever all elementsak, 1� k � m, belong to
the current set (database, belief set) and none of the elementsbl , 1� l � n, belongs to the
current set then, in the case of rule (1), the itema should be in the revised set, and in the
case of rule (2),a should not be in the revised set.

Let us illustrate the use of the revision rules by an example.

Example 1.1. Let programP consist of the following two rules.

in(b) ← out(c) and in(c) ← in(a),out(b).

When the current set (initial database) has only atoma in it, there are two intended
revisions. One of them consists ofa andb. The other one consists ofa andc. If, however,
the initial database is empty, there is only one intended revision consisting of atomb.

To provide a precise semantics torevision programs (collections of revision rules), the
concept of ajustified revision was introduced in [10,11]. Informally, given an initial set
BI and a revision programP , a justified revision ofBI with respect toP (or, simply, a
P -justified revision ofBI ) is obtained fromBI by adding some elements toBI and by
removing some other elements fromBI so that each change is, in a certain sense, justified.
The intended revisions discussed in Example 1.1 areP -justified revisions.

The formalism of revision programs was extended by Fitting [4] to the case when
revision atoms occurring in rules are assignedannotations. Such annotation can be
interpreted as the degree of confidence that a revision atom holds. For instance, an
annotated atom(in(a):0.2) can be regarded as the statement thata is in the set with the
probability 0.2. Thus, annotated atoms and annotated revision programs can be used to
model situations when membership status of atoms (whether they are “in” or “out”) is
not precisely known and when constraints reflect this imprecise knowledge. In his work,
Fitting defined the concept of an annotated revision program, described the concept of a
justified revision of a database by an annotated revision program, and studied properties of
that notion.

The annotations do not have to be numeric. In fact they may come from any set. It is
natural, though, to assume that the set of annotations has a mathematical structure of a
complete distributive lattice. Such lattices allow us to capture within a single algebraic
formalism different intuitions associated with annotations. For instance, annotations
expressing probabilities [12], possibilistic annotations [2], and annotations in terms of
opinions of groups of experts [4] can all be regarded as elements of certain complete
and distributive lattices. The general formalism of lattice-based annotations was studied
by Kifer and Subrahmanian [7] but only for logic programs without negations.
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In the setting of logic programs, an annotation describes the probability (or the degree
of belief) that an atom is implied by a program or, that it is “in” a database. The closed
world assumption then implies the probability that an atom is “out”. Annotations in the
context of revision programs provide us with richer descriptions of the status of atoms.
Specifically, a possible interpretation of apair of annotated revision literals(in(a):α) and
(out(a):β) is that our confidence ina being in a database isα and that, in the same time,
our confidence thata does not belong to the database isβ . Annotating atoms withpairs of
annotations allows us to model incomplete and contradictory information about the status
of an atom.

Thus, in annotated revision programming the status of an atoma is, in fact, given by
a pair of annotations. Therefore, in this paper we will consider, in addition to a lattice
of annotations, which we will denote byT , the product ofT by itself—the latticeT 2.
There are two natural orderings onT 2. We will use one of them, theknowledge ordering,
to compare the degree of incompleteness (or degree of contradiction) of the pair of
annotations describing the status of an atom.

The main goal of our paper is to reexamine the work of Fitting, argue that his semantics
does not always provide results consistent with intuition, and to propose an alternative
treatment of annotated revision programs. Our approach differs from that proposed by
Fitting in two key aspects: we use the concept of ans-model which is a refinement of
the notion of a model of a program, and we change the notion of a justified revision. We
show that under this new approach fundamental properties of justified revisions of standard
revision programs extend to the case of annotated revision programs.

Here is a short description of the content and the contributions of our paper. In Section 2,
we introduce annotated revision programs, provide some examples and discuss underlying
motivations. We define the concepts of a valuation of a set of revision atoms in a lattice of
annotationsT and of a valuation of a set of (ordinary) atoms in the corresponding product
latticeT 2. We also define the knowledge ordering onT 2 and on valuations of atoms inT 2.

Given an annotated revision program, we introduce the notion of the operator associated
with the program. This operator acts on valuations inT 2 and is analogous to the van
Emden–Kowalski operator for logic programs [3]. It is monotone with respect to the
knowledge ordering and allows us to introduce the notion of the necessary change entailed
by an annotated revision program.

In Section 3, we introduce one of the two main concepts of this paper, namely that
of an s-model of a revision program. Models of annotated revision programs may be
inconsistent. In the case of an s-model, if it is inconsistent, its inconsistencies are explicitly
or implicitly supported by the program and the model itself. We contrast the notion of
an s-model with that of a model. We show that in general the two concepts are different.
However, we also show that under the assumption of consistency they coincide.

In Section 4, we define the notion of a justified revision of an annotated database by an
annotated revision programP . Such revisions are referred to asP -justified revisions. They
are defined so as to generalize justified revisions of [10,11].

Justified revisions considered here are different from those introduced by Fitting in [4].
We provide examples that show that Fitting’s concept of a justified revision fails to satisfy
some natural postulates and argue that our proposal more adequately models intuitions
associated with annotated revision programs. In the same time, we provide a complete
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characterization of those lattices for which both proposals coincide. In particular, they
coincide in the standard case of revision programs without annotations.

We study the properties of justified revisions in Section 5. We show that annotated re-
vision programs with the semantics of justified revisions generalize revision programming
as introduced and studied in [10,11]. Next, we show thatP -justified revisions are s-models
of the programP . Thus, the concept of an s-model introduced in Section 2 is an appro-
priate refinement of the notion of a model to be used in the studies of justified revisions.
Further, we prove thatP -justified revisions decrease inconsistency and, consequently, that
a consistent model of a programP is its own uniqueP -justified revision.

Throughout the paper we adhere to the syntax of annotated revision programs proposed
by Fitting in [4]. This syntax stems naturally from the syntax of ordinary revision programs
introduced in [10,11] and allows us to compare directly our approach with that of Fitting.
However, in Section 6, we propose and study an alternative syntax for annotated revision
programs. In this new syntax (ordinary) atoms are annotated by elements of the product
latticeT 2. Using this alternative syntax, we obtain an elegant generalization of the shifting
theorem of [9].

In Section 7, we provide a brief account of some miscellaneous results on annotated
revision programs. In particular, we discuss the case of programs with disjunctions in the
heads and the case when the lattice of annotations is not distributive.

2. Preliminaries

We will start with examples that illustrate main notions and a possible use of annotated
revision programming. Formal definitions will follow.

Example 2.1. A group of experts is about to discuss a certain proposal and then vote
whether to accept or reject it. Each person has an opinion on the proposal that may be
changed during the discussion as follows:

– any person can convince an optimist to vote for the proposal,
– any person can convince a pessimist to vote against the proposal.

The group consists of two optimists (Ann and Bob) and one pessimist (Pete). We want to
be able to answer the following question: given everybody’s opinion on the subject before
the discussion, what are the possible outcomes of the vote?

Assume that before the vote Pete is for the proposal, Bob is against, and Ann is
indifferent (has no arguments for and no arguments against the proposal). This situation
can be described by assigning to atom “accept” the annotation〈{Pete}, {Bob}〉, where the
first element of the pair is the set of experts who have arguments for the acceptance of
the proposal and the second element is the set of experts who have arguments against the
proposal. In the formalism of annotated revision programs, as proposed by Fitting in [4],
this initial situation is described by afunction that assigns to each atom in the language (in
this example there is only one atom) its annotation. In our example, this function is given
by: BI (accept) = 〈{Pete}, {Bob}〉. (Let us mention here that in general, the sets of experts
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in an annotation need not to be disjoint. An expert may have arguments for and against the
proposal at the same time. In such a case the expert is contradictory.)

The ways in which opinions may change are described by the following annotated
revision rules:

(in(accept):{Ann}) ← (in(accept):{Bob})
(in(accept):{Ann}) ← (in(accept):{Pete})
(in(accept):{Bob}) ← (in(accept):{Ann})
(in(accept):{Bob}) ← (in(accept):{Pete})
(out(accept):{Pete}) ← (out(accept):{Ann})
(out(accept):{Pete}) ← (out(accept):{Bob})

The first rule means that if Bob accepts the proposal, then Ann should accept the proposal,
too, since she will be convinced by Bob. Similarly, the second rule means that if Pete has
arguments for the proposal, then he will be able to convince Ann. These two rules describe
Ann being an optimist. The remaining rules follow as Bob is an optimist and Pete is a
pessimist.

Possible outcomes of the vote are given by justified revisions. In this particular case
there are two justified revisions of the initial databaseBI . They areBR(accept) =
〈{Ann,Bob,Pete}, {}〉 and B ′

R(accept) = 〈{}, {Bob,Pete}〉. The first one corresponds to
the case when the proposal is accepted (Ann, Bob and Pete all voted for). This outcome
happens if Pete convinces Bob and Ann to vote for. The second revision corresponds to the
case when Bob and Pete voted against the proposal (Ann remained indifferent and did not
vote). This outcome happens if Bob convinces Pete to change his opinion.

Remark 2.2. It is possible to rewrite annotated revision rules from Example 2.1 as ordinary
revision rules (without annotations) if we use atoms “accept_Ann”, “ accept_Bob”, and
“accept_Pete”. However, ordinary revision programs do not deal with inconsistent or not
completely defined databases. In particular, we will not be able to express the fact that
initially Ann has no arguments for and no arguments against the proposal in Example 2.1.

In the next example annotations are real numbers from the interval[0,1] representing
different degrees of a particular quality.

Example 2.3. Assume that there are two sources of light:a andb. Each of them may be
either On or Off. They are used to transmit two signals. The first signal is a combination
of a being On andb being Off. The second signal is a combination ofa being Off andb

being On.
The sourcesa andb are located far from an observer. Such factors as light pollution

and dust may affect the perception of signals. Therefore, the observed brightness of a light
source differs from its actual brightness. Assume that brightness is measured on a scale
from 0 (complete darkness) to 1 (maximal brightness). The actual brightness of a light
source may be either 0 (when it is Off), or 1 (when it is On).
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Initial databaseBI represents observed brightness of sources. For example, if observed
brightness of sourcea is α (0� α � 1), thenBI (a) = 〈α,1− α〉. We may think of the first
and the second elements in the pair〈α,1− α〉 as degrees of brightness and darkness of the
source respectfully. The task is to infer actual brightness from observed brightness. Thus,
revision of the initial database should represent actual brightness of sources.

