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Abstract

Nowadays, most programmable systems contain multiple hardware accelerators with
different characteristics. In order to use the available hardware resources and improve the
performance of their applications, developers must use a low-level language, such as
C/C++. Succeeding the same goal from a high-level managed language (Java, Haskell, C#)
poses several challenges such as the inability to perform asynchronous data transfers and
declare pinned memory. Therefore, managed languages have not established the path of
hardware acceleration yet.

Recently, frameworks that run on top of managed runtime systems have been developed,
enabling acceleration of high-level programming languages on heterogeneous hardware. In
this project, one particular aspect of hardware acceleration in the context of managed
runtimes is analyzed, namely memory transfers between the host and the device. Two
different solutions for improvement are proposed.

The first solution enhances TornadoVM, a heterogeneous managed runtime system, to allow
for pinned off-heap buffers allocation and batch processing that overlaps computation with
data transfers. A performance increase in data transfers of up to 50% is obtained when
pinned memory is used. Additionally, up to 2.5x in end to end performance speed up can be
achieved over sequential batches, when pinned memory is combined with parallel batching.

The second solution extends MaxineVM to allocate its heap through the CUDA Unified
Memory, allowing for Java objects resident in the heap to be accessed by the GPU. A
performance increase of up to 134x end to end and a garbage collection slowdown of 2.45x
compared against sequential Java execution is obtained.
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1 Introduction

With the advent of general purpose graphics processing unit (GPGPU) computing, in the
mid-2000s, different parallel computing platforms and application programming interfaces
(APIs) have become more prevalent. One of them is the Open Computing Language
(OpenCL) [1], an open standard maintained by the Khronos Group, that can be used to write
programs that can execute across heterogeneous platforms such as graphics processing
units (GPUs), central processing units (CPUs), integrated GPUs, and field programmable
gate arrays (FPGAs). Another heterogeneous programming framework is Compute Unified
Device Architecture (CUDA) [2], a parallel computing platform, and API designed to work
only with Nvidia hardware.

For both OpenCL and CUDA, the main programming languages for expressing compute
kernels to run on the accelerator are enhanced dialects of C and C++ [4]. This highlights the
fact that these programming frameworks are not easy to use for non-expert programmers,
since they require one to explicitly manage memory allocations on the device, transfer data
between the host system and the device, write and optimize low-level operations, and use
the different memory types that are available on the device.

On the other hand, the Java language is one of the most popular programming languages in
the industry [3]. One of the main reasons for this popularity is due to the benefits of a
managed runtime, which includes type safety, backward compatibility, platform portability,
and most importantly, automatic memory management in the form of garbage collection
(GC).

Recently, there have been a number of efforts to enable the use of heterogeneous devices
through Java, allowing software engineers using high-level programming languages to
abstract the low-level details required when using CUDA or OpenCL. The most notable
projects are:

● TornadoVM [5] is an open-source Java-based parallel programming framework that
enables dynamic just-in-time (JIT) compilation and execution of Java applications
onto OpenCL or CUDA compatible devices.

● Aparapi [6] exposes specific language constructs for memory allocation (i.e., local
memory) and memory synchronization (i.e., barriers) that programmers must
explicitly use. Similarly to TornadoVM, Aparapi dynamically compiles Java bytecodes
to OpenCL code.

● IBM J9 [4] is a Java Virtual Machine (JVM) that contains a JIT compiler used for GPU
offloading but exclusively compiles Java 8 Streams to CUDA assembly (PTX) [7].

There are a number of key aspects that must be fulfilled in order to transparently offload
code written in a high-level language to an accelerator in the context of a managed runtime:

● Compiler support must exist in order to successfully generate code that can run on
the accelerator from a high-level language.

● The runtime must be able to communicate with the device through a device driver in
order to offload computations and perform data transfers between the host and the
device. A device driver is a computer program that is used to control and operate on
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a particular device by providing a software interface to the hardware that the
operating system and other programs can use.

● Memory management support must be enhanced in order to perform data transfers
between the host and the device. Additionally, optimizations such as removing
redundant data transfers can be applied.

The focus of this thesis is to analyze and optimize memory management of managed
runtimes on heterogeneous systems. In detail, the contributions of this thesis are as follows:

● The limitations imposed by a managed runtime in the context of their execution on
heterogeneous systems regarding memory management and data transfers are
identified. It is shown that currently, asynchronous data transfers between the
managed heap and the device are unsafe operations that can break the program.
Using off-heap buffers that are not managed by the GC restricts the accessibility and
limits the programmer to use a specific API. Declaring pinned memory is currently not
possible unless done through off-heap buffers or by applying code changes to the
managed runtime.

● A solution that enhances TornadoVM to allow for allocation of off-heap pinned buffers
is presented in Section 3.2.1. To optimize the presented solution and avoid device
memory limitations, parallel batch processing is implemented, allowing for overlap
between computation and data transfers. A speed up of data transfers up to 50% is
obtained when pinned memory is used. Additionally, a 2.5x end to end performance
speed up can be achieved over sequential batches, when pinned memory is
combined with parallel batching.

● Another solution is built and presented in Section 4.3 by extending MaxineVM, a
research JVM, to allocate its heap through the CUDA Unified Memory, allowing for
Java objects resident in the managed heap to be accessed by the GPU. A
performance increase of up to 134x end to end and a garbage collection slowdown of
2.45x are obtained compared against sequential Java execution.

The structure of this dissertation is organized as follows:
● In Chapter 2, the current status of heterogeneous computing is analyzed and the

programming models of CUDA and OpenCL are explored. An overview of the
hardware characteristics of modern GPUs is provided and then the main components
of a managed runtime are described. Finally, a logical analysis of what limitations are
imposed by a managed runtime on a heterogeneous system is performed.

● Chapter 3 describes a solution to speed up data transfers between the host and the
device using Project Panama [8] and TornadoVM and reviews the profiling results
obtained.

● Chapter 4 proposes a different solution, by providing non-excessive changes to the
JVM (MaxineVM in this case). It is shown that by changing the underlying managed
runtime, it is possible to transparently enable object sharing with the GPU. An
analysis of the performance of different GPU computations that access data through
this method is then performed.

● In Chapter 5, the state of the art research on the same topic is presented.
● Chapter 6 concludes the research and describes possible future work in this

direction.
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2 Background

This chapter is separated into three sections, as follows:
● Section 2.1 provides an overview of heterogeneous computing along with the

benefits and current usages, with a focus on GPUs as the main heterogeneous
device. It also contains the description of two popular parallel computing platforms:
OpenCL and CUDA.

● Section 2.2 discusses the insights of managed runtimes. In particular, it presents the
structure of managed runtimes and their challenges in general.

● Section 2.3 presents the challenges managed runtime systems face in the context of
their execution on heterogeneous systems.

2.1 Heterogeneous computing: a short history, description,
benefits, and current usages

Since their emergence, GPUs were fixed-function processors used primarily for 3D graphics
rendering. The entire execution model was built around a graphics pipeline that was
configurable to some extent, but not programmable. By the mid-1990s, the increasing
demand for processing power in the video games industry, with notable titles, such as Doom
and Quake, made 3D graphics manufacturers (e.g. 3DFX, Nvidia, and ATI) to start providing
reasonably priced graphics cards [9].

Even though the graphics pipeline was drastically increasing the processing of pixels per
clock cycle, CPUs were still able to produce more triangles than the GPU. Since rendering
3D graphics is an extremely repetitive task and there are no data dependencies between
different computations, the solution was to add multiple pipelines, and therefore obtain
parallelism. Nowadays, a modern gaming graphics card, such as the Nvidia GeForce RTX
3080 TI, contains 98 rendering output units (ROPs) and is able to generate around 186
gigapixels per second.

In recent years, several companies have started using parts of the GPU graphics pipeline,
especially the pixel shaders, to perform parallel arithmetic calculations, thereby making the
emergence of fully unified GPUs, such as the Nvidia GeForce 8800, unavoidable. A unified
architecture in a GPU refers to the fact that the hardware in all of the rendering pipeline
stages has the same capabilities and uses the same instruction set architecture. The
GeForce 8800 was the first GPU to use scalar thread processors rather than vector
processors and allowed for memory operations with byte addressing. Additionally, it provided
new instructions to express finer-grained parallelism and communication with the host [10].
These features resulted in higher performance general computing and culminated with the
emergence of two popular parallel computing platforms, respectively OpenCL [1] and CUDA
[2]. Sections 2.1.1 and 2.1.2 describe the hardware architecture and programming models of
OpenCL and CUDA.
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Nowadays, GPUs have overcome their initial purpose of being used only for graphics
rendering and are fully programmable for general computations that can be massively
parallelized. Therefore, the main area where general-purpose graphics processing units
(GPGPU) are being used has been expanded from video processing to bioinformatics [11],
computer vision [12], machine learning [13], cryptography [14], and many others.

Figure 1 shows a comparison in architectures between the CPU on the left side and the
GPU, on the right side. The most significant difference is that more transistors are devoted to
data processing (green area) on the GPU. This results in multiple arithmetic logic units
mapped to the same control unit (yellow area) and in increased parallelism. Also, the size of
the level 1 (L1) caches in GPUs is smaller in comparison to a CPU.

Figure 1:
High level architectural comparison between the CPU on the left side and the GPU on the

right side. This figure is taken from [15].

2.1.1 CUDA

In November 2006, together with the GeForce 8800, Nvidia introduced CUDA [2], a
general-purpose parallel computing platform and programming model that leverages the
parallel compute engine of Nvidia GPUs. Its aim is to solve computational problems in a
more efficient way than on a CPU. CUDA comes with a software environment that allows
developers to use C++, FORTRAN, DirectCompute, and OpenACC as a programming
language [15]. Parallel Thread Execution (PTX) [7] is an instruction set architecture for
general purpose parallel programming and it is designed to be efficient on Nvidia GPUs.
High level language compilers for languages such as CUDA and C/C++ generate PTX
instructions, which are optimized for and translated to native target-architecture instructions.
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Below, in Section 2.1.1.1, CUDA from a hardware perspective is first presented and in
Section 2.1.1.2 an analysis is made on how the programming model maps on top of the
hardware.

2.1.1.1: CUDA hardware architecture
Nvidia developed a number of slightly different architectures that support the CUDA
programming model. The code names for some of the microarchitectures are listed below:

1. Tesla (2006)
2. Fermi (2010)
3. Kepler (2012)
4. Maxwell (2014)
5. Pascal (2016)
6. Volta (2017)

Figure 2:
The CUDA GPU architecture from a hardware perspective. There are multiple Streaming
Multiprocessors (SMs) with each SM containing several Scalar Processors (SPs) used for

execution, a special Special Function Unit (SFU) and shared memory.

In general, the CPU is called the host, and the GPU is called the device. Even though the
architectures are slightly different in detail, Figure 2 shows a general view that covers all of
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them. On the GPU, there are multiple Streaming Multiprocessors (SMs), also called "big
cores". Each Streaming Multiprocessor holds several Scalar Processors (SPs) that are used
for executing instructions. There are other components such as L1 caches and registers,
several Special Function Units (SFUs), and a small on-chip memory that is shared between
the SPs belonging to the same SM. All the SMs can access the large off-chip dynamic
random access memory (DRAM) of the GPU. Data from the host is also written to the GPU
DRAM, usually through a peripheral component interconnect express (PCIe) bus.

