

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Safety-Critical Java for Embedded Systems

Rios Rivas, Juan Ricardo; Schoeberl, Martin

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rios Rivas, J. R., & Schoeberl, M. (2014). Safety-Critical Java for Embedded Systems. Kgs. Lyngby: Technical
University of Denmark (DTU). (IMM-PhD-2014; No. 340).

http://orbit.dtu.dk/en/publications/safetycritical-java-for-embedded-systems(5880eb9b-5d1e-4576-b1f8-4756f5db0b21).html

Safety-Critical Java for

Embedded Systems

Juan Ricardo Rios Rivas

Kongens Lyngby 2014
IMM-PhD-2014-340

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk IMM-PhD-2014-340

Summary (English)

Safety-critical systems are real-time systems whose failure can have severe or
catastrophic consequences, possibly endangering human life. Many safety-critical
systems incorporate embedded computers used to control different tasks. Soft-
ware running on safety-critical systems needs to be certified before its deploy-
ment and the most time-consuming step of this process is the testing and verifi-
cation phase. Due to the increasing complexity in safety-critical systems there is
a need for new technologies that can facilitate testing and verification activities.

The safety-critical specification for Java aims at providing a reduced set of the
Java programming language that can be used for systems that need to be cer-
tified at the highest levels of criticality. Safety-critical Java (SCJ) restricts how
a developer can structure an application by providing a specific programming
model and by restricting the set of methods and libraries that can be used.
Furthermore, its memory model do not use a garbage-collected heap but scoped
memories.

In this thesis we examine the use of the SCJ specification through an implemen-
tation in a time-predictable, FPGA-based Java processor. The specification is
now in a mature state and with our implementation we have proved its feasibil-
ity in an embedded platform. Moreover, we have explored how simple hardware
extensions can reduce the execution time of time-critical operations required by
the SCJ specification.

The scoped memory model used in SCJ is perhaps one of its most difficult
features to use correctly. Therefore, in this work we have also studied practical
aspects of its usage by developing scoped memory use patterns and reusable
libraries aiming at facilitating the development of complex software systems.

ii

Summary (Danish)

Sikkerhedskritiske systemer er realtidssystemer. Hvis sådanne systemer fejler,
kan det have alvorlige eller katastrofale konsekvenser, muligvis livsfarlige kon-
sekvenser. Mange sikkerhedskritiske systemer inkorporerer embeddede compu-
tere, som bruges til at kontrollere forskellige opgaver. Software, som kører på
sikkerhedskritiske systemer, skal certificeres, før softwaren udrulles, og det mest
tidskrævende skridt i denne proces er test- og verifikationsfasen. På grund af
den stigende kompleksitet i sikkerhedskritiske systemer er der behov for nye
teknologier til at facilitere test- og verifikationsaktiviteter.

Den sikkerhedskritiske specifikation for Java har til formål at levere en reduceret
udgave af Java-programmeringssproget, som kan bruges til systemer, der skal
kunne certificeres på de højeste kritikalitetsniveauer. Safety Critical Java (SCJ)
begrænser, hvordan en udvikler kan strukturere en applikation, ved at levere en
specifik programmeringsmodel og ved at begrænse de metoder og biblioteker,
som kan anvendes. Derudover benytter hukommelsesmodellen i SCJ ikke en
heap, der er garbage-collected, men afgrænsede hukommelser.

I denne afhandling undersøger vi brugen af SCJ-specifikationen gennem en im-
plementering i en tidsforudsigelig, FPGA-baseret Java-processor. Specifikatio-
nen er nu på et modent stadie, og med vores implementering har vi demonstre-
ret dens funktionsduelighed i en embedded platform. Desuden har vi undersøgt,
hvordan simple hardware-tilføjelser kan reducere udførelsestiden for tidskritiske
handlinger, som er påkrævet af SCJ-specifikationen.

Den afgrænsede hukommelsesmodel, som anvendes i SCJ, er måske en af de
funktioner, som er allersværest at anvende korrekt. Vi har derfor også kigget på
de praktiske aspekter af modellens brug ved at udvikle afgrænset-hukommelse
brugsmønstre og genbrugelige biblioteker med henblik på at facilitere udviklin-
gen af komplekse softwaresystemer.

iv

Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in partial fulfillment of
the requirements for acquiring the Ph.D degree in Computer Science.

The thesis deals with the topic of Java for safety-critical embedded systems.
We provide an open-source implementation of the safety-critical Java (SCJ)
profile on top of a time-predictable Java processor. In addition, we report in
our experience while implementing the profile and analyze the impact of SCJ’s
memory model on the development of applications and libraries.

The thesis subsumes the work done during the Ph.D course work undertaken
from 2011 to 2014.

Juan Ricardo Rios Rivas

vi

Acknowledgements

I would like to thank my supervisor Martin Schoeberl for his advice and sup-
port, especially during the last phase of the PhD program, for his very useful
comments, suggestions, and insights on my work, and also for the opportunity
to work in this project.

I would also like to thank my friends Jorge, Olivier, Hector, and Octavian who
became my family in Denmark and made my life a lot more easier and full of
enjoyable moments. Also, special thanks goes to the Borger-Winther family
who opened their doors to Keyla and me during one of the toughest moments
of our stay here in Denmark and for showing us a completely different side of
the danish culture and people.

I am extremely grateful to my parents, my brothers, and my beloved Keyla,
for their unconditional love an support throughout this journey. Without your
support and encouragement this work for sure will not have been completed.

I thank God for taking care of me on every moment of my life, even in the wrong
decisions and for showing me how perfect His timing really is.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Background and Related Work 5
2.1 Real-time and Safety-critical Systems 6
2.2 Programming Languages for Safety-critical Systems 9
2.3 Java for Real-time Systems . 11

2.3.1 Java for High-integrity Real-time Systems 14
2.4 Safety-critical Java Specification (JSR-302) 16

2.4.1 Execution Model . 16
2.4.2 Concurrency . 17
2.4.3 Memory Model . 17
2.4.4 An SCJ HelloWorld Example 19

2.5 Java Optimized Processor JOP 21
2.6 High Integrity Java Profiles on Embedded Systems 24

2.6.1 Ravenscar-Java in the aJ-100 Processor 25
2.6.2 oSCJ . 26
2.6.3 SCJ on HVM . 27
2.6.4 Predictable Java . 28
2.6.5 Cyclic Executive for SCJ on Chip-multiprocessors 29

2.7 Reference Assignment Checks . 29
2.8 Scoped Memory Use . 31

x CONTENTS

2.8.1 Patterns . 31
2.8.2 Libraries . 33

2.9 Testing Real-time Features in Real-time Virtual Machines 34
2.10 Summary . 35

3 Safety-critical Java on an Embedded Java Processor 37
3.1 Overview . 38

3.1.1 Design Decisions . 38
3.1.2 Limitations . 40
3.1.3 Building and Running an SCJ Application in JOP 41

3.2 Package Crossing . 42
3.3 Concurrency and Scheduling . 43

3.3.1 Missions and Mission Sequencer 43
3.3.2 Periodic and Aperiodic Event Handlers 48
3.3.3 Scheduler . 52
3.3.4 Multi-core Support . 54

3.4 Memory . 55
3.5 Scope Checks . 57

3.5.1 Referential Integrity and the Scope Stack 58
3.5.2 Detecting Illegal Reference Assignments 60
3.5.3 Evaluation . 64
3.5.4 Discussion . 65

3.6 Interaction with Devices and External Events 66
3.6.1 Raw Memory . 67
3.6.2 Managed Interrupts . 70

3.7 Summary . 73

4 Scoped Memory Use: Patterns and Reusable Libraries 75
4.1 Use Patterns and Idioms . 76

4.1.1 The Basic Pattern . 76
4.1.2 Loop Pattern . 77
4.1.3 Execute with Primitive Return Value 78
4.1.4 Returning a Newly Allocated Object 79
4.1.5 Scoped Methods . 81
4.1.6 Runnable Factory . 81
4.1.7 Producer/Consumer . 84

4.2 Reusable Libraries: Issues and Solutions 84
4.2.1 Lazy Initialization . 84
4.2.2 Dynamic Resizing . 85
4.2.3 Objects Used in Mixed Contexts 88
4.2.4 Iterators . 89
4.2.5 Loop Bounds . 89
4.2.6 Exceptions . 90

4.3 Reusable Libraries: Implementation 91

CONTENTS xi

4.3.1 Analysis of Standard Java Class Libraries 93
4.3.2 AbstractStringBuilder and StringBuilder 94
4.3.3 DataInputStream . 95
4.3.4 Vector and HashMap . 95
4.3.5 Comparison with JCL . 97
4.3.6 Testing . 99
4.3.7 Discussion . 102

4.4 Summary . 106

5 Evaluation 107
5.1 Microbenchmarks . 108

5.1.1 Accuracy of Periods . 108
5.1.2 Linear-time Memory Allocation Time 110
5.1.3 Aperiodic Event Handling 111
5.1.4 Dispatch Latency for Interrupts 117
5.1.5 Context Switch Latency 119
5.1.6 Synchronization . 120
5.1.7 Discussion . 121

5.2 SCJ’s TCK and miniCDj . 122
5.3 Summary . 125

6 Conclusions 127
6.1 Main Results . 127
6.2 Lessons Learned . 131
6.3 Future Work . 133

Bibliography 137

xii CONTENTS

List of Figures

2.1 Relation of domain-specific second tier guidelines to IEC-61508
safety standard . 7

2.2 Example of an SCJ HelloWorld program 20
2.3 Application build tool-chain of JOP 22
2.4 Object and array layout in JOP 23

3.1 Overview of SCJ’s concurrency classes implemented in JOP . . . 39
3.2 Overview of SCJ’s memory classes implemented in JOP 39
3.3 An example of how class-private information is shared using Sun’s

SharedSecrets class . 44
3.4 An example of how package-protected information is shared using

our singleton delegator . 45
3.5 Mission change timing for SCJ L0 and L1 applications 47
3.6 An extract of the SCJ’s PeriodicEventHandler class implemen-

tation in JOP. 49
3.7 An extract of the SCJ’s AperiodicEventHandler class imple-

mentation in JOP. 51
3.8 Location of JOP’s scheduling run-time structures within SCJ’s

memory areas . 54
3.9 Overview of the scoped memory layout in JOP. 56
3.10 Scoped memory hierarchy and a possible scope nesting level as-

signment . 59
3.11 Example of three implementations of raw memory accessor objects. 69
3.12 An example of using the RawMemory API to provide low level

access to an IO device. 70
3.13 Example of an I2C bus controller implemented using raw memory. 71
3.14 An extract of the ManagedInterruptServiceRoutine class im-

plementation in JOP. 72

xiv LIST OF FIGURES

4.1 The loop pattern. 78
4.2 Execute with primitive return value. 79
4.3 Example of the use of executeInOuterArea(Runnable logic)

to create objects in outer nested scopes. 80
4.4 Scoped method with parameters and a return object. 82
4.5 Runnable factory. 83
4.6 Effects of using shared objects from different scopes 87
4.7 Example of a method modified to run in a nested private scope. . 96
4.8 Class hierarchy of the modified Vector class. 98

5.1 Precision of periods . 108
5.2 Linear time memory allocation time 110
5.3 Aperiodic load, events serviced, and deadlines missed for the 69%

periodic load . 114
5.4 Aperiodic load, events serviced, and deadlines missed for the 88%

periodic load . 115
5.5 Aperiodic load and events serviced with multiple AEHs 116
5.6 Expected execution pattern of the task set used to test the correct

PCE implementation . 120

List of Tables

3.1 Valid referenc assignments in SCJ 60
3.2 Execution time of the three bytecodes implementing scope checks 64
3.3 Sensor application execution time including the three versions of

the scope checks. 65
3.4 N-Body simulation application execution time including the three

versions of the scope checks. 66

4.1 List of library classes allowed by SCJ 92
4.2 Comparison of the implemented classes with JDK’s implementation100
4.3 Number of modified methods and additional methods in the mod-

ified classes . 101

5.1 Measured PEH start time deviations 109
5.2 Measured scoped memory allocation times 111
5.3 Task sets used for the aperiodic event handling tests 113
5.4 Number of interrupts serviced when measuring the interrupt dis-

patch latency. 118
5.5 Measured interrupt dispatch latency. 119
5.6 Measured context switch latency times 119
5.7 Task set for synchronization test 120
5.8 Measured timing values of synchronization task set 121
5.9 TCK tests implementation and successfully passed 123
5.10 miniCDj benchmark execution time measurements 125

xvi LIST OF TABLES

Chapter 1

Introduction

Real-time systems are those systems whose correct operation depends not only
on producing valid computation results but also in delivering those results within
specified deadlines. The correct operation of a real-time system can be charac-
terized by the ability of the system to meet those deadlines.

Real-time systems can be classified according to how useful the result of a com-
putation is in the boundaries of its deadline. If the value of a result past its
deadline is zero, then the system is said to be either firm or hard real-time.
Hard real time systems are further classified as mission-critical, if a failure of
the system makes impossible the completion of the system’s goals but human
life will not be endangered; and safety-critical, if a failure of the system may
endanger human life.

Modern safety-critical systems are heavily dependent on embedded computers
or networks of computers with specialized peripherals [66]. As demands for
integrating more functionality in safety-critical systems increase, complexity
also increases thereby demanding new technologies and programming languages
to ease its development, maintenance, and certification process.

Java, as a programming language and as a large collection of standard libraries,
has proven to be a useful tool to increase programmer efficiency both for the
development and maintenance of software [47]. The benefits provided by Java

2 Introduction

come from its high level object-oriented programming features and the use of
an automatic garbage collector (GC).

In recent years, the use of Java for systems with real-time constraints has been
enabled trough the definition of the real-time specification for Java (RTSJ) [24]
which specifies how real-time behavior can be achieved with Java. The RTSJ
tightens loosely defined aspects of the Java language and enhances other several
areas such as memory management through a strategy that avoids the use of an
automatic GC. Avoidance of GC interference is particularly useful on applica-
tions with hard real-time requirements which are difficult to achieve with current
GC technologies [95]. Without a GC, memory allocations are performed in spe-
cific regions called scoped memories and objects are collectively deallocated at
scope exit.

The RTSJ is however too large for resource-constrained embedded systems and
too complex for safety-critical systems where a rigorous process of certification
must be followed. In contrast, the safety-critical Java (SCJ) profile, being de-
veloped under the Java specification request 302 (JSR-302), provides a smaller,
tightly defined subset of the Java programming language intended for applica-
tions that need to be certified. SCJ uses a programming model that limits how
a developer can structure an application. SCJ’s programming model is more
restricted in terms of concurrency, memory, synchronization, input and output,
clocks and timers, and exception processing [77]. Three levels of compliance
with different degrees of complexity are defined, namely Level 0 (L0), Level 1
(L1), and Level 2 (L2), L2 being the most complex.

In this thesis we examine the use of the safety-critical Java profile for embedded
systems thorough an implementation on a time-predictable Java processor. We
also report on our experiences while implementing the profile, explore hardware
extensions for time-critical operations, and examine the impact of the scoped
memory model of SCJ on the development of applications and reusable libraries
for safety-critical Java. In more detail, our contributions are:

• Implementation of safety-critical Java on a Java processor:

As the SCJ specification matures, implementations are emerging and the
need to evaluate those implementations in a systematic way is becoming
important. To the best of our knowledge, currently there are only two
implementations of the SCJ profile that targets embedded systems: (1)
the oSCJ [96] implementation running on the Open Virtual Machine [15],
and (2) the Hardware-near Virtual Machine (HVM) [121] implementation.

In this work, we provide an open-source implementation and evaluation
of SCJ in the context of the Java Optimized Processor (JOP) [113]. We

3

also present some implementation issues and solutions that arise from the
Java package crossing of different classes and from SCJ’s scoped memory
model.
Although the implementation is targeted for JOP, it can also be executed
on a standard PC using JOP’s software simulator. Therefore the im-
plementation can also be used to evaluate experimental SCJ features or
proposed changes that are not part of the specification.

• Hardware extensions for scope checks:

Without a GC, application developers have to be aware of where objects
are allocated, thus increasing the risk of leaving dangling references. Ref-
erential integrity has to be guaranteed by following a set of rules that have
to be enforced on every reference assignment which is a process that adds
an extra overhead to the execution time of an application.
Given the simplified memory model of SCJ, we examine how a single scope
nesting level can be used to check the legality of every reference assign-
ment. We also show that with simple hardware extensions we can check
reference assignments without the overhead of a software-based solution
and improve the execution time of applications with frequent cross-scope
references. This proposal was implemented and tested on JOP.

• Exploration of the expressiveness of SCJ memory model:

Explicit scoping requires care from programmers when dealing with tem-
porary objects, passing scope-allocated objects as arguments to methods,
and returning scope-allocated objects from methods. Moving data be-
tween scopes require a creative way of using the available SCJ memory
API features. This API contains methods used to change the allocation
context and safely create the returned objects.
The expressive power and ease of use of the SCJ memory model is ex-
plored. A collection of memory use patterns for the development of SCJ
applications is presented. These patterns have different levels of complex-
ity depending on the situations were they can be applied. The main focus
while developing the patterns was on how to safely pass arguments and
return objects between private memories.

• Libraries for safety-critical Java:

SCJ’s memory model complicates the use of the standard Java class li-
braries (JCL) in application development because the libraries were devel-
oped under the assumptions of having a GC and unrestricted references
between objects. Therefore it is important to find ways to modify standard
libraries, so they work well with the SCJ memory model.
We inspect some of the most common programming patterns and idioms
present in OpenJDK6’s standard JCL. We identify patterns and idioms

4 Introduction

which are problematic on SCJ applications and we present different ways
to mitigate their impact. In addition, we create and test a total of five
scope-safe classes representative of three of the most commonly used li-
braries: java.util, java.lang, and java.io. The focus was to minimize
changes and modifications with resp ect to the original implementation.