Suppose we know that dust in the air cannot reduce brightness by more than 0.2. Then,
we can safely assume that a light source is On if its observed brightness is 0.8 or more.
Assume also that light pollution cannot contribute more than 0.4. That is, if observed
darkness of a source is at least 0.6, it must be Off. This information together with the fact
that only two signals are possible, may be represented by the following annotated revision
programP :

(in(a):1) ← (in(a):0.8), (out(b):0.6)

(out(b):1) ← (in(a):0.8), (out(b):0.6)

(in(b):1) ← (in(b):0.8), (out(a):0.6)

(out(a):1) ← (in(b):0.8), (out(a):0.6)

The first two rules state that if the brightness ofa is at least 0.8 and darkness ofb is at least
0.6, then brightness ofa is 1 (the first rule) and darkness ofb is 1 (the second rule). This
corresponds to the case when the first signal is transmitted. Similarly, the last two rules
describe the case when the second signal is transmitted.

Let observed brightness ofa and b be 0.3 and 0.9 respectively. That is,BI (a) =
〈0.3,0.7〉 andBI (b)= 〈0.9,0.1〉. Then,P -justified revision ofBI is the actual brightness.
In this case we haveBR(a)= 〈0,1〉 (a is Off), andBR(b) = 〈1,0〉 (b is On).

Now let us move on to formal definitions. Throughout the paper we consider a fixed
universe U whose elements are referred to asatoms. In Example 2.1U = {accept}. In
Example 2.3U = {a, b}. Expressions of the formin(a) andout(a), wherea ∈ U , are called
revision atoms. In the paper we assign annotations to revision atoms. These annotations are
members of acomplete infinitely distributive lattice with the De Morgan complement (an
order reversing involution). Throughout the paper this lattice is denoted byT . The partial
ordering onT is denoted by� and the corresponding meet and join operations by∧ and
∨, respectively. The De Morgan complement ofa ∈ T is denoted bya. Let us recall that it
satisfies the following two laws (the De Morgan laws):

a ∨ b = a ∧ b, a ∧ b = a ∨ b.

In Example 2.1,T is the set of subsets of the set{Ann,Bob,Pete}, with ⊆ as the ordering
relation, and the set-theoretic complement as the De Morgan complement. In Example 2.3,
T = [0,1] with the usual ordering; the De Morgan complement ofα is 1− α.

An annotated revision atom is an expression of the form(in(a):α) or (out(a):α), where
a ∈ U andα ∈ T . An annotated revision rule is an expression of the form

p ← q1, . . . , qn,

wherep, q1, . . . , qn are annotated revision atoms. Anannotated revision program is a set
of annotated revision rules.
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A T -valuation is a mapping from the set of revision atoms toT . A T -valuationv

describes our information about the membership of elements fromU in some (possibly
unknown) setB ⊆ U . For instance,v(in(a)) = α can be interpreted as saying that
a ∈ B with certaintyα. A T -valuationv satisfies an annotated revision atom(in(a):α)

if v(in(a)) � α. Similarly, v satisfies (out(a):α) if v(out(a)) � α. The T -valuationv

satisfies a list or a set of annotated revision atoms if it satisfies each member of the list
or the set. AT -valuationsatisfies an annotated revision rule if it satisfies the head of the
rule whenever it satisfies the body of the rule. Finally, aT -valuationsatisfies an annotated
revision program (is amodel of the program) if it satisfies all rules in the program.

Given an annotated revision programP we can assign to it an operator on the set of all
T -valuations. LettP (v) be the set of the heads of all rules inP whose bodies are satisfied
by aT -valuationv. We define an operatorTP as follows:

TP (v)(l) =
∨

{α | (l:α) ∈ tP (v)}.
Here

∨
X is the join of the subsetX of the lattice (note that⊥ is the join of an empty set of

lattice elements). The operatorTP is a counterpart of the well-known van Emden–Kowalski
operator from logic programming and it will play an important role in our paper.

It is clear that underT -valuations, the information about an elementa ∈ U is given by
a pair of elements fromT that are assigned to revision atomsin(a) andout(a). Thus, in
the paper we will also consider an algebraic structureT 2 with the domainT × T and with
an ordering�k defined by:

〈α1, β1〉 �k 〈α2, β2〉 if α1 � α2 andβ1 � β2.

If a pair 〈α1, β1〉 is viewed as a measure of our information about membership ofa in
some unknown setB thenα1 � α2 andβ1 � β2 imply that the pair〈α2, β2〉 represents
higher degree of knowledge abouta. Thus, the ordering�k is often referred to as the
knowledge or information ordering. Since the latticeT is complete and distributive,T 2 is
a complete distributive lattice with respect to the ordering�k.1

The operations of meet, join, top, and bottom under�k are denoted⊗, ⊕, �, and⊥,
respectively. In addition, we make use of theconflation operation. Conflation is defined
as−〈α,β〉 = 〈β,α〉. An elementA ∈ T 2 is consistent if A �k −A. In other words, an
element〈α,β〉 ∈ T 2 is consistent ifα is smaller than or equal to the complement ofβ (the
evidence “for” is less than or equal than the complement of the evidence “against”) and
β is smaller than or equal to the complement ofα (the evidence “against” is less than or
equal than the complement of the evidence “for”).

The conflation operation satisfies the De Morgan laws:

−(〈α,β〉 ⊕ 〈γ, δ〉) =−〈α,β〉 ⊗−〈γ, δ〉,
−(〈α,β〉 ⊗ 〈γ, δ〉) =−〈α,β〉 ⊕−〈γ, δ〉,

whereα,β, γ, δ ∈ T .

1 There is another ordering that can be associated withT 2. We can define〈α1, β1〉 �t 〈α2, β2〉 if α1 � α2 and
β1 � β2. This ordering is often called thetruth ordering. SinceT is a complete distributive lattice,T 2 with both
orderings�k and�t forms a complete distributivebilattice (see [5,6] for a definition). In this paper we will not
use the ordering�t nor the fact thatT 2 is a bilattice.



156 V. Marek et al. / Artificial Intelligence 138 (2002) 149–180

A T 2-valuation is a mapping fromatoms to elements ofT 2. If B(a) = 〈α,β〉 under
someT 2-valuationB, we say that underB the elementa is in a set with certaintyα and
it is not in the set with certaintyβ . We say that aT 2-valuation isconsistent if it assigns a
consistent element ofT 2 to every atom inU .

In this paper,T 2-valuations will be used to represent current information about sets
(databases) as well as the change that needs to be enforced. LetB be aT 2-valuation
representing our knowledge about a certain set and letC be aT 2-valuation representing
change that needs to be applied toB. We define the revision ofB by C, sayB ′, by

B ′ = (B ⊗−C)⊕ C.

The intuition is as follows. After the revision, the new valuation must contain at least as
much knowledge about atoms being in and out asC. On the other hand, this amount of
knowledge must not exceed implicit bounds present inC and expressed by−C, unless
C directly implies so. In other words, ifC(a) = 〈α,β〉, then evidence forin(a) must not
exceedβ̄ unlessα � β̄, and the evidence forout(a) must not exceed̄α unlessβ � ᾱ.
Since we prefer explicit evidence ofC to implicit evidence expressed by−C, we perform
the change by first using−C and then applyingC. However, let us note here that the order
matters only ifC is inconsistent; ifC is consistent,(B ⊗−C)⊕C = (B ⊕C)⊗−C. This
specification of how the change modeled by aT 2-valuation is enforced plays a key role in
our definition of justified revisions in Section 4.

Example 2.4 (continuation of Example 2.1). In Example 2.1,BI has two revisions. The
first one,BR , is the revision ofBI by C, whereC(accept) = 〈{Ann,Bob}, {}〉. We have
−C(accept) = 〈{Ann,Bob,Pete}, {Pete}〉. Thus, (BI ⊗ −C)(accept) = 〈{Pete},∅〉, and
((BI ⊗−C)⊕ C)(accept) = 〈{Ann,Bob,Pete},∅〉 = BR(accept).

The second revision,B ′
R , is the revision ofBI by C′, whereC′(accept) = 〈{}, {Pete}〉.

There is a one-to-one correspondenceθ betweenT -valuations (of revision atoms)
andT 2-valuations (of atoms). For aT -valuationv, theT 2-valuationθ(v) is defined by:
θ(v)(a) = 〈v(in(a)), v(out(a))〉. The inverse mapping ofθ is denoted byθ−1. Clearly, by
using the mappingθ , the notions of satisfaction defined earlier forT -valuations can be
extended toT 2-valuations. Similarly, the operatorTP gives rise to a related operatorT b

P .
The operatorT b

P is defined on the set of allT 2-valuations byT b
P = θ ◦ TP ◦ θ−1. The key

property of the operatorT b
P is its�k-monotonicity.

Theorem 2.5. Let P be an annotated revision program and let B and B ′ be two
T 2-valuations such that B �k B ′. Then, T b

P (B) �k T b
P (B ′).

By Tarski–Knaster Theorem [15] it follows that the operatorT b
P has a least fixpoint in

T 2 (see also [7]). This fixpoint is an analogue of the concept of a least Herbrand model
of a Horn program. It represents the set of annotated revision atoms that are implied by
the program and, hence, must be satisfied by any revision underP of any initial valuation.
Given an annotated revision programP we will refer to the least fixpoint of the operator
T b

P as thenecessary change of P and will denote it byNC(P ). The present concept of
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the necessary change generalizes the corresponding notion introduced in [10,11] for the
original unannotated revision programs.

To illustrate concepts and results of the paper, we will consider two special lattices.
The first of them is the lattice with the domain[0,1] (interval of reals), with the standard
ordering�, and the standard complement operationᾱ = 1− α. We will denote this lattice
by T[0,1]. Intuitively, the annotated revision atom(in(a):x), wherex ∈ [0,1], stands for the
statement thata is “in” with likelihood (certainty)x.

The second lattice is the Boolean algebra of all subsets of a given setX. It will be
denoted byTX . We will think of elements fromX as experts. The annotated revision atom
(out(a):Y ), whereY ⊆ X, will be understood as saying thata is believed to be “out” by
those experts that are inY (the atom(in(a):Y ) has a similar meaning).