Each SM executes a number of threads that are assigned by the CUDA runtime. Then, the
total number of threads are split into groups of 32 parallel threads called warps and get
scheduled to execute on the SM. All of the threads inside a warp start at the same
instruction address and will execute the same instruction in a Single Instruction Multiple
Threads (SIMT) manner [15]. From the Volta microarchitecture and onwards, threads in a
warp that diverge in control flow regions can continue executing concurrently. Prior to Volta,
this was not the case, and each sub-warp had to be executed sequentially up to the point
where the control flow merged.

2.1.1.2: CUDA programming model
The thread arrangement is a crucial factor when performing parallel computations on the
GPU. In CUDA, threads are organized in blocks that can be 1-dimensional, 2-dimensional,
or 3-dimensional. At the same time, thread blocks are grouped in grids that can be
1-dimensional, 2-dimensional, or 3-dimensional. The number of thread blocks in a grid is in
general dictated by the size of the data being processed, which typically exceeds the
number of SPs in the system.

The CUDA API is used to specify the block dimension and grid dimension when launching a
function to execute on the GPU. Figure 3 shows the relation between grids, blocks, and
threads.

14



Figure 3:
The relationship between grids, blocks and threads. Grids contain multiple blocks and each

block contains multiple threads. This figure is taken from [15].

2.1.2 OpenCL
OpenCL was developed by Apple and refined in collaboration with other industrial
corporations, including Intel, Nvidia, AMD, Arm, and IBM. The initial proposal was submitted
to the Khronos Group, where the initial specification of OpenCL 1.0 was released in
December 2008.

Unlike CUDA, OpenCL is an open standard that aims to enable parallel computing on
heterogeneous hardware from different vendors. This includes multiple types of devices,
such as FPGAs, GPUs, CPUs, and integrated GPUs. Although OpenCL provides
guarantees of portability and correctness of kernels across a variety of hardware, it does not
guarantee that a particular kernel will achieve peak performance on multiple architectures.
The nature of the hardware may make some programming strategies more appropriate for
particular platforms than for others [16].

Similar to CUDA, OpenCL defines threads as work-items and blocks as work-groups. Each
work-group consists of a number of work-items and both work-groups and work-items can be
1-dimensional, 2-dimensional, or 3-dimensional. A global work-group incorporates all the
other work-groups used to run a kernel [17]. Figure 4 shows the relation between the global
work-group, local work-groups and work-items.
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Figure 4:
A single Global Work Group containing four local work-groups with ids from 0 to 3. Each

local work-group incorporates 18 work-items.

OpenCL and CUDA have memory models very similar to each other. Figure 5 shows the
memory hierarchy using the OpenCL memory model:

● Global memory and Constant memory are GPU off-chip DRAM. Constant memory is
read only. CUDA has the same conventions for these kinds of memories.

● Local memory is on-chip memory that is shared between all the work-items of a
work-group. CUDA has the equivalent shared memory that can be accessed by
different threads in the same SM.

● Private memory is available only to each work-item. In general, it is mapped to
registers of the GPU. If too much private memory is used, then it will spill to slower
memories such as shared and global. The equivalent in CUDA is local memory.
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Figure 5:
Memory hierarchy in OpenCL for GPUs.

Global memory represents the GPU off-chip DRAM. Local memory is on-chip and shared
amongst all the work-items belonging to the same work-group. Private memory is available

only to each work-item. This figure is taken from [18].

In order to issue commands to the device, OpenCL uses an object called command-queue.
Through calls to the API, commands such as read/write operations or kernel launches are
queued to a command-queue. The calls to the driver API can be synchronous or
asynchronous. When synchronous, the CPU thread that calls the driver API is blocked until
the command is executed. When asynchronous, the command is only queued allowing the
CPU thread to return from the API call. Once queued in the command-queue, the commands
are executed by the device driver. Depending on the properties of the command-queue, the
order in which commands are executed can be the same as the order commands were
queued (in-order) or can be in an arbitrary order (out-of-order). When commands are queued
to a command queue, OpenCL allows for the retrieval of an event object. Ordering of
commands in out-of-order command-queues can be established using OpenCL events.
CUDA operates in a very similar way, and the equivalent data structure is stream. CUDA
streams are always in-order.

The focus of this work is on optimizing data transfers between global memory and host
memory in the context of the JVM. To achieve this multiple in-order OpenCL
command-queues or CUDA streams are used and asynchronous calls to the driver APIs are
performed.
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2.2 Managed runtimes

In the 1970s and 1980s, a different way of executing high-level programming languages
emerged, in which a layer of software that intermediates between the high-level program and
the machine was added. The developed managed runtimes first gained popularity with
implementations for BASIC [19], Lisp [20], and Smalltalk [21]. Even though for a long time
managed runtimes have been considered slow when compared to natively compiled
languages, nowadays most of the high-level programming languages (e.g. Java, Python,
Scala, R) are executed on top of a high-performance managed runtime system.

With the emergence of Java and the JVM in the 1990s, the idea of using a managed runtime
system as an abstraction layer gained huge popularity. Below is presented a list of
advantages offered by managed runtimes, in the context of Java and the JVM:

● Java code can reach native speeds or sometimes be even faster when compared to
C/C++. This is achieved by adding one or two optimizing JIT compilers that exploit
profiling code at runtime, revealing optimizations that are missed with ahead of time
compilation.

● Automatic heap management is performed by improving memory allocation (most of
the time it is only a bump pointer allocation), providing garbage collection, and heap
resizing.

● A common API can be used regardless of the underlying operating system to perform
various tasks (Input/Output, handling network communication).

As part of this thesis, the JVM is the main runtime system that is being used as a technology
for the research. The JVM has a complex architecture with details varying between different
implementations. However, the main subsystems that are the same between
implementations are described below:

● The class loader subsystem loads, links, and initializes classes dynamically at
runtime when a class is first referenced by the user code.

● The runtime data area contains the methods area where JIT-compiled code and
class level data are being held. The stack area is used to hold Java thread
information. Each Java thread has its own runtime stack separately from the native
thread stack. Finally, the heap area is part of the runtime data area. Most of the Java
objects are allocated in this space (on the heap).

● The execution engine is assigned valid bytecode by the runtime and must execute it
either by using the interpreter or the JIT compiler. Another part of the execution
engine is the JVM garbage collector that manages the objects on the heap and can
move them at different addresses during runtime while preserving the correctness of
the program. Different garbage collection algorithms [22] have been implemented
across different JVMs but describing them is out of the purpose of this thesis.

Another important feature of the JVM that is used in this thesis is the Java Native Interface
(JNI) [23]. The JNI is a native programming interface that allows Java code that runs inside
the JVM to interoperate with libraries written in other programming languages such as C or
C++. Besides interoperability, JNI also enables programmers to create, inspect and update
Java objects, call Java methods from native methods and throw exceptions.
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2.3 Challenges in managed runtimes regarding heterogeneous
computing

Even though the JVM as a managed runtime system is one of the most popular technologies
used nowadays, with the end of Moore's Law [24], the new direction for improvement is to
add support for heterogeneity to the platform. Different accelerators can be used to
accelerate specific tasks. For example, GPUs perform better by orders of magnitude
compared to CPUs when running deep learning algorithms [25]. The following sections
present the challenges that managed runtime systems, specifically the JVM, face in the
context of heterogeneous systems.

2.3.1 Asynchronous data transfers

In general, asynchronous data transfers between the host and the device are performed,
allowing the CPU threads calling the driver API to continue running for the duration of the
transfer. The JNI API provides two functions that can be used to lock an object in the JVM
heap, GetPrimitiveArrayCritical and ReleasePrimitiveArrayCritical [23]. The object is
guaranteed to not be moved by the GC in the JVM heap in between the two JNI method
calls. Depending on which GC is being used (SerialGC [26], ParallelGC [27], G1GC [28],
Shenandoah [29], ZGC [30]) the whole JVM heap might be locked, or a subregion of the
heap where the object lives, or only the object itself.

Currently, asynchronous data movements are unsafe in the context of the JVM. Since there
is no way to determine when an asynchronous data transfer will execute, it is not possible to
know when the object can be unlocked from the heap. If the object is never locked, then the
GC is allowed to move it to a different address in the JVM heap, causing the address used
by the data transfer to become invalid. If the object is locked but never unlocked, this causes
a memory leak in the JVM heap. Both scenarios can lead to the program crashing.

Therefore, in order to transfer objects from the JVM heap, user-level frameworks such as
TornadoVM or Aparapi have no choice but to use blocking API calls to OpenCL or CUDA.

2.3.2 Off-heap buffers

An alternative to the use of blocking API calls to perform data transfers is to declare off-heap
memory and make it available to the user. Through off-heap memory, it is possible to use
non-blocking API calls to the drivers and therefore allow the CPU thread to execute more
instructions in the same time frame.

The ByteBuffer API [31], introduced in Java 1.4 allows the creation of direct byte buffers,
which are allocated off-heap, allowing the user to manipulate off-heap memory directly from
Java. One limitation of the ByteBuffer API is that it was not designed only for off-heap data
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access, but also for I/O operations and exchange of bulk data. Another issue is that the
maximum size of a buffer is limited to 2GB.

As an alternative to the ByteBuffer API, the Foreign Memory Access API [32] has been
introduced in Java 14, 15, and 16, as an incubator module (a runtime flag needs to be
enabled in order to use it). This API aims to address the problem of accessing and managing
off-heap memory in Java, therefore replacing direct byte buffers.

2.3.3 Page-locked memory

Paging out is the process of moving memory areas belonging to a process from
fast-to-access random-access memory (RAM) to slow-to-access non-volatile memory. This
process is usually used when the RAM memory is fully occupied and the non-volatile
memory can be used as a storage space. If the CPU tries to access any memory that was
paged out, then the memory is first copied from the non-volatile storage to the RAM (paged
in). Memory paging can cause significant overheads in the execution of a program. Pinned
(page-locked) memory is guaranteed not to be paged out by the operating system [33]. With
pinned memory, it is possible to obtain direct memory access (DMA), without using the CPU
[34]. On the other hand, with non-pinned memory, the CPU would have to copy each piece
of data to the host buffers. In general, if the CPU speed is the bottleneck causing slow data
transfer, pinned memory transfers can be much faster than pageable memory transfers.

Figure 6:
Non-pinned data transfer (left) compared to pinned data transfer (right). Intermediate pinned

host buffers are used by the CUDA driver to perform the data transfer to the GPU. This
figure is taken from [35].
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Figure 6 shows the difference between performing pinned and non-pinned memory transfers
in CUDA. In a default data transfer between the host and the device, as shown in the left
part of the figure, CUDA copies data from the pageable host memory to intermediate pinned
buffers on the host and then performs the data transfer to the device. Even if the copy
seems unnecessary, CUDA requires pinned memory to perform the transfer between the
host and the device [36]. However, as shown in the right part of the figure, the CUDA API
provides options for directly allocating pinned buffers on the host [37], bypassing the extra
allocation and copy from non-pinned memory to pinned memory.

In the OpenCL specification, pinned memory is not directly mentioned. However, many driver
implementations, such as Nvidia [38] and AMD [39], have special guidelines with the
required steps to follow in order to declare and use pinned memory.