This thesis is organized as follows: Chapter 2 provides the necessary background
on safety-critical systmes from a certification point of view and related work on
Java for embedded real-time and safety-critical systems. Chapter 3 describes the
details of the implementation of the safety-critical Java profile in the context of a
Java processor. Chapter 4 provides a study on SCJ’s memory model from a users
perspective and is divided in two sections: (1) scoped memory use patterns and
(2) reusable libraries for safety-critical Java. Chapter 5 presents an evaluation
of our SCJ’s implementation were we divided the tests in two categories: (1)
performance and timeliness and (2) compliance to the SCJ specification. We
conclude in Chapter 6 with a perspective and future work.

Publications

• Juan Rios and M. Schoeberl. Reusable Libraries for Safety-Critical Java.
In Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2014 IEEE 17th International Symposium on, pages 188–197,
June 2014

• Juan Rios and M. Schoeberl. An Evaluation of Safety-Critical Java on a
Java Processor. In Software Technologies for Future Embedded and Ubiq-
uitous Systems (SEUS), 2014 IEEE/IFIP 10th Workshop on, pages 276 –
283, June 2014

• Juan Ricardo Rios, Kelvin Nilsen, and Martin Schoeberl. Patterns for
safety-critical Java memory usage. In Proceedings of the 10th International
Workshop on Java Technologies for Real-time and Embedded Systems, page
1–8, 2012

• Juan Rios and M. Schoeberl. Hardware Support for Safety-Critical Java
Scope Checks. In Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC), 2012 IEEE 15th International Symposium
on, pages 31–38, April 2012

• Martin Schoeberl and Juan Ricardo Rios. Safety-critical Java on a Java
processor. In Proceedings of the 10th International Workshop on Java
Technologies for Real-time and Embedded Systems, pages 54–61, Copen-
hagen, Denmark, 2012. ACM

Chapter 2

Background and Related
Work

This chapter is intended to provide a general overview and background on the
topics of safety-critical systems, Java for real-time and safety-critical systems,
and the Java processor JOP. The chapter is organized as follows: in Section 2.1
we provide basic concepts about real-time and safety-critical systems. In Sec-
tion 2.2 we present a survey of programming languages and language subsets
used in the development of software for safety-critical systems. In Section 2.3
we look into the topic of using Java for real-time and safety-critical systems.
In Section 2.4 we provide an overview of the the safety-critical specification for
Java (SCJ) which is the current effort to produce a standardized subset of Java
for safety-critical software development. In Section 2.5 we present a brief de-
scription of the Java Optimized Processor JOP, an implementation of the JVM
in hardware, which is the embedded platform used for our safety-critical Java
implementation.

Previous work relevant for this thesis is presented in sections 2.6 to 2.9. In those
sections we describe previous work on implementing safety-critical Java profiles
on embedded systems (2.6); detecting illegal reference assignments, which is
required by the SCJ profile, (2.7); developing use patterns and libraries in the
context of SCJ’s memory model (2.8); and developing methodologies and bench-
marks for real-time Java profiles (2.9). We finish this chapter in Section 2.10
with a summary.

6 Background and Related Work

2.1 Real-time and Safety-critical Systems

Real-time systems are those systems where a quantitative notion of time, mea-
sured using a physical clock, i.e., a real clock,1 is needed to describe, either
totally or partially, the system’s behavior [80]. In addition to producing cor-
rect computation results, real-time systems need to deliver such computation
results in a bounded amount of time, that is, before specific deadlines. Real-time
systems need to be in synchronization with the environment with which they
interact, that is, they need to have a notion of the timing characteristics of the
environment they interact with. This notion of time is particularly important
when outputs to the environment are computed as functions of inputs from the
environment.

Real-time systems can be classified as soft, firm, or hard, depending on how use-
ful computation results are in the vicinity of their deadlines. More specifically,
real-time systems are said to be [42]:

• Soft: if the usefulness of computation results degrades after its deadline
resulting in a system that operates with a degraded quality of service.

• Firm: if the usefulness of computation results is zero after its deadline
resulting in a system that operates with a degraded quality of service.
Only a small amount of deadline misses can be tolerated.

• Hard: if the usefulness of computation results is zero after its deadline
resulting in unrecoverable system failure. Hard real-time systems are
also called high-integrity systems and can be further divided into mission-
critical and safety-critical systems, depending on the consequences associ-
ated with a system failure.

Mission-critical systems are those systems where the consequence of failures is
the “loss of capability leading to possible reduction in mission effectiveness” [87].
An example of mission-critical systems can be e.g. the sector of low-latency
electronic trading [54]. In low-latency trading, computers that execute complex
algorithms are used to complete financial transactions before any other competi-
tor. Missing a deadline to complete a transaction may result in high monetary
loss but no human life will be in danger. In contrast, safety-critical systems
are those systems whose failures can have severe or catastrophic consequences
possibly endangering human life. These consequences can be e.g., the loss of life
or irreversible damage to the environment. Typical examples of safety-critical

1As opposed to a logical clock, where only qualitative information is provided in the form
of event ordering relations [80].

2.1 Real-time and Safety-critical Systems 7

IEC 61508

RAIL DEFENCE
AUTO-

MOTIVE
PROCESS

OIL & GAS

IEC 61511

IGEM SR\15

Guidence to the
application of

IEC 61511

EN 50126

EN 50128 EN 50129
Railway
industry

“Yellow Book”

DEF STAN 00-56 EN 26262
ISO/DIS 25119

MISRA
Guidelines

AVIONIC

DO 178C
DO 254

Figure 2.1: Relation of domain-specific second tier guidelines to IEC-61508
safety standard. Redrawn from [120]

systems can be found in the medical, transportation, defense, space, and energy
sectors.

Due to the consequences of failures in safety-critical systems, they need to be
licensed as fit for use in its intended environment before deployment. Licens-
ing a safety-critical system is done through a careful and rigorous process of
certification performed by a competent authority (e.g. the Federal Aviation Ad-
ministration or the European Aviation Safety Agency for commercial aircrafts).
The certification authority has to asses that there is enough convincing evidence
to argue in favor of the system’s safety claims, the so-called CAE system [109].

One way to conduct the certification assessment is by proving compliance to
safety standards. Safety standards specify the assurance processes that should
be used either in a prescriptive way by providing methods that must or are
highly recommended to be followed, or based on objectives that specify what
has to be achieved but not how [109]. Safety standards are domain-specific, i.e.,
dependent on the intended operating sector, and are in essence translations to
different domain areas (e.g. railroad, aviation, etc) of the safety requirements of
the IEC-61508 standard [120]. Domain-specific safety standards are referred to
as second tier guidelines. For example, the second tier guidelines for the avionics
industry is DO-178C, for the automotive industry is EN26262 and for the rail
industry is EN50126, see Figure 2.1.

Another approach to certification is the development of safety cases [20], where

8 Background and Related Work

the system developers are required to explicitly state the system’s safety claims,
arguments, and evidence. In contrast to the standards-based approach, the
safety case approach is more flexible as it allows the developer to customize and
fine-tune the methods used to support the safety claims. It however lacks the
large collective knowledge base and experience that supports safety standards.

Safety-critical systems are becoming more complex, interconnected, and embed-
ded in many aspects of every day life. With these increased complexity many
new challenges are emerging. Some of those challenges, outlined by Knight
in [66], are:

• Integration of multiple functions. Requirements such as reduction of cost,
weight and power dissipation are pushing for the integration of several
interacting functions onto the same platform. Furthermore, studies show
that the future of software systems is heading beyond systems of sys-
tems [79] into ultra-large-scale (ULS) systems [91]. ULS systems will push
far beyond their number of, e.g., lines of code; interdependencies among
software components; and hardware elements. In addition, it is expected
that many of the components integrated into an ULS system will be of
safety-critical nature [46].

• Specification of systems requirements. Developing correct, unambiguous
and complete specifications is not an easy task even for non-safety criti-
cal systems. In safety-critical systems, requirements development is more
complex because safety is now an essential attribute of the system. The
development of system-level safety requirements need to be provided in
the form of safety and assurance cases [109] produced by a risk analy-
sis [78, 22]. The risk analysis can be done with, e.g. a fault tree or system
hazard analysis.

• Formal verification. With the increased complexity of software for safety-
critical systems, testing is becoming more difficult and current verification
techniques based on testing (e.g. unit testing) are starting to raise doubts
on their effectiveness [109, 85]. The use of formal methods as an alter-
native to testing has been included in DO-178C to “partially address a
small set of objectives, or might be the primary source of evidence for the
satisfaction of many of the objectives concerned with development and
verification” [108]. The challenges on the use of formal methods are: (1)
requirements should be expressed in a formal language and (2) providing
formal proofs for complex systems e.g., by model checking, often leads to
state explosion.

• Development time and effort The most expensive and time-consuming
activities carried out to develop and deploy safety-critical systems come

2.2 Programming Languages for Safety-critical Systems 9

from the certification process. Most of the certification effort is in turn
spent on verification activities while the actual process of software devel-
opment (coding) requires only a small fraction. In some extreme cases,
the effort and time spent on software assessment can be so high, that it
may become an economic risk (e.g. a nuclear reactor protection system
in Canada required 50 man-years of assessment [20]). Therefore, the use
of new software technologies, languages, and certification approaches that
help minimizing the cost and effort of verification activities are needed.

• Security As safety-critical embedded systems become more interconnected,
security is becoming a concern. A device may be tampered and forced to
work outside its safe operating conditions or critical data used by the sys-
tem can be manipulated by unauthorized intrusions. The fundamental
problem when including security into safety-critical systems is that archi-
tecture models used to build security-critical systems (e.g., the Multiple
Independent Levels of Security and Safety (MILS) approach [12]) require
that multiple software functions sharing common resources maintain a
separation between trusted and non-trusted processes. This separation
may lead to architectural differences between systems designed for safety
and systems designed for security [32](e.g. sharing of information between
dependent components may not be possible).

2.2 Programming Languages for Safety-critical Sys-
tems

During the period of late seventies and early eighties software for real-time sys-
tems was still developed in assembly language. As complexity in such systems
increased, there was a need for the use of more expressive languages to simplify
the software development task. A first approach was to develop programming
languages specifically designed for real-time systems. Example of languages de-
veloped during that period are CORAL 66 and RTL/2 [50]. Those languages
however were limited in concurrency and I/O features, relying largely on oper-
ating system support [29]. In the years to follow, (late 80’s/early 90’s), several
other languages were proposed for real-time systems, but most of them were
designed either for specific applications or implemented on a single computer
model (e.g. Occam2 for transputer-based distributed systems) [50]. Therefore,
they did not found widespread use and remained as research projects only. A
notable exception of the languages developed during that period was Ada, which
is still used for programming real-time systems. Instead of using programming
languages specifically developed for real-time systems, the next step was to use
well know and widely available high-level languages such as C.

10 Background and Related Work

For safety-critical systems however the criteria used to select a programming
language was based on how the features of the selected programming language
help on achieving specific requirements imposed by an applicable safety stan-
dard. Due to the large number of standards (see e.g. [120] pages 125–126), it is
not possible to find a single language that can meet all possible requirements.
However, research has been done to identify general requirements that program-
ming languages should meet in order to be used in safety-critical systems. For
example, in [36] requirements specific to UK’s MoD2 Def. Stan. 00–55 are an-
alyzed and an assessment criteria consisting of eleven rules is provided. Those
rules are then used to evaluate, amongst others, C and Ada for safety-critical
systems. A similar analysis is done in [134] where the requirements of the avion-
ics standard (DO-178B [107] at that time) and the IEC 61508 standard are also
considered. Similarly, a wider spectrum of safety standards is considered in [51]
resulting in a minimum set of general requirements where, amongst others, IEC,
RTCA and MoD standards agree.

A set of guidelines, derived from standards and research literature, on the use of
software languages in safety systems for nuclear power plants is presented in [56].
That study provides generic safe programming attributes, i.e., independent of
the language used, and detailed recommendations, i.e., specific to commonly
used languages such as C, C++ and Ada. The attributes are grouped into four
top levels “which define a general quality of software related to safety” [56]. Each
top level is further divided in intermediate and base attributes. The four top
levels are: reliability, robustness, traceability, and maintainability. Intermediate
attributes include e.g., predictability of memory utilization with a related base
attribute that requires minimizing dynamic memory allocations.

Standardized guidelines for the use of programming languages in safety-critical
systems are available for two languages: C and Ada. For C, the MISRA C
standard [16] defines coding standards enforced through 16 directives and 143
rules. The rules3 are designed to facilitate static analysis and compliance with
them can be checked solely by analyzing the source code. Compliance to a
directive4 may require a revision of requirements documentation. For Ada,
ISO/IEC DTR 15942 [63] provides standardized guidelines for its use in safety-
critical systems. The document presents, amongst other guidelines, the impact
that specific features of the Ada language have on verification techniques. The
standard incorporates the Ravenscar profile [28] for the tasking model. The
Ravenscar profile is a subset of the available tasking features of Ada that allow
the timing behavior to be checked using e.g., rate monotonic analysis [63].

2Ministry of Defence
3E.g., “Rule 70: Functions shall not call themselves, either directly or indirectly.”
4E.g., “Directive 3.1: All code shall be traceable to documented requirements."

2.3 Java for Real-time Systems 11

The use of the Java language for safety-critical systems is assessed by Kwon
in [68]. This assessment is based on a total of 23 requirements divided in two lev-
els: Level 1, which are mandatory and Level 2, considered desirable or optional.
The requirements are derived by analyzing a wide variety of safety standards
from different domains e.g. UK’s MoD Def. Stan. 00–55 and 00–56, and US’
DoD5 “STEELMAN” [130]. The outcome of this study is the Ravenscar-Java
profile which, as its counterpart for Ada, restricts some of the features of Java
and enhances other areas (e.g. the scoped memory model) in order to increase
predictability of Java programs.

From all those studies, one criterion on which all of them agree is that a pro-
gramming language to be used for safety-critical systems has to be a subset of
a more complex, well known language. This subset has to be augmented with
real-time constructs to reflect the real-time programming paradigm. The use of
a subset of a programming language on the one hand imposes the problem of
how to enforce it and on the other hand provides the advantage that it can be
formally defined. A formal definition of the full language can be very difficult.

Although some of the mentioned studies on identifying requirements for safety-
critical programming languages are not recent, they are still applicable because
the development of safety standards is a slow-paced changing field. For example,
the current standard in the avionics industry, DO-178C, was published recently,
in 2011, nearly 20 years after its predecessor, DO-178B, to address new tech-
nologies such as object oriented languages and the use of alternative options to
testing (e.g., formal methods).

2.3 Java for Real-time Systems

Since its introduction in 1995 [48], the Java programming language has been
widely used in many application domains. Part of its success can be attributed
to being a strongly typed, architecture independent language with automatic
memory management. As a strongly typed language, Java facilitates the imple-
mentation of extensive compile-time checks and avoids errors associated with
pointer arithmetic; its architectural independence increases portability of ap-
plications and an automatic memory management helps to avoid e.g. memory
leaks and dangling pointers.

However, many of Java’s features are not adequate for (hard) real-time applica-
tions because they affect predictability or complicate different types of verifica-
tion analysis and tests required as evidence to support compliance to a safety

5U.S. Department of Defense

12 Background and Related Work

standard. The features that make Java not suitable for real-time systems, and
specially for high-integrity systems, can be classified in three categories: (1) ob-
ject oriented programming features, (2) loosely defined aspects of the language,
and (3) lack of services to implement a hard real-time programming model.

Object oriented programming features such as inheritance, polymorphism
and dynamic dispatch can introduce different types of complications in
software developed for safety-critical systems. For example, predictability
in the control and data flow of a program is affected by dynamic dispatch
because, e.g., which version of a method to call depends on the runtime
type of the receiver object. Testing and different forms of analysis, e.g.
structural coverage analysis (decision coverage and modified condition/de-
cision coverage analysis), and source code to object code traceability be-
come more complex.
Furthermore, DO-332, one of DO-178C supplements, requires correct type
substitutability, that is, if inheritance is considered a specialization rela-
tionship, if a method call expects type C, then type S, which is a subtype of
C, is also acceptable. The issue here is how to guarantee that the method
defined in S is appropriate, that is, it does not strengthen preconditions
and postconditions and invariants are not weakened [72].

Loosely defined aspects of the language help making Java code more por-
table across implementations. However, this freedom can lead to different
behaviors. For example, thread scheduling requires the use of the under-
lying capabilities of the system and some implementations (e.g., IBM’s
WebSphere) ignore Java threads’ priorities and assign system default pri-
orities. Therefore, no guarantees can be made on fairness in the execution
of threads or even if threads make progress at all [71]. In addition, when
there is contention for processing resources, there is no guarantee that
the highest priority thread will be executed in preference to lower priority
threads [27]. Another example of undefined behavior is how the threads
in the entry set (threads suspended waiting for a monitor) or the wait set
(threads suspended by calling the wait() method) are managed, i.e., in
which order are the threads added to and removed from the set.

Hard real-time programming constructs Originally, Java was not devel-
oped to be used in real-time systems. Instead, it was created to solve
some of the problems that the use of the C language presented for pro-
gramming networked embedded systems [48]. To be usable for real-time
embedded systems, the Java virtual machine and its operating environ-
ment must support the following [27]:

• Strict thread priority control, that is, execution of threads has to be
done according to the priorities specified in the Java threads.

2.3 Java for Real-time Systems 13

• Priority based preemption, in order to implement the most common
scheduling policies for hard-real time systems

• Priority inversion control, to avoid high priority threads being blocked
by lower priority threads and potentially miss a deadline.

• Synchronous and asynchronous event processing

• Access to physical memory, to control I/O devices

• Ability to schedule hardware interrupts, that is, to execute interrupt
service routines under control of the scheduler.

One of the first publications proposing the use of Java for real-time systems
can be found in [88]. In that work, Nilsen argues that “by combining certain
Java programming conventions with special implementation techniques, it is
possible to support varying degrees of real-time reliability” [88]. The work is
focused on highlighting important issues and to suggest general solutions (e.g.
a portable model for real-time computation) with an emphasis on restricting
implementation choices.