3. Models and s-models

The semantics of annotated revision programs will be based on the notion of a model, as
defined in the previous section, and on its refinements. The first two results describe some
simple properties of models of annotated revision programs. The first of them characterizes
models in terms of the operatorT b

P .

Theorem 3.1. Let P be an annotated revision program. A T 2-valuation B is a model of P

(satisfies P ) if and only if B �k T b
P (B).

Models of annotated revision programs are closed under meets. This property is
analogous to a similar property holding for models of Horn programs. Indeed, since
B1 ⊗ B2 �k Bi , i = 1,2, andT b

P is �k-monotone, by Theorem 3.1 we obtain

T b
P (B1 ⊗B2) �k T b

P (Bi) �k Bi, i = 1,2.

Consequently,

T b
P (B1 ⊗B2) �k B1 ⊗B2.

Thus, again by Theorem 3.1 we obtain the following result.

Corollary 3.2. The meet of two models of an annotated revision program P is also a model
of P .

Given an annotated revision programP , its necessary changeNC(P ) satisfiesNC(P ) =
T b

P (NC(P )). Hence,NC(P ) is a model ofP .
As we will now argue, not all models are appropriate for describing the meaning of an

annotated revision program. The problem is thatT 2-valuations may contain inconsistent
information about elements fromU . When studying the meaning of an annotated revision
program we will be interested in those models only whose inconsistencies are limited to
those explicitly or implicitly supported by the program and by the model itself.

Consider the programP = {(in(a):{q}) ←} (where the annotation{q} comes from the
latticeT{p,q}). This program asserts thata is “in”, according to expertq . By closed world
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assumption, it also implies an upper bound for the evidence forout(a). In this case the
only expert that might possibly believe inout(a) is p (this is to say that expertq does not
believe inout(a)). Observe that aT 2-valuationB, such thatB(a) = 〈{q}, {q}〉 is a model
of P but it does not satisfy the implicit bound on evidence forout(a).

Let P be an annotated program and letB be aT 2-valuation that is a model ofP . By
the explicit evidence we mean evidence provided by heads of program rules applicable
with respect toB, that is with bodies satisfied byB. It is T b

P (B). The implicit information
is given by a version of the closed world assumption: if the maximum evidence for a
revision atoml provided by the program isα then, the evidence for the dual revision atom
lD (out(a), if l = in(a), or in(a), otherwise) must not exceed̄α (unless explicitly forced
by the program). Thus, the implicit evidence is given by−T b

P (B). Hence, a modelB of a
programP contains no more evidence than what is directly implied byP givenB and what
is indirectly implied byP givenB if B �k T b

P (B) ⊕ (−T b
P (B)) (since the direct evidence

is given byT b
P (B) and the implicit evidence is given by−T b

P (B)). This observation leads
us to a refinement of the notion of a model of an annotated revision program.

Definition 3.3. Let P be an annotated revision program and letB be aT 2-valuation. We
say thatB is ans-model of P if

T b
P (B) �k B �k T b

P (B) ⊕ (−T b
P (B)

)
.

The “s” in the term “s-model” stands for “supported” and emphasizes that inconsisten-
cies in s-models are limited to those explicitly or implicitly supported by the program and
the model itself.

Clearly, by Theorem 3.1, an s-model ofP is a model ofP . In addition, it is easy to
see that the necessary change of an annotated programP is an s-model ofP (it follows
directly from the fact thatNC(P ) = T b

P (NC(P ))).
The distinction between models and s-models appears only in the context of inconsistent

information. This observation is formally stated below.

Theorem 3.4. Let P be an annotated revision program. A consistent T 2-valuation B is an
s-model of P if and only if B is a model of P .

Proof. (⇒) Let B be an s-model ofP . Then,T b
P (B) �k B �k T b

P (B) ⊕ (−T b
P (B)). In

particular,T b
P (B) �k B and, by Theorem 3.1,B is a model ofP .

(⇐) Let B satisfy P . From Theorem 3.1 we haveT b
P (B) �k B. Hence,−B �k

−T b
P (B). SinceB is consistent,B �k −B. Therefore,

T b
P (B) �k B �k −B �k −T b

P (B). (3)

It follows thatT b
P (B) �k −T b

P (B) andT b
P (B) ⊕ (−T b

P (B)) =−T b
P (B). By (3), we get

T b
P (B) �k B �k T b

P (B) ⊕ (−T b
P (B))

and the assertion follows.✷



V. Marek et al. / Artificial Intelligence 138 (2002) 149–180 159

Some of the properties of ordinary models hold for s-models, too. For instance, the
following theorem shows that an s-model of two annotated revision programs is an s-model
of their union.

Theorem 3.5. Let P1, P2 be annotated revision programs. Let B be an s-model of P1 and
an s-model of P2. Then, B is an s-model of P1 ∪ P2.

Proof. Clearly,B is a model ofP1 ∪ P2. That is,

T b
P1∪P2

(B) �k B. (4)

It is easy to see that

T b
P1∪P2

(B) = T b
P1

(B) ⊕ T b
P2

(B). (5)

Hence, by the De Morgan law,

−T b
P1∪P2

(B) =−T b
P1

(B)⊗−T b
P2

(B). (6)

It follows from the definition of an s-model that

B �k T b
P1

(B) ⊕−T b
P1

(B) and B �k T b
P2

(B) ⊕−T b
P2

(B).

Thus,

B �k

(
T b

P1
(B)⊕−T b

P1
(B)

)⊗ (
T b

P2
(B)⊕−T b

P2
(B)

)
.

By the distributivity of lattice operations inT 2, we obtain

B �k

(
T b

P1
(B)⊗ (

T b
P2

(B)⊕−T b
P2

(B)
))⊕ (−T b

P1
(B) ⊗ (T b

P2
(B) ⊕−T b

P2
(B)

))
.

The first summand is smaller or equal toT b
P1

(B). Thus, by applying distributivity to the
second summand, we get the following inequality:

B �k T b
P1

(B) ⊕ (−T b
P1

(B) ⊗ T b
P2

(B)
)⊕ (−T b

P1
(B)⊗−T b

P2
(B)

)
.

Using−T b
P1

(B) ⊗ T b
P2

(B) �k T b
P2

(B) and then (5) and (6), we get

B �k T b
P1

(B) ⊕ T b
P2

(B) ⊕−T b
P1∪P2

(B) = T b
P1∪P2

(B)⊕−T b
P1∪P2

(B).

In other words,

B �k T b
P1∪P2

(B) ⊕−T b
P1∪P2

(B). (7)

From (4) and (7) it follows thatB is an s-model ofP1 ∪ P2. ✷
Not all of the properties of models hold for s-models. For instance, the counterpart of

Corollary 3.2 does not hold. The following example shows that the meet of two s-models
is not necessarily an s-model.

Example 3.6. Consider the latticeT{p,q}. Let P be an annotated program consisting of the
following rules:
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(in(a):{p}) ← (in(b):{p})
(out(a):{p}) ←
(in(a):{p}) ← (out(b):{p})

Let B1 andB2 be defined as follows.

B1(a)= 〈{p}, {p}〉, B1(b) = 〈{p},∅〉;
B2(a)= 〈{p}, {p}〉, B2(b) = 〈∅, {p}〉.

Let us show thatB1 is an s-model ofP . Indeed,

T b
P (B1)(a)= 〈{p}, {p}〉,

T b
P (B1)(b)= 〈∅,∅〉.

Hence,

−T b
P (B1)(a) = 〈{q}, {q}〉,

−T b
P (B1)(b) = 〈{p,q}, {p,q}〉.

Therefore,

T b
P (B1)(a) �k B1(a) �k

(
T b

P (B1)⊕−T b
P (B1)

)
(a),

and

T b
P (B1)(b) �k B1(b) �k

(
T b

P (B1)⊕−T b
P (B1)

)
(b).

In other words,B1 is an s-model ofP . Similarly,B2 is an s-model ofP . However,B1⊗B2
is not an s-model ofP . Indeed,

(B1 ⊗ B2)(a) = 〈{p}, {p}〉, (B1 ⊗ B2)(b)= 〈∅,∅〉.
Then,

T b
P (B1 ⊗B2)(a) = 〈∅, {p}〉, T b

P (B1 ⊗B2)(b) = 〈∅,∅〉,
and

−T b
P (B1 ⊗ B2)(a) = 〈{q}, {p,q}〉, −T b

P (B1 ⊗ B2)(b)= 〈{p,q}, {p,q}〉.
Hence,

(B1 ⊗ B2)(a) �k

(
T b

P (B1 ⊗ B2)⊕−T b
P (B1 ⊗ B2)

)
(a) = 〈{q}, {p,q}〉.

Therefore,B1 ⊗B2 is not an s-model ofP .

In this example bothB1 andB2, as well as their meetB1 ⊗ B2 are inconsistent. For
B1 andB2 there are rules inP that explicitly imply their inconsistencies. However, for
B1 ⊗ B2 the bodies of these rules are no longer satisfied. Consequently, the inconsistency
in B1 ⊗ B2 is not implied byP . That is,B1 ⊗B2 is not an s-model ofP .
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Let us now investigate what happens when we add to an annotated revision programP

a ruler = (l:α) ← (l:α) (herel is a revision atom,α is an annotation). Unlike ordinary
revision programs where every database is a model of a rule of the forml ← l, not
everyT 2-valuation is an s-model ofr. Therefore, adding such a rule may affect the set
of s-models of the program. On the one hand, ruler by imposing additional implicit
bound onlD may give rise to a situation when an s-model ofP is not an an s-model
of P ∪ {r} (case (1) of Example 3.7). On the other hand, ruler may provide additional
explicit evidence forl that results in a situation when an s-model ofP ∪ {r} is not an
s-model ofP (case (2) of Example 3.7).

Example 3.7. Let U = {a} and the lattice of annotations beT{p,q}. Let B(a) = 〈{p}, {p}〉.
Let r = (in(a):{p}) ← (in(a):{p}).