Pinned memory in the context of a managed runtime such as the JVM is currently difficult to
use since there is no way to instruct the VM to allocate pinned memory. An alternative
approach will be presented in Chapter 3, which shows how off-heap buffers can be initialized
by using the OpenCL or CUDA APIs. Additionally, Chapter 4 shows how the heap allocation
of MaxineVM can be modified to accelerate the transfer of Java arrays from the object heap.
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3 Accelerating data transfers in the context of
TornadoVM

This chapter presents a proposal to increase the performance of memory management and
data transfers of managed runtime systems using heterogeneous hardware. This proposal is
built on top of TornadoVM [40], a framework for offloading and accelerating Java methods on
various devices such as GPUs, iGPUs, CPUs, and FPGAs. TornadoVM executes on top of
the JVM and is able to transparently compile and execute code on heterogeneous hardware.
TornadoVM has been developed to provide heterogeneous programming support to the
general purpose Java programming language, a language that would not normally be
associated with writing either high-performance or heterogeneous code.

Standard JVMs, apart from IBM J9, are only able to generate machine code for various CPU
architectures such as X86, ARM, and RISC-V. TornadoVM through the TornadoAPI
enhances the JVM, enabling the execution of Java methods on heterogeneous devices such
as CPUs, iGPUs, GPUs, and FPGAs.

Specifically, this chapter is split into the following subsections:
● Subsection 3.1 describes the architecture of TornadoVM at a high level view.
● Subsection 3.2 presents the current functionality of batch processing. Besides, it

presents how TornadoVM was extended to allow for parallel batch processing.
● Subsection 3.3 demonstrates a solution to the problem of asynchronous data

transfers in the context of a managed runtime system (described in Section 2.3.1)
using off-heap buffers and pinned memory.

● Subsection 3.4 concludes with a discussion on the evaluation methodology and it
shows a detailed view of the performance evaluation.

3.1 Software Architecture of TornadoVM

The software architecture of TornadoVM comprises a combination between a layer
architecture and a microkernel architecture. At the top level, TornadoVM exposes an API to
program heterogeneous hardware. At the core level, TornadoVM provides an execution
engine and a JIT compiler.

The Tornado API provides a task-based parallel API for parallel programming in Java and it
enables developers to express parallelism with minimal effort. Each task comprises a Java
method handle containing the pure Java code and the data it accesses. The Tornado API
provides Java interfaces to create task-schedules. Task-schedules are composed tasks that
will be automatically scheduled for execution by the runtime. In addition to enabling definition
of tasks and task-schedules, TornadoVM allows developers to indicate that a loop is a
candidate for parallel execution through the @Parallel annotation [40].

Listing 1 shows an example written in Java of a parallel map/reduce computation using a
TaskSchedule s0 that has two tasks t0 and t1, defined in lines 14 and 15. Map/reduce is a
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parallel and distributed computation. It runs a map function on a set of keys K1 and for each
key produces an output K2. The reduce function then runs once for each element in K2 to
produce a final result. The Java methods to accelerate are specified on each task and are
map in lines 2-6 and reduce in lines 7-11. The temp array is the output of task t0 and the
input of task t1. The final output of the TaskSchedule is specified in line 16, through the
streamOut operation.

1 public class Compute {

2 public void map(float[] in, float[] out) {

3 for (@Parallel int i = 0; i < in.length; i++) {

4 out[i] = in[i] * in[i];

5        }

6    }

7 public void reduce(float[] in, @Reduce float[] out) {

8 for (@Parallel int i = 0; i < in.length; i++) {

9 out[0] += in[i];

10       }

11   }

12 public void run(float[] in, float[] out, float[] temp) {

13 new TaskSchedule("s0")

14           .task("t0", this::map, in, temp)

15           .task("t1", this::reduce, temp, out)

16           .streamOut(out)

17           .execute();

18   }

19 }

Listing 1:
Example of using the Tornado API. In lines 13-17 a TaskSchedule is created that has two
tasks t0 and t1. The map and reduce methods are passed to the tasks and transparently

accelerated. This listing is taken from [40]

Figure 7 is used to describe the workflow of TornadoVM. The components in light blue color
are parts of the standard JVM compilation flow. The components in light violet are parts of
TornadoVM and are described below:

● The Tornado compiler extends the Graal compiler [41] with extra compilation phases
to perform different API replacements for Tornado-specific calls. This produces an
Intermediate Representation Graph (IR graph) that is sent to the Dataflow Analyzer.

● The Dataflow Analyzer is an extra compilation phase that performs code reachability
and data dependency analysis on the Java methods. It produces information that is
passed to the Optimizer.

● The Optimizer uses the data dependency graph and accesses information from the
Dataflow Analyzer to produce an internal graph representation and remove
unnecessary data transfers between the host and the device. This graph is then
passed to the TornadoVM Bytecode Generator.

● The TornadoVM Bytecode Generator traverses the optimized intermediate graph and
produces TornadoVM bytecodes in a simple Java Byte Buffer. The TornadoVM
bytecodes are shown in Table 1 and explained later.
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● The TornadoVM Bytecode Interpreter is a Java switch statement that parses the Java
Byte Buffer and executes each TornadoVM bytecode.

● The Device Heap Manager keeps data consistent between the host and the devices.
The Optimizer and the Device Heap Manager are used to remove redundant data
transfers between the host and the device. For example, In Listing 1, after task t0
executes, the variable temp is held on the device and not copied back to the host
memory. Therefore, when task t1 is executed, the data for temp is already present on
the device heap.

● The OpenCL (OCL) JIT Compiler and Parallel Thread Execution (PTX) JIT Compiler
are two extensions of the Graal compiler with custom compilation phases allowing
TornadoVM to generate OpenCL and PTX code. TornadoVM also handles the
required calls to the underlying device drivers to perform JIT compilation of the
generated OpenCL code and PTX code and load the generated code on the device.

Figure 7:
TornadoVM architecture overview and workflow.

Table 1 enlists the TornadoVM bytecodes generated by the TornadoVM Bytecode Generator
and parsed with the TornadoVM Bytecode Interpreter. In total there are 11 bytecodes that
allow the virtual machine (VM) to handle data transfers and kernel execution and accept a
different number of parameters. All the TornadoVM bytecodes receive at least one argument,

24



the context identifier, which is a unique number used to identify a task-schedule. TornadoVM
generates a new context identifier for each task-schedule in the program. The context
identifier is used at run-time to obtain a context object which, among others, contains
references to the data accessed by the task-schedule, and information about the device on
which the tasks will be executed.
Below is a description of the TornadoVM bytecodes:

● The BEGIN and END bytecodes are used to signal the beginning and end of a
TornadoVM context. The BEGIN bytecode is always at the start of Java Byte Buffer
and the END at the end.

● The ALLOC bytecode is used to reserve memory on the heap buffer belonging to the
device attached to the context. This bytecode is created when an object passed to a
task is write-only and therefore any previous data can be discarded.

● The STREAM_IN and COPY_IN bytecodes are used to copy data from the host to
the device. The difference between STREAM_IN and COPY_IN is that when a
COPY_IN is performed, the runtime first checks if the data is marked as present on
the device heap. If the data is on the device heap, then no transfer is involved. On
the other hand, when the STREAM_IN bytecode is executed, a data transfer is
guaranteed to be performed.

● The STREAM_OUT, COPY_OUT, and COPY_OUT_BLOCK operations are all
analogous to the STREAM_IN and COPY_IN bytecodes, but perform data transfers
from the device heap to the host. The difference between COPY_OUT and
COPY_OUT_BLOCK is that the latter is guaranteed to be a blocking data transfer.

● The LAUNCH bytecode is used to launch and asynchronously execute a kernel on
the device. During the execution of this bytecode, the runtime also checks a code
cache to verify if a kernel has been JIT-compiled already. In the case when a kernel
is not available, JIT compilation occurs and the kernel is installed on the device and
placed in the code cache.

● The ADD_DEP bytecode is used to add execution dependencies between other
bytecodes. In TornadoVM, multiple tasks belonging to the same task schedule might
execute in parallel. However, when two tasks have a data dependency, they must
execute in a certain order that is guaranteed through the ADD_DEP bytecode.
Parallel execution is disabled by default.

● The BARRIER bytecode is used to wait for all the previous operations to finish.

Table 1:
List of TornadoVM bytecodes. This table is taken from [40].
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3.2 Batch processing in TornadoVM

Another feature of TornadoVM is batch processing. The TornadoVM runtime is able to split
the buffers passed to a task into multiple segments of a specified size, called batches, and
perform the computation and data transfers for each individual batch. Batch processing can
be used If the input and output passed to a task do not fit on the device memory. Choosing a
batch size that is less than the device memory size and processing one batch at a time
allows for all of the computation to be accelerated on the GPU, even though the data size far
exceeds the device memory.

Listing 2 shows how batch processing is used through the Tornado API. A task schedule s0
is created on the first line and the input for the computation of task t0 is split in batches of
32MB, as specified on the second line.

1  TaskSchedule ts = new TaskSchedule("s0")

2 .batch("32MB")

3 .task("t0", Main::transformToBlackAndWhite, arr)

4 .streamOut(arr);

Listing 2:
TornadoVM Task Schedule using batch processing

For the computation above, with a batch size of 32MB and an input size of 90MB, the
TornadoVM bytecodes generated are shown in Listing 3. The input is split into three batches
and for each batch a COPY_IN, LAUNCH and STREAM_OUT bytecode is generated. Each
batch uses a different offset to copy from the host to the device and from the device to the
host. In this case, the final batch has a smaller size, since the input array size of 90MB can
not be split into three equal batches of 32MB. If no batch processing was used, a single
COPY_IN, LAUNCH and STREAM_OUT bytecodes would have been generated.

1 COPY_IN size=32000000, offset=0

2 LAUNCH task s0.t0 - transformToBlackAndWhite size=8000000, offset=0

3 STREAM_OUT size=32000000, offset=0

4 COPY_IN size=32000000, offset=32000000

5 LAUNCH task s0.t0 - transformToBlackAndWhite size=8000000, offset=32000000

6 STREAM_OUT size=32000000, offset=32000000

7 COPY_IN size=26000000, offset=64000000

8 LAUNCH task s0.t0 - transformToBlackAndWhite size=6500000, offset=64000000

9 STREAM_OUT_BLOCKING size=26000000, offset=64000000

Listing 3:
TornadoVM bytecodes generated when using batch processing.

Figure 8 shows how the current implementation of batch processing works under the
example shown in Listing 2 and Listing 3. The initial input array is split into three batches.
For each batch a COPY_IN, LAUNCH and STREAM_OUT bytecodes are executed. Each
batch is processed in a sequential manner and uses the same memory region on the device
heap.
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Figure 8:
Current implementation of batch processing in TornadoVM. The Task Schedule input array is
split into three batches. For each batch COPY_IN, LAUNCH and STREAM_OUT bytecodes

are executed. Each batch uses the same memory region in the device heap.
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3.2.1 Proposal: Improving performance of Memory Management for
GPUs and FPGAs.

As part of this thesis, the current TornadoVM functionality of batch processing is augmented
to enable multiple batches to be executed in parallel. This is achieved by splitting the device
heap into multiple slots of the size of the batch. For each device heap slot an in-order
OpenCL command-queue (or CUDA stream if the TornadoVM PTX backend is used) is
created and assigned. Then, each batch (COPY-INs, LAUNCH, COPY-OUTs) is assigned a
device heap slot and is enqueued on the command-queue of the device heap slot. All the
data transfers associated with the batch and memory accesses performed by the batch
kernel operate only on the device heap slot assigned to it. If the size of the input data is
larger than the device heap and all the device heap slots are used, then the remaining
batches start being assigned from the first indexed command queue. The command-queues
used are in-order. CUDA streams are always in-order.