Nilsen’s proposal triggered a reaction on the National Institute of Standards and
Technology (NIST) to produce a requirements document to extend the Java plat-
form for real-time [90]. NIST published a document entitled Requirements for
real-time extensions to the Java platform [31] from where two compliant speci-
fications were latter produced: the Real-time Specification for Java (RTSJ) [26]
and the Real-Time Core Extension Specification for the Java Platform (RT
Core) [62]. Of these two specifications, the RTSJ received more attention both
by academia and industry because RTSJ was initially supported by Sun Mi-
crosystems (now part of Oracle Inc.) and IBM. In fact, the development of
RTSJ started the Java Community Process (JCP) with Java Specification Re-
quests (JSR) 1. In contrast, RT Core did not enjoy good acceptance by the Java
community because RT Core proposed modifications to the Java language [57].

The development of RTSJ had the goal of specifying how real-time behavior can
be achieved with Java without changing the language at all [27]. There are seven
areas that RTSJ enhances for the development of real-time applications [26]:

• Thread Scheduling and Dispatching: The minimum requirement is a fixed
priority preemptive dispatcher. New thread classes are defined, the Real-
timeThread and NoHeapRealtimeThread, both of them executed accord-
ing to specific scheduling and release parameters. Instances of Realtime-
Thread can be affected by the GC while NoHeapRealtimeThread are not
subject to GC interruptions.

14 Background and Related Work

• Memory Management: There is no particular GC algorithm required but
if one is used, it should be precisely characterized in terms of its “ef-
fects on the execution time, preemption, and dispatching of real-time Java
threads” [26]. In addition, thee are regions of memory, i.e. ScopedMemory
areas, where allocation and deallocation of objects is nor affected by GC
interference.

• Synchronization and Resource Sharing: The synchronized keyword should
include, as part of its implementation, the appropriate means to control
priority inversion. In addition, wait-free queues are provided for com-
munication between threads affected by GC and threads not affected by
GC.

• Asynchronous Event Handling: RTSJ provides both, mechanisms to repre-
sent and logic to execute external events. Occurrence of an external event
triggers the execution of logic under the control of the system’s scheduler.

• Asynchronous Transfer of Control: A mechanism that allows the imple-
mentation of code that can be safely interrupted. Fine grade control is pro-
vided over which methods can be interrupted therefore, non-interruptible
code can be used to avoid leaving objects in an inconsistent state. In addi-
tion, synchronized code (methods or blocks) is non-interruptible therefore
the risk of leaving unreleased locks is avoided.

• Asynchronous Thread Termination: By extending the functionality of
Thread.interrupt(), safe termination of threads can be implemented.

• Physical Memory Access: Allows the construction of objects in physical
memory and byte-level access to physical memory.

2.3.1 Java for High-integrity Real-time Systems

Although RTSJ’s enhancements provide real-time functionality and increased
predictability of Java applications, it is still too complex to be used on software
components for safety-critical systems. A number of studies have proposed
additional profiles intended for the use of Java on safety-critical systems. For
example, the work of done by Puschner and Wellings in [98] restricts many of
the features of the RTSJ and proposes a profile for high-integrity real-time Java
programs based on Ravenscar-Ada’s [63] concurrency model. The profile has a
fixed number of threads that can be either time-triggered (periodic) or event-
triggered (sporadic) and interact only through shared data. The profile divides
the execution of applications in two phases, an initialization phase and a mission
phase. Non time-critical activities (including the creation of all threads that
the application will use) take place in the initialization phase while time-critical

2.3 Java for Real-time Systems 15

activities (i.e. the actual execution of threads) are executed in the mission phase.
There are also additional restrictions in memory management (e.g. prohibits the
use of a GC), use of shared resources (e.g. requires the use of priority ceiling
emulation to avoid deadlocks), and time and clocks (e.g. RTSJ’s Timer is not
allowed). Details can be found in [98].

The work of Puschner and Wellings served as a starting point to define the
Ravenscar-Java (RJ) profile which inherits most of the features of its predecessor
profile (e.g., two execution phases, only periodic and sporadic threads) and adds
features such as annotations for temporal and memory usage analysis, and a
restricted form of memory used for dynamic memory allocation in the form of
nested scopes.

The work done by the HIJA project also produced a profile for high-integrity
Java [5] that adds amongst others, the following limitations:

• Only bound asynchronous event handlers, either periodic or sporadic, are
allowed.

• Only uses the default RTSJ preemptive priority-based scheduler with no
dynamic priorities.

• Scheduling within priority is FIFO.

• Deadline miss detection but no CPU-time monitoring.

• No use of the synchronized statement is allowed.

• No suspension for any reason is allowed within a synchronized method.

• Priority inversion is controlled by use of the RTSJ’s priority ceiling emu-
lation protocol.

• Application reinitialization or mode changes are supported.

A different approach is taken by Schoeberl et al. and in [118] they propose a
profile for safety-critical Java where, instead of providing a subset of the RTSJ,
the authors start from scratch to build a reduced specification for hard real-time
Java. The profile also keeps a fixed number of periodic and sporadic threads
but with, amongst others, the following changes:

• Considers the RealTimeThread as a fundamental concept whose construc-
tor needs only application specific parameters.

16 Background and Related Work

• Derived thread types such as NoHeapRealTimeThread are eliminated.

• Schedulable objects are released according to time and not priorities. If
needed, priorities can be computed by mapping of timing requirements to
priorities by e.g. deadline-monotonic assignment.

• Only relative time is conserved, absolute time is not part of the profile.

• Maintains the initialization and mission phase as previous profiles but adds
an additional phase, a stop phase, used for threads to perform optional
cleanup procedures.

• Does not support mode changes.

The safety-critical Java (SCJ) profile is being developed under the Java spec-
ification request 302 (JSR-302) and is the current effort to standardize a Java
profile for safety-critical systems. Its main characteristics, namely the concur-
rency, execution, and memory model, are described in the next section.

2.4 Safety-critical Java Specification (JSR-302)

Similar to the approach followed by the MISRA C standard and the Ravenscar-
Ada profile, SCJ provides a smaller, tightly defined subset of the Java program-
ming language. It is intended to be restricted enough to reduce testing and
verification complexity. SCJ is based on the RTSJ and its programming model
is more restricted in terms of concurrency, synchronization, memory, input and
output, clocks and timers, and exception processing [77]. Three levels of com-
pliance with different degrees of complexity are defined, namely Level 0 (L0),
Level 1 (L1), and Level 2 (L2) where L2 is the more complex.

In this section we describe the three main characteristics of SCJ namely its
execution, concurrency, and memory models.

2.4.1 Execution Model

SCJ’s programming model is based on the execution of missions. Missions en-
capsulate modes of operation and separate the execution of time-critical from
non time-critical operations. They consist of a bounded set of registered man-
aged schedulable objects (MSO) executed either as a cyclic executive (L0) or
under the control of a fixed-priority preemptive scheduler (L1, L2). MSOs are

2.4 Safety-critical Java Specification (JSR-302) 17

created with parameters that cannot be changed after they start executing.
Such parameters define a real-time priority, specify the nature of the MSO’s
execution (periodic or aperiodic), and binds the MSO to a memory area.

An SCJ application can have one or more missions executed in a predefined
sequence. The order in which the next mission to execute is selected is under
the control of a mission sequencer. A mission has three phases: initialization,
execution, and cleanup. During initialization, all non time-critical operations
are executed (e.g., setting up data structures, initializing peripheral devices) and
all MSOs needed by the mission are created and registered. In the execution
phase, all time-critical operations are executed by the MSOs registered to the
mission. Any MSO can trigger mission termination at any time. Once a mission
termination request has been made, all currently executing MSOs will finish
their last release and no further scheduling of MSOs releases is allowed. The
cleanup phase starts once all MSOs have finished their last release. This phase
is used to remove any data, structures, or configurations used by a particular
mission and that are not needed by the next mission.

L0 and L1 applications can have only one mission executing at all times. Par-
allel missions are only allowed at L2. Parallel missions are started by nested
sequencers registered as MSOs for another mission.

2.4.2 Concurrency

Depending on the required type of real-time activity, an MSO can be a periodic
event handler (PEH) or an aperiodic event handler (AEH). The use of event
handlers is preferred to the use of threads because all the activities for an indi-
vidual release are encapsulated in a single method [132], namely the handler’s
handleAsyncEvent() method. Threads are only available at L2 in the form of
managed threads that are a restricted version of RTSJ’s NoHeapRealTimeThread.
Managed threads are useful to implement activities with an execution pattern
different from that of an aperiodic or periodic task, e.g. background activities
that run at all times.

2.4.3 Memory Model

In SCJ, the use of the heap is not allowed. Instead, memory management
is based on memory areas free of garbage collector interactions called scoped
memories. Scoped memories are introduced in SCJ in order to make object
allocation and deallocation time and space predictable. The concept of scoped

18 Background and Related Work

memories is inherited from the RTSJ and depending on the intended life of the
objects allocated in a scoped memory, there can be immortal, mission, or private
memories. Immortal memory is used to store objects that will live for the whole
execution of the application, mission memory holds objects that belong to a
specific mission and private memory holds objects used only by a single MSO.
Objects allocated in immortal memory can be accessed by any MSO and objects
in mission memory are accessible only to the MSOs belonging to the mission.
As in RTSJ, static initializers run in immortal memory and Class objects and
static fields reside in immortal memory.

The different scoped memories are represented by instances of the Immortal-
Memory, MissionMemory and PrivateMemory classes. The latter two extend a
common SCJ class, namely ManagedMemory. Unlike the RTSJ, it is not possible
to explicitly create instances of memory objects, instead, SCJ’s infrastructure
creates such objects in response to certain user requests or according to the ap-
plication execution phase. The SCJ infrastructure creates and enters Mission-
Memory objects during the mission initialization phase while PrivateMemory
objects are also created at mission initialization but entered during the mission
execution phase. Memory objects represent an allocation context but the mem-
ory objects themselves are created outside the allocation context they represent
e.g., the object representing the initial mission memory resides in immortal
memory.

Each MSO is created with an initial private scope that is entered by the infras-
tructure on each release and is left at the end of the release. On scope exit, all
the objects allocated in that scoped memory are deallocated. An MSO can also
enter nested private scopes which are used to recycle memory space on every
MSO release. The order in which MSOs have entered scoped memories form a
stack structure that can only grow linearly.

Without a garbage collector, memory management becomes a task of the ap-
plication developer. The application developer therefore needs to be aware of
where objects are allocated in order to avoid creating illegal reference assign-
ments. An illegal reference assignment is created when an object stores a ref-
erence to another object located in a shorter-lived scoped memory. To avoid
creating such references, a set of rules have to be enforced by the JVM on every
reference assignment operation (Sections 2.7 and 3.5 provide more details about
the reference assignment rules and methods to enforce them).

2.4 Safety-critical Java Specification (JSR-302) 19

2.4.4 An SCJ HelloWorld Example

Figure 2.2 shows how a minimal, but complete, L1 SCJ HelloWorld example
looks like. An SCJ application needs four elements: (1) a safelet, to bind the
application to the runtime environment, (2) a mission sequencer, to provide the
order in which missions are executed, (3) one or more missions, to encapsulate
modes of operation and provide a separation between time-critical and non time-
critical operations, and (4) one or more managed schedulable objects, to provide
real-time activities with different execution patterns.

The Safelet class contains three methods that should be implemented: immortal-
MemorySize(), initializeApplication(), and getSequencer(). The immortal-
MemorySize() method (line 6) returns the amount of immortal memory that
this SCJ application requires. The initializeApplication() method (line 7)
provides an entry point to allocate immortal objects. Immortal objects can also
be allocated with static class initializers. The getSequencer() method (line 10)
returns the sequencer object that controls the order in which missions belonging
to this application will be executed.

The mission sequencer needs to implement the getNextMission() method to
get a reference to the next mission to execute. In this example, our SCJ
application extends the Mission class and hence the implementation of the
getNextMission() method (line 17) returns a reference to the app object which
was allocated in immortal memory (line 2). For this example, the mission se-
quencer returns a non null mission only the first time its getNextMission()
method is called. Successive invocations (after mission cleanup) will return a
null mission resulting in the termination of the application.

As with the immortal memory requirements, every mission needs to define the
maximum amount ofmission memory that it requires. The missionMemorySize()
method (line 25) provides this value. The initialize() method (line 28) is
used to create mission-specific data structures and to create and register all
MSOs that belong to the mission. In our example, there is only one PEH in-
stantiated as an anonymous class (line 33).

The active logic of our example is implemented by overriding the handleAsync-
Event() method (line 42). This minimal example will periodically print a “Hello
World” message five times before issuing a mission termination request (line 46).
In SCJ, the use of System.out is not allowed in order to “reduce the size and
complexity of the System class” [77]. There is however support for a reduced
set of the java.io package that can be used to implement a class that prints
messages to a console terminal. The period of this PEH corresponds to 150 ms
and is specified in the PeriodicParameters parameter of its constructor.

20 Background and Related Work

1 public class HelloSCJ extends Mission implements Safelet {
2 static HelloSCJ app = new HelloSCJ();
3 static Terminal term = Terminal.getTerminal();
4
5 /∗ Safelet methods ∗/
6 public long immortalMemorySize() {return 16384; }
7 public void initializeApplication () {/∗ Set immortal data ∗/}
8
9 @Override

10 public MissionSequencer getSequencer() {
11 return new MissionSequencer<Mission>(new PriorityParameters(11),
12 new StorageParameters(1024, null, 1024, 128, 128)) {
13
14 boolean served = false ;
15
16 @Override
17 protected Mission getNextMission() {
18 if (! served) {served = true; return app;}
19 else { return null ; }
20 }
21 };
22 }
23 /∗ Mission methods ∗/
24 @Override
25 public long missionMemorySize() {return 4096;}
26
27 @Override
28 protected void initialize () {
29 long totalBackingStore = 1024, maxMemoryArea = 512;
30 long maxImmortal = 128, maxMissionMemory = 128;
31 long [] sizes = null ;
32
33 new PeriodicEventHandler(new PriorityParameters(12),
34 new PeriodicParameters(new RelativeTime(),
35 new RelativeTime(150, 0)),
36 new StorageParameters(totalBackingStore, sizes ,
37 maxMemoryArea, maxImmortal, maxMissionMemory)) {
38
39 int cnt = 0;
40 @Override
41 public void handleAsyncEvent() {
42 term. writeln ("Hello World!");
43 cnt++;
44 if (cnt > 4) {
45 Mission.getCurrentMission (). requestTermination ();
46 }
47 }
48 }. register ();
49 }
50 /∗ Start the application from a main method ∗/
51 public static void main(String [] args) { ScjLauncher.Main(app); }
52 }

Figure 2.2: Example of an SCJ HelloWorld program

2.5 Java Optimized Processor JOP 21

Note that, as with immortal and mission memory, the memory requirements
for the PEH’s private memory need to be specified. This is done with the
storage parameters argument (line 36) which specifies the size of the backing
store reservation (totalBackingStore), the per-release maximum memory area
(maxMemoryArea), and the maximum immortal and mission memory the PEH
is allowed to use (maxImmortal and maxMissionMemory).

How an SCJ application is started is implementation dependent and in the last
part of this example (line 51) we show one possible way to start the application.
We define a public static Main() method in a class located in the SCJ package,
ScjLauncher in this example, and call that method from the main method of
the application. For an RTSJ-based implementation, the initial main thread
will run by default in the heap and the SCJ profile does not allow the use
of the heap memory. Therefore, the ScjLauncher class will create a NoHeap-
RealtimeThread in immortal memory and after that this new NoHeapRealtime-
Thread will execute the methods of the safelet object passed as argument to the
ScjLauncher.Main method.

2.5 Java Optimized Processor JOP

JOP is an implementation of the JVM in hardware [113]. JOP uses microcode
as its native instruction set. Most of the bycodes defined by the JVM are
implemented as a sequence of microcode instructions, only the more complex
bytecodes, e.g., the new and newarray bytecodes, are implemented in Java. The
mapping of bytecodes to microcode instructions is done using a translation stage
which converts a bytecode instruction into the start address of a table containing
the microcode sequence that implements that bytecode. This translation stage
takes exactly one clock cycle and thus it can be pipelined [113, 112].

JOP is a RISC embedded processor, implemented using a stack architecture,
designed for (hard) real-time systems. A number of architectural features help
achieve predictability in the execution of Java programs. The most important
features are listed below:

• Data dependencies are eliminated from the stream of bytecode instruc-
tions.

• It has a simple 4-stage pipeline that avoids the use of branch predic-
tion logic, prefetch units, forwarding logic (no dependencies between byte-
codes), and pipeline stalls.

22 Background and Related Work

Application

Java compiler (javac)

JOP Build Tools

Target FPGA

JOP

JOPizerMain.java

system

JVM.java

jdk_base

Object.ja
va

jdk11

Vector.ja
va

.class

.jop
binary file

Figure 2.3: Application build tool-chain of JOP

• It uses time predictable caches: a stack cache, that substitutes the data
cache and caches local variables and the operand stack; and a method
cache, that substitutes the instruction cache and caches entire methods
and therefore restricts cache misses to invoke and return bytecodes

These architectural features result in the possibility to predict the execution time
of every bytecode. Moreover, as a pure Java system, there is no underlying OS
layer and therefore there is no dependency on OS features that may complicate
the execution time analysis.

Translating Java applications into files that can be executed on JOP follows the
process illustrated in Figure 2.3. Java class files are created from the application
source and the different libraries using a standard Java compiler. The class files
are processed and linked into a single file that can be downloaded into the JOP
processor for its execution. The resulting output file contains the following
information:

• References to different boot and initialization structures

• An area where static fields are stored

• A method table, which contains the bytecodes of every method

• A section with pointers to the class initialization methods

• A table holding all constant strings

• An area with the class information table

• An area with the class Class objects, generated at application build time

2.5 Java Optimized Processor JOP 23

Instance variable 1

Instance variable 2

.

.

.

Instance variable n

Object address

Method vector base

Object address

Array length

Element[0]

Element[1]

.

.

.

Element[n]

HANDLE AREA HEAP / SCOPED MEMORY

Object

Array

Object reference
(32-bit address)

Array
reference

(32-bit address)

Figure 2.4: Object and array layout in JOP

Only the classes used in the application will be processed and linked into the
output file. Furthermore, a correct class initialization order will be determined
in order to avoid circular dependencies between class initializers.