(1) LetP = {}. Then,T b
P (B)(a) = 〈∅,∅〉, and−T b

P (B)(a) = 〈{p,q}, {p,q}〉. Hence,

T b
P (B)(a) � B(a) � T b

P (B)(a)∨ (−T b
P (B)

)
(a).

Thus, B is an s-model ofP . However,B is not an s-model ofP ∪ {r}. Indeed,
T b

P∪{r}(B)(a)= 〈{p},∅〉, and−T b
P∪{r}(B)(a) = 〈{p,q}, {q}〉. Hence,

B(a) � T b
P∪{r}(B)(a)∨ (−T b

P∪{r}(B)
)
(a)= 〈{p,q}, {q}〉.

Therefore,B is not an s-model ofP ∪ {r}.
(2) Let P = {(out(a):{p}) ←}. Then it is easy to see thatB is not an s-model ofP .

However,B is an s-model ofP ∪ {r}.

Remark 3.8. Let us note that adding ruler = (l:α) ← (l:α) to P has no effect on consistent
models ofP . Indeed, letB be a consistent model ofP . Clearly,B is a model of{r}. Hence,
by Theorem 3.4,B is an s-model ofP , and an s-model of{r}. Therefore, Theorem 3.5
implies thatB is an s-model ofP ∪ {r}.

4. Justified revisions

In this section, we will extend to the case of annotated revision programs the notion of a
justified revision introduced for revision programs in [10]. The reader is referred to [10,11]
for the discussion of motivation and intuitions behind the concept of a justified revision
and of the role of theinertia principle (a version of the closed world assumption).

There are several properties that one would expect to hold when the notion of justified
revision is extended to the case of programs with annotations. Clearly, the extended concept
should specialize to the original definition if annotations are dropped. Next, main properties
of justified revisions studied in [9,11] should have their counterparts in the case of justified
revisions of annotated programs. In particular, justified revisions of an annotated revision
program should be models of the program.

There is one other requirement that naturally arises in the context of programs with
annotations. Consider two annotated revision rulesr andr ′ that are exactly the same except
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that the body ofr contains two annotated revision atoms(l:β1) and(l:β2), while the body
of r ′ instead of(l:β1) and(l:β2) contains annotated revision atom(l:β1 ∨ β2).

r = · · ·← · · · , (l:β1), . . . , (l:β2), . . . ,

r ′ = · · ·← · · · , (l:β1 ∨ β2), . . . .

We will refer to this operation as thejoin transformation.
It is clear, that aT 2-valuationB satisfies(l:β1) and (l:β2) if and only if B satisfies

(l:β1∨β2). Consequently, replacing ruler by ruler ′ (or vice versa) in an annotated revision
program should have no effect on justified revisions. In fact, any reasonable semantics
for annotated revision programs should be invariant under such operation, and we will
refer to this property of a semantics of annotated revision programs asinvariance under
join.

Now we introduce the notion of a justified revision of an annotated revision program
and contrast it with an earlier proposal by Fitting [4]. In the following section we show that
our concept of a justified revision satisfies all the requirements listed above.

Let a T 2-valuation BI represent our current knowledge about some subset of the
universeU . Let an annotated revision programP describe an update thatBI should
be subject to. The goal is to identify a class ofT 2-valuations that could be viewed as
representing updated information about the subset obtained by revisingBI byP . As argued
in [10,11], each appropriately “revised” valuationBR must begrounded in P and inBI ,
that is, any difference betweenBI and the revisedT 2-valuationBR must be justified by
means of the program and the information available inBI .

To determine whetherBR is grounded inBI andP , we use thereduct of P with respect
to these two valuations. The construction of the reduct consists of two steps and mirrors
the original definition of the reduct of an unannotated revision program [11]. In the first
step, we eliminate fromP all rules whose bodies are not satisfied byBR (their use does
not have ana posteriori justification with respect toBR). In the second step, we take into
account the initial valuationBI .

How can we use the information about the initialT 2-valuationBI at this stage? Assume
thatBI provides evidenceα for a revision atoml. Assume also that an annotated revision
atom(l:β) appears in the body of a ruler. In order to satisfy this premise of the rule, it
is enough to derive, from the program resulting from step 1, an annotated revision atom
(l:γ ), whereα ∨ γ � β . The least such element exists (due to the fact thatT is complete
and infinitely distributive). Let us denote this value bypcomp(α,β).2

Thus, in order to incorporate information about a revision atoml contained in the initial
T 2-valuationBI , which is given byα = (θ−1(BI ))(l), we proceed as follows. In the bodies
of rules of the program obtained after step 1, we replace each annotated revision atom of
the form(l:β) by the annotated revision atom(l:pcomp(α,β)).

Now we are ready to formally introduce the notion ofreduct of an annotated revision
programP with respect to the pair ofT 2-valuations: initial one,BI , and a candidate for a
revised one,BR .

2 The operationpcomp(·, ·) is known in the lattice theory as therelative pseudocomplement, see [14].
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Definition 4.1. Thereduct PBR |BI is obtained fromP by

(1) removing every rule whose body contains an annotated atom that is not satisfied inBR ,
(2) replacing each annotated atom(l:β) from the body of each remaining rule by the

annotated atom(l:γ ), whereγ = pcomp((θ−1(BI ))(l), β).

We now define the concept of ajustified revision. Given an annotated revision program
P , we first compute the reductPBR |BI of the programP with respect toBI andBR . Next,
we compute the necessary change for the reduced program. Finally we apply this change to
theT 2-valuationBI . A T 2-valuationBR is a justified revision ofBI if the result of these
three steps isBR . Thus we have the following definition.

Definition 4.2. BR is a P -justified revision of BI if BR = (BI ⊗ −C) ⊕ C, where
C = NC(PBR |BI ) is the necessary change forPBR |BI .

We will now contrast this approach with the one proposed by Fitting in [4]. In order to
do so, we recall the definitions introduced in [4]. The key difference is in the way Fitting
defines the reduct of a program. The first step is the same in both approaches. However,
the second steps, in which the initial valuation is used to simplify the bodies of the rules
not eliminated in the first step of the construction, differ.

Definition 4.3 (Fitting). Let P be an annotated revision program and letBI andBR be
T 2-valuations. TheF -reduct of P with respect to(BI ,BR) (denotedP F

BR
|BI ) is defined

as follows:

(1) Remove fromP every rule whose body contains an annotated revision atom that is not
satisfied inBR .

(2) From the body of each remaining rule delete any annotated revision atom that is
satisfied inBI .

The notion of justified revision as defined by Fitting differs from our notion only in
that it uses the necessary change of theF -reduct (instead of the necessary change of the
reduct defined above in Definition 4.1). We call the justified revision based on the notion
of F -reduct, theF -justified revision.

In the remainder of this section we show that the notion of theF -justified revision does
not in general satisfy some basic requirements that we would like justified revisions to
have. In particular,F -justified revisions under an annotated revision programP are not
always models ofP .

Example 4.4. Consider the latticeT{p,q}. Let P be a program consisting of the following
rules:

(in(a):{p}) ← (in(b):{p,q}) and (in(b):{q})←
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and letBI be a valuation such thatBI (a) = 〈∅,∅〉 and BI (b) = 〈{p},∅〉. Let BR be a
valuation given byBR(a)= 〈∅,∅〉 andBR(b) = 〈{p,q},∅〉. Clearly,P F

BR
|BI = P , andBR

is anF -justified revision ofBI (underP ). However,BR does not satisfyP .

The semantics ofF -justified revisions also fails to satisfy the invariance under join
property.

Example 4.5. Let P be the same revision program as before, and letP ′ consist of the rules

(in(a):{p}) ← (in(b):{p}), (in(b):{q}) and (in(b):{q})← .

Let the initial valuationBI be given byBI (a) = 〈∅,∅〉 andBI (b) = 〈{p},∅〉. The only
F -justified revision ofBI (underP ) is a T 2-valuationBR , whereBR(a) = 〈∅,∅〉 and
BR(b) = 〈{p,q},∅〉. The onlyF -justified revision ofBI (underP ′) is aT 2-valuationB ′

R ,
whereB ′

R(a) = 〈{p},∅〉 andB ′
R(b) = 〈{p,q},∅〉. Thus, replacing in the body of a rule

(in(b):{p,q}) by (in(b):{p}) and(in(b):{q}) affectsF -justified revisions.

However, in some cases the two definitions of justified revision coincide. The following
theorem provides a complete characterization of those cases (let us recall that a latticeT
is linear if for any two elementsα,β ∈ T eitherα � β or β � α).

Theorem 4.6. F -justified revisions and justified revisions coincide if and only if the lattice
T is linear.

Proof. (⇒) Assume thatF -justified revisions and justified revisions coincide for a lattice
T . Let α,β ∈ T . We will show that eitherα � β or β � α. Indeed, letP be annotated
revision program consisting of the following rules.

(in(a):α) ← (in(b):α ∨ β) and (in(b):β) ← .

Let BI be given byBI (a) = 〈⊥,⊥〉 andBI (b) = 〈α,⊥〉. Let BR be given byBR(a) =
〈α,⊥〉 andBR(b)= 〈α ∨ β,⊥〉. It is easy to see thatBR is a justified revision ofBI (with
respect toP ). By our assumption,BR is also anF -justified revision ofBI . There are only
two possible cases.

Case 1. α ∨ β � α. Then,β � α.
Case 2. α ∨ β � α. Then,P F

BR
|BI = P . Let C = NC(P F

BR
|BI ). By the definition of the

necessary change,

C(a) = NC
(
P F

BR
|BI

)
(a) = NC(P )(a) =

{ 〈⊥,⊥〉, whenα ∨ β � β,
〈α,⊥〉, whenα ∨ β � β.

By the definition of anF -justified revision,BR = (BI ⊗ −C) ⊕ C. From the facts that
BR(a) = 〈α,⊥〉 andBI (a) = 〈⊥,⊥〉 it follows that C(a) = 〈α,⊥〉. Therefore, it is the
case thatα ∨ β � β . That is,α � β .