Figure 9 shows how parallel batch processing uses different parts of the device heap for
each batch. The first batch occupies the first part of the device heap while the second
occupies the second part of the device heap and uses a different command-queue. Finally,
because in this example the device heap only fits two batches, the final remaining batch is
enqueued using the first command-queue and uses the first heap slot. Additionally, the
runtime will trigger a recompilation request for the kernel, to make sure that it accommodates
the remaining batch size.
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Figure 9:
Parallel execution of batch processing in TornadoVM. The Task Schedule input array is split
into three batches. For each batch, COPY_IN, LAUNCH and STREAM_OUT bytecodes are
executed. The device heap is split into two device heap slots of batch size. To each device

heap slot, the runtime assigns a command-queue. The first two batches use different
command-queues and batch device heap slots. The final batch is enqueued on the first

device heap slot and uses the first command-queue.
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Both parallel and sequential batches solve the problem of processing a data set larger than
the device memory available. However, parallel batching provides an additional advantage
over sequential batches. As analyzed in Section 3.4.2, parallel batches enable the overlap of
device computation with data transfers between the host and the device, decreasing the total
execution time. This is achieved by having multiple in-order command queues. While a
kernel is executed on a command-queue, other command-queues can run data transfers
between the host and the device.

Even with the functionality of parallel batch processing implemented, the problem of
asynchronous data transfers in the context of a managed runtime system described in
Section 2.3.1 is still present. This means that all data transfers performed are blocking,
causing the CPU thread running the TornadoVM Bytecode Interpreter to stall and not
execute TornadoVM bytecodes in parallel with the data transfers.. Therefore no parallelism is
achieved only by using this approach. Section 3.3 describes how this challenge is addressed
by using off-heap buffers.

3.3 Off-heap buffers and pinned memory

As described in Section 2.3.1, performing asynchronous data transfers between the host and
the device is an unsafe operation in the context of a managed runtime system. The garbage
collector can move the data to a different location during the transfer, causing invalid data to
be copied and most probably result in corrupt memory. Since, by design, there is no
straightforward way to pin an object in the JVM heap without preventing garbage collection,
an alternative is to use off-heap buffers.

Another limitation when using objects allocated in the JVM heap is that they do not live in
pinned memory. Pinned memory must be allocated through the driver API (OpenCL or
CUDA) and the JVM does not provide a way to allocate objects in different memory pools or
even to define such memory pools.

A solution to this is to use off-heap buffers, that are not managed directly by the JVM and
that the garbage collector will not move. As part of this work, this feature is implemented in
TornadoVM by using Project Panama [8]. Project Panama is an OpenJDK project designed
to provide a new API for interconnecting Java with native code and includes multiple
components: support for native function calls, native library management APIs, and header
file extraction tools. As part of this new approach, Project Panama provides an API to create
MemorySegments that are off-heap and to access them at different addresses.

In order to be able to accelerate data transfers, the TornadoVM runtime must be aware of
the buffers allocated through pinned memory. Therefore, the Tornado API is enhanced to
allow for allocation of off-heap buffers that are backed by a buffer on the target device. In
Listing 4 in line 20 it is shown how the Tornado API is used to allocate an off-heap pinned
MemorySegment of size arraySizeBytes backed by a device buffer of the same size on the
default device. Next, in lines 22-25 a TaskSchedule is created with a single task where a
MemorySegment pinnedSegment is used as a parameter. The function to be accelerated,
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transformToBlackAndWhite, then accesses the MemorySegment image through the
MemoryAccess::getIntAtIndex and MemoryAccess::setIntAtIndex functions in lines 4 and 12.

1 private static void transformToBlackAndWhite(MemorySegment image) {

2 int size = (int) image.byteSize() / Integer.BYTES;

3 for (@Parallel int i = 0; i < size; i++) {

4 int rgb = MemoryAccess.getIntAtIndex(image, i);

5 int alpha = (rgb >> 24) & 0xff;

6 int red = (rgb >> 16) & 0xFF;

7 int green = (rgb >> 8) & 0xFF;

8 int blue = (rgb & 0xFF);

9

10 int grayLevel = (red + green + blue) / 3;

11 int gray = (alpha << 24) | (grayLevel << 16) | (grayLevel << 8) |

grayLevel;

12        MemoryAccess.setIntAtIndex(image, i, gray);

13    }

14 }

15

16 public static void main(String[] args) {

17 long arraySizeBytes = ((long) SIZE) * Integer.BYTES;

18

19    TornadoDevice defaultDevice =

TornadoCoreRuntime.getTornadoRuntime().getDriver(1).getDefaultDevice();

20    MemorySegment pinnedSegment =

TornadoCoreRuntime.getTornadoRuntime().getOffHeapBuffer(defaultDevice,

arraySizeBytes);

21

22    TaskSchedule ts = new TaskSchedule("s0").batch("32MB")

23           .task("t0", Main::transformToBlackAndWhite, pinnedSegment)

24           .streamOut(pinnedSegment);

25    ts.execute();

26 }

Listing 4:
Usage of the Tornado API to create off-heap pinned memory backed by a device buffer of

the same size. In line 20 the allocation is performed and in lines 22-25 the TaskSchedule is
defined and executed. The MemoryAccess API is used in lines 4 and 12 to read and write to

the device buffer.

Support for allocating both pinned and non-pinned off-heap memory was added to
TornadoVM. Listing 5 shows the method that contains the main logic for allocating a pinned
MemorySegment on the host that is backed by a memory buffer on the device for the PTX
backend:

● In the second line a PTXBufferInfo is created that is later populated with meta-data
used by the runtime.

● Line 5 allocates the pinned memory on the host and line 10 allocates a buffer on the
device.
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● In line 15 a Project Panama’s MemoryAddress object is obtained from the raw
hostBufferAddress and in line 18 a MemorySegment starting at address and with size
hostBufferSIze is created.

● In line 21, the PTXBufferInfo is registered with the runtime and the memory segment
is returned.

1 private MemorySegment allocatePinnedBuffer(long hostBufferSize, long

deviceBufferSize) {

2     PTXBufferInfo bufferInfo = new PTXBufferInfo();

3

4 // Allocate the page-locked buffer on the host.

5 long hostBufferAddress =

getMemoryProvider().allocatePinnedBuffer(hostBufferSize);

6     bufferInfo.setHostBufferPointer(hostBufferAddress);

7     bufferInfo.setHostBufferSize(hostBufferSize);

8

9 // Allocate a mirror buffer on the device.

10 long deviceBufferAddress =

getDeviceContext().getDevice().getPTXContext().allocateMemory(deviceBufferSize,

false);

11   bufferInfo.setDevicePointer(deviceBufferAddress);

12   bufferInfo.setDeviceBufferSize(deviceBufferSize);

13

14 // Obtain a memory address object.

15   MemoryAddress address = MemoryAddress.ofLong(hostBufferAddress);

16

17 // Create an unrestricted memory segment from the address.

18   MemorySegment segment =

address.asSegmentRestricted(hostBufferSize).share();

19

20 // Register the buffer, to be able to release it on device.reset().

21   getDeviceContext().registerOffHeapBuffer(segment, bufferInfo);

22

23 return segment;

24 }

Listing 5:
Allocation of pinned off-heap buffers in TornadoVM. A meta-data bufferInfo is created on the
second line. Line 5 allocates the pinned buffer on the host and line 10 allocates a buffer on

the device. Line 15 obtains a MemoryAddress object using the address returned by the
CUDA API and line 18 creates a MemorySegment of the given size. The meta-data object is

registered with the runtime in line 21 and the memory segment is then returned.

The logic to allocate pinned/non-pinned memory in the OpenCL backend is very similar to
Listing 5. In case of allocating non-pinned memory, a MemorySegment is directly allocated
instead of creating one using a raw address from the drivers.

A key feature of the Graal compiler, which is used in TornadoVM, is the Compiler Plugins.
These allow for the addition or replacement of method invocations with IR subgraphs during
the IR graph building phase [42]. TornadoVM already uses Invocation Plugins for other
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functionalities such as Java atomics support. In order to support MemorySegments,
Invocation Plugins for read and write functions in the MemoryAccess class were added.

Listing 6 shows how an Invocation Plugin is registered for the function
MemoryAccess::set#kindAtIndex, where #kind can be any primitive type. In lines 4 and 5 a
memory address is computed based on the index passed to the function. Then, in line 6 a
JavaWriteNode is created and in line 7 is added to the graph as a replacement of the
method invocation.

1  r.register3("set" + kind.name() + "AtIndex", MemorySegment.class, long.class,

kind.toJavaClass(), new InvocationPlugin() {

2 @Override

3 public boolean apply(GraphBuilderContext b, ResolvedJavaMethod

targetMethod, Receiver receiver, ValueNode segment, ValueNode index, ValueNode

value) {

4         MulNode mulNode = b.append(new MulNode(index,

ConstantNode.forInt(kind.getByteCount())));

5         AddressNode addressNode = b.append(new OffsetAddressNode(segment,

mulNode));

6         JavaWriteNode writeNode = new JavaWriteNode(kind, addressNode,

LocationIdentity.any(), value, OnHeapMemoryAccess.BarrierType.NONE, false);

7         b.add(writeNode);

8 return true;

9     }

10 });

Listing 6:
Graal Invocation Plugin for replacing calls to MemoryAccess::set#kindAtIndex with a

JavaWriteNode.

Figure 10 shows the Intermediate Representation (IR) graph obtained after triggering a
compilation of the transformToBlackAndWhite method in Listing 4 and right after the
graph is built and no optimizations have been applied. Only the loop body is shown. The
nodes connected with a red line are fixed and are part of the control flow, meaning that they
can not be reordered in the graph. The nodes connected with a blue line are floating and are
part of the data flow, meaning that they have more motion freedom in the graph. The Graal
Invoke nodes that should represent the calls made to the MemoryAccess class are replaced
by JavaRead and JavaWrite nodes, respectively nodes 28 and 50. The same address node,
OffsetAddress indexed with 27, is used for the JavaRead and JavaWrite nodes.
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Figure 10:
Intermediate Representation (IR) graph after the Graph Builder phase obtained from

compiling the transformToBlackAndWhite method in Listing 4; only the loop body is
shown. The nodes connected with a red line are fixed and are part of the control flow,

meaning that they can not be reordered in the graph. The nodes connected with a blue line
are floating and are part of the data flow, meaning that they have more motion freedom in

the graph. Note that there are no Invoke nodes to represent the calls made to the
MemoryAccess class. The read and write to memory performed through the MemoryAccess

class are replaced by JavaWrite and JavaRead nodes by the Invocation Plugins.

Listing 7 shows the loop of the OpenCL kernel obtained from compiling the
transformToBlackAndWhite method from Listing 4. Note that the JavaRead node from
Figure 10 generates the read from global memory in line 23. Similarly, the JavaWrite node
from Figure 10 generates the write to global memory in line 40. The same functionality is
used for the PTX backend.