Access to memory and internal structures is needed to implement certain fea-
tures of the VM, e.g., the creation of objects. However, there are no bytecodes
available that allow such a low level access to memory. In JOP, this access
is obtained through native methods. Native methods are available as part of
the API accessible to the programmer. As the native language of JOP is the
microcode, JOP’s native methods are translated during application build into
special bytecodes that correspond to those undefined bytecodes in the JVM
specification.

Objects and arrays in JOP are represented by a structure composed of the two
parts described below and illustrated in figure 2.4:

• A header, a structure that contains meta-data information, called the
object’s handle. It contains amongst others, pointers to the object itself,
a pointer to the method table or array length, and information for the
garbage collector.

• The object itself, a structure which contains instance variables or, for array
objects, the elements of an array.

24 Background and Related Work

The first value in the object handle, at offset 0, points to the object instance. The
value at offset 1 stores a pointer to the runtime class structure that represents
the type of the object. The pointer to the class structure points to the first
element of a method table. The use of separate areas for a handle and object
instance is beneficial for the implementation of a garbage collector. Only the
reference contained in the object handle needs to be updated. The drawback is
the double pointer dereferencing to access an object’s instance [112, 131].

JOP’s API provides a basic class, called RtThreadImpl, to implement real-time
activities [110]. Periodic or aperiodic activities are supported through two ad-
ditional classes, namely RtThread and SwEvent, that delegate functionality to
the RtThreadImpl class. JOP’s RtThread class allows the implementation of
periodic activities that are scheduled for execution according to their priority.
The SwEvent class is used for aperiodic activities, also scheduled for execution
according to their priority but with the difference that they need to be explicitly
released by a call to its fire() method. It is necessary to specify timing pa-
rameters on any of these classes that extend RtThreadImpl otherwise they are
considered as non real-time threads and will be executed at normal Java thread
priorities.

JOP’s real-time threads are executed under the control of a fixed priority pre-
emptive scheduler. Every thread is assigned a unique priority in order to avoid
FIFO queues within priorities. Executing a synchronized method or statement
disables all interrupts, including the timer interrupt that triggers the scheduler.
In this way, critical sections are executed at the highest possible priority of
all threads, thus effectively implementing a priority ceiling protocol where the
ceiling is set to the maximum priority that any thread can possibly have.

2.6 High Integrity Java Profiles on Embedded
Systems

Safety-critical Java is relatively new, and there are only a few implementations
available that specifically target embedded systems. We describe in the following
sections previous work that has been done to implement different high integrity
Java profiles.

2.6 High Integrity Java Profiles on Embedded Systems 25

2.6.1 Ravenscar-Java in the aJ-100 Processor

Søndergaard et al. in [123] provide an implementation of the Ravenscar-Java
(RJ) profile, first proposed by Puschner and Wellings in [98] and further elab-
orated by Kwon and Wellings in [70] and [68]. The implementation targets
industrial applications and uses an aJ-100 processor developed by aJile Sys-
tems [7]. The aJ-100 is a 32-bit microprocessor that directly executes JVM
bytecodes (implemented in microcode) as its native instruction set. In addition,
it provides a microcode programed real-time kernel that provides, among others,
support for scheduling, context switching and object synchronization.

RJ’s periodic threads are implemented by delegation to aJile’s PeriodicThread
class provided by the aJ-100 API. Much of the complexity of using aJile’s API
for setting periodic activities (e.g. configuring the piano roll structure) is hidden
through the use of auxiliary classes. Priorities for the PeridicThreads are set
according to a rate monotonic assignment that is done in the initialization phase.

In RJ, only sporadic events are defined. They can be either of type Sporadic-
Event (software generated) or SporadicInterrupt (hardware generated). Both
types of events are executed in Søndergaard’s et al. implementation by a Spo-
radicEventHandler (SEH) with a deadline equal to its minimum inter arrival
time. An SEH extends RTSJ’s BoundAsyncEventHandler which implements its
permanently bounded event handler as a private inner NoHeapRealTimeThread.
This thread is created and started as part of the BoundAsyncEventHandler
constructor. Its run() method executes the logic associated with the occurrence
of an event. The bounded thread is blocked right after it is started by a call to
the wait() method with a lock on itself.

The occurrence of an event triggers the following series of actions: (1) SEH’s
handleAsyncEvent() method is executed which checks if the minimum interar-
rival time has elapsed, if not, the event is ignored, (2) if the minimum interar-
rival time has elapsed, the SEH’s bounded thread handlAsyncEvent() method
is called which in turn makes (3) a call to the notify() method with a lock
on the bounded thread object, (4) the bounded thread awakes thus executing
the logic associated with the event. Because the bounded thread is defined as
a private inner class in the BoundAsyncEventHandler class, it can be locked by
only one SEH.

From the memory classes, only ImmortalMemory and RawMemory are imple-
mented, there is no support for scoped memory. ImmortalMemory is imple-
mented by turning off the garbage collector of the aJ-100 processor thus making
the heap an implicit immortal memory. RawMemory uses aJile’s low-level memory
access API.

26 Background and Related Work

2.6.2 oSCJ

One of the first implementations of safety-critical Java on an embedded platform
is presented by Plsek et al. in [96] as part of the open safety-critical Java (oSCJ)
project [96]. Plsek et al. provide an implementation of SCJ’s Level 0 running on
the OVM virtual machine [15]. The OVM is a framework that allows alternate
implementations of core VM functionality (e.g. different versions of priority
inheritance monitors) in order to build and test VMs with different features.
OVM uses an ahead-of-time compiler to translate Java code to C++ and then it
uses the GCC compiler to obtain machine code. SCJ’s implementation on OVM
runs on an FPGA board executing the RTEMS real-time operating system on
a LEON3 processor.

For a Level 0 implementation of SCJ only a single thread is sufficient. For the
oSCJ project a single thread performs all tasks, including VM boot and startup
procedures, and the execution of the SCJ application. Having a single thread in
the system makes synchronization not needed. The SCJ library was designed to
be independent of the underlying VM where it is executed. This independence
is achieved by defining an interface through which the SCJ library interacts with
the VM services. Through this interface memory-related services (e.g. creation,
deletion, and switching of memory areas) and time-related services (e.g. get the
current time) are delegated to the VM. Thread management is delegated to the
operating system (a POSIX environment) through an abstraction layer.

Memory is divided in three levels: the top level, the backing store level, and
the scope level. The top level memory holds the ImmortalMemory region and
the currently active missions object (for a Level 0 application there is only
one mission active at all times). The backing store level is used to store the
schedulable objects’ private memories. The scope level stores the objects created
during the execution of a schedulable object. It is unclear from the description
in [96] if the space required by nested private memories is taken from the scope
level or the backing store level, howhever, from the explanation of the scope
check assignments, it is most likely taken from the scope level.

As the VM is delegated memory-related functions, it also implements the scope
checks. The check works by locating and comparing the memory areas where
objects are stored. The memory is organized in a way that lower addresses
correspond to longer lived memory regions. Therefore, a check is deemed ac-
ceptable if the object to be assigned to a reference field is located in a lower
or equal memory address range as the object where the field to be assigned is
defined. If that condition does not hold, then a second step might be needed to
recover the scope nesting relationship of the memory areas.

2.6 High Integrity Java Profiles on Embedded Systems 27

2.6.3 SCJ on HVM

In [121], Søndergaard and Ravn provide an implementation of SCJ’s Level 0 and
Level 1 on top of the Hardware near Virtual Machine (HVM) [67] that targets
low-end embedded platforms. It is reported that their implementation can fit
embedded systems with as low as 16 kB of RAM and 256 kB of flash memory.
HVM is a small footprint JVM for embedded devices that compiles Java to C.
HVM translates a single application written in Java into self contained standard
C code that can be integrated into an existing C-based execution environment
without any additional dependencies [67].

Similar to oSCj, HVM’s SCJ profile interacts with the underlying VM services
through an interface that provides memory management, scheduling, and real-
time clock related services. Those services are made available through five inner
classes, on top of which the SCJ framework is constructed.

The approach taken by Søndergaard and Ravn differs from oSCJ in that their
implementation does not depend on an existing RTSJ implementation. SCJ
classes defined in JSR-302 as part of the javax.realtime package are declared
in the javax.safetycritical package. For example, in SCJ, the scoped mem-
ory model uses RTSJ’s MemoryArea and AllocationContext as base classes.
In contrast, in HVM both classes are located in the javax.safetycritical
package.

Scoped memory is implemented by the MemoryArea class which extends the
VMInterface.AllocationArea inner class. A stack structure is used to keep
track of the active memory areas.

The execution model uses what is called a primordial mission, a top-level mis-
sion where the mission sequencer is considered as the only handler to execute
(recall that both L0 and L1 applications have no nested sequencers). This pri-
mordial mission runs in ImmortalMemory as its allocation context. The mission
sequencer is a handler and as such, a private memory is allocated for its execu-
tion. The logic of the sequencer is implemented in its handlAsyncEvent method
where the following activities execute sequentially: (1) set-up of mission memory,
(2) selection of next mission, (3) initialization of mission (in MissionMemory),
(4) start of mission’s handlers, (5) wait for mission termination, and 6) mission
cleanup.

For a Level 0 application, all handlers are executed in the order they are returned
by the getSchedule method of the mission. Mission termination is done at the
beginning of a major cycle. For a Level 1 application, each handler is assigned
a HVM process and all HVM processes are started once the mission becomes

28 Background and Related Work

active. A process scheduler selects from a priority queue the next process to
release. Selection of next process is started via an interrupt generated by a
hardware clock. The priority scheduler detects mission termination if there are
no more processes to release.

Other features such as long events and long event handlers, happenings, and
the RTSJ interface to hardware (i.e. RawMemory related classes) are not imple-
mented. Furthermore, priority ceiling emulation and multi-core features are not
supported.

2.6.4 Predictable Java

In the work presented by Bøgholm et al. in [23] a different approach is taken.
Instead of providing an implementation of SCJ, their implementation is based
on a profile called Predictable Java (PJ). PJ is a Java profile suitable for the
development of high-integrity real-time embedded systems that builds on the
ideas of [98, 70, 112] and [123]. The profile is based on the execution of event
handlers grouped in missions which in turn are also considered event handlers.
Furthermore, the profile considers that, as PJ classes are more restricted in func-
tionality than RTSJ classes, PJ should be a generalization and not a specializa-
tion of RTSJ. In contrast, SCJ classes as defined by JSR-302 are a specialization
of RTSJ classes.

Two implementations are provided, with the restriction of not having mission
termination support (see below). The first implementation runs on an ARM-
based embedded controller while the second uses Tymesys 1.0.2 RTSJ reference
implementation running on an x86 Linux environment. The ARM-based imple-
mentation uses a modified JamVM [8] running on the Xenomai [10] real-time
extension to the Linux OS. Operating system support is used to implement real-
time tasks, scheduling, and synchronization. The RTSJ based implementation
delegates functionality to the RTSJ classes using an adaptation layer.

One of the most important points of Bøgholm et al. is that of considering mis-
sions as event handlers, in contrast to being only handler containers. They
argue that with that change, initialization and termination can be scheduled
events. Furthermore, this avoids introducing new class hierarchies (e.g. the
role of SCJ’s MissionSequencer and Mission can be performed by the same
class) and special mission memories. Individual handlers are added to its cor-
responding mission only when the mission is initialized, just as in SCJ, but for
their execution, complete missions are added to the system’s scheduler. Like-
wise, complete missions are removed from the scheduler at mission termination.
Nested missions (i.e. missions started by another mission) occur naturally as a

2.7 Reference Assignment Checks 29

mission can have another mission as part of its event handlers.

The memory model conserves the same ideas as in SCJ of having handler private
memories but the private memory of the outer most mission becomes an implicit
ImmortalMemory. SCJ style MissionMemory is therefore the private memory of
each inner mission. In this way, there is no need to define different classes for
immortal, mission, and private memories, and just one kind of scoped memory
is necessary. That is, the concept is needed but the classes are not [114].

2.6.5 Cyclic Executive for SCJ on Chip-multiprocessors

In [99], Ravn and Schoeberl provide an implementation of SCJ L0 on a chip-
multiprocessor version of JOP. They address the problem of generating a valid
static schedule that can be used to implement a table driven multiprocessor
scheduler. They use the model checking tool UppAal to find a valid schedule.

The authors then proceed to model tasks as timed automatas with and without
shared resources. As SCJ’s L0 is a cyclic executive, only one thread is needed
thus avoiding the need of synchronization. However, for a CMP configuration,
synchronization has to be considered for objects shared between cores. For this
L0 application, there will be a single thread per core executing part of the table
driven schedule and immortal and mission memory are the two memory areas
shared between cores.

In their implementation, Ravn and Schoeberl depart from what SCJ allows in
a L0 by allowing more than one processor, use plain Java runnables instead
of PEHs for the cyclic frames in order to avoid introducing dead code (e.g.,
PriorityParameters are not used in L0), allow task migration as it gives more
freedom in the generation of the schedule, and provide detection of frame over-
runs that can be queried from the application.

They show that indeed a CMP setting of L0 is feasable with the use of offline
tools to generate a schedule and with the additional simplifications that SCJ L0
offer on synchronized access of shared resources.

2.7 Reference Assignment Checks

As part of the contributions of this thesis, we have implemented the reference
assignment checks in hardware. The method we used is based on the execution

30 Background and Related Work

of write barriers similarly as in [58] and [59] for the RTSJ.

In [58], the scope stack of a thread is scanned to check that the memory area
of the destination of a reference assignment is deeper nested than that of the
source of the reference. In that implementation, the time to scan the stack is
proportional to the number of nested scoped levels. To bound the execution
time of the check, the authors limit the levels of nested scopes. In a latter
work [59], the performance is improved with the aid of the write barrier support
provided by the picoJava-II microprocessor [9] and specialized hardware. The
scope stack is stored in an associative memory which allows a faster scanning of
the hierarchy of nested scopes. Given the simplifications that the SCJ memory
model provides, we do not need complex hardware to store or scan the scope
stack to compare nesting levels between the objects involved in reference as-
signments. Our solution is simpler and requires only that the scope levels be
compared.

In the SCJ implementation of Plsek et al. [96] the write barrier works by locating
and comparing the memory areas where objects are stored. The memory is
organized as a continuous region that starts with the immortal memory then
continues with mission memory followed by any private memory or stack of
private memories. Lower memory addresses correspond to longer lived memory
regions. The check is performed by determining the block of memory where
both objects involved in a reference assignment are allocated. A second step
might be needed to recover scope information of each object as both objects
may reside in the same scope. We do not use the address value of each object
itself because that would involve checking that the objects are allocated within
a certain range, and that would be more time consuming as the boundaries of
the memory region where the objects are allocated need to be known.

In [137], the authors give an analysis algorithm that statically guarantee that no
illegal reference assignments can happen. The authors introduce the concept of
scoped types as a way to encapsulate scoped objects. Scoped and Portal classes
are defined and associated to their defining packages. Nested scopes are in turn
associated with nested packages. Accessibility of a scoped class is restricted to
instances of classes allocated in the same or nested scopes.

Verifying SCJ memory safety can be done statically by correctly using the anno-
tation model defined in the appendix of the SCJ specification [77]. For example,
in [125], annotations are used as part of a two step verification process. In the
first step, the scope tree is constructed and checked for errors and in the second
step, the tree constructed in the previous step is used to check a set of rules
for annotated and unannotated classes. The use of this annotation model is
however cumbersome and recent approaches to statically detect illegal reference
assignments avoid their use. Some examples are the work of Dalsgaard et al.

2.8 Scoped Memory Use 31

in [37] that uses a pointer and escape analysis and in a more recent, yet to
be published, work done by Chris Marriott from the University of York. His
work uses a formalization of the SCJ memory model using the Circus formal
language [93]

2.8 Scoped Memory Use

In this section we describe what has previously done regarding scoped memory
usage. As mentioned before, SCJ is relatively new and therefore the previous
work is related to RTSJ’s scoped memory. However, previous work on the RTSJ
can be related to SCJ as these studies are aimed at eliminating scoped-memory
related errors.

2.8.1 Patterns

Benowitz and Niessner introduced patterns used for periodic activities as well
as scope aware factories in [19]. In their work, returning objects are allocated
in immortal memory using memory pools (objects of fixed size) and memory
blocks (byte arrays to allocate varying size objects). The use of memory pools
in regions other than immortal memory are explored in [25] where the commu-
nication between several components participating in a real-time control loop is
described. Each component is defined in a scoped memory and has its own pool
of objects in a scoped memory other than immortal. Communication between
components is performed by copying values. Recycling objects is an appealing
solution to avoid running out of immortal memory. Nevertheless, in this work
we explore other possibilities that include the use of SCJ’s mission and private
memories.

Pizlo et al. investigated design patterns for the RTSJ in [94]. The authors doc-
ument several design patterns for the effective use of scoped memory regions.
From their work only the scoped run loop pattern has a direct equivalent in SCJ.
The rest are either RTSJ-specific (e.g, the wedge pattern), use features not avail-
able in SCJ (e.g., portals), or introduce violations to he reference assignment
rules (e.g., the handoff pattern).

The patterns catalog of Benowitz and Niessner [19] is extended with another
collection of patterns in [34]. For this collection, the Memory Tunnel pattern
is particularly interesting. It is used to move data between threads executing
in different memory areas. It has however, the problem that forces a “safe”

32 Background and Related Work

violation of the reference assignment rules. It relies on a memory tunnel struc-
ture which is constructed using native methods to bypass the scope constraints
regarding reference assignment checks. As SCJ is intended for certification un-
der standards such as DO-178C, this behavior is likely to reduce the chances
of passing any certification. Thus, we use a different approach to move data
between scopes that goes through mission memory.