(⇐) Assume that latticeT is linear. Then, for anyα,β ∈ T

pcomp(α,β) =
{⊥, whenα � β,

β, otherwise (whenα < β).
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Let P be an annotated revision program. LetBI andBR be anyT 2-valuations. Let us see
what is the difference betweenPBR |BI andP F

BR
|BI . The first steps in the definitions of

reduct andF -reduct are the same. During the second step of the definition of anF -reduct
each annotated atom(l:β) such thatβ � BI (l) is deleted from bodies of rules. In the second
step of the definition of the reduct such annotated atom is replaced by(l:⊥). If β > BI (l),
then in the reductPBR |BI annotated atom(l:β) is replaced by(l:pcomp(BI (l), β)) = (l:β),
that is, it remains as it is. In theF -reduct,(l:β) also remains in the bodies forβ > BI (l).
Thus, the only difference betweenPBR |BI andP F

BR
|BI is that bodies of the rules from

PBR |BI may contain atoms of the form(l:⊥), wherel ∈ U , that are not present in the
bodies of the corresponding rules inP F

BR
|BI . However, annotated atoms of the form(l:⊥)

are always satisfied. Therefore, the necessary changes ofPBR |BI andP F
BR

|BI , as well as
justified andF -justified revisions ofBI coincide. ✷

Theorem 4.6 explains why the difference between the justified revisions andF -justified
revisions is not seen when we limit our attention to revision programs as considered in
[11]. Namely, the latticeT WO = {f , t} of boolean values is linear. Similarly, the lattice
of reals from the segment[0,1] is linear, and there the differences cannot be seen either.

5. Properties of justified revisions

In this section we study basic properties of justified revisions. We show that key
properties of justified revisions in the case of revision programs without annotations have
their counterparts in the case of justified revisions of annotated revision programs.

First, we observe that revision programs as defined in [10] can be encoded as annotated
revision programs (with annotations taken from the latticeT WO = {f , t}). Namely, a
revision rule

p ← q1, . . . , qm

(wherep and allqi ’s are revision atoms) can be encoded as

(p:t) ← (q1:t), . . . , (qm:t).
We will denote byP a the result of applying this transformation to a revision programP

(rule by rule). Second, let us represent a set of atomsB by a T WO2-valuationBv as
follows: Bv(a) = 〈t,f 〉, if a ∈ B, andBv(a)= 〈f , t〉, otherwise.

Fitting [4] argued that under such encodings the semantics ofF -justified revisions
generalizes the semantics of justified revisions introduced in [10]. Since for lattices whose
ordering is linear the approach by Fitting and the approach presented in this paper coincide,
and since the ordering ofT WO is linear, the semantics of justified revisions discussed here
extends the semantics of justified revisions from [10]. Specifically, we have the following
result.

Theorem 5.1. Let P be an ordinary revision program and let BI and BR be two sets of
atoms. Then, BR is a P -justified revision of BI if and only if the necessary change of
P a

Bv
R
|Bv

I is consistent and Bv
R is a P a -justified revision of Bv

I .
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Before we study how properties of justified revisions generalize to the case with
annotations, we prove the following auxiliary results.

Lemma 5.2. Let P be an annotated revision program. Let B be a T 2-valuation. Then,
NC(PB |B) = T b

P (B).

Proof. The assertion follows from definitions of a necessary change and operatorT b
P . ✷

Lemma 5.3. Let P be an annotated revision program. Let BI , BR , and C be T 2-valuations,
such that BR � BI ⊕ C. Then, C satisfies the bodies of all rules in PBR |BI .

Proof. Let r ′ ∈ PBR |BI . Let (l:γ ) be an annotated revision atom from the body ofr ′.
Let (θ−1(BI ))(l) = α. By the definition of the reduct,r ′ was obtained from some rule
r ∈ P , such that the body ofr is satisfied byBR , andγ = pcomp(α,β), where(l:β) is in
the body ofr. Since the body ofr is satisfied byBR , we haveβ � (θ−1(BR))(l). From
BR �k BI ⊕C it follows that

(
θ−1(BR)

)
(l) �

(
θ−1(BI ⊕ C)

)
(l)

= (
θ−1(BI )

)
(l) ∨ (

θ−1(C)
)
(l)

= α ∨ (
θ−1(C)

)
(l).

Combining this inequality with our previous observation thatβ � (θ−1(BR))(l), we get
β � α ∨ (θ−1(C))(l). By the definition ofpcomp(α,β), we getγ � (θ−1(C))(l). That is,
C satisfies(l:γ ). Since(l:γ ) was arbitrary,C satisfies all annotated revision atoms in the
body ofr ′. As r ′ was an arbitrary rule fromPBR |BI , we conclude thatC satisfies the bodies
of all rules inPBR |BI . ✷
Lemma 5.4. Let BR be a P -justified revision of BI . Then, NC(PBR |BI ) = T b

P (BR).

Proof. By the definition of a justified revisionBR = (BI ⊗ −C) ⊕ C, where C =
NC(PBR |BI ). Hence,BR � BI ⊕ C. By Lemma 5.3,C satisfies the bodies of all rules
in PBR |BI . SinceC is a model ofPBR |BI , C satisfies all heads of clauses inPBR |BI .

Let D be a valuation satisfying all heads of rules inPBR |BI . Then D is a model
of PBR |BI . Since C is the least model of the reductPBR |BI , we find thatC �k D.
Consequently,C is the least valuation that satisfies all heads of the rules inPBR |BI . The
rules inPBR are all those rules fromP whose bodies are satisfied byBR . Thus, by the
definition of the operatorT b

P , C = T b
P (BR). ✷

We will now look at properties of the semantics of justified revisions. We will present a
series of results generalizing properties of revision programs to the case with annotations.
We will show that the concept of an s-model is a useful notion in the investigations of
justified revisions of annotated programs.



V. Marek et al. / Artificial Intelligence 138 (2002) 149–180 167

Our first result relates justified revisions to models and s-models. Let us recall that in the
case of revision programs without annotations, justified revisions under a revision program
P are models ofP . In the case of annotated revision programs we have an analogous result.

Theorem 5.5. Let P be an annotated revision program and let BI and BR be T 2-
valuations. If BR is a P -justified revision of BI then BR is an s-model of P (and, hence, a
model of P ).

Proof. By the definition of aP -justified revision,BR = (BI ⊗−C) ⊕ C, whereC is the
necessary change forPBR |BI . From Lemma 5.4 it follows thatC = T b

P (BR). Therefore,

BR = (
BI ⊗−T b

P (BR)
)⊕ T b

P (BR) �k −T b
P (BR)⊕ T b

P (BR).

Also,

BR = (
BI ⊗−T b

P (BR)
)⊕ T b

P (BR) � T b
P (BR).

Hence,BR is an s-model ofP . ✷
In the previous section we showed an example demonstrating thatF -justified revisions

do not satisfy the property of invariance under joins. In contrast, justified revisions in the
sense of our paper do have this property.

Theorem 5.6. Let P2 be the result of simplification of an annotated revision program P1 by
means of the join transformation. Then for every initial database BI , P1-justified revisions
of BI coincide with P2-justified revisions of BI .

The proof follows directly from the definition ofP -justified revisions and from the
following distributivity property of pseudocomplement:pcomp(α,β1) ∨ pcomp(α,β2) =
pcomp(α,β1 ∨ β2).

In the case of revision programs without annotations, a model of a programP is its
uniqueP -justified revision. In the case of programs with annotations, the situation is
slightly more complicated. The next several results provide a complete description of
justified revisions of models of annotated revision programs. First, we characterize those
models that are their own justified revisions. This result provides additional support for the
importance of the notion of an s-model in the study of annotated revision programs.

Theorem 5.7. Let a T 2-valuation BI be a model of an annotated revision program P .
Then, BI is a P -justified revision of itself if and only if BI is an s-model of P .

Proof. Let us denoteC = NC(PBI |BI ). By the definition,BI is a P -justified revision
of itself if and only if BI = (BI ⊗ −C) ⊕ C. SinceBI satisfiesP , Theorem 3.1 and
Lemma 5.2 imply thatBI �k C. Thus,BI ⊕ C = BI . Distributivity of the product lattice
T 2 implies that

(BI ⊗−C)⊕ C = (BI ⊕ C)⊗ (−C ⊕C) = BI ⊗ (−C ⊕ C).

Clearly,BI = BI ⊗ (−C ⊕ C) if and only if BI �k (−C ⊕ C).
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By Lemma 5.2,C = NC(PBI |BI ) = T b
P (BI ). Thus,BI is aP -justified revision of itself

if and only if BI �k T b
P (BI ) ⊕ (−T b

P (BI )). But this latter condition is precisely the one
that distinguishes s-models among models. Thus, under the assumptions of the theorem,
BI is aP -justified revision of itself if and only if it is an s-model ofP . ✷

As we observed above, in the case of programs without annotations, models of a revision
program are their ownunique justified revisions. This property does not hold, in general, in
the case of annotated revision programs. In other words, s-models, if they are inconsistent,
may have other revisions besides themselves (by Theorem 5.7 they always are their own
revisions).

The following example shows that aninconsistent s-model may have no revisions other
than itself, may have only one consistent justified revision, or may have incomparable (with
respect to the knowledge ordering) consistent revisions.

Example 5.8. Let the lattice of annotations beT{p,q}. Consider an inconsistentT 2-
valuationBI such thatBI (a)= 〈{q}, {q}〉.

(1) Consider annotated revision programP1 consisting of the clauses:

(out(a):{q})← and (in(a):{q})← .

It is easy to see thatBI is an s-model ofP1 and the only justified revision of itself.
(2) Let an annotated revision programP2 consist of the clauses:

(out(a):{q})← and (in(a):{q})← (in(a):{q}).
Clearly,BI is an s-model ofP2. Hence,BI is its own justified revision (underP2).
However,BI is not the onlyP2-justified revision ofBI . Consider theT 2-valuationBR

such thatBR(a) = 〈∅, {q}〉. We haveP2BR
|BI = {(out(a):{q}) ←}. Let us denote the

corresponding necessary change,NC(P2BR
|BI ), by C. Then,C(a) = 〈∅, {q}〉. Hence,

−C = 〈{p}, {p,q}〉 and((BI ⊗−C) ⊕ C)(a) = 〈∅, {q}〉 = BR(a). Consequently,BR

is aP2-justified revision ofBI . It is the only consistentP2-justified revision ofBI .
(3) Let an annotated revision programP3 be the following:

(in(a):{q})← (in(a):{q}) and (out(a):{q})← (out(a):{q}).
Then, BI is an s-model ofP3 and its ownP3-justified revision. In addition, it is
straightforward to check thatBI has two consistent revisionsBR and B ′

R , where
BR(a) = 〈∅, {q}〉 andB ′

R(a) = 〈{q},∅〉. The revisionsBR andB ′
R are incomparable

with respect to the knowledge ordering.