1  #pragma OPENCL EXTENSION cl_khr_fp64 : enable
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2  #pragma OPENCL EXTENSION cl_khr_int64_base_atomics : enable

3  __kernel void transformToBlackAndWhite(__global uchar *_heap_base,

ulong _frame_base, __constant uchar *_constant_region, __local uchar

*_local_region, __global int *_atomics)

4  {

5    ulong ul_0, ul_5;

6 int i_24, i_21, i_20, i_23, i_22, i_1, i_2, i_9, i_8, i_11, i_10,

i_7, i_6, i_17, i_16, i_19, i_18, i_13, i_12, i_15, i_14;

7 long l_3, l_4;

8

9    __global ulong *_frame = (__global ulong *)

&_heap_base[_frame_base];

10

11

12 // BLOCK 0

13   ul_0  =  (ulong) _frame[3];

14   i_1  =  get_global_id(0);

15 // BLOCK 1 MERGES [0 2 ]

16   i_2  =  i_1;

17 for(;i_2 < 8000000;)

18   {

19 // BLOCK 2

20 l_3  =  (long) i_2;

21 l_4  =  l_3 << 2;

22 ul_5  =  ul_0 + l_4;

23 i_6  =  *((__global int *) ul_5);

24 i_7  =  i_6 >> 24;

25 i_8  =  i_7 & 255;

26 i_9  =  i_8 << 24;

27 i_10  =  i_6 & 255;

28 i_11  =  i_6 >> 16;

29 i_12  =  i_11 & 255;

30 i_13  =  i_6 >> 8;

31 i_14  =  i_13 & 255;

32 i_15  =  i_12 + i_14;

33 i_16  =  i_10 + i_15;

34 i_17  =  i_16 / 3;

35 i_18  =  i_17 << 16;

36 i_19  =  i_9 | i_18;

37 i_20  =  i_17 << 8;

38 i_21  =  i_19 | i_20;

39 i_22  =  i_21 | i_17;

40 *((__global int *) ul_5)  =  i_22;

41 i_6  =  i_22;

42 i_23  =  get_global_size(0);

43 i_24  =  i_23 + i_2;
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44 i_2  =  i_24;

45   } // B2

46 // BLOCK 3

47 return;

48 } //  kernel

Listing 7:
The OpenCL kernel obtained from compiling the transformToBlackAndWhite method

shown in Listing 4. The JavaRead node from Figure 10 generates a read from global
memory, shown in line 23. The JavaWrite node from Figure 10 generates a write to global

memory, shown in line 40.

By allocating the memory buffers off-heap, it is possible to safely perform asynchronous data
transfers between the host and the device. This enables the TornadoVM bytecodes executed
by the TornadoVM Bytecode Interpreter to be non-blocking. Additionally, off-heap buffers
allow for the allocation of pinned memory, increasing the speed of data transfers.

3.4 Experimental Performance Evaluation

The off-heap buffers implementation in TornadoVM is evaluated under two different
scenarios. The first scenario (Section 3.4.1) presents an analysis of the data transfer times
for pinned and non-pinned memory without batch processing, while the second scenario
(Section 3.4.2) presents the equivalent analysis when sequential and parallel batching is
applied - essentially evaluating the combination of the two optimizations described thus far in
this thesis.

The experiments that explore the two scenarios are performed on two machines equipped
with different GPUs of different classes (low-end and high-end). The configuration of these
machines is listed in Table 2. The first machine is a laptop with an Intel i7 @ 4.5 GHz CPU
and an Nvidia GeForce GTX 1650 GPU with 4GB of RAM. The second is a server equipped
with an Intel i7 @ 4.5 GHz and an Nvidia Quadro GP100 with 16GB of RAM.

Machine Laptop Server

CPU Intel(R) Core(TM)
i7-9750H

Intel(R) Core(TM)
i7-7700K

Maximum frequency 4.5 GHz 4.5 GHz

GPU Nvidia GeForce GTX
1650

Nvidia Quadro GP100

GPU RAM 4GB 16GB

PCI express version 3 (16 lanes) 3 (8 lanes)

PCI interconnect maximum
theoretical bandwidth

15760 MB/s 7880 MB/s
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TornadoVM version 0.11 0.11

OS version Ubuntu 20.04 CentOS Linux 7

Kernel version 5.11.0-27 3.10.0-693.17.1

OpenJDK version OpenJDK 16 GraalVM
CE 21.1.0

OpenJDK 16 GraalVM CE
21.1.0

OpenCL driver version OpenCL 3.0 CUDA
11.4.94

OpenCL C 1.2 384.111

CUDA driver version 470.57.02 384.111

Table 2:
System configuration used to run the benchmark.

Both experiments run the transformToBlackAndWhite Java method shown in Listing 4.
The transformToBlackAndWhite method iterates once over the elements of a
MemorySegment and for each element performs a read and a write to memory. Additionally,
it performs multiple bit manipulation operations. This method is an ideal candidate since it
contains an average amount of computation and represents a realistic use case. Before
collecting performance numbers, 50 warmup executions are performed to ensure that JVM
has JIT compiled all the hot paths of execution in TornadoVM. Then, the average mean of
the next 100 iterations is used to obtain the final end-to-end time.

A data transfer from the host to the device is referred to as copy-in and a data transfer from
the device to the host is referred to as copy-out.

3.4.1 Data transfer times using pinned vs non-pinned memory without
batch processing

Subsection 3.4.1.1 presents the data transfer performance figures obtained on a PCIe3
interconnect with 16 lanes that has a theoretical maximum bandwidth of 16GB/s for both
read and write operations.
Subsection 3.4.1.2 presents the data transfer performance figures obtained on a PCIe3
interconnect with 8 lanes that has a theoretical maximum bandwidth of 8GB/s for both read
and write operations.
Figures for both the OpenCL and PTX backends are included in the two subsections.

3.4.1.1 Laptop performance evaluation

This subsection presents the performance figures obtained from running the Java method
transformToBlackAndWhite (Listing 4) on the Laptop as described in Table 2.
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Figure 11 shows the times in milliseconds over PCIe3 for copy-in (blue), copy-out (red),
copy-in using pinned memory (yellow) and copy-out using pinned memory (green) across
different input sizes on the PTX backend. The key observation is that as the size of data
transfers increases, the difference in time between pinned and non-pinned copies also
increases. For a data transfer of 128MB, the difference between a non-pinned copy-in and a
pinned copy-in is 1.62 ms. For a data transfer of 1024MB, the difference is 12.9 ms.

Figure 11:
Data transfers with pinned and non-pinned memory in PTX over PCIe3 on the Laptop

configuration. With non-pinned memory, in blue is the copy-in time and red is the copy-out
time. With pinned memory, yellow is the copy-in time and green is the copy-out time.

Similarly to Figure 11, Figure 12 shows the data for the same experiment but obtained
through calls to OpenCL in order to perform the data transfers. All the data transfer times are
similar between the two backends, except for the copy-in time of non-pinned memory. For
the OpenCL backend, when performing a data transfer of 1024 MB the value is 103 ms,
compared to the 91 ms obtained on the PTX backend. The reason for this discrepancy can
be attributed to the actual implementation of the OpenCL and CUDA drivers provided by
Nvidia which are closed source.
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Figure 12:
Data transfers with pinned and non-pinned memory in OpenCL over PCIe3 on the Laptop
configuration. With non-pinned memory, in blue is the copy-in time and red is the copy-out

time. With pinned memory, yellow is the copy-in time and green is the copy-out time.

Figures 13 and 14 show the speed up obtained from using pinned memory compared to
non-pinned memory on the PTX and OpenCL backends. On the PTX backend, pinned
memory is between 1.11x and 1.16x faster than non-pinned memory for both copy-ins and
copy-outs, regardless of the data size used. On the OpenCL backend, copy-ins using pinned
memory are between 1.25x and 1.34x faster than non-pinned memory transfers. Regarding
pinned copy-out transfers, they are between 1.12x and 1.14x faster than non-pinned
copy-out transfers.
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Figure 13:
Copy-in and copy-out speed up obtained by using pinned memory on the PTX backend over

PCIe3 on the Laptop configuration. A speed up of 1 means that the copy-in with pinned
memory has the same performance as a copy-in with non-pinned memory.

Figure 14:
Copy-in and copy-out speed up obtained by using pinned memory on the OpenCL backend
over PCIe3 on the Laptop configuration. A speed up of 1 means that the copy-in with pinned

memory has the same performance as a copy-in with non-pinned memory.
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Figure 15:
Total task-schedule time comparison between pinned and non-pinned memory on the PTX

backend over PCIe3 on the Laptop configuration.

Figure 15 shows the overall performance improvement of the total execution time obtained
by running the transformToBlackAndWhite method in Listing 4 for the PTX backend
when non-pinned memory is used (blue) and pinned memory is used (red). Using pinned
memory results in a task schedule time that is between 1.11x and 1.14x faster compared to
using non-pinned memory, regardless of the data size.
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Figure 16:
Total task-schedule time comparison between pinned and non-pinned memory on the

OpenCL backend over PCIe3 on the Laptop configuration.

Figure 16 shows the overall performance improvement of the total execution time obtained
by running the transformToBlackAndWhite method in Listing 4 for the OpenCL backend
when non-pinned memory is used (blue) and pinned memory is used (red). Using pinned
memory results in a task schedule time that is between 1.17x and 1.21x faster compared to
using non-pinned memory, regardless of the data size.

3.4.1.2 Server performance evaluation

This subsection presents the performance figures obtained from running the Java method
transformToBlackAndWhite (Listing 4) on the Server as described in Table 2.

Figure 17 shows the times in milliseconds over PCIe3 for copy-in (blue), copy-out (red),
copy-in using pinned memory (yellow) and copy-out using pinned memory (green) using
different input sizes on the PTX backend. The difference between pinned and non-pinned
data transfers in this case is not significant. The most considerable difference can be seen
with a data size of 1024 MB, when pinned copy-ins are faster by 9.01 ms than non-pinned
copy-ins. The difference for copy-outs between pinned and non-pinned transfers with a data
size of 1024 MB is only 1.63 ms. The reason for the significant difference between
non-pinned copy-ins and non-pinned copy-outs is that the bandwidth reached by the
copy-ins is lower than the bandwidth reached by the copy-outs. On the other hand, pinned
copy-ins and copy-outs reach similar data transfer bandwidths.
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Figure 17:
Data transfers with pinned and non-pinned memory in PTX over PCIe3 on the Server

configuration. With non-pinned memory, in blue is the copy-in time and red is the copy-out
time. With pinned memory, yellow is the copy-in time and green is the copy-out time.

Like Figure 17, Figure 18 shows the data for the same experiment but obtained through calls
to OpenCL in order to perform the data transfers. All the data transfer times are similar
between the two backends, except for the copy-in time of non-pinned memory. For the
OpenCL backend, the time of a data transfer of 1024 MB is 234.36 ms, compared to the
167.42 ms obtained on the PTX backend. A similar discrepancy is also reported in [43] and
the reason for it is not known since the OpenCL and CUDA drivers provided by Nvidia are
closed source.
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Figure 18:
Data transfers with pinned and non-pinned memory in OpenCL over PCIe3 on the Server
configuration. With non-pinned memory, in blue is the copy-in time and red is the copy-out

time. With pinned memory, yellow is the copy-in time and green is the copy-out time.