Kwon and Wellings in [69] proposed to map memory areas to Java methods in
a user-controlled fashion. Motivated by the overhead incurred when enforcing
the single parent rule and reference assignments [24], they propose a model that
reduces the need for such checks. This is achieved by associating a memory
region with methods that have been annotated. Memory areas are entered
when the method is invoked, effectively changing the allocation context. Objects
created within this context are collected when the method returns. References
to objects created outside the current method can be passed as parameters or as
local objects in the enclosing object that the method belongs to. References to
objects in a callee method are not allowed. If there is the need to return objects
after a method is executed, it is done by specifying an additional parameter that
can define where to store a returned object. The approach uses RTSJ scoped
memories in a restrictive style that is very similar to SCJ private memories.
The annotation facility hides the complexities of using the memory API to
encapsulate methods and to return objects.

The Lifecycle Memory Managed Periodic Worker Threads pattern (LMMPWT)
described in [40] presents an RTSJ framework where a group of no-heap periodic
threads cooperate together to complete a task. This pattern focuses on object
lifetime management and does not require an explicit understanding of scopes.
Lifetimes assigned to objects are divided in four categories that can be directly
related to the lifetime of immortal, mission, private and nested memory allocated
objects in SCJ. Movement of data between scopes and creation of objects in
arbitrary memory areas is done with an encapsulated use of the memory API.
The drawback of this implementation is that it relies heavily on reflection for
manipulation of objects and the java.lang.reflect package is not part of the
SCJ specification.

In [137], the authors introduce the concept of scoped types as a way to encap-
sulate scoped objects. Scope and portal classes are defined and associated with
their defining packages. Nested scopes are in turn associated with nested pack-
ages. Accessibility of a scoped class is restricted to instances of classes allocated
in the same or nested scopes. This work is later extended in [97] where the
authors document a number of programming idioms to manipulate scopes.

2.8 Scoped Memory Use 33

2.8.2 Libraries

In [39], the authors describe some of the challenges faced while implementing
IBM’s WebSphere, a RTSJ-compliant commercial Java virtual machine. One of
the challenges here is integration with the existing JCL. Integration is challeng-
ing because objects are allocated in the memory area where the current thread
runs, thus making all classes in the JCL potentially unsafe for shared use be-
tween different types of threads.6 WebSphere provides a small subset of classes
that are safe for shared use between RTSJ threads. In the context of the Web-
Sphere JVM, “safe” means free of throwing MemoryAccessError exceptions, i.e.,
errors that are thrown when attempting to refer to an object in an inaccessible
memory area.

Automatic identification of no-heap safe classes is the topic of [41]. Dibble
presents a taxonomy to classify existing classes according to the degree with
which they can be shared by all types of RTSJ threads. This taxonomy is
based on the existence of static or instance variables that can store references to
objects in heap and no-heap memory areas. A list of potentially unsafe classes,
obtained through static analysis, is also presented. Dibble’s analysis identifies
all classes that have non-final static reference fields as unsafe.

The Javolution project [38] is one of the first attempts to produce an extended
library of reusable, time deterministic, no-heap safe classes. In that project,
issues such as sharing objects between scopes are eliminated. In addition, extra
steps, e.g., explicitly switching between memory areas, are handled automati-
cally. Javolution allows dynamic resizing of collections and allocates the required
extra storage from immortal memory. Allocations in immortal memory can
become a memory leak when elements are removed from the collection. Javo-
lution’s dynamic memory allocation and reliance on exception handling makes
static program and worst-case execution time analysis difficult.

In [53] the development of reusable libraries targeted for real-time Java is pre-
sented. The authors present classes that can be used as drop-in replacements
for three types of collection classes: List, Set, and Map. The authors’ approach
is based on recycling objects from a fixed-size pool of objects. As a consequence,
operations such as insertion or deletion can be bounded and unpredictable re-
sizing operations are avoided. Nevertheless, because the elements of a collection
must be mutable, users have to provide their own way in which elements can
change state. This work focuses on known execution times and memory con-
sumption rather than on ensuring scope-safety.

6RTSJ defines RealtimeThread and NoHeapRealtimeThread in addition to standard Java
threads.

34 Background and Related Work

The focus of the mentioned studies has been on performance; scope-safety is
treated by avoiding assignments to heap memory; or provide safe subsets of
classes with non-deterministic behavior. In contrast, our work concentrates on
scope-safety by analyzing design patterns and idioms. We also explore deter-
ministic behavior, both for execution time and memory consumption.

2.9 Testing Real-time Features in Real-time Vir-
tual Machines

Corsaro and Schmidt provide in [35] an evaluation of two real-time Java imple-
mentations. They compare the Timesys RTSJ reference implementation [127]
with their own RTSJ implementation, namely jRate. In that work, Corsaro and
Schmidt developed RTJPerf, a synthetic, workload-based benchmark to test
time efficiency in an RTSJ compliant (for v1.0.1 of RTSJ at that time) JVM.
They provide tests to measure linear time memory allocations, the delay to ser-
vice asynchronous events, overhead on thread switching and preemption, and
the accuracy of timers. A very similar study done by McEnery et al. in [82], pro-
vides an empirical evaluation of two main-stream, commercial implementations
of RTSJ. They compare Sun’s (now part of Oracle Inc.) Java RTS and Aicas’
JamaicaVM. McEnery et al. assess the efficiency and predictability of the two
commercial implementations by providing tests for memory allocation, thread
management, synchronization, and asynchronous event handling.

From these two works we found that some tests, e.g. the linear-time memory
tests, are relevant in the context of SCJ and can be adapted to our current
evaluation. However, there are other tests that (1) are not applicable to SCJ e.g.
the latency to dispatch unbounded asynchronous event handlers from the firing
of an event, and (2) use features not allowed in SCJ e.g. RTSJ’s RealtimeThread
and self-suspending methods.

In [43], Doherty provides a benchmark to test RTSJ-based real-time Java im-
plementations. His benchmark, SPECjbb2005rt, based on the SPECjbb2005
benchmark [124], is enhanced to provide throughput and response time met-
rics. However, SPECjbb2005rt focuses on soft real-time applications and does
not make use of RTSJ’s features intended for hard real-time systems such as
NoHeapRealtimeThreads and does not implement tests that use immortal or
scoped memory, which are integral parts of SCJ. Moreover, SPECjbb2005rt has
not been made publicly available nor has it been adopted by the SPEC cor-
poration. Nonetheless, Doherty’s work emphasizes the need for standardized
benchmarks that can be used to compare different implementations of (hard)
real-time JVMs.

2.10 Summary 35

Instead of providing a collection of tests that independently evaluate embedded
real-time Java features, in [65], Kalibera et al. present the CDx benchmark, an
open source, application-based benchmark that can be adapted to run both on
standard and RTSJ compliant VMs. CDx can be used for soft and hard real-time
systems as it uses RTSJ’s hard real-time features. CDx has one periodic thread
used to detect potential aircraft collisions, based on simulated radar frames.
The metrics that CDx provides are response time, computation time, and jitter
for the collision detector periodic thread. A refactored version of CDx, miniCDj,
that uses the SCJ API was developed and used in [96] to test Purdue’s L0 SCJ
implementation. The miniCDj benchmark was developed for v 0.76 of JSR-302
and the current version of JSR-302 is 0.94. Therefore, some modifications were
necessary to run it in our implementation.

Any JSR requires a technology compatibility kit (TCK) and in [136], Zhao et
al. describe their initial work towards developing a TCK for SCJ where focus
was on functional and behavioral tests. The test cases were derived from SCJ’s
specification to evaluate features such as the mission life cycle, concurrency and
scheduling, memory, clocks and timers, and exceptions. We will use a subset
of the tests described in their work, as not all of them can be applied to our
implementation e.g. tests that evaluate L2 features.

2.10 Summary

In this chapter we have presented basic concepts related to safety-critical sys-
tems. We have provided an overview of programming languages for safety-
critical systems and showed that an acceptable approach in the selection of a
language for safety-critical software is to limit the features that a well know
existing language provides.

We showed what are some of the main problems associated with the use of Java
on real-time systems and how the RTSJ solves many of them. As RTSJ is too
complex to be used on safety-critical systems, different profiles have proposed
for the use of Java on safety-critical systems. Some of those proposed profiles use
a restricted subset of the RTSJ (e.g., the Ravenscar-Java profile) while others
propose to keep only Ravenscar-style tasking model but abandon the idea of
using RTSJ as a basis.

The current proposal to standardize Java for safety-critical systems is the safety-
critical Java (SCJ) profile which takes many of the ideas of previous work done
on using Java for high-integrity systems. We have described SCJ’s basic concepts
which are mainly its programming and memory model. Together whith this

36 Background and Related Work

description we have presented a basic but complete SCJ Hello World example
to illustrate how an SCJ application looks like.

We have described the Java optimized processor JOP which is our target for our
SCJ implementation. We have presented the main architectural features that
make JOP a time-predictable embedded processor suitable for an implementa-
tion of SCJ.

Finally, we have presented some of the previous work done related to implement-
ing high integrity Java profiles on embedded systems, on the subject of scoped
memory reference assignment checks, scoped memory usage, and on evaluation
methodologies for real-time Java virtual machines. Those subjects constitute
the core of this work.

Chapter 3

Safety-critical Java on an
Embedded Java Processor

In this chapter we present a detailed description of the implementation of the
SCJ profile in the context of a Java processor. Our target is the Java Optimized
Processor (JOP) [113] and we cover Level 0 and Level 1 of the SCJ profile. Our
implementation is based on version 0.94 of the SCJ specification [77].

This chapter is structured as follows: in Section 3.2 we describe our solution to
the issue of using classes that belong to multiple packages (javax.realtime,
javax.safetycritical, and system packages). In Section 3.3 we provide de-
tails on the concurrency and scheduling runtime of our implementation, details
on the implementation of managed event handlers, and our limited support for
SCJ in a multi-core version of JOP. In Section 3.4 we present the scoped mem-
ory. In Section 3.5 we present our approach to perform reference assignment
checks in hardware. Section 3.5 is based on the following published article:
Hardware Support for Safety-Critical Java Scope Checks [103]. In Section 3.6
we describe the facilities to interact with external devices, i.e. the raw memory
and managed interrupt mechanisms. We finish the chapter by highlighting the
main parts of our implementation in the summary of Section 3.7.

38 Safety-critical Java on an Embedded Java Processor

3.1 Overview

Our SCJ infrastructure runs on top of the Java processor JOP and therefore it is
completely implemented in Java. There is no underlying operating system (OS)
and hence we do not depend on any OS service to provide real-time functionality
(e.g, scheduling, priority inversion control) or access to low-level memory and
JVM structures. Those services are provided by JOP.

We have targeted L0 and L1 of the specification and in Figures 3.1 and 3.2
we show a high level view of the implemented SCJ’s concurrency and memory
classes. We do not present similar figures for the rest of SCJ’s implemented
features because Figure 3.1 and 3.2 are the classes that interact the most with
JOP’s underlying real-time services.

Figure 3.1 shows the dependencies between SCJ’s managed schedulable objects
and JOP’s real-time classes. The SwEvent class provides a fire() method used
to release the software event handler and the RtThreadImpl provides the wait-
ForNextPeriod() method used to block a periodic task until its next release
time. The AperiodicEventHandler. AperiodicLongEventHandler, and Pe-
riodicEventHandler make use of those services. Interaction with the memory
system, e.g., entering mission or private memories on handler release, is facili-
tated by the SysHelper class.

The implemented memory classes are shown in Figure 3.2. In our SCJ scoped
memory implementation we delegate all functionality to the Memory system class
through the SysHelper class. When a ManagedMemory object is created, a
delegate Memory object that represents the actual system memory is also created.
As the Memory class has only package protected constructors this delegate object
is created using the SysHelper class. This Memory object is used as the argument
for the SysHelper methods that operate on the system’s memory class. Each
Memory object has a parent and in the case of nested private memories the
parent will also have an inner memory. This class also defines the singleton
immortal memory.

The rest of the concurrence and memory hierarchy classes inherited from RTSJ
is not shown, as they are empty classes in our implementation.

3.1.1 Design Decisions

For our implementation of the SCJ profile, the following design desicions were
made:

3.1 Overview 39

+fire() : void

SwEvent
(joprt)

+thr : RtThreadImpl

RtThread
(joprt)

~rtt : RtThread

+waitForNextPeriod() : boolean
+fire() : void

RtThreadImpl
(com::jopdesign::sys)

~thread : RtThread
~rtt : RtThreadImpl

PeriodicEventHandler
(javax::safetycritical)

MissionSequencer
(javax::safetycritical)

~_sysHelper : SysHelper
~_rtsjHelper : RtsjHelper

ManagedLongEventHandler
(javax::safetycritical)

~_sysHelper : SysHelper
~_rtsjHelper : RtsjHelper

ManagedEventHandler
(javax::safetycritical)

~event : SwEvent

AperiodicLongEventHandler
(javax::safetycritical)

AperiodicEventHandler
(javax::safetycritical)

SpecificMission : Mission

r t t

1

event

1

event 1

thread

1

r t t1

+ t h r 1

<< In te r face>>
Runnable
(java::lang)

+enterPrivateMemory(Memory, int, Runnable) : void

SysHelper
(com::jopdesign::sys)

+getAffinitySetProcessor(AffinitySet) : int

RtsjHelper
(javax::realtime)

_sysHelper

_rtsjHelper

_sysHelper

_rtsjHelper

Figure 3.1: Overview of SCJ’s concurrency classes implemented in JOP

~memory : Memory
~_sysHelper : SysHelper

ManagedMemory
(javax::safetycritical)

MissionMemory
(javax::safetycritical)

PrivateMemory
(javax::safetycritical)

-instance : ImmortalMemory = new ImmortalMemory()
~_sysHelper : SysHelper

Immorta lMemory
(javax::realtime)

-instance

1

+managedMemory : ManagedMemory
~parent : Memory
~inner : Memory
+immortal : Memory

M e m o r y
(com::jopdesign::sys)+ immor ta l

1

memory
1

inner

1

+managedMemory

1

SysHelper
(com::jopdesign::sys)

_sysHelper

1

_sysHelper
1

parent

1

Only

Figure 3.2: Overview of SCJ’s memory classes implemented in JOP

40 Safety-critical Java on an Embedded Java Processor

1. Keep implemented classes in the javax.safetycritical package:
Many of the RTSJ classes that make up the core of the SCJ profile (con-
currency and memory) are basically empty classes in SCJ because most
of their methods are restricted. Therefore we will keep most of the imple-
mentation functionality in the SCJ package.

2. Delegate VM access to JOP’s system classes:
Some features of the SCJ profile require access to the underlying VM
resources, such as the scoped memory model. JOP’s system classes provide
such functionality. As a consequence we need a way to share package
private information between system classes and the SCJ classes. Simply
changing accessibility to public is not an option, as such system classes
should be restricted from application developers.

3. Only L0 and L1 features:
We target only these two levels because of two reasons: (1) their execution
model is more familiar for real-time developers and (2) the more dynamic
features of L2 will require threads to be constructed and added to the
scheduler during mission phase and currently JOP creates all the real-
time thread structures before mission execution. Therefore, there is no
support for nested missions, managed threads, or self-suspending code
(wait/notify methods).

4. The mission sequencer is executed by the main thread:
L0 and L1 applications can only have a single mission sequencer which is
not registered as an MSO of any mission. This means that there is no
need to run the sequencer activities under the control of the scheduler,
as its execution points are clearly defined (at mission initialization and
mission termination). Therefore the main thread is enough for executing
the sequencer’s activities. It can be considered that in our implementation
the sequencer is not a managed schedulable object.

3.1.2 Limitations

The following features that SCJ requires are not part of our implementation:

• OneShotEventHandler class is not implemented. Its implementation will
require to modify JOP’s scheduler in order to schedule an interrupt at
some time in the future.

• L2 features are not provided. This means that there cannot be nested
sequencers, parallel missions, and wait()/notify() methods.

3.1 Overview 41

• No user-defined clocks, a feature that should be available at L1.

• There is no proper implementation of the priority ceiling emulation (PCE)
protocol. Instead, for a single core version of JOP, priority inversion con-
trol is implemented by using a single monitor counter and by disabling all
interrupts during a synchronized method.

• No Happening and POSIX-related classes are implemented. We do not
have an operating system layer therefore we do not need to handle POSIX
signals. Furthermore, according to the SCJ specification “Happening rep-
resent events that can be triggered based on some event external to the
VM”. For our implementation we have first level interrupt handlers in Java
and aperiodic event handlers that can provide similar functionality.

3.1.3 Building and Running an SCJ Application in JOP

To run an SCJ application on JOP, such as the HelloWorld code presented in
Figure 2.2, we have two options: (1) to use JOP’s simulator on a standard PC
or (2) to use an FPGA. The build process is automated with a Makefile and
the command that needs to be executed in a command line window is:1

make { japp | jsim }

The japp option builds and downloads the application to an FPGA and the jsim
option builds and executes the application in JOP’s simulator. The following
variables need to be configured directly in the Makefile or passed as arguments
when executing the previous command line:

USE_SCOPES = { true | false }
USE_SCOPE_CHECKS = {true | false}
CLASS_OBJECTS = {true | false}
IMM_MEM_SIZE = {size}
P1 = <path to the application Java source>
P2 = <package name>
P3 = <main class>

The USE_SCOPES argument enables scoped memory usage and disables the GC,
the default value is false. The USE_SCOPE_CHECKS option enables the use of

1See [112] for further details on the build process of JOP

42 Safety-critical Java on an Embedded Java Processor

reference assignment checks, the default value is true. The CLASS_OBJECTS
option enables the generation of Class objects at build time. The size of the
application grows when Class objects are used. Class objects are needed in the
SCJ implementation to use MemoryArea’s newInstance(Class type) method
and the SizeEstimator class. Its default value is false. The IMM_MEM_SIZE
defines the total usable immortal memory size that the application will use i.e.,
this value does not include the amount of memory consumed by VM structures
allocated in immortal memory such as runtime class structures, Class objects,
constant strings, etc. There is no default value for this parameter.

3.2 Package Crossing

One important restriction in the development of SCJ implementations is that
of having classes defined in different packages, making it difficult to share in-
formation that is part of the framework but shall not be made public. In an
SCJ implementation, there will be at least two packages that need to share
information: javax.realtime and javax.safetycritical. Those packages
may require access to implementation specific classes to control, e.g., memory
resources. In addition to the SCJ and RTSJ packages, we have core classes
such as Memory and Scheduler defined in the comm.jopdesign.sys package,
and classes for periodic and aperiodic activities in the joprt package. One of
our objectives is to keep all the implementation code in the SCJ package thus
we need a way to call package protected methods and fields within these four
packages without making them public for application developers. We cannot
use concepts like the friend keyword of C++ or child packages of Ada as similar
features are not available in Java.