The same behavior can be observed in the case of programs annotated with elements
from other lattices. The following example is analogous to the second case in Example
5.8, but the lattice isT[0,1].

Example 5.9. Let P be an annotated revision program (annotations belong to the lattice
T[0,1]) consisting of the rules:

(out(a):1) ← and (in(a):0.4)← (in(a):0.4).
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Let BI be a valuation such thatBI (a) = 〈0.4,1〉. Then,BI is an s-model ofP and, hence,
it is its own P -justified revision. Consider a valuationBR such thatBR(a) = 〈0,1〉. We
havePBR |BI = {(out(a):1) ←}. Let us denote the necessary changeNC(PBR |BI ) by C.
ThenC(a) = 〈0,1〉 and−C = 〈0,1〉. Thus,((BI ⊗−C) ⊕ C)(a) = 〈0,1〉 = BR(a). That
is, BR is aP -justified revision ofBI .

Note that in both examples the additional justified revisionBR of BI is smaller thanBI

with respect to the ordering�k. It is not coincidental as demonstrated by our next result.

Theorem 5.10. Let BI be a model of an annotated revision program P . Let BR be a
P -justified revision of BI . Then, BR �k BI .

Proof. By the definition of aP -justified revision,BR = (BI ⊗−C) ⊕ C, whereC is the
necessary change ofPBR |BI . By the definition of the reductPBR |BI and the fact thatBI

is a model ofP , it follows thatBI is a model ofPBR |BI . The necessary changeC is the
least fixpoint ofT b

PBR
|BI

, therefore,C � BI . Hence,

BR = (BI ⊗−C)⊕ C �k BI ⊕ C �k BI ⊕ BI = BI . ✷
Finally, we observe that if aconsistent T 2-valuation is a model (or an s-model; these

notions coincide on the class of consistent valuations) of a program then it is itsunique
justified revision.

Theorem 5.11. Let BI be a consistent model of an annotated revision program P . Then,
BI is the only P -justified revision of itself.

Proof. Theorem 3.4 implies thatBI is an s-model ofP . Then, from Theorem 5.7 we get
thatBI is aP -justified revision of itself. We need to show that there are no otherP -justified
revisions ofBI .

Let BR be aP -justified revision ofBI . Then,BR �k BI (Theorem 5.10). Therefore,
T b

P (BR) �k T b
P (BI ). Hence,−T b

P (BI ) �k −T b
P (BR). Theorem 3.1 implies thatBI �k

T b
P (BI ). Thus,−BI �k −T b

P (BI ). SinceBI is consistent,BI �k −BI . Combining the
above inequalities, we get

BI �k −BI �k −T b
P (BI ) �k −T b

P (BR).

That is,BI �k −T b
P (BR). Hence,BI ⊗−T b

P (BR) = BI .
From definition of justified revision and Lemma 5.4,

BR = (
BI ⊗−T b

P (BR)
)⊕ T b

P (BR) = BI ⊕ T b
P (BR) �k BI .

Therefore,BR = BI . ✷
To summarize, when we consider inconsistent valuations (they appear naturally,

especially when we measure beliefs of groups of independent experts), we encounter an
interesting phenomenon. Aninconsistent valuationBI , even when it is an s-model of a
program, may have different justified revisions. However, all these additional revisions
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must be�k-less inconsistent thanBI . In the case of consistent models this phenomenon
does not occur. If a valuationB is consistent and satisfiesP then it is its uniqueP -justified
revision.

In [11] we proved that, in the case of ordinary revision programs, “additional evidence
does not destroy justified revisions”. More precisely, we proved that ifBR is aP -justified
revision ofBI andBR is a model ofP ′ thenBR is aP ∪ P ′-justified revision ofBI . We
will now prove a generalization of this property to the case of annotated revision programs.
However, as before, we need to replace the notion of a model with that of an s-model.

Theorem 5.12. Let P , P ′ be annotated revision programs. Let BR be a P -justified revision
of BI . Let BR be an s-model of P ′. Then, BR is a P ∪ P ′-justified revision of BI .

Proof. Let C = NC(PBR |BI ). Let C′ = NC((P ∪ P ′)BR |BI ). Clearly,C �k C′. By the
definition of a justified revisionBR = (BI ⊗−C)⊕C. Hence,

BR �k BI ⊕ C �k BI ⊕C′.

By Lemma 5.3 it follows thatC′ satisfies the bodies of all rules in(P ∪P ′)BR |BI . SinceC′
is the necessary change of(P ∪P ′)BR |BI we conclude thatC′ satisfies the heads of all rules
in (P ∪ P ′)BR |BI . Reasoning as in the proof of Lemma 5.4 we find thatC′ = T b

P∪P ′(BR).
By Theorem 5.5,BR is an s-model ofP . Therefore, by Theorem 3.5,BR is a s-model

of P ∪ P ′. Theorem 5.7 implies thatBR is a P ∪ P ′-justified revision of itself. In other
words,

BR = (
BR ⊗−NC

(
(P ∪ P ′)BR |BR

))⊕ NC
(
(P ∪P ′)BR |BR

)
.

From Lemma 5.2 it follows thatNC((P ∪P ′)BR |BR) = T b
P∪P ′(BR). Hence,

BR = (BR ⊗−C′)⊕ C′.

Next, let us recall thatBR = (BI ⊗−C)⊕ C. Hence,

BR = ((
(BI ⊗−C)⊕ C

)⊗−C′)⊕C′.

Now, using the facts thatC �k C′ and−C′ �k −C, we get the following equalities:

BR = ((
(BI ⊗−C)⊕C

)⊗−C′)⊕C′

= (
(BI ⊗−C)⊗−C′)⊕ (C ⊗−C′) ⊕C′

= (
BI ⊗ (−C ⊗−C′)

)⊕C′ = (BI ⊗−C′)⊕ C′.

Thus,BR = (BI ⊗ −C′) ⊕ C′. By the definition of justified revisions,BR is a P ∪ P ′-
justified revision ofBI . ✷

In case of revision programs without annotations, justified revisions satisfy the
minimality principle (see [11]). Namely,P -justified revisions of a database differ from
the database by as little as possible. Recall, that in the case of revision programs without
annotations, databases are sets of atoms, and the difference between databasesR andI is
their symmetric differenceR ÷ I = (R \ I)∪ (I \R). The minimality principle states that
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if R is a P -justified revision ofI , then,R ÷ I is minimal in the family{B ÷ I : B is a
model ofP } (Theorem 3.6 in [11]).

Before generalizing the minimality principle to the case of annotated revision programs
we need to specify what we mean by the difference betweenT 2-valuations.

Definition 5.13. Let R, B beT 2-valuations. We say thatB can be transformed into R via
aT 2-valuationC if R = (B ⊗−C)⊕C. We say thatB can be transformed into R if there
existsT 2-valuationC such thatB can be transformed intoR via C.

Given two T 2-valuations, it is not necessarily the case that one of them can be
transformed into the other. Indeed, letV� be aT 2-valuation that assigns to each atom
annotation�. Let V⊥ be aT 2-valuation that assigns to each atom annotation⊥. Then,
if a lattice consists of more than one element, then we have� != ⊥, andV� cannot be
transformed intoV⊥.

Definition 5.14. Let R, B beT 2-valuations. LetS = {C | B can be transformed intoR via
C}. Thedifference diff(R,B) is

diff(R,B) =
{∏

S, whenS != ∅,
V�, otherwise (whenS = ∅).

The following lemma describes a useful property of a difference betweenT 2-valuations.
Namely, the difference betweenT 2-valuationsR andB is the least (in�k ordering)T 2-
valuation among allC such thatR = (B ⊗−C)⊕C.

Lemma 5.15. Let R, B be T 2-valuations. Let S = {C | B can be transformed into R via
C}. If S != ∅, then diff(R,B) ∈ S.

Proof. Let S = {C | B can be transformed intoR via C} != ∅. Then, diff(R,B) = ∏
S.

First, let us show that−∏
S = ∑{−C: C ∈ S}. On the one hand,

∏
S �k C for all C ∈ S.

Thus,−∏
S �k −C for all C ∈ S. Hence,

−
∏

S �k

∑
{−C: C ∈ S}. (8)

On the other hand,
∑{−C: C ∈ S} �k −C for all C ∈ S. Thus,−∑{−C: C ∈ S} �k C

for all C ∈ S. Hence,−∑{−C: C ∈ S} �k

∏
S. That is,∑

{−C: C ∈ S} �k −
∏

S. (9)

From (8) and (9) it follows that−∏
S = ∑{−C: C ∈ S}.

SinceT is complete and infinitely distributive, we get the following.(
B ⊗−

∏
S
)
⊕

∏
S =

(
B ⊗

∑
{−C: C ∈ S}

)
⊕

∏
S

=
∑

{(B ⊗−C): C ∈ S} ⊕
∏

S

=
∏{∑

{(B ⊗−C): C ∈ S} ⊕C′: C′ ∈ S
}

�k

∏
{(B ⊗−C′)⊕C′: C′ ∈ S} =

∏
{R} = R.
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That is,(
B ⊗−

∏
S
)
⊕

∏
S �k R. (10)

By definition of S, for eachC ∈ S, R = (B ⊗ −C) ⊕ C. Therefore, for eachC ∈ S,
C �k R andB ⊗−C �k R. Thus,

∏
S �k R and

B ⊗−
∏

S = B ⊗
∑

{−C: C ∈ S} =
∑

{(B ⊗−C): C ∈ S} �k R.

Hence,(B ⊗−∏
S) ⊕∏

S �k R. This together with (10) imply that(
B ⊗−

∏
S
)
⊕

∏
S = R.

That is,
∏

S ∈ S. ✷
Now we will show that the minimality principle can be generalized to the case of

annotated revision programs. We will have, however, to assume thatT is a Boolean algebra
and restrict ourselves to consistentT 2-valuations.