Figures 19 and 20 show the speed up obtained from using pinned memory compared to
non-pinned memory on the PTX and OpenCL backends. On the PTX backend, pinned
memory is between 1.01x and 1.06x faster than non-pinned memory for both copy-ins and
copy-outs, regardless of the data size used. On the OpenCL backend, copy-ins using pinned
memory are between 1.44x and 1.52x faster than non-pinned memory transfers. Regarding
pinned copy-out transfers, they are 1.01x faster than non-pinned copy-out transfers.
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Figure 19:
Copy-in and copy-out speed up obtained by using pinned memory on the PTX backend over

PCIe3 on the Server configuration. A speed up of 1 means that the copy-in with pinned
memory has the same performance as a copy-in with non-pinned memory.

Figure 20:
Copy-in and copy-out speed up obtained by using pinned memory on the OpenCL backend
over PCIe3 on the Server configuration. A speed up of 1 means that the copy-in with pinned

memory has the same performance as a copy-in with non-pinned memory.
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Figure 21:
Total task-schedule time comparison between pinned and non-pinned memory on the PTX

backend over PCIe3 on the Server configuration.

Figure 21 shows the overall performance improvement of the total execution time obtained
by running the transformToBlackAndWhite method in Listing 4 for the PTX backend
when non-pinned memory is used (blue) and pinned memory is used (red). Using pinned
memory results in a task schedule time that is 1.03x faster compared to using non-pinned
memory, regardless of the data size.
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Figure 22:
Total task-schedule time comparison between pinned and non-pinned memory on the

OpenCL backend over PCIe3 on the Server configuration.

Figure 22 shows the overall performance improvement of the total execution time obtained
by running the transformToBlackAndWhite method in Listing 4 for the OpenCL backend
when non-pinned memory is used (blue) and pinned memory is used (red). Using pinned
memory results in a task schedule time that is between 1.23x and 1.26x faster compared to
using non-pinned memory, regardless of the data size.

3.4.2 Batch processing times using pinned vs non-pinned memory

Subsection 3.4.2.1 presents the batch processing figures obtained on a PCIe3 interconnect
with 16 lanes that has a theoretical maximum bandwidth of 16GB/s for both read and write
operations.
Subsection 3.4.2.2 presents the batch processing figures obtained on a PCIe3 interconnect
with 8 lanes that has a theoretical maximum bandwidth of 8GB/s for both read and write
operations.

CUDA provides a way to measure the time elapsed in milliseconds between two events. The
current implementation of the TornadoVM profiler wraps the driver commands (write, read,
kernel launch) with a before and after event. Then, it measures the time difference between
the two events in order to get the duration of the driver command. With the current
implementation of the TornadoVM profiler in the PTX backend, it is not possible to measure
absolute times and order events. In OpenCL, an absolute time is returned and it is possible
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to order events based on this value. Therefore, in this section some figures for the PTX
backend are not shown due to this limitation.

In total six configurations of pinned/non-pinned and sequential/parallel batches were used
and are described in Table 3. The abbreviations are then used in the explanation and map to
the figure’s bar colors. N/A in the Parallel batches column means that batches were not used
in the configuration (the input/output was copied in a single data transfer). The convention
used to derive the shorthands is:

● Prepend N for “Non”
● P for “Parallel batches”
● M for “Pinned Memory”

Bar color Parallel batches Pinned memory Abbreviation

Blue N/A No A

Red N/A Yes B

Yellow No No NPNM

Green Yes No PNM

Orange No Yes NPM

Teal Yes Yes PM

Table 3:
Configuration of sequential/parallel batches and pinned/non-pinned memory used.

3.4.2.1 Laptop batch processing

This subsection presents the performance figures obtained from running the Java method
shown in Listing 4 on the Laptop as described in Table 2 with batch processing enabled and
with different batch sizes.

Figures 23 and 24 show the task schedule times obtained from running with a
MemorySegment of size 1024 MB and with different batch sizes for the PTX and the
OpenCL backends, respectively.

As shown in Figure 23, for the PTX backend, PM batches (teal bars) are the fastest and
finish in 100 ± 3 ms for batch sizes up to 128MB, providing a speed up of 2x compared to
NPNM batches. After the 128MB batch size, the execution time of PM batches (teal bars)
slightly increases due to less overlap between computation and data transfers (as later
shown in Figure 25). The reason for the time increase in the 1024 MB batch size is that there
is a single batch to be computed, and therefore the implementation is equivalent to B (the
red bar). Using PNM batches (green bar) provides no speed-up compared to NPNM (yellow
bars) and A (blue bar).
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Figure 23:
Total task schedule times over PCIe3 on the Laptop with the combinations described in

Table 3 for the PTX backend.

Analogous to Figure 23, Figure 24 shows the total task schedule times for the OpenCL
backend. Running PM batches (teal bars) is the fastest implementation and finishes in 100 ±
6 ms for batch sizes up to 128MB. PM batches provide a speed up of 2.5x over NPNM
batches when the batch size is 8 MB and a speed up of 2.02x when the batch size is 128
MB. After the 128MB batch size, the execution time of PM batches (teal bars) slightly
increases due to less overlap between computation and data transfers (as later shown in
Figure 25). For a batch size of 1024 MB, there is a single batch to be computed, and
therefore the implementation is equivalent to B (the red bar). Using PNM batches (green bar)
provides a speed-up of ~1.23x compared to NPNM (yellow bars) for batch sizes up to 32
MB.

Figure 24:
Total task schedule times over PCIe3 on the Laptop with the combinations described in

Table 3 for the OpenCL backend.
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Figure 25 is used to explain why PNM batches (green bars) can sometimes perform better
than NPNM batches (yellow bars) in the case of OpenCL. The overlap between data transfer
and computation is shown when using different batch sizes. With PM batches there is
always overlap regardless of the batch size. The most overlap occurs with batch sizes up to
64 MB and is in the range of 55 ± 5 ms. However, when non-pinned memory is used, with
PNM batches, overlap only occurs with very small batch sizes, the most overlap being 20 ms
with a batch size of 32 MB.

Figure 25:
Overlap time of computation and data transfers in OpenCL over PCIe3 on the Laptop.

Figure 25 also shows the overlap between data transfer and computation for some irregular
sizes, such as 150MB and 384MB. In order to understand the observed values, an analysis
of the overlapping between queue indices is presented in Figures 26 and 27. In both figures,
on the vertical axis the queue index is used and on the horizontal axis the time in
milliseconds is shown. As mentioned in Section 3.2, a batch is composed of three
TornadoVM bytecodes: a copy-in (denoted by a red vertical line), a kernel launch (a green
vertical line in the figure) and a copy-out (a blue vertical line in the figure). The overlap
between computation (green lines) and data transfers (red or blue lines) can be observed in
both figures. Figure 26 shows a timeline of running the experiment with a batch size of 128
MB, while Figure 27 uses a batch size of 150 MB. As presented in Section 3.2, when the
total input array can not be split into batches of equal size, the TornadoVM runtime will
trigger a recompilation for the final batch to accommodate for the latest size. Since the input
size is 1024 MB, a batch size of 150 MB will determine the final batch to have a size of 124
MB. The observed behaviour is that when the runtime thread running the TornadoVM
Bytecode Interpreter triggers a recompilation, it is blocked until all events in the
command-queues have finished; that is until all the previous batches have finished
processing. Therefore, for the final batch shown in Figure 27 that uses queue index 1, the
copy-in is performed and overlaps computation, but the execution of the kernel and the
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copy-out are then blocked due to the requirement to recompile, with no overlap observed for
the final kernel execution.

Figure 26:
Events running asynchronously on different command queues with a batch size of 128 MB.

Figure 27:
Events running asynchronously on different command queues with a batch size of 150 MB.
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3.4.2.2 Server batch processing performance evaluation

This subsection presents the performance numbers obtained from running the Java method
shown in Listing 4 on the Server (Table 2) with batch processing enabled and with different
batch sizes.

Figures 28 and 29 show the task schedule times obtained from running with a
MemorySegment of size 1024 MB and with different batch sizes for the PTX and the
OpenCL backends, respectively.

As shown in Figure 28, for the PTX backend, running PM batches (teal bars) are the fastest
and finish in 200 ± 10 ms for batch sizes up to 128MB, providing a speed up of ~1.67x
compared to NPNM batches. After the 128MB batch size, the execution time of PM batches
(teal bars) slightly increases due to less overlap between computation and data transfers (as
later shown in Figure 30). The reason for the time increase in the 1024 MB batch size is that
there is a single batch to be computed, and therefore the implementation is equivalent to B
(the red bar). Using PNM batches (green bar) provides no speed-up compared to NPNM
(yellow bars) and A (blue bar).

Figure 28:
Total task schedule times over PCIe3 on the Server with the combinations described in Table

3 for the PTX backend.

Analogous to Figure 28, Figure 29 shows the total task schedule times for the OpenCL
backend. Running PM batches (teal bars) is the fastest implementation and finishes in 190 ±
4 ms for batch sizes up to 128MB. PM batches provide a speed up of 2.45x over NPNM
batches when the batch size is 32 MB and a speed up of 2.29x when the batch size is 128
MB. After the 128MB batch size, the execution time of PM batches (teal bars) slightly
increases due to less overlap between computation and data transfers (as later shown in
Figure 30). Once again, for a batch size of 1024 MB, there is a single batch to be computed,
and therefore the implementation is equivalent to B (the red bar). Using PNM batches (green
bar) is almost as fast as PM batches (teal bar) and even faster than NPM batches (orange
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bar) for batch sizes up to 64 MB. PNM batches (green bar) provide a speed-up of ~2.01x
compared to NPNM (yellow bars) for batch sizes up to 64 MB. NPNM batches also perform
faster by 40ms when the batch size is 1024MB, and therefore a single batch is used
compared to using different batch sizes.

Figure 29:
Total task schedule times over PCIe3 on the Server with the combinations described in Table

3 for the OpenCL backend.

Figure 30 is used to explain why PNM batches (green bars) give a speed up compared to
NPNM batches (yellow bars) and are almost as fast as PM batches (teal bars) in the case of
OpenCL. The overlap between data transfer and computation is shown when using different
batch sizes. With PM batches there is always overlap regardless of the batch size. The most
overlap occurs with a batch size of 32 MB and is 11 ms. However, when non-pinned memory
is used, with PNM batches, overlap only occurs with batch sizes up to 64MB, the most
overlap being 3.9 ms with a batch size of 32 MB.

Figure 30:
Overlap time of computation and data transfers in OpenCL over PCIe3 on the Server.
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Similarly to Figure 25, Figure 30 includes the overlap between data transfer and computation
for irregular sizes, such 150 MB and 384 MB. The reason the overlap of a batch size of 150
MB is less than that of 256 MB and the overlap of 384 MB is less than that of 512 MB is that
the TornadoVM runtime will trigger a recompilation for the final batch to accommodate for the
latest size. Since the input size is 1024 MB, a batch size of 150 MB will determine the final
batch to have a size of 124 MB. The observed behaviour is that when the runtime thread
running the TornadoVM Bytecode Interpreter triggers a recompilation, it is blocked until all
events in the command-queues have finished; that is until all the previous batches have
finished processing. The blocked CPU thread causes the final kernel to be scheduled late
and not perform any overlap with a data transfer.
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4 Using CUDA Unified Memory for object
allocation in MaxineVM

This chapter presents another approach to increase the performance of memory
management and data transfers of managed runtime systems using heterogeneous
hardware. This proposal is built on top of MaxineVM [44], a research VM for Java written in
Java and uses CUDA Unified Memory (UM) [45]. In this proposal it is shown how
non-excessive changes to the managed runtime system can enable allocation of the whole
JVM heap through the CUDA Unified Memory API, allowing the programmer to share data
from the JVM heap with the GPU without performing any explicit data transfers. Specifically,
this chapter is split into the following subsections:

● Subsection 4.1 describes the CUDA Unified Memory.
● Subsection 4.2 presents MaxineVM at a high level.
● Subsection 4.3 presents the changes implemented in MaxineVM in order to allocate

the JVM heap through CUDA Unified Memory.
● Subsection 4.4 describes an abstraction layer added to enable acceleration of CUDA

kernels using Java objects.
● Subsection 4.5 concludes with a discussion on the evaluation methodology and the

performance results.