One option to access package private fields and methods without making them
public is through the reflection API. SCJ restricts the use of the reflection API
from application developers but does not forbids its use by the SCJ infrastruc-
ture. However, its use can increase the complexity of validating and testing
safety-critical applications as the benefits of compile-time checks are lost be-
cause, e.g., we only know at run time if a reflective method invocation will
fail.

Another option is to use an approach similar to that used in the SharedSecrets
class in the sun.misc package of a standard Java distribution. The purpose of
that class is precisely to access private information without using the reflection
API. Access to private methods or fields is accomplished by: (1) defining a public
interface that specifies the methods that a client class can access, (2) granting
access to a server class’ private information through an implementation of that

3.3 Concurrency and Scheduling 43

interface, (3) accessing the server class’ private information through an object,
accessible through a third package, that implements the interface. To illustrate
this approach Figure 3.3 shows an example of how the java.lang.System class
gains access to private methods and fields of the java.io.Console class.

The drawback with that approach is that the third package class (e.g. Shared-
Secrets in sun.misc) needs public methods to set and get the interface imple-
menting object that provides the access to the private information. Therefore
anyone can set a new object that implements the interface, thus overriding any
previously defined object.

In our approach2 we define a class that acts as a proxy between classes in two
packages. The proxy class is final, has only a private constructor, and is in the
package where we want access to package protected methods and fields. The
proxy class is instantiated in a static initializer and registered to a client class
located in a different package. The client class can therefore access all the meth-
ods that the proxy class makes available. An example is shown in Figure 3.4.
Here, the SysHelper class is the proxy class defined in the com.jopdesign.sys
package. The ManagedMemory class is the client class registered to use the
SysHelper object. We see in line 20 that even if the client class is registered
through a public method, there is no way to create a SysHelper object, as it has
a private constructor. The drawback is the overhead caused by an additional
method invocation.

3.3 Concurrency and Scheduling

SCJ allows only managed schedulable objects, i.e. schedulable objects that are
registered to a specific mission. The logic in those objects is executed either by a
cyclic executive loop or a fixed priority preemptive scheduler. In this section we
provide the details of our implementation of SCJ’s concurrency model in JOP.

3.3.1 Missions and Mission Sequencer

Mission execution runs under the control of a mission sequencer that, according
to the SCJ specification, is required to be a managed event handler. However,
for L0 and L1 applications we can simplify the sequencer. In an L0 application
there is only a single thread executing at all times and the cyclic executive loop

2We thank Torur Strøm for the suggestion on the singleton delegator

44 Safety-critical Java on an Embedded Java Processor

1
2 // In java . lang .System
3 ...
4 public static Console console () {
5 if (cons == null) {
6 synchronized (System.class) {
7 cons = sun.misc.SharedSecrets .getJavaIOAccess(). console ();
8 }
9 }

10 return cons;
11 }
12
13
14 // In sun.misc.SharedSecrets
15 ...
16 public static void setJavaIOAccess(JavaIOAccess jia) {
17 javaIOAccess = jia ;
18 }
19
20 public static JavaIOAccess getJavaIOAccess() {
21 ...
22 return javaIOAccess;
23 }
24 ...
25
26 // In sun.misc.JavaIOAccess
27 public interface JavaIOAccess {
28 public Console console ();
29 // Other methods
30 ...
31 }
32
33 // In java . io .Console, the class with the private data
34 // to be shared
35 ...
36 static {
37 sun.misc.SharedSecrets .setJavaIOAccess(new sun.misc.JavaIOAccess() {
38 public Console console () {
39 ...
40 // Console has private constructor
41 cons = new Console();
42 return cons;
43 }
44
45 // Other methods
46 ...
47 }
48

Figure 3.3: An example of how class-private information is shared using Sun’s
SharedSecrets class

3.3 Concurrency and Scheduling 45

1 // The client class , in com.jopdesign.sys package
2 public final class SysHelper {
3
4 static{
5 SysHelper sysHelper = new SysHelper();
6 ManagedMemory.setSysHelper(sysHelper);
7 ...
8 }
9

10 private SysHelper(){}
11 public void enterPrivateMemory(Memory m, int size, Runnable logic){
12 m.enterPrivateMemory(size, logic);
13 }
14 ...
15 }
16
17 // The client class , in javax . safetycritical package
18 public abstract class ManagedMemory ... {
19 static SysHelper _sysHelper;
20 public static void setSysHelper(SysHelper sysHelper) {
21 _sysHelper = sysHelper;
22 }
23
24 @SCJAllowed
25 public static void enterPrivateMemory(long size , Runnable logic) ... {
26 ...
27 _sysHelper.enterPrivateMemory(current.memory, (int) size , logic);
28 ...
29 }
30 }

Figure 3.4: An example of how package-protected information is shared using
our singleton delegator

of an L0 mission can therefore be executed by the sequencer thread implemented
by the main thread.

For an L1 application, there will be several threads executing concurrently under
the control of the scheduler but no nested (concurrent) sequencers, i.e. only the
initial mission sequencer which is not required to be registered to any mission.
The operations required to execute a L1 mission are thus performed by the main
thread (e.g. create and enter the mission memory, do the mission initialization,
execution, and cleanup, etc.). The main thread also arranges to start, on the
transition to mission mode (after mission initialization), all the event handlers
registered to the mission.

For both L0 and L1 applications, after entering mission mode the main thread
waits in a polling mode for a mission termination request. Once a mission

46 Safety-critical Java on an Embedded Java Processor

termination request is received, L0 applications will be terminated at the end
of the currently executing major frame. For L1 applications no more firings
of AEHs/ALEHs or releases of PEHs are allowed and only the currently exe-
cuting managed event handlers will run until completing their current release.
AEHs and ALEHs check the current mission’s terminationPending flag be-
fore firing while PEHs check the same flag before scheduling a new release (see
Section 3.3.2).

3.3.1.1 Mission change

For L0 and L1 applications, mission change uses a synchronous mode change pro-
tocol. In synchronous mode change protocols new-mission handlers are released
only after all old-mission handlers have completed their last pending release
upon a mission change request [101]. Moreover, the semantics of mission final-
ization specified in SCJ suggest that a synchronous, single offset protocol [101]
to be used, as the release of all new-mode handlers is allowed only after a certain
offset, measured from the time a mode change (mission termination) has been
requested. The timing of a mission change is as illustrated in Figure 3.5 where
the following components are identified:

1. Termination of last releases of active MSOs: The time it takes to
finish for all active MSOs at the time of the mission change request. In
the worst-case, this value will be equal to the worst case response time of
the set of old-mission MSOs.

2. Execution of MSO’s cleanup() methods: The time it takes for all
MSO’s cleanup() methods to be executed by the mission sequencer.

3. Execution of the old mission cleanup() method: The time required
for the execution (also by the mission sequencer) of the mission’s own
cleanup method.

4. New mission initialization: The time required for the initialization of
the next mission to be executed.

The mission change offset is therefore equal to the sum of all the four components
described above. The advantage of using a synchronous mode change protocol
is that there is no overload during the mission change transition [101] as no
new-mission MSOs are allowed until the old ones have terminated.

In an L0 application, when a mission change request arrives, following the se-
mantics in SCJ imply that other PEHs belonging to the current or any other

3.3 Concurrency and Scheduling 47

Old Mission
Termination

Request

Termination of last
releases of active MSO’s

MSO’s
cleanup methods

Mission’s
cleanup method

New mission initialization

New
Mission

Start

 Old mission New mission

Mission change offset

Figure 3.5: Mission change timing for SCJ L0 and L1 applications

frame will not run. This may have an undesired effect if long tasks are divided
into smaller tasks that execute in different frames. Mode changes in cyclic ex-
ecutives are usually done at the end of a major frame [128, 18] therefore in our
implementation we perform mission change for L0 applications only at the end of
the currently executing major fame. The longest delay before the new-mission
PEHs can execute (i.e. the offset time in the single offset protocol of [101])
will be equal to the duration of the major cycle plus the time required to run
the PEH’s and mission’s cleanup methods plus the time to initialize the next
mission. Executing a new mission in a L0 application is straightforward, the
sequencer thread, i.e. the main thread in our implementation, only needs to run
the new cyclic schedule loop of the new mission in a resized mission memory.

For L1 applications we follow the mission finalization semantics described in
the SCJ specification. As the managed event handlers of a L1 missions are
executed by JOP’s scheduler, to run new missions we need to (1) remove all the
old-mission handlers from the scheduler and (2) add the new-mission handlers
to the scheduler. The details of this procedure are covered in Section 3.3.3. The
maximum delay in this case will be equal to the sum of the worst-case response
time of all handlers executing up to the mission change request plus the time
required to run the MEH’s and mission’s cleanup methods plus the time to
initialize the next mission, as depicted in Figure 3.5.

SCJ does not specify any timing requirements for the sequencer as there are no
explicit release parameters associated with a MissionSequencer object. The
only requirement is that it should be a managed event handler and according
to the SCJ specification, managed event handlers that do not specify release
parameters are considered to be aperiodic (see [77], p. 74).

48 Safety-critical Java on an Embedded Java Processor

If there is an upper bound on the delay for the next mission to start its execution,
then the execution time of the initialization and cleanup phases of a mission have
to be bounded by the application developer. The SCJ specification however
assumes that initialization and cleanup phases are used for non time-critical
operations and hence implicitly ignores any time constraints on those phases.
Consider for example the case where a mission change request occurs due to
a failure which will make the system to enter a fail-safe mode of operation
or if the system needs to enter a different mode of operation as a result of a
change in the environment, e.g. a change from flight to landing mode in an
airplane. In both cases the mode transition delay has to be bounded. For
an L2 application, mission change may even delay other concurrently executing
handlers of a different mission, depending on the priority of the nested sequencer
performing the mission change.

3.3.2 Periodic and Aperiodic Event Handlers

As mentioned in Section 2.4.2, the SCJ specification defines two kinds of real-
time activities: event handlers and managed threads. Event handlers can be ei-
ther periodic, i.e. instances of the PeriodicEventHandler class, or aperiodic, i.e.
instances of the AperiodicEventHandler class. Therefore, it is natural to use
JOP’s real-time classes, the RtThread and SwEvent classes (see Section 2.5), to
implement SCJ’s PeriodicEventHandler and AperiodicEventHandler classes.
An extract of the implementation of SCJ’s handler classes showing the main
computation loop is presented in Figures 3.6 and 3.7 respectively.

In Figure 3.6, the main periodic loop is in the infinite for loop between lines 30
to 42. On every handler release, its associated private memory is entered and
the logic of the runnable defined in line 20 is executed. This runnable encapsu-
lates the handler’s handleAsyncEvent() method that is to be overriden in the
application. After a release has completed, a mission termination flag is checked
(line 33). If the flag is not set, then the handler is scheduled to be released at its
next period by using the waitForNextPeriod() method. The waitForNext-
Period()method performs late deadline miss detection and returns true if there
has not been a deadline miss. If a deadline miss occurs, then the missCount
counter is increased by one and the executeMissHandler() hook is executed.

In safety-critical systems the absence of deadline misses shall be proved before
deploying the system. However, the SCJ specification allows miss deadline de-
tection to facilitate the implementation of fault tolerant systems. Therefore,
we include the missCount variable and the executeMissHandler() method as

3.3 Concurrency and Scheduling 49

1 public PeriodicEventHandler(PriorityParameters priority ,
2 PeriodicParameters release , StorageParameters storage , String name) {
3 super(priority , release , storage , name);
4
5 this . storage = storage;
6 this . release = release ;
7 this . start = this. release . getStart ();
8 this . period = this. release .getPeriod ();
9

10 // Check for overflows , compute a period "p" and an offset "off"
11 // to be used in an RtThread
12 ...
13 // "m" is defined in ManagedEventHandler class
14 m = Mission.getCurrentMission();
15
16 if (!(m instanceof CyclicExecutive)) {
17 privMem = new PrivateMemory((int) storage.maxMemoryArea,
18 (int) storage . totalBackingStore);
19
20 final Runnable runner = new Runnable() {
21
22 @Override
23 public void run() {
24 handleAsyncEvent();
25 }
26 };
27
28 thread = new RtThread(priority. getPriority (), p, off) {
29 public void run() {
30 for (;;) {
31 privMem.enter(runner);
32 // do not schedule this task to run again
33 if (m.terminationPending) {
34 break;
35 }
36
37 if (!waitForNextPeriod()) {
38 missCount++;
39 // implementation specific method
40 executeMissHandler();
41 }
42 }
43 }
44 };
45 ...
46 }
47 }

Figure 3.6: An extract of the SCJ’s PeriodicEventHandler class implemen-
tation in JOP.

50 Safety-critical Java on an Embedded Java Processor

means for the developer to implement actions in response to missed deadlines.3
Both the deadline miss counter and the miss handler hook can be removed with-
out affecting the functionality of the PEH. Removing such functionality might
indeed be necessary when undergoing a certification process in order to avoid
introducing dead code if fault tolerance is not a requirement.

For the aperiodic event handler, illustrated in Figure 3.7, the code of lines 24
to 27 is executed on every release i.e., every time the fire() method of its
associated SwEvent is called. As with the PEH, this method enters a private
memory and executes a runnable that encapsulates the handleAsyncEvent()
method that is to be overriden in the application. The constructor of this
SwEvent (line 22) requires two arguments: (1) its priority, and (2) a minimum
inter-arrival time (MIT). The MIT value is required to execute the SwEvent at
a real-time priority, otherwise (MIT = 0) it is executed at normal priority. SCJ
does not allow the use of sporadic events, i.e., aperiodic events with a MIT and
a deadline. Therefore there is no MIT violation or deadline miss enforcement
and the MIT value passed to the SwEvent constructor can be any positive value
other than zero.

The implementation of the AperiodicLongEventHandler class is similar to Ape-
riodicEventHandler except that its release method has an argument of type
long attached to it. The necessary changes to the AperiodicEventHandler
implementation are trivial, and require only to pass the long argument to a
firing of a SwEvent.

3Can also be used for debug and testing purposes

3.3 Concurrency and Scheduling 51

1 public AperiodicEventHandler(PriorityParameters priority , AperiodicParameters release ,
2 StorageParameters storage , String name) {
3 super(priority , release , storage , name);
4
5 // ‘‘ m’’ defined in ManagedEventHandler class
6 m = Mission.getCurrentMission();
7
8 // Throw exception if trying to add an AEH to a CyclicExecutive
9 ...

10
11 privMem = new PrivateMemory((int) storage.getMaxMemoryArea(),
12 (int) storage . getTotalBackingStoreSize ());
13
14 final Runnable runner = new Runnable() {
15 @Override
16 public void run() {
17 handleAsyncEvent();
18 }
19 };
20
21 // There is no enforcement for minimum inter−arrival time violations
22 event = new SwEvent(priority. getPriority (), 1) {
23 @Override
24 public void handle() {
25 if (!m.terminationPending)
26 privMem.enter(runner);
27 }
28 };
29 rtt = event.thr ;
30 }

Figure 3.7: An extract of the SCJ’s AperiodicEventHandler class implemen-
tation in JOP.

52 Safety-critical Java on an Embedded Java Processor

3.3.2.1 L0 Simplifications

In an L0 mission there is only one handler executing at all times and therefore
we can provide the following simplifications in our implementation:

• We avoid the creation of individual private memory areas for each Perio-
dicEventHandler. We create only one private memory, size it according
to the worst case memory requirements of all PeriodicEventHandlers
registered in the mission, and reuse it on each handler release.

• We do not need to create the additional runnable and RtThread objects
(lines 20 and 28 in Figure 3.6) to execute each PeriodicEventHandler.
For cyclic executives, the handler’s handleAsyncEvent() method is called
directly by the main thread, without the intervention of JOP’s sched-
uler, according to the CyclicSchedule returned by the cyclic executive’s
getSchedule() method.

L0 missions allow only for the execution of PEHs. To enforce this restriction, try-
ing to add an AEH to a L0 mission will throw an IllegalArgumentException().
This check is performed in the constructor of the AperiodicEventHandler class
(the omitted code, replaced by the ellipsis in line 9 of Figure 3.7). Another op-
tion to enforce this restriction could be to silently ignore the AEHs when they
are registered to a L0 mission. However, silently ignoring it will still allow the
creation of the AperiodicEventHandler object, its corresponding SwEvent ob-
ject, and the memory required by the stack of the SwEvent, as the memory
space for all of those objects is taken from the memory area where the Aperio-
dicEventHandler is created (i.e. MissionMemory).

The check performed at line 16 in Figure 3.6 is used to enforce those simplifica-
tions.

3.3.3 Scheduler

The scheduler in JOP is implemented in Java as a first level interrupt handler
attached to the programmable timer interrupt. In general, for an N-core version
of JOP there will be one scheduler object per core with the structure shown in
Figure 3.8. Besides the timer interrupt, the interrupt handler can be triggered
in software by: (1) a call to waitForNextPeriod() at the end of a Periodic-
EventHandler release, and (2) completing a release of an AperiodicEventHan-
dler. The waitForNextPeriod() method preforms deadline miss detection of

3.3 Concurrency and Scheduling 53

the PeriodicEventHandler and triggers a software interrupt that executes the
scheduler. When an AperiodicEventHandler completes, it blocks itself and,
as the PeriodicEventHandler, a software interrupt is scheduled. The timer
interrupt is reprogrammed on every invocation of the scheduler to fire at the
next release time of the highest priority thread.

As can be seen in Figure 3.8, each scheduler object uses three different arrays
that contain references to the next release times for threads (next), software
event state (event), and references to RtThreadImpl objects (ref). There is
also a priority ordered linked list of RtThreadImpl objects used to assign the
elements of the arrays during the transition to mission mode. Elements in the
linked-list are added as event handlers are registered into a mission meaning that
unregistered handlers will not be executed, as required by the SCJ specification.