LetT be a Boolean algebra with De Morgan complement being the complement. Let us
define thenegation operation onT 2 as¬〈α,β〉 = 〈α,β〉 (α,β ∈ T ). Then, the latticeT 2

with operations⊕, ⊗, ¬, and elements⊥, � is a Boolean algebra, too. Operations onT 2

lift pointwise to the space ofT 2-valuations. It is easy to see that the space ofT 2-valuations
with operations⊕, ⊗, ¬, and elementsV⊥, V� is again a Boolean algebra.

Lemma 5.16. Let T be a Boolean algebra. Let R, B , I be T 2-valuations. Let R and I be
consistent. Let diff(R,B) �k diff(R, I). Then, R ⊗B �k R ⊗ I .

Proof. Let C = diff(R, I), C′ = diff(R,B). SinceI is consistent,I �k −I . Thus,

I ⊗−(¬I) �k −I ⊗−(¬I) =−(I ⊕¬I) =−V� = V⊥. (11)

SinceR is consistent,C is consistent, too. That is,C �k −C. Hence,

I ⊗−C = (I ⊗−C)⊕ (I ⊗ C). (12)

Consider valuationC ⊗¬I . Using (11) and (12) we get:
(
I ⊗−(C ⊗¬I)

)⊕ (C ⊗¬I) = (
I ⊗ (−C ⊕−(¬I)

))⊕ (C ⊗¬I)

= (I ⊗−C) ⊕ (
I ⊗−(¬I)

)⊕ (C ⊗¬I)

= (I ⊗−C) ⊕ (I ⊗C) ⊕ V⊥ ⊕ (C ⊗¬I)

= (I ⊗−C) ⊕ (I ⊗C) ⊕ (C ⊗¬I)

= (I ⊗−C) ⊕ (
C ⊗ (I ⊕¬I)

)
= (I ⊗−C) ⊕ (C ⊗ V�) = (I ⊗−C)⊕C = R.

Consequently,C �k C ⊗¬I (by definition of diff(R, I)). Hence,C ⊗ I �k C ⊗¬I ⊗ I =
V⊥. That is,C ⊗ I = V⊥. SinceC′ �k C, it follows thatC′ ⊗ I = V⊥. We have:

I ⊗−C �k R = (B ⊗−C′) ⊕C′.
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Thus,

I ⊗−C = (I ⊗−C)⊗ I �k

(
(B ⊗−C′) ⊕C′)⊗ I

= (
(B ⊗−C′)⊗ I

)⊕ (C′ ⊗ I)

= (
(B ⊗−C′)⊗ I

)⊕ V⊥ = (B ⊗−C′)⊗ I �k B ⊗−C′.
That is,

I ⊗−C �k B ⊗−C′. (13)

SinceR is consistent,C′ is consistent, too. It means thatC′ �k −C′. Hence,B ⊗−C′ �k

B ⊗ C′. Therefore,

R ⊗B = (
(B ⊗−C′) ⊕C′)⊗ B = (

(B ⊗−C′)⊗ B
)⊕ (C′ ⊗B)

= (B ⊗−C′)⊕ (B ⊗ C′) = B ⊗−C′.
That is,

R ⊗B = B ⊗−C′. (14)

Similarly,

R ⊗ I = I ⊗−C. (15)

Combining (13), (14), and (15) we getR ⊗ I �k R ⊗B. ✷
If T is not a Boolean algebra, then the statement of the above lemma does not

necessarily hold, as illustrated by the following example.

Example 5.17. Let T = T[0,1], U = {a}. Let R(a) = 〈0.3,0.7〉, B(a) = 〈0.2,0.5〉, and
I (a) = 〈0.1,0.6〉. Clearly,R andI are consistent. It is easy to see that(diff(R,B))(a) =
(diff(R, I))(a) = 〈0.3,0.7〉. Hence, diff(R,B) �k diff(R, I). However,R ⊗ B !�k R ⊗ I .
Indeed,(R ⊗B)(a) = 〈0.2,0.5〉, and(R ⊗ I)(a) = 〈0.1,0.6〉.

Theorem 5.18. Let T be a Boolean algebra. Let R be a consistent P -justified revision of
a consistent I . Let C = diff(R, I). Let B be such that diff(R,B) = C′ �k C. Then, R is a
P -justified revision of B .

Proof. Consider two reductsPR|I and PR|B. Let r ′ ∈ PR . Let (l:β) be an annotated
revision atom from the body ofr ′. Let (θ−1(I))(l) = δI , (θ−1(B))(l) = δB , and
(θ−1(R))(l) = δR. By the definition of a reduct, the corresponding rule inPR|I contains in
the body the annotated revision literal(l:γI ), whereγI = pcomp(δI , β). The corresponding
rule in PR|B contains in the body the annotated revision literal(l:γB), where γB =
pcomp(δB,β). By the definition of pseudocomplement,

δI ∨ γI � β. (16)

Sincer ′ ∈ PR , β � δR . Hence,β ∧ δR = β . Also, from the definition ofpcomp we get
γI � β , which impliesγI ∧ δR = γI . From (16) we get

(δI ∨ γI )∧ δR � β ∧ δR.
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That is,

(δI ∧ δR)∨ γI � β.

From Lemma 5.16 it follows thatδB ∧ δR � δI ∧ δR . Therefore,

δB ∨ γI � (δB ∧ δR)∨ γI � β.

From definition of pcomp(δB,β) it follows that γB � γI . This means that the only
difference between reductsPR |I andPR |B is that annotations of literals in the bodies of
rules fromPR|B are less than annotations of corresponding literals inPR|I . Consequently,
NC(PR |B) �k NC(PR |I).

SinceR is consistent,

C′ �k C �k NC(PR|I) �k NC(PR|B) �k R

�k −R �k −NC(PR |B) �k −C �k −C′.

Also, R = (B ⊗−C′) ⊕ C′ implies thatB ⊗−C′ �k R, andB ⊕ C′ �k R. Then, on one
hand,(

B ⊗−NC(PR|B)
)⊕ NC(PR|B) �k (B ⊗−C′) ⊕R �k R ⊕ R = R.

On the other hand,
(
B ⊗−NC(PR|B)

)⊕ NC(PR|B) = (
B ⊕ NC(PR|B)

)⊗−NC(PR|B)

�k (B ⊕ C′) ⊗R �k R ⊗ R = R.

Therefore,(B ⊗ −NC(PR|B)) ⊕ NC(PR|B) = R. That is, R is a P -justified revision
of B. ✷
Theorem 5.19. Let T be a Boolean algebra. Let R be a consistent P -justified revision
of a consistent I . Then, diff(R, I) is minimal in the family {diff(B, I): B is a consistent
model of P }.

Proof. Let C = diff(R, I). Then,R = (I ⊗ −C) ⊕ C. SinceR is consistent,C is also
consistent. That is,C �k −C. LetB be a consistent model ofP , and let diff(B, I) = C′ �k

C. We haveB = (I ⊗−C′) ⊕ C′. InequalityC′ �k C impliesC′ �k C �k −C �k −C′.
Therefore,

(B ⊗−C)⊕ C = ((
(I ⊗−C′) ⊕C′)⊗−C

)⊕ C

= (I ⊗−C′ ⊗−C)⊕ (C′ ⊗−C)⊕ C

= (I ⊗−C)⊕ C′ ⊕C

= (I ⊗−C)⊕ C = R.

Consequently, diff(R,B) �k C. By Theorem 5.18,R is a P -justified revision ofB.
However,B is a consistent model ofP . By Theorem 5.11,B is the onlyP -justified revision
of itself. Therefore,R = B. ✷
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The condition in the above theorem that revision is consistent is important. For
inconsistent revisions the minimality principle does not hold, as shown in the following
example.

Example 5.20. Let T = T{p} with the De Morgan complement being the set-theoretic
complement. LetP be an annotated revision program consisting of the following rules:

(in(a):{p}) ←
(out(a):{p}) ← (out(a):{p})

Let I (a) = 〈∅, {p}〉. Clearly,I is consistent. LetR1(a) = 〈{p}, {p}〉 andR2(a) = 〈{p},∅〉.
Both R1 andR2 areP -justified revisions ofI . Thus,R1 is inconsistent s-model ofP , and
R2 is consistent model ofP . We have: diff(R1, I ) = 〈{p}, {p}〉, and diff(R2, I ) = 〈{p},∅〉.
Clearly, diff(R2, I ) �k diff(R1, I ). Therefore,R1 is a P -justified revision of a consistent
I , but diff(R1, I ) is not minimal in the family{diff(B, I): B is a consistent model ofP }.

6. An alternative way of describing annotated revision programs and order
isomorphism theorem

We will now provide an alternative description of annotated revision programs. Instead
of evaluating separatelyrevision atoms inT we will evaluate atoms inT 2. This alternative
presentation will allow us to obtain a result on the preservation of justified revisions under
order isomorphisms ofT 2. This result is a generalization of the “shifting theorem” of [9].

An expression of the forma:〈α,β〉, where〈α,β〉 ∈ T 2, will be called anannotated
atom (thus, annotated atoms arenot annotated revision atoms). Intuitively, an atoma:〈α,β〉
stands for the conjunction of(in(a):α) and(out(a):β). An annotated rule is an expression
of the form p ← q1, . . . , qn where p,q1, . . . , qn are annotated atoms. Anannotated
program is a set of annotated rules.

A T 2-valuationB satisfies an annotated atoma:〈α,β〉 if 〈α,β〉 �k B(a). This notion
of satisfaction can be extended to annotated rules and annotated programs.

We will now define the notions of reduct, necessary change and justified revision for
the new kind of programs. LetP be an annotated program. LetBI andBR be twoT 2-
valuations. The reduct of a programP with respect to two valuationsBI andBR is defined
in a manner similar to Definition 4.1. Specifically, we leave only the rules with bodies that
are satisfied byBR , and in the remaining rules we reduce the annotated atoms (except that
now the transformationθ is no longer needed!).

Definition 6.1. Thereduct PBR |BI is obtained fromP by

(1) removing every rule whose body contains an annotated atom that is not satisfied inBR ,
(2) replacing each annotated atoml:β from the body of each remaining rule by the

annotated atoml:γ , whereγ = pcomp(BI (l), β) (hereβ,γ ∈ T 2).
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Next, we compute the least fixpoint of the operator associated with the reduced program.
Finally, as in Definition 4.2, we define the concept of justified revision of a valuationBI

with respect to a revision programP .