4.1 The CUDA Unified Memory

One major challenge when programming heterogeneous systems arises from the physically
separate memories of the host and the device. Kernel execution on the GPU can only
access data that is stored on the device memory. Thus, programmers need to manually
manage the data transfers between the host and the device or use various frameworks such
as TornadoVM or Aparapi. CUDA Unified Memory [45] addresses this challenge by providing
a single and consistent view of the host and device memories. Currently, modern CPUs
support 48-bit memory addresses, while UM supports 49-bit memory addresses. This means
that through UM, it is possible to access data resident in both the CPU’s RAM and GPU’s
RAM using the same virtual address space.

When a page that is not mapped to a physical address on the current device (CPU or GPU)
is accessed, a page fault is triggered. The memory system holding the requested page
unmaps it and then the page is migrated to the memory of the faulting device [46]. Figure 31
shows the steps of handling a page fault, when the CPU attempts to access a page that is
resident on the GPU. The page is unmapped from the GPU, migrated and mapped to the
CPU and then the write is performed.

Resolving a page fault has a high overhead [47] and can significantly decrease the system
performance when the same memory pages are accessed by the CPU and GPU, resulting in
memory thrashing. The massive parallelism on the GPU further exacerbates the page fault
overhead because processing stalls while page faults are being resolved, and multiple
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threads in different warps accessing the same page can cause multiple duplicated faults
[48].

Figure 31:
Page faulting mechanism in the CUDA Unified Memory. The CPU writes to a page that is
resident on the GPU. The page is first migrated from GPU memory to CPU memory and

then the write is performed.

In general, GPUs have a small memory capacity compared to the system memory on CPUs.
One major limitation when porting applications to GPUs is to overcome their memory
capacity to enable larger datasets. After the Pascal architecture, it is possible to
oversubscribe UM, allowing GPU kernels to use more memory than what is available on the
device. The memory oversubscription is handled through the page faulting mechanism.
When a page fault occurs and all the device memory is used, an unused page is evicted to
the CPU according to the least recently used (LRU) replacement policy to make space for
the new pages. Page faulting when the GPU memory is already fully occupied is slower than
page faulting when the GPU memory is not fully occupied. The reason for this is that an old
memory page must be first moved from the GPU to the CPU, before migrating the new
memory page from the CPU to the GPU.

TornadoVM is a framework that executes on top of standard JVMs and is able to execute
Java methods on heterogeneous hardware. Using UM in TornadoVM is not reasonable,
since TornadoVM already performs automatic data management between the host and the
devices. Additionally, UM could only be allocated through off-heap buffers that are not
managed by the GC since TornadoVM can not change the allocation of the JVM heap.
MaxineVM is a research JVM that is highly modular and configurable and thus a more
suitable candidate. Therefore, Section 4.2 provides an overview of MaxineVM.

4.2 MaxineVM - an overview of the architecture

MaxineVM is a Java virtual machine implementation that is compatible with OpenJDK. It is
completely compatible with modern Java integrated development environments (IDEs) and
the standard Java Development Kit (JDK) and features a modular architecture that permits
alternate implementations of subsystems, such as GC and compilation to be plugged in [49].
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MaxineVM is written almost entirely in Java, with a small part, called the substrate, written in
C. The substrate implements the native launcher for the Maxine VM and encapsulates in a
platform-independent API the native services from the Operating System (OS), e.g., virtual
memory operation, native thread support, and signal handling. The Java part of MaxineVM is
structured around a set of components that collaborate via public interfaces. Each of these
interfaces corresponds to a scheme. Schemes formalize the functional interface between
high-level abstractions of a VM implementation. The intent is to limit exposure of many
low-level implementation-dependent details across these abstractions to ease the
replacement of one implementation with another [50]. Below is a description of the main
schemes in MaxineVM, as shown in Figure 32:

● The LayoutScheme configures how objects are represented in memory including the
header and fields. By default an object is represented in memory as a continuous
block with the first two words used by the VM to store data about the object identity
(hashcode), locking and Garbage Collection metadata.

● The ReferenceScheme configures how objects are accessed by the mutator threads
and how references are encoded.

● The HeapScheme is used to configure how objects and code are allocated and
managed during garbage collection. In the current default configuration, the code is
allocated in a heap called the code cache while objects are allocated in a separate
heap. The objects are collected using a single threaded stop-the-world semi-space
collector [51].

● The MonitorScheme is used to implement thread synchronization across MaxineVM
as well as to define the wait and notify methods.

● The RunScheme is invoked during VM startup after the basic services have started.
The default “Java" run scheme starts up normal JDK services and then loads and
runs a user-specified Java class.

● The CompilationBroker handles requests for compilation and adaptive recompilation
of methods. MaxineVM features two compilers, T1X and C1X. T1X is the first line of
compilation and is a template-based baseline compiler that favors fast compilation
over code quality. Frequently executed methods are then rescheduled for compilation
using the optimizing compiler C1X.
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Figure 32:
The structure of MaxineVM. Highlighted in red are the different schemes that can be

implemented in MaxineVM. This figure is taken from [50].

Research in a managed runtime system involves dealing with complex systems and
software. Adding or changing a feature often implies modifying code in numerous files and
can unveil intricate dependencies that are hard to debug. MaxineVM solves this issue
through its modularity and use of a high level programming language, making it a suitable
choice for this research.

4.3 Allocating the JVM heap in the Unified Memory address
space

In Subsection 3.3, it was shown how using pinned off-heap memory can result in faster data
transfers at the cost of explicit allocation through the TornadoAPI and limiting reads and
writes to memory through the Foreign Memory Access API. Another limitation of that
implementation is that the lifetime of off-heap objects is not managed by the runtime system.
In contrast, in this subsection it is shown how minimal changes to the managed runtime
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system can enable allocation of the whole JVM heap through the CUDA Unified Memory
API, allowing us to directly use Java objects from the heap in PTX kernels, without
performing any explicit data transfers.

Normally, MaxineVM reserves virtual memory for the JVM heap from the Operating System
(OS) through calls to the POSIX-compliant function mmap [52]. During JVM shutdown, the
OS system call munmap is used to unmap the memory pages from the process. MaxineVM
is enhanced and its heap memory allocator is changed to perform calls to the CUDA runtime
and allocate Unified Memory. In order to achieve this, the C substrate of MaxineVM is
changed, specifically where virtual memory is reserved, the virtualMemory.c file. Two native
functions called allocateCUDA and deallocateCUDA that are called from the
SemiSpaceHeapScheme class are added. The SemiSpaceHeapScheme class defines how
objects, code and the JVM heap are allocated in the semi-space collector, the default
garbage collector of MaxineVM. The allocateCUDA function calls the CUDA
cudaMallocManaged API [53] function and returns an address to the start of the allocated
region. The deallocateCUDA function calls into the CUDA cudaFree API [54] function and
returns the status code of the deallocation.

As mentioned in Section 4.2, MaxineVM uses by default a single threaded stop-the-world
semi-space heap collector. This means that the heap is partitioned into two different regions
and for each region a call to cudaMallocManaged is made. Before garbage collection, all the
threads that can allocate and mutate state (called mutator threads) are signalled to stop at a
safepoint. A safepoint is a place in the code where the interaction of the current execution
thread with other components of the VM is at a defined state. When garbage collection
occurs, all the reachable objects are moved from one region to the other. After all the
reachable objects have been moved, the previous region is marked as empty. If garbage
collection occurs too often, the managed runtime will attempt to resize the heap. In the
semi-space collector of MaxineVM this is done during a GC cycle, when a region of heap is
deallocated through cudaFree and a new larger region is allocated through
cudaMallocManaged. Then, the reachable objects are moved to the new region and the
previous one is replaced with a larger one as well.

4.4 Description of MaxCudaLib

In order to enable acceleration of CUDA kernels using Java objects allocated in the JVM
heap, a thin layer of abstraction called MaxCudaLib was developed. MaxCudaLib is a Java
library that exposes a set of functions allowing the user to JIT compile CUDA kernels to PTX
and to launch PTX kernels on the accelerator. If used, this library must be imported in the
user project as any other dependency. This subsection describes how MaxCudaLib is built.

Since both T1X and C1X only target CPU architectures, MaxineVM currently does not have
the ability to JIT compile Java code to PTX. Therefore, in order to exploit the compute
capabilities of the GPU, the user must manually develop CUDA or PTX kernels. MaxCudaLib
provides a method to JIT compile CUDA C++ kernels to PTX and also caches the PTX code
obtained from previous compilations. The signature of the method is the following:

59



byte[] PTXProvider::getPTX(String methodName, String CUDAKernel)

The method getPTX takes two parameters and returns PTX code as a Java byte array. The
first parameter methodName is the cache key and the CUDAKernel parameter is the CUDA
kernel represented as a Java String. If the PTX code is not found in the cache, the getPTX
method calls into a Java native function that performs JIT compilation of the CUDA kernel
through the NVRTC [55] compilation library. NVRTC is a runtime compilation library that
accepts CUDA C++ source code as input and creates the handles that can be used to obtain
PTX code. After performing the native call, the getPTX method installs the obtained PTX
code into the code cache to avoid future unnecessary compilations.

Another method that MaxCudaLib exposes is to launch PTX kernels on the accelerator. The
signature of this method is:

void accelerate(byte[] ptx, Object[] inputs, int[] blockDim, int[]

gridDim)

The method accelerate receives the following arguments:
● A byte array ptx, which is the accelerated kernel and that is returned by the getPTX

method if the compilation of CUDA C++ to PTX is used.
● An inputs array whose elements can be Java arrays allocated in the JVM heap.
● An array blockDim specifying the block dimension that is to be used with the PTX

kernel.
● An array gridDim specifying the grid dimension that is to be used with the PTX

kernel.

The accelerate method calls into a Java native function that performs the calls below:
● JNI API calls to GetPrimitiveArrayCritical and ReleasePrimitiveArrayCritical are used

to guarantee that no GC cycle is performed during the native call. In MaxineVM, the
whole JVM heap is locked during a critical section.

● A call to cuLaunchKernel is made to run the kernel provided in the ptx byte array.
● A call to cuCtxSynchronize is made after the kernel launch to wait for it to finish.

MaxineVM together with MaxCudaLib facilitate acceleration of CUDA C++ and PTX kernels,
allowing objects from the JVM heap to be accessed directly by the GPU without performing
any explicit data transfers.

4.5 Experimental performance evaluation

In order to evaluate the performance of a managed runtime system when Unified Memory is
used to allocate the heap, a series of benchmarks are performed:

● Monte Carlo - a simulation algorithm performing approximations using statistical
sampling, by generating and analysing a large set of random numbers. This
technique is useful in risk management, physics simulation and data analysis.

● Black and White - a computation that transforms a picture with RGB color palette to
black and white.
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● Write Constant - a very simple computation that writes a constant at each index of an
input array.

