3,425 research outputs found

    Enabling GPU Support for the COMPSs-Mobile Framework

    Get PDF
    Using the GPUs embedded in mobile devices allows for increasing the performance of the applications running on them while reducing the energy consumption of their execution. This article presents a task-based solution for adaptative, collaborative heterogeneous computing on mobile cloud environments. To implement our proposal, we extend the COMPSs-Mobile framework – an implementation of the COMPSs programming model for building mobile applications that offload part of the computation to the Cloud – to support offloading computation to GPUs through OpenCL. To evaluate our solution, we subject the prototype to three benchmark applications representing different application patterns.This work is partially supported by the Joint-Laboratory on Extreme Scale Computing (JLESC), by the European Union through the Horizon 2020 research and innovation programme under contract 687584 (TANGO Project), by the Spanish Goverment (TIN2015-65316-P, BES-2013-067167, EEBB-2016-11272, SEV-2011-00067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    GORDA: an open architecture for database replication

    Get PDF
    Database replication has been a common feature in database management systems (DBMSs) for a long time. In particular, asynchronous or lazy propagation of updates provides a simple yet efficient way of increasing performance and data availability and is widely available across the DBMS product spectrum. High end systems additionally offer sophisticated conflict resolution and data propagation options as well as, synchronous replication based on distributed locking and two-phase commit protocols. This paper presents GORDA architecture and programming interface (GAPI), that enables different replication strategies to be implemented once and deployed in multiple DBMSs. This is achieved by proposing a reflective interface to transaction processing instead of relying on-client interfaces or ad-hoc server extensions. The proposed approach is thus cost-effective, in enabling reuse of replication protocols or components in multiple DBMSs, as well as potentially efficient, as it allows close coupling with DBMS internals.(undefined

    Redefining a Process Engine as a Microservice Platform

    Get PDF
    In recent years, microservice architectures have emerged as an agile approach for scalable web applications on cloud environments. As each microservice is developed and deployed independently, they can be developed in the platform and programming language that best suite their purposes, using a simple communication protocol, as REST APIs or asynchronous event-based collaborations, to compose them. In this paper, we argue that process engines provide an excellent platform to develop microservices whose business logic involves complex work flows or processes so that a Business Process language can be used as high level language to develop these services and a process engine to execute it. We identify the requirements for integrating a process engine in a microservice architecture and we propose how the communication and deployment in a microservice architecture can be handled by the process engine.Ministerio de Economía y Competitividad TIN2015-70560-R (BELI)Junta de Andalucía P12-TIC-1867 (COPAS)Junta de Andalucía P10-TIC-590

    A Survey of Asynchronous Programming Using Coroutines in the Internet of Things and Embedded Systems

    Full text link
    Many Internet of Things and embedded projects are event-driven, and therefore require asynchronous and concurrent programming. Current proposals for C++20 suggest that coroutines will have native language support. It is timely to survey the current use of coroutines in embedded systems development. This paper investigates existing research which uses or describes coroutines on resource-constrained platforms. The existing research is analysed with regard to: software platform, hardware platform and capacity; use cases and intended benefits; and the application programming interface design used for coroutines. A systematic mapping study was performed, to select studies published between 2007 and 2018 which contained original research into the application of coroutines on resource-constrained platforms. An initial set of 566 candidate papers were reduced to only 35 after filters were applied, revealing the following taxonomy. The C & C++ programming languages were used by 22 studies out of 35. As regards hardware, 16 studies used 8- or 16-bit processors while 13 used 32-bit processors. The four most common use cases were concurrency (17 papers), network communication (15), sensor readings (9) and data flow (7). The leading intended benefits were code style and simplicity (12 papers), scheduling (9) and efficiency (8). A wide variety of techniques have been used to implement coroutines, including native macros, additional tool chain steps, new language features and non-portable assembly language. We conclude that there is widespread demand for coroutines on resource-constrained devices. Our findings suggest that there is significant demand for a formalised, stable, well-supported implementation of coroutines in C++, designed with consideration of the special needs of resource-constrained devices, and further that such an implementation would bring benefits specific to such devices.Comment: 22 pages, 8 figures, to be published in ACM Transactions on Embedded Computing Systems (TECS

    Java for Cost Effective Embedded Real-Time Software

    Get PDF

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Safety-Critical Java for Embedded Systems

    Get PDF
    corecore