Every time the scheduler is called, its run() method is executed and the fol-
lowing actions take place: (1) the context of the current thread is saved, (2)
the priority ordered array of threads is scanned and the highest priority thread
ready to run is selected, and (3) the context of the new thread to run is restored.

Because the managed event handler objects are allocated in mission memory
during execution of the mission’s initialize() method, we also allocate the
scheduler, the arrays, and the linked-list in mission memory in order to avoid
illegal references. There are however, certain objects we cannot allocate in
mission memory, such as the interrupt handler array and the array of schedulers.
This means that there will be some illegal reference assignments we cannot avoid.
Nonetheless, those can be regarded as “safe” illegal assignments because we can
be sure that the referred objects in mission memory will be deallocated only
after they are no longer required i.e. when a mission is finished. This approach
works both for L0 and L1 applications because at L0 we do not use the scheduler
at all and at L1 there is only one mission executing at all times.

We can take advantage of these objects being allocated in MissionMemory when
changing missions as they will be collected once we leave mission memory. To
start a new mission, we need to recreate the thread linked list and the different
arrays which can be done in the transition to the mission mode. When we leave
mission memory, no ManagedEventHandler is executing as any future release
is prohibited after a request to terminate the currently executing mission thus
making it safe to collect the scheduler object and related data structures.

54 Safety-critical Java on an Embedded Java Processor

τ0next

ref

event

...

N F ... W N

...

next

ref

event W W ... N N

...

next

ref

event F F ... N N

...

. . .

. . .

τ1 τnτn-1 ε0
...ε1 εkεk-1

... ...

sched[0]

run()

sched[1]

run()

sched[N]

run()

Cpu 0

Cpu 1

...

...

...

Cpu N... ...

. . .

INTERRUPT HANDLER ARRAY

ARRAY OF SCHEDULERS

δ0
...δ1 δmδm-1

... ...

Int 0 Int 1 Int M

LINKED LIST OF RtThreadImpl OBJECTS

IMMORTAL MEMORY

MISSION MEMORY

Figure 3.8: Location of JOP’s scheduling run-time structures within SCJ’s
memory areas

3.3.4 Multi-core Support

Multi-core support is provided in SCJ through scheduling allocation domains.
A scheduling allocation domain consists of a group of processors on which an
MSO can be executed. For an L0 application, there is a single allocation do-
main with a single processor. On an L1 application, there can be more than one
allocation domains but each of them must have a single processor and therefore
MSOs will form a fully partitioned system. For L2 applications, allocation do-
mains can have more than one processor but each processor must not be shared
among allocation domains. The MSOs of an L2 application are scheduled using
global scheduling. Scheduling allocation domains are represented by affinity sets
which are nothing more than a way to assign MSOs to be executed in specific
processors.

3.4 Memory 55

For our SCJ implementation, by default each MEH is assigned to an affinity set
whose processor is processor number zero. It is possible to change this default
assignment but it has to be done before the MEH is registered to its enclosing
mission during the mission initialization phase. Trying to change the affinity
after the register method has been called has no effect.

For a CMP version of JOP, only core 0 executes the main thread, all other cores
execute runnables that are created at JVM boot time. The runnables in the
other cores act as a “main” thread and hence they are in charge of perform-
ing the mission initialization tasks corresponding to each other core, such as
registering the core’s scheduler object (see Figure 3.8) to the timer interrupt.
After performing these initialization tasks, the runnables wait until a mission
termination request. Mission termination requires that all managed schedula-
bles running in different cores be informed about a termination request. This
is done by using a static volatile variable that is set when any handler calls the
requestTermination() method. The sequencer then checks for all handlers to
finish executing their last release and informs all other cores about this event.
The cleanUp() methods of the managed schedulables are called from the se-
quencer’s event handling thread as required by the SCJ specification therefore
only core 0 will execute the cleanUp() methods.

Being able to call the cleanUp() method from the core where the managed
schedulable object was executed can be advantageous if the cleanUp() method
is used, e.g., to reset the state of a peripheral device connected only to that
core. However, as the SCJ specification requires that a private memory area
is provided for the execution of the cleanUp() methods (probably for its reuse
by every cleanup method), we will need to create a private memory for each
core in order to execute cleanup methods of its handlers thus increasing the
requirements on the mission memory size. This additional memory will then
have to be considered when sizing the mission memory.

After all the cleanup methods of all MSOs are executed, the mission cleanup
method is then executed and the sequencer exits the mission memory, removing
all data structures allocated in mission memory, including all scheduler objects.

3.4 Memory

SCJ defines three different classes for its memory model. However, all of them
can be implemented with a single Memory class as presented in [114]. For our
implementation the different SCJ memory classes delegate functionality to this
system’s Memory class. As mentioned before, we want to keep all of the SCJ

56 Safety-critical Java on an Embedded Java Processor

Nested scope

local allocations

Nested scope

backing store

reservation

strtPtr

allocPtr

endLocalPtr

endBsPtr

allocBsPointer

allocBsPointer

Parent

local allocations

Parent

backing store

reservation

Parent unallocated

backing store

endBsPtr

strtPtr

allocPtr

endLocalPtr

Parent memory area

Nested memory area

Figure 3.9: Overview of the scoped memory layout in JOP.

implementation in the javax.safetycritical package. Therefore, all of the
memory related classes in the javax.realtime package are basically empty
classes. The exception is the ImmortalMemory class but all of its methods are
delegated to the Memory class.

The scoped memory layout is shown in Figure 3.9. Each Memory instance rep-
resents a memory area and uses five pointers. The region between strtPtr and
endLocalPtr represents the local allocation space, i.e., the memory space where
objects will be allocated when the current execution context is that memory
area. The region between endLocalPtr + 1 and endBsPointer is the reserved
backing store, i.e., the memory space from where memory for nested scopes is
taken. The two additional pointers, allocPtr and allocBsPtr indicate the next
available memory word for object allocations and nested scope allocations re-
spectively. Figure 3.9 represents the situation where the grayed memory area
is the parent of the white memory area. The underlined pointers correspond
to the parent memory (i.e. the grayed area) and the non-underlined pointers
correspond to the nested memory.

In JOP, the Memory class is a core class used not only in the SCJ implementa-

3.5 Scope Checks 57

tion but also by other system classes such as the GC4 when objects are created.
Therefore, application developers should not be allowed to access it. To be
able to access it from two different packages (the javax.realtime package for
ImmortalMemory and the javax.safetycritical package for MissionMemory
and PrivateMemory) we use the singleton delegator class SysHelper (see Sec-
tion 3.2). See Figure 3.2 for a class diagram of the memory hierarchy in our
implementation.

Immortal memory is created at application initialization where a portion of
the total system’s memory is reserved for immortal allocations. Its value has
to be set as a parameter in the configuration file that builds the application
(see Section 3.1.3). The value returned by the safelet’s immortalMemorySize()
method is compared against that predefined value to check if there is enough
immortal memory to fulfill the application demands. The remaining system
memory becomes the backing store for the mission memory.

Mission memory is initially sized according to the StorageParameters of the
sequencer and later resized to the current mission’s memory requirements. The
resized portion becomes the available mission memory for local allocations and
the remaining memory is the backing store for private memory allocations.

MSO’s private memories are created as MSOs are created (see Figures 3.6 and
3.7, lines 19 and 11 respectively), their local allocation size is the value of the
maxMemoryArea argument and their total size (local allocation plus reserved
backing store for nested private memories) is the value of totalBackingStore
argument, both argument of the StorageParameters object passed to the con-
structor of PeriodicEventHandler, AperiodicEventHandler, and Aperiodic-
LongEventHandler. Nested private memories are logically and physically nested
within its parent scope and their backing store space is created by taking
all the remaining backing store portion of its parent (totalBackingStore –
maxMemoryArea).

3.5 Scope Checks

The different scoped memories in SCJ (see Section 2.4.3) store objects with
different lifetimes. Immortal memory is used for objects that will live for the
whole VM lifetime, mission memory is used for objects that will live for the
mission lifetime, and private memories are used for objects that live for the

4SCJ does not allow the use of a GC however, the original implementation of JOP has a
GC. It can be disabled when using scopes but the code to create objects with the new and
newarray bytecodes is in the GC class.

58 Safety-critical Java on an Embedded Java Processor

duration of a MSO release. As there is no GC in SCJ, programmers have
to be aware of where objects are allocated, thus increasing the risk of leaving
dangling pointers by storing references to objects no longer existent. Therefore,
the JVM must check the referential integrity by ensuring that objects allocated
in a memory area only store references to objects allocated either in the same or
in a longer lived memory area. Enforcing this referential integrity thus becomes
a source of execution time overhead for an application. In this section, we
examine how, given the simplified memory model of SCJ, a single scope nesting
level can be used to check the legality of every reference assignment. We also
show that with simple hardware extensions we can check reference assignments
without the overhead of a software based solution and improve the execution
time of applications with frequent reference assignment operations.

3.5.1 Referential Integrity and the Scope Stack

In the RTSJ, there are two operations that need to be performed to guarantee
referential integrity: (1) every time a scoped memory is entered, the JVM must
check that the scoped memory has been entered from its parent scoped memory,
this is known as the single parent rule, and (2) there are specific reference
assignment rules that need to be checked on every field reference assignment.
The scoped model of SCJ significantly reduces the complexity of ensuring the
referential integrity. This complexity reduction comes from two restrictions
imposed on SCJ’s memory model: (1) scopes are private to each MSO and (2)
applications cannot enter arbitrary memory areas. These two restrictions make
RTSJ’s single parent rule implicitly satisfied. The result is that when an MSO
enters a scoped memory there is no need to check if the MSO has entered every
ancestor of that scoped memory area (i.e., a ScopedCycleException cannot be
thrown).

The different scoped memories that an MSO has entered are logically organized
as a linear stack, with scoped memories holding longer-lived objects nested at
deeper levels. The shared memory areas (immortal and mission memory) are at
a fixed nesting level within this stack and it is not possible that two MSOs see
the same scope in its scope stack at different levels. It is possible however that
different MSOs see the same level associated with a different scope. This is not
a problem as MSOs can only execute in the scoped memories that are part of
its scope stack.

Therefore, a unique nesting level can be assigned to each scope and checking the
reference assignment rules is reduced to a comparison between the nesting lev-
els of the source and destination objects in a reference assignment. Figure 3.10
shows how the parenting relationship of scoped memories look in an SCJ imple-

3.5 Scope Checks 59

Immortal

Mission 0

Mission 1Private A

Nested Private B Private C

Mission 2

Private D Mission 3

Private E

1

2

3

4

0

Scope stack of a MSO

executing in Nested:

Immortal

Mission 0

Private A

Nested

Scope stack of a MSO

executing in Private E:

Immortal

Mission 0

Mission 2

Mission 3

Private E

Scoped memory

Parenting

relationship

Stack grows in

this direction

Figure 3.10: Scoped memory hierarchy and a possible scope nesting level as-
signment (the numbers to the left).

mentation. The numbers to the left represent the scope level nesting and the
arrows point to the parent of a scoped memory. In the bottom of Figure 3.10
we can see how the scope stack of two MSOs that are currently executing in
the memories labeled as Nested and Private E looks like. From the figure, we
can see that the following scope levels can be assigned to each memory area:
immortal memory is level 0, the initial mission memory is level 1, the private
scope of a handler is level 2, and nested memories increase the level by 1. For an
SCJ L2 application the MSO’s scope stack will also have a linear shape and, pro-
vided that inner mission memory objects cannot be leaked to an outer mission
handler, the level check is also an option for SCJ L2. In addition, one should
be able to guarantee that parallel missions share data only through immortal
memory or outer mission memory.

Table 3.1 shows a summary of the valid references in SCJ. The table should be
read as follows: an object allocated in one of the scoped memory areas in the
leftmost column is only allowed to store a reference to an object allocated in
one of the scoped memory areas in the topmost row if the corresponding cell
has a check mark. More specifically, objects allocated in immortal memory can

60 Safety-critical Java on an Embedded Java Processor

Table 3.1: Valid references in SCJ. The column on the left repre-
sents the source memory area and the row on the top
represents the target memory area. A check mark repre-
sents a valid reference.

Stored in Reference to Reference to Reference to Reference to
Immortal Mission Private Nested

Immortal 3 7 7 7

Mission 3 31 7 7

Private 3 32 33 7

Nested 3 32 34 33

1 Only to the same or to the mission memory of an enclosing mission.
2 Only to the mission memory of an enclosing mission.
3 Only to the same scoped memory.
4 Only to the parent private memory.

only refer to other objects in immortal memory. Objects in mission memory
are allowed to refer only to objects allocated either in immortal memory, in
the same mission memory, or in the mission memory of an enclosing mission.
Objects allocated in private memories can only refer to objects allocated in the
same private memory, to objects allocated in an enclosing mission memory, or
to objects in immortal memory. Finally, objects in nested scoped memories can
only refer to objects in the same nested memory, to the parent private memory,
to an enclosing mission memory, or to immortal memory.

Any non-detected violation to these reference assignment rules can leave a ref-
erence that points to a memory area with unexpected content producing unex-
pected results in the execution of an application that can potentially crash the
system.

3.5.2 Detecting Illegal Reference Assignments

Our approach to detect illegal assignments is similar to the approach described
in [59] that enforces a write barrier upon the execution of instructions that store
an object’s reference into another object’s field or array element. According to
the JVM specification [74] those instructions are the putfield, putstatic and
aastore bytecodes and when they are executed, the operand stack of the JVM
has the following information [74]:

3.5 Scope Checks 61

putfield: ..., objectref, value
putstatic: ..., value
aastore: ..., arrayref, index, value

where the top of the stack (TOS) is the rightmost quantity (the ellipsis indicate
don’t care values). Note that for the putfield and putstatic bytecodes, illegal
assignments can be produced only when value contains a reference to another
object meaning that we do not need to check every field assignment. JOP’s
application build tool provides an optimization that substitutes field assignment
bytecodes of references with the special bytecode versions putfield_ref and
putstatic_ref. These special bytecodes are implemented in Java. Therefore,
in addition to the aastore bytecode, checks are only executed in these special
bytecodes and field assignments of primitive values have no additional overhead.

At object creation, whenever the new or newarray bytecodes are executed, every
object is associated with the level of the memory region where it is created (the
current allocation context). This information can be stored in the object’s
auxiliary data. For our implementation we experimented with two possibilities
on where to add the scope level information: (1) in the object’s header and,
(2) in the object’s reference. Furthermore, we improved the second option with
simple hardware extensions.

Depending on which of the previously mentioned bytecodes is executed, one of
the following three simple rules have to be checked to detect illegal memory
references. Shorter lived scopes are deeper nested in the stack hierarchy and
associated with higher level numbers:

1. The putfield bytecode stores value into a field of an object whose refer-
ence is objectref. The reference check has to verify that the level of value
is less than or equal to the level of objectref.

2. For putstatic, value cannot be in a scoped region, hence the level of
value (pointer to the object) needs to be checked against level 0, as all
static fields reside in immortal memory.

3. The reference check for aastore is similar to the test for putfiled but
using the level of arrayref instead of the level of objectref.

3.5.2.1 Header Based Scope Checks

Since the JVM specification does not require any particular internal structure
for objects [74], the additional information can be stored as part of the header of

62 Safety-critical Java on an Embedded Java Processor

the object itself. Following the idea exposed in the previous section, at creation
time a particular region of the object or array auxiliary data is associated with
the scope level, and whenever a reference assignment instruction is executed,
this value can be extracted from the object’s header. The advantage of this
approach is that it can be used by any JVM implementation and is not restricted
to be used just in JOP. The drawback is that for each reference assignment
check two additional accesses to memory are required to retrieve the scope level
information of each object.

The object and array layout of JOP uses an indirection, called a handle. The
handle area holds information which usually is part of the object header, e.g.,
type information, GC information, size, etc. When an object is created, a refer-
ence to the object or array handler is obtained. The reference is pushed into the
stack before an instruction can operate on it. Within the SCJ implementation
on JOP, the GC is disabled and therefore, we can reuse one of the handle fields
used by the GC to store the scope level. Figure 2.4 shows the object and array
layout in JOP.

3.5.2.2 Pointer Based Scope Checks

Depending on how much memory is available to the system and how data is
aligned in memory locations, some bits of an object or array reference can be
left unused. Therefore the scope level can be encoded in the unused bits. Having
the scope level as part of the reference saves at least the two additional memory
reads on the assignment check mentioned in the previous section. Similar to the
object header based approach, the pointer based scope checks can be used in
any JVM implementation when the maximum memory is restricted.

Addresses in JOP are 32-bit wide and memory is addressed as 32-bit words. This
combination allows a maximum heap size of 16 GB of memory, which is more
than what an embedded application will probably require. We can therefore
use some of the upper bits of the reference to an object’s handler, to store the
scope level information of each object. We used 7 of the 32 bits of the object’s
reference pointer to encode the scope level. This allows for the use of 128 levels
of nested scopes.

3.5.2.3 Hardware Based Scope Checks

The two methods described in the previous sections are suitable for any JVM,
as the data structures required are not implementation specific. However, a

3.5 Scope Checks 63

hardware based implementation of the scope checks implies certain knowledge
of the underlying construction of the VM and will be implementation specific
(e.g. [59] for the picoJava-II microprocessor). For our implementation in JOP,
we will use the pointer based method enhanced with simple hardware extensions.

Because in JOP most of the JVM is implemented in hardware, all the infor-
mation to perform the scope checks can be directly accessed in hardware. The
scope level of the objects pointed by objectref/arrayref and value can be recov-
ered from the upper bits from the registers holding the top of the stack (TOS)
and the next of the stack (NOS) during the execution of the relevant bytecodes.

Reference assignment checks can now be efficiently performed since this is re-
duced to a simple arithmetic comparison between scope levels. This comparison
can be implemented in dedicated and simple hardware. In addition, because we
have all the information available during bytecode execution, the check itself
can be included as part of the bytecode execution performed in the Memory
Management Unit (MMU). Recall that the check shall only be done when it is
an assignment of a reference, so the hardware needs to know if it is a reference
or a primitive data. That information is available on special versions of the
putfield/putstatic bytecodes and in the aastore bytecode. We only need
a new microcode instruction to signal the MMU that whenever the mentioned
instructions are executed a reference assignment will take place and thus the
levels need to be checked.