For all of the three benchmarks presented above, a Java function for running on the CPU
and an equivalent CUDA C++ kernel hardcoded in a Java String for offloading to the GPU
using MaxCudaLib are used. The baseline of each benchmark is sequential CPU execution.
In order to analyse how various parts of the managed runtime system affect the speed-up of
the acceleration, the following benchmark modes are defined:

● ALLOC - the input of the benchmark is reallocated before each benchmark iteration,
using the new keyword in Java. In this mode, each iteration of the benchmark
triggers page faults and depending on the data size and the number of iterations, can
result in GPU memory oversubscription.

● GC - an explicit garbage collection is triggered through the System.gc() call after
each benchmark iteration. In this mode, even though the same input data is used, the
garbage collector moves the data in the heap to a different address. Therefore, on
garbage collection, the data is moved from the GPU memory to the CPU memory
and then on kernel execution, from the CPU memory to the GPU memory.

● NOGC - no explicit garbage collection is triggered and the same input between
benchmark iterations is used. In this mode, unless there is an implicit garbage
collection triggered by the managed runtime system, the data is only migrated once
to the GPU memory. The first iteration of the benchmark causes page faults that
migrate the data from the CPU memory to the GPU memory, and subsequent
iterations can provide a significant speed up since no page-faults occur.

The experiments are performed on the Laptop configuration described in Table 2. The
machine has an Intel i7 @ 4.5 GHz CPU and an Nvidia GeForce GTX 1650 GPU with 3905
MiB of GPU RAM.

Figures 33, 34 and 35 show the speed up obtained from running the Monte Carlo, Black And
White and Write Constant benchmarks with different input sizes on the GPU and by
accessing Java objects declared in the JVM heap through the CUDA Unified Memory. The
common observations regarding the figures are:

● The NOGC mode always performs the best for sizes up to 2048 MB. The reason for
obtaining a lower speed up when a size of 4096 MB is used is that the GPU memory
is oversubscribed, resulting in page faults on each benchmark iteration.

● The ALLOC mode shows the least performance improvement. The reason that
ALLOC is slower than the GC mode is that the GPU memory is oversubscribed with
data from the previous benchmark iterations, resulting in memory pages being
swapped out from the device RAM to the host RAM before new pages can be
migrated. Occasionally, a garbage collection cycle is triggered by the managed
runtime system, causing the GPU memory pages to be migrated before the next
kernel launch. Therefore, sometimes, an iteration can be as fast as an iteration in the
GC benchmark mode.

● The speed up obtained by the GC mode is relatively stable regardless of the data
size. After each benchmark iteration, garbage collection is explicitly triggered,
causing the memory pages resident on the GPU memory to be migrated to the CPU
memory. For sizes up to 2048 MB, this results in page faults on each benchmark
iteration, but no memory oversubscription.
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Figure 33 shows the speed up obtained from running the Monte Carlo computation with
different data sizes. By far, the NOGC mode reaches the best performance for sizes up to
2048 MB, with speed ups ranging between 125x for a size of 256 MB and 134x for 1024 MB.
For a size of 1024 MB, the execution time is reduced from 2707 ms when running on the
CPU, to 20 ms when running on the GPU. The total number of GPU page faults for a size of
2048 MB is 5910, compared to 117246 GPU page faults when running with a size of 4096
MB. The GC mode is the second best, showing speed ups of 10-11x compared to sequential
CPU. The ALLOC mode provides speed ups between 7.9x (128 MB) and 8.6x (1024 MB) for
data sizes up to 1024 MB and 11.6x for 2048 MB and 4096 MB.

Figure 33:
Monte Carlo speed up obtained from running a CUDA C++ kernel instead of the sequential

CPU execution and directly using JVM heap objects.

Figure 34 shows the speed up obtained from running the Black And White computation with
different data sizes. The NOGC mode reaches the best performance for sizes up to 2048
MB, with speed ups between 29.2x for a size of 128 MB and 29.9x for 1024 MB. The total
number of GPU page faults for a size of 2048 MB is 6013, compared to 117338 GPU page
faults when running with a size of 4096 MB. The GC mode is second best, showing speed
ups of 3.4-3.6x compared to sequential CPU. The ALLOC mode provides speed ups of 2.5x
for data sizes up to 1024 MB and 3.5x for 2048 MB and 4096 MB.
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Figure 34:
Black and White speed up obtained from running a CUDA C++ kernel instead of the

sequential CPU execution and directly using JVM heap objects.

Figure 35 shows the speed up obtained from running the Write Constant computation with
different data sizes. The NOGC mode reaches the best performance for sizes up to 2048
MB, with speed ups between 12.5x for a size of 128 MB and 14.27x for 512 MB. The
slowdown with a size of 4096 MB is 0.19x. The total number of GPU page faults for a size of
2048 MB is 5910, compared to 117264 GPU page faults when running with a size of 4096
MB. The GC mode is the second best, showing speed ups of 1.06-1.1x compared to
sequential CPU. The ALLOC mode provides slowdowns of 0.8x for data sizes up to 2048
MB and a speed up of 1.12x for 4096 MB.
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Figure 35:
Write Constant speed up obtained from running a CUDA C++ kernel instead of the

sequential CPU execution and directly using JVM heap objects.

Figure 36, depicts the slowdown of Garbage Collection when Java heap objects are passed
through Unified Memory to CUDA C++ kernels. The GC slowdown is measured in the GC
benchmark mode, through an explicit call to System.gc() after each benchmark iteration.
During GC, all the memory pages resident in the GPU memory are accessed by the CPU,
and therefore migrated to the host memory. As expected, the slowdown increases with the
input data size (with the number of pages in the GPU memory). The smallest slowdown is
1.6x for an input of 128 MB, while for an input size of 4096 MB, the slowdown is 2.45x.
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Figure 36:
Garbage Collection slowdown obtained from accelerating the Write Constant, Black and

White and Monte Carlo benchmarks on the device in the GC benchmark mode. Since the
benchmark sizes are the same, the same slowdown is observed for all three benchmarks.

Therefore, a single figure is shown. The lower the better.
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5 Related work

In this chapter, an analysis is made of previous research about data transfer optimizations in
the context of a heterogeneous managed runtime system. Over the years, there have been
multiple frameworks developed to address the problem of heterogeneous computing using a
high level programming language. However, only some solutions look further into optimizing
data transfers and memory management when a managed runtime system is used.

Table 4 is used to describe the key differences between TornadoVM, MaxineVM, and
previous research. The first two rows show the current versions of TornadoVM and
MaxineVM and their status related to the research topics. Then, the TornadoVM + Thesis
and MaxineVM + Thesis rows represent the extended versions with the features presented
in the current thesis. The remaining paragraphs in this chapter expand the differences
between TornadoVM + Thesis, MaxineVM + Thesis, and the related work.

Implementation Managed
Runtime

OpenCL
support

CUDA
support

Pinned
memory

Batch
processing

CUDA Unified
memory

TornadoVM
v0.12

✓ ✓ ✓ X ✓ X

MaxineVM
v2.9.0

✓ X X X X X

TornadoVM +
Thesis

✓ ✓ ✓ ✓ ✓ X

MaxineVM +
Thesis

✓ X ✓ X X ✓

Bastem et al. X X ✓ ✓ ✓ ✓

Dubach et al. ✓ ✓ X X X X

JOCL ✓ ✓ X ✓ X X

JCUDA ✓ X ✓ ✓ X ✓

Aparapi ✓ ✓ X X X X

IBM J9 ✓ X ✓ X X X

Table 4:
The differences between TornadoVM, MaxineVM and related work.

Bastem et al. [36] expose a programming model that is low level and works only with C++,
using OpenACC. It decomposes the data and computation into tiles and treats them as the
main data transfer and execution units. Additionally, it solves the issue when the application
data does not fit into the device memory. In the analysis, CUDA pinned memory, non-pinned
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memory and Unified memory are used. However, this work does not present an analysis of
data transfers in OpenCL. In addition to this, TornadoVM, a framework that is built on top of
a managed runtime system, was expanded. CUDA Unified Memory is also used, but in the
context of a managed runtime system, MaxineVM.

Dubach et al. [56] present a runtime and language implementation, called Lime, based on
Java that allows offloading of tasks to execute on GPUs and FPGAs. The Lime compiler
statically generates JVM bytecodes and OpenCL kernels that are later called at runtime. In
order to perform data transfers, the Lime runtime serializes Lime values to byte arrays,
passes them to JNI and then deserializes them to C-style values that can be later accessed
by the OpenCL kernels. Even though it is specified as a potential improvement, the
presented work does not support memory pinning or batch processing.

JOCL [57] and JCUDA [58] are OpenCL or CUDA wrappers for Java. Using these
frameworks, programmers must implement their kernels in OpenCL or CUDA. Therefore, it
requires knowledge about the programming model and hardware. Both frameworks allow the
declaration of page-locked pinned buffers but lack any batch processing functionality, relying
on the user to implement it in code. Additionally, it is possible to allocate CUDA Unified
Memory, but not as part of the JVM heap.

Aparapi [6] transparently performs data transfers between the host and the device but does
not have support for off-heap buffers or pinned memory. In contrast, TornadoVM was
enhanced to support such features. Additionally, MaxineVM with the added extensions does
not use a framework to perform data transfers, since the Unified Memory page faulting
mechanism is transparent to the JVM.

IBM J9 [4] is a JVM that contains a JIT compiler for Java to PTX. It is able to generate GPU
code from a Java program written using the Java 8 Parallel Streams API. Additionally, it
optimizes redundant transfers and automatically generates the required API calls to the
CUDA driver. However, it does not use pinned memory, unified memory or support data
batching.
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6 Conclusion and future work

In this thesis, a comprehensive analysis and optimizations of the performance of data
transfers in heterogeneous managed runtime systems was conducted. The CUDA and
OpenCL programming models and a high-level overview of the hardware abstraction were
presented in the context of the current status of heterogeneous computing. The challenges
that a managed runtime faces in the context of heterogeneous computing were described:
the inability to perform asynchronous data transfers with objects residing in the JVM heap,
the lack of an API to declare pinned memory and the imposed limitations from using off-heap
buffers.

Then two different solutions were proposed:
● TornadoVM was enhanced to enable allocation of pinned off-heap buffers using

Project Panama and parallel batch processing was implemented as an optimization.
Future work on this solution can include a hybrid approach when irregular sizes are
used for batch processing. As presented in Section 3.4 the TornadoVM bytecode
interpreter is locked when the final kernel of an irregular sized batch must be
recompiled. However, this could be avoided by improving TornadoVM to perform
precompilation of all the required kernels before starting to interpret the bytecodes.

● The heap allocation of MaxineVM was improved by utilizing the CUDA Unified
Memory, therefore enabling the device to directly access Java objects allocated in
the JVM heap. Further improvements can include implementing a Java to PTX JIT
compiler in MaxineVM and using it as a final compilation tier. This would remove the
necessity of using the MaxCudaLib and would completely be transparent to the
programmer. Currently, code compiled with C1X does not record any runtime profiling
information such as method invocation counts and therefore the existing optimizing
compiler would need changes too. Another improvement would be to transparently
trigger prefetching of memory pages to the GPU when compute offloading is
detected.

With the proposed solutions, significant data transfer and overall performance improvements
in heterogeneous managed runtime systems were obtained.
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