Definition 6.2. BR is a P -justified revision of BI if BR = (BI ⊗ −C) ⊕ C, where
C = NC(PBR |BI ) is the necessary change forPBR |BI .

It turns out that this new syntax does not lead to a new notion of justified revision.
Since we talk about two different syntaxes, we will use the term “old syntax” to denote
the revision programs as defined in Section 2, and “new syntax” to describe programs
introduced in this section. Specifically we now exhibit two mappings. The first of them,
tr1, assigns to each “old” in-rule(

in(a):α) ← (
in(b1):α1

)
, . . . ,

(
in(bm):αm

)
,
(
out(s1):β1

)
, . . . ,

(
out(sn):βn

)
,

a “new” rule

a:〈α,⊥〉← b1:〈α1,⊥〉, . . . , bm:〈αm,⊥〉, s1:〈⊥, β1〉, . . . , sn:〈⊥, βn〉.
An “old” out-rule(

out(a):β)← (
in(b1):α1

)
, . . . ,

(
in(bm):αm

)
,
(
out(s1):β1

)
, . . . ,

(
out(sn):βn

)
is encoded in analogous way:

a:〈⊥, β〉← b1:〈α1,⊥〉, . . . , bm:〈αm,⊥〉, s1:〈⊥, β1〉, . . . , sn:〈⊥, βn〉.
Translationtr2, in the other direction, replaces a “new” revision rule by one in-rule and
one out-rule. Specifically, a “new” rule

a:〈α,β〉 ← a1:〈α1, β1〉, . . . , an:〈αn,βn〉
is replaced by two “old” rules (with identical bodies but different heads)(

in(a):α) ← (
in(a1):α1

)
,
(
out(a):β1

)
, . . . ,

(
in(an):αn

)
,
(
out(an):βn

)
and (

out(a):β)← (
in(a1):α1

)
,
(
out(a):β1

)
, . . . ,

(
in(an):αn

)
,
(
out(an):βn

)
.

The translationstr1 and tr2 can be extended to programs. We then have the following
theorem that states that the new syntax and semantics of annotated revision programs
presented in this section are equivalent to the syntax and semantics introduced and studied
earlier in the paper.

Theorem 6.3. Both transformations tr1, and tr2 preserve justified revisions. That is, if
BI ,BR are valuations in T 2 and P is a program in the “old” syntax, then BR is a
P -justified revision of BI if and only if BR is a tr1(P )-justified revision of BI . Similarly,
if BI ,BR are valuations in T 2 and P is a program in the “new” syntax, then BR is a
P -justified revision of BI if and only if BR is a tr2(P )-justified revision of BI .

In the case of unannotated revision programs, the shifting theorem proved in [9]
shows that for every revision programP and every two initial databasesB and B ′
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there is a revision programP ′ such that there is a one-to-one correspondence between
P -justified revisions ofB andP ′-justified revisions ofB ′. In particular, it follows that
the study of justified revisions (for unannotated programs) can be reduced to the study of
justified revisions of empty databases. We will now present a counterpart of this result for
annotated revision programs. The situation here is more complex. It is no longer true that
a T 2-valuation can be “shifted” to any otherT 2-valuation. However, the shift is possible
if the two valuations are related to each other by an order isomorphism of the lattice of all
T 2-valuations.

There are many examples of order isomorphisms on the lattice ofT 2. For instance, the
mappingψ :T 2 → T 2 defined byψ(〈α,β〉) = 〈β,α〉 is an order isomorphism ofT 2. In
the case of the latticeTX , order isomorphisms ofT 2

X can also be generated by permutations
of the setX.

Let ψ be an order isomorphism onT 2. It can be extended to annotated atoms, annotated
rules, andT 2-valuations as follows:

ψ(a:δ) = a:ψ(δ),

ψ(a:δ ← a1:δ1, . . . , an:δn) = ψ(a:δ) ← ψ(a1:δ1), . . . ,ψ(an:δn),(
ψ(B)

)
(a) = ψ

(
B(a)

)
,

wherea, a1, . . . , an ∈ U , δ, δ1, . . . , δn ∈ T 2, andB is aT 2-valuation.
The extension of an order isomorphism onT 2 to T 2-valuations is again an order

isomorphism, this time on the lattice of allT 2-valuations. We say that an order
isomorphismψ on a latticepreserves conflation if ψ(−δ) = −ψ(δ) for all elementsδ
from the lattice. We now have the following result that generalizes the shifting theorem of
[9].

Theorem 6.4. Let ψ be an order isomorphism on the set of T 2-valuations. Let ψ preserve
conflation. Then, BR is a P -justified revision of BI if and only if ψ(BR) is a ψ(P)-justified
revision of ψ(BI ).

Proof. By definition,BR is aP -justified revision ofBI if and only if BR = (BI ⊗−C)⊕
C, whereC = NC(PBR |BI ). Sinceψ is an order isomorphism, it preserves meet and join
operations. Therefore,

ψ(BR) = ψ
(
(BI ⊗−C)⊕ C

) = ψ(BI ⊗−C)⊕ψ(C)

= (
ψ(BI )⊗ ψ(−C)

)⊕ ψ(C) = (
ψ(BI )⊗−ψ(C)

)⊕ ψ(C).

At the same time, ψ(PBR |BI ) = (ψ(P ))ψ(BR)|ψ(BI ), and NC(ψ(PBR |BI )) =
ψ(NC(PBR |BI )). Thus,BR is a P -justified revision ofBI if and only if ψ(BR) is a
ψ(P)-justified revision ofψ(BI ). ✷

Shifting theorem of [9], that applies to ordinary revision programs, is just a particular
case of Theorem 6.4. In order to derive it from Theorem 6.4, we takeT = T WO. Next, we
consider an ordinary revision programP and two databasesB1 andB2 (let us recall that
in the case of ordinary revision programs, databases aresets of atoms and not valuations).
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Let P a andBv
1 andBv

2 be defined as in Theorem 5.1. It is easy to see that the operatorψ ,
defined by

(
ψ(v)

)
(a)=

{ 〈β,α〉, whenBv
1(a) != Bv

2(a),
〈α,β〉, whenBv

1(a)= Bv
2(a)

is an order-isomorphism onT WO2-valuations and thatψ(Bv
1) = Bv

2 . Let C1 andC2 be
two sets of atoms such thatCv

2 = ψ(Cv
1). By Theorem 6.4,Cv

1 is aP a -justified revision of
Bv

1 if and only if Cv
2 is aψ(P a)-justified revision ofBv

2 . Theorem 5.1 and the observation
that the necessary change ofP a

Cv
1
|Bv

1 is consistent if and only if the necessary change of

ψ(P a)Cv
2
|Bv

2 is consistent together imply now the shifting theorem of [9].
The requirement in Theorem 6.4 thatψ preserves conflation is essential. If it is not the

case, the statement of the theorem may not hold as illustrated by the following example.

Example 6.5. Let T = T{p,q,r} with the De Morgan complement defined as follows:

{} = {p,q, r}, {p} = {p, r}, {q} = {q, r}, {r} = {p,q},
{p,q, r} = {}, {p, r} = {p}, {q, r} = {q}, {p,q} = {r}.

Let ψ be order isomorphism onT such thatψ({p}) = {p}, ψ({q}) = {r}, andψ({r}) =
{q}. Clearly,ψ does not preserve conflation, because

ψ(−〈{p}, {}〉) = ψ(〈{p,q, r}, {p, r}〉) = 〈{p,q, r}, {p,q}〉, but

−ψ(〈{p}, {}〉) =−〈{p}, {}〉 = 〈{p,q, r}, {p, r}〉.
Let an annotated program be the following:

P : a:〈{p}, {}〉←
It determines the necessary changeC(a) = 〈{p}, {}〉.

Then,−C(a)= 〈{p,q, r}, {p, r}〉. Let BI (a)= 〈{}, {r}〉. TheP -justified revision ofBI

is

BR(a)= (〈{}, {r}〉 ⊗ 〈{p,q, r}, {p, r}〉) ⊕ 〈{p}, {}〉 = 〈{p}, {r}〉.
The annotated programψ(P) is the same asP . We haveψ(BI )(a) = 〈{}, {q}〉,

ψ(BR)(a) = 〈{p}, {q}〉. The reduct(ψ(P ))ψ(BR)|ψ(BI ) = ψ(P) = P . The necessary
change determined by the reduct isC. However,((

ψ(BI )⊗−C
)⊕C

)
(a)= 〈{p}, {}〉 != ψ(BR)(a).

Therefore,ψ(BR) is not aψ(P)-justified revision ofψ(BI ).

7. Conclusions and further research

The main contribution of our paper is a new definition of the reduct (and hence of a
justified revision) for annotated programs considered by Fitting in [4]. This new definition
eliminates some anomalies arising in the approach by Fitting. Specifically, in Fitting’s
approach, justified revisions are not, in general, models of a program. In addition, they
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do not satisfy the invariance-under-join property. In our approach, both properties hold.
Moreover, as we show in Sections 5 and 6, many key properties of ordinary revision
programs extend to the case of annotated revision programs under our definition of justified
revisions.

Several research topics need to be further pursued. First, the concepts of an annotated
revision program and of a justified revision can be generalized to the disjunctive case,
where a program may have “nonstandard disjunctions” in the head. One can show that this
extension indeed reduces back to the ordinary concept of annotated revision programming,
as discussed here, if no rule of a program contains a disjunction in its head. However, an
in-depth study of annotated disjunctive revision programming has yet to be conducted.

Second, in this paper we focused on the case when the lattice of annotations is
distributive. This assumption can be dropped and a reasonable notion of a justified revision
can still be defined. However, the corresponding theory is so far less understood and it
seems to be much less regular than the one studied in this paper.

Finally, we did not study here the complexity of reasoning tasks for annotated revision
programs. Assuming that the lattice is finite and fixed (is not part of the input), the
complexity results obtained in [11] can be extended to the annotated case. The complexity
of reasoning tasks when the lattice of annotations is a part of an input still needs to
be studied. Clearly, any such study would have to take into account the complexity of
evaluating lattice operations.
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