As the check is performed as part of the bytecode execution, there is only a
minimal overhead of one clock cycle, which is the time needed to indicate a
reference assignment bytecode to the MMU. There is also the extra cost of
adding the scope level information at object creation time. Nevertheless, object
creation is an operation with low frequency of execution [111]. An interrupt is
generated inside the MMU when an illegal assignment occurs. This flag is used
to throw an IllegalAssignmentError.

For our pointer and hardware based solution, using some bits of the reference
pointer does not affect the behavior of the system because internally, a 32-
bit memory address is trimmed to the width of the memory bus attached to
the system. Therefore the scope level information is not used when accessing
objects in memory. The use of bits that belong to the reference pointer results
in a trade-off between the number of scope levels that can be used and the
amount of memory that can be addressed by the system. However, it is unlikely
that typical SCJ applications will use many levels of nested scoped memories.
In L0 and L1 applications, a minimum of two bits will cover for the levels of
the immortal, mission, MSO’s initial private memory, and one nested private
memory per MSO. In an L2 application however, one should also consider that
nested missions will require additional bits to encode the scope level, e.g., three

64 Safety-critical Java on an Embedded Java Processor

Table 3.2: Execution time (in clock cycles) of the three bytecodes implement-
ing the scope check methods described in this thesis.

Bytecode Execution Time

Handle Reference Hardware None

putfield_ref 185 169 13 12

putstatic_ref 163 157 8 7

aastore 179 163 15 14

bits will be needed to encode the levels illustrated in Figure 3.10 where three
missions execute concurrently.

3.5.3 Evaluation

Our proposal was tested by implementing in JOP the three scope check meth-
ods described in this section. We used a micro benchmark where we execute
the bytecodes performing reference assignment checks, i.e., the putfield_ref,
putstatic_ref, and aastore bytecodes. In this micro benchmark we measured
the execution time of each mentioned bytecode.

Each bytecode has a different individual implementation and therefore a dif-
ferent individual execution time. Table 3.2 shows the execution times in clock
cycles of each of the three aforementioned bytecodes with the different options
to perform the scope checks described in this section. The values were obtained
using ModelSim by performing a VHDL simulation of JOP. From the table it
can be seen that the hardware version is around 10 times faster than the two
software versions. Furthermore, the cost in hardware of adding the scope checks
is practically negligible as it adds around 32 look up tables and 10 registers
when implemented in an Altera DE2-70 FPGA board. This is an increase in
about 4% of the MMU where most of the logic is implemented.

To evaluate the improvement within a more complete application, we used two
example applications. The first is an application inspired by one of the examples
presented in [33], where a probe containing a number of sensors is used to scan
the walls of a well. In our example application, we periodically check a set of
artificial sensors simulated in hardware using hardware objects as described in
[115]. The application creates an array of objects to hold the sensor’s results in
a scoped memory. The application then enters a nested scope where the actual
sensor objects are created; each sensor performs readings and basic calculations

3.5 Scope Checks 65

Table 3.3: Sensor application execution time including the three versions of
the scope checks.

Sensors Reference count Execution time (ms) Improvement
Handle Reference Hardware

50 864 14.05 13.90 11.35 18.35%

100 1714 28.00 27.60 22.65 17.93%

150 2564 42.15 41.40 33.85 18.24%

200 3414 56.10 55.15 45.10 18.22%

250 4264 70.20 68.90 56.45 18.07%

average 18.16%
std. dev. 0.16%

and stores back the results into the array of objects located in the parent scope.
The second application is a scoped version of an N-body simulation (gravita-
tional force). It uses a "brute-force" algorithm, where the resulting force on
each body is computed as the result of the field interaction of each body. This
application was adjusted to have a number of cross-scope references proportional
to the number of bodies and the total time steps used for the simulation.

The detailed results of the two benchmarks are summarized in Tables 3.3 and
3.4. The improvement gain on both tables is the difference in execution times of
the hardware based implementation and the object reference software implemen-
tation (the reference based implementation is slightly faster than the handler
based). Table 3.3 shows an improvement gain of around 18% for the sensor
application while Table 3.4 shows that the improvement gain is roughly 0.09%
for the N-body simulation.

3.5.4 Discussion

The focus of this section was to evaluate the benefits of providing hardware sup-
port for time critical operations such as reference scope checks in the context of
SCJ. We found that our hardware implementation adds a minimal timing over-
head of one clock cycle at a negligible hardware cost to this operation because
the execution of the write barrier is part of the execution of the bytecode itself.

Nevertheless, reference assignment between objects may not be too frequent in a
real application and hence the hardware scope check will not make a major im-

66 Safety-critical Java on an Embedded Java Processor

Table 3.4: N-Body simulation application execution time including the three
versions of the scope checks.

Bodies Reference count Execution time (s) Improvement
Handle Reference Hardware

2 619 1.635 1.635 1.634 0.10 %

3 1219 4.045 4.045 4.042 0.08 %

4 2019 7.519 7.516 7.511 0.07 %

5 3019 12.050 12.052 12.040 0.10 %

6 4219 17.648 17.648 17.634 0.08 %

average 0.09 %
std. dev. 0.01 %

provement in the execution time. In the two examples provided, the execution
time was measured with different number of reference assignment operations.
For the sensor application, increasing the number of sensors increases the num-
ber of references and in the N-body simulation, increasing the number of bodies
and/or the time steps for the simulation increases the reference count. For the
sensor application, it doesn’t make too much sense to have hundreds of sen-
sors since a real application most likely wont need that much. In the N-body
simulation it does make sense to have many bodies and hence many reference
assignments but their overhead is clouded by the execution time of the rest of
math operations.

In the sensor application we can see an improvement gain of around 18% because
it does not have heavy computations, it only reads data from the simulated
sensors and performs simple calculations on the sampled sensor data. With the
N-body simulation application, the improvement is very small as most execution
time is spent in floating point operations, which are slow on JOP.

3.6 Interaction with Devices and External Events

Embedded real-time systems need to interact with their environment. To do
so, SCJ inherits the concept of raw memory areas, to provide low-level access
to physical memory, and first level interrupt handlers in Java, to respond to
external events. In this section both facilities and their implementation in JOP
is presented.

3.6 Interaction with Devices and External Events 67

3.6.1 Raw Memory

Access to physical memory is supported in SCJ through RTSJ’s raw memory
API classes5. The actual access to memory locations is enforced by accessor ob-
jects. There is one type of accessor object for each primitive data type. Accessor
objects are created by factories and these factories allow access to specific types
of memory (e.g., IO memory mapped, IO port mapped). factories are registered
and obtained from a raw memory manager.

3.6.1.1 Raw Memory Accessor Objects

To implement raw memory accessor objects we have two choices: (1) to use
JOP’s native methods, or (2) to use hardware objects or arrays [115]. For
the first option the RawMemory accessor objects (e.g., RawInt, RawIntRead, etc)
delegate the read to and write from memory operations to static native methods.
The second option can use either hardware objects or hardware-based arrays.

In addition to native methods, access to external memory in JOP is also possible
with hardware objects and hardware arrays [115]. Hardware objects are used
to map external memory locations to object fields. The handle indirection of a
hardware object points to the base address of an external memory location. The
getfield and putfield bytecodes are therefore used to read from and write to
the memory locations that the hardware object points to. In a similar way, in
a hardware array the array elements are mapped to external memory locations.
An example showing how to implement the accessor objects using native meth-
ods, hardware arrays, and hardware objects is provided in Figures 3.11a,3.11b
and 3.11c respectively.

In Figure 3.11a we see how the put and get methods of a raw memory accessor
object are mapped to static native methods. In Figure 3.11b, a hardware-
based array (line 3) is used. Hardware arrays are created in JOP as singleton
objects6 using a hardware object factory, according to a given base address,
with a predefined length, and in a static initializer (i.e., they will be located
in immortal memory). The put and get methods of the raw memory accessor
object write to and read from the array element at the position indicated by
the offset argument (lines 4 and 10). For the code in Figure 3.11c, the raw
memory accessor object is also a hardware object. It has a single filed (line 4)
that will be mapped to a memory location when this object is created (also as

5RTSJ v. 1.1
6In this way we can make sure that only one object instance will access a particular memory

region

68 Safety-critical Java on an Embedded Java Processor

a singleton using a factory).

3.6.1.2 Usage

The code in Figure 3.12 shows how the raw memory API can be used in a
controller for a memory mapped IO device. In this example, the device is an
I2C bus controller with several control and status registers. First, the SCJ
infrastructure creates a factory that allow access to IO_MEM_MAPPED memory
areas through accessor objects. The IOMemMappedFactory factory in line 2
knows how to create these accessor objects (e.g., instances of GenericRawMem-
AccessorHwArray from Figure 3.11b) The factory is then registered with the raw
memory manager, i.e., the RawMemory final class (line 3). During the registration
process, the raw memory manager ensures that no other factory that allows
access to IO_MEM_MAPPED raw memory areas has been previously registered,
otherwise an IllegalArgumentException is thrown.

The application is then able to request from the raw memory manager ac-
cess to IO_MEM_MAPPED raw memory areas. In the example of Figure 3.12, the
I2CBusController class requests the creation of accessor objects that are used
to manipulate the registers of the I2C bus controller device. The accessor ob-
jects are created when an I2CBusController object is instantiated, as part of
its constructor as shown in Figure 3.13. In Figure 3.13 we show two possible
approaches to gain access to the device’s registers. Figure 3.13a shows the case
when the accessor objects representing the I2C device registers are implemented
as a single object per register, either using native methods or hardware objects
(e.g., lines 11 and 13). In contrast, in Figure 3.13b a single accessor object
representing an array is used to group all the IO registers (line 10).

3.6.1.3 Discussion

From the three ways of implementing accessor objects (Figure 3.11), using native
methods is the most flexible option. There is no need for additional hardware
object factories and we can read and write to any memory area. The other two
options are useful if we want to avoid having native methods in application code
as such methods break Java’s type safety.

The raw memory API allows accessing physical memory areas as Java objects
and therefore have the benefits of Java’s type safety. However, the raw memory
API adds an overhead when compared to a simple solution that uses hardware
objects. We see that there is an extra method invocation for reading and writing

3.6 Interaction with Devices and External Events 69

1 class GenericRawMemAccessorNative implements RawInt {
2
3 private int address ;
4
5 public IODeviceHwArray(int address) {
6 this . address = address;
7 }
8
9 public int get() {return Native.rdMem(address);}

10 public void put(int value) {Native.wrMem(value, address);}
11 }

(a) Raw memory accessor object using native methods.

1 class GenericRawMemAccessorHwArray implements RawIntArray{
2
3 int [] data; // This is a hardware array
4
5 public int get(long offset) {return data[(int) offset]; }
6 public void get(int [] array) {
7 for(int i = 0; i < data.length; i++)
8 array [i] = data[i];
9 }

10 public void put(int value , long offset) {data[(int) offset] = value;}
11 public void put(int [] array) {
12 for(int i = 0; i < data.length; i++)
13 data[i] = array[i];
14 }

(b) Raw memory accessor object using hardware arrays.

1 class GenericRawMemAccessorHwObject
2 extends HardwareObject implements RawInt {
3
4 private volatile int data; // This field is mapped to a raw memory address
5
6 public int get() {return data;}
7 public void put(int value) {data = value;}
8 }

(c) Raw memory accessor object using hardware objects.

Figure 3.11: Example of three implementations of raw memory accessor ob-
jects.

70 Safety-critical Java on an Embedded Java Processor

1 // SCJ infrastructure
2 IOMemMappedFactory factory = new IOMemMappedFactory();
3 RawMemory.registerAccessFactory(factory);
4 ...
5
6 // Application code
7 I2CBusController i2c_a = new I2CBusController(Const.I2C_A_BASE);
8 I2CBusController i2c_b = new I2CBusController(Const.I2C_B_BASE);
9

10 i2c_a. initialize (100, true);
11 i2c_b. initialize (75, false);
12
13 i2c_b.writeBuffer (new int [] { 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 });
14 i2c_a.writeRead(75, 100, 5);

Figure 3.12: An example of using the RawMemory API to provide low level
access to an IO device.

physical memory locations. Moreover, if the accessor object is not of the array
type, a single object per memory location is required while a single hardware
object can provide access to several memory locations by having more than one
field. Nonetheless, due to the simple structure of an accessor object, they can
easily be inlined as they basically provide setter and getter methods.

3.6.2 Managed Interrupts

Interrupts in SCJ are instances of the ManagedInterruptServiceRoutine (MISR)
class that extend RTSJ’s InterruptServiceRoutine class. As with MSOs,
MISRs need to be registered to a mission. The actual interrupt service routine
(ISR) code is implemented in the handle() method of RTSJ’s Interrupt-
ServiceRoutine class.

Similar to the RTSJ 1.1, SCJ supports the notion of first level interrupt handlers
in Java. In Java, an ISR can be implemented as a handler or an event [115].
The handler approach uses a method invoked by the hardware while the event
approach uses a form of asynchronous event to fire an AEH or unblock a man-
aged thread. The advantages and disadvantages of both methods are described
in more detail in [115]. The main code of our MISR implementation is shown in
Figure 3.14. A MISR has three elements: (1) a private memory area to execute
its code (line 6), (2) a runnable that executes the handle() method in this pri-
vate memory (lines 9 – 18), and (3) a runnable registered as first level interrupt
handler (lines 20 – 25). JOP uses an array of runnable objects to attach plain
Java objects implementing the Runnable interface as interrupt handlers. The

3.6 Interaction with Devices and External Events 71

1 public class I2CBusController {
2 // configuration constants
3 private static final int CONTROL_OFFSET = 0;
4 private static final int STATUS_OFFSET = 1;
5 ...
6 // A single accessor object represents a single IO register
7 private RawInt control ;
8 private RawIntRead status;
9 ...

10 public I2CBusController(int baseAddress) {
11 control = RawMemory.createRawIntInstance(RawMemory.IO_MEM_MAPPED,
12 baseAddress + CONTROL_OFFSET);
13 status = RawMemory.createRawIntReadInstance(RawMemory.IO_MEM_MAPPED,
14 baseAddress + STATUS_OFFSET);
15 // other registers
16 ...
17 }
18 public void setControl (int value) {control .put(value);}
19 public int readControl() {return control .get ();}
20 public int readStatus() {return status .get ();}
21
22 }

(a)

1 public class I2CBusController {
2 // configuration constants
3 private static final int CONTROL_OFFSET = 0;
4 private static final int STATUS_OFFSET = 1;
5 ...
6 // The whole IO device is represented by a single RawIntArray accessor object
7 private RawIntArray i2cPort ;
8 ...
9 public I2CBusController(int baseAddress) {

10 i2cPort = RawMemory.createRawIntArrayInstance(RawMemory.IO_MEM_MAPPED,
11 baseAddress, 0);
12 }
13 public void setControl (int value) {i2cPort .put(value , CONTROL_OFFSET);}
14 public int readControl() {return i2cPort .get(CONTROL_OFFSET);}
15 public int readStatus() {return i2cPort .get(STATUS_OFFSET);}
16
17 }

(b)

Figure 3.13: Example of an I2C bus controller implemented using raw mem-
ory. The accessor objects representing the I2C device registers
can be implemented as a single object per register (a) or as a
single accessor object representing an array (b).

72 Safety-critical Java on an Embedded Java Processor

1 public ManagedInterruptServiceRoutine(StorageParameters storage, String name) {
2
3 this . storage = storage;
4 ...
5
6 privMem = new PrivateMemory((int) this.storage.maxMemoryArea,
7 (int) this . storage . totalBackingStore);
8
9 final Runnable isr = new Runnable() {

10 @Override
11 public void run() {
12 try {
13 handle ();
14 } catch (Exception e) {
15 unhandledException(e);
16 }
17 }
18 };
19
20 firstLevelHandler = new Runnable() {
21 @Override
22 public void run() {
23 privMem.enter(isr);
24 }
25 };
26 }

Figure 3.14: An extract of the ManagedInterruptServiceRoutine class im-
plementation in JOP.

number of interrupts that can be registered in JOP can be configured with a
global constant. Any interrupt can be inhibited globally or by interrupt number.
The firstLevelHandler object created at line 20 will be attached to the array
of runnable objects when MISR object is registered to a mission.

SCJ requires that for every interrupt priority there is a hardware priority that
can be used as the ceiling priority of ISR objects. The ceiling is then used to
disable equal and lower priority interrupts during the execution of a synchronized
method of an ISR instance. In this way, mutual exclusion between a MSO (that
uses shared data from the ISR object) and the ISR can be guaranteed.

In a single core version of JOP, this mutual exclusion is implemented by disabling
interrupts during the execution of a synchronized method and by executing the
first-level interrupt handler with interrupts globally disabled. In a CMP version,
there is a synchronization unit that grants access to shared objects. If the shared
object is not locked by any core, then the requesting core is granted the lock;
else the thread in the requesting core spin-waits until the lock is released.

3.7 Summary 73

Interrupt handlers are executed at hardware priorities, i.e., priorities that are
higher than those of ordinary schedulable objects, and can therefore delay the
completion of schedulable objects. The maximum interrupt time should be
included as a blocking time in a schedulability analysis of the system. It is
therefore important to bound the WCET of any ISR. An ISR can be preempted
(or interrupted) only by a higher priority interrupt, assuming that the ISR dis-
ables only lower or equal priority interrupts. In JOP the timer interrupt, which
is a hardware interrupt, has the lowest of the hardware priorities meaning that if
low priority interrupts are not enabled during an ISR then scheduling decisions
cannot be made. Nested interrupts can make the system more responsive to ex-
ternal events but can increase the blocking times due to interrupts. Interrupts
can happen at any time, and therefore a maximum arrival rate will be required
in order to include their blocking times into a schedulability analysis.

3.7 Summary

In this chapter we have presented our implementation of the SCJ profile in
the Java Optimized Processor JOP. The two major issues we faced during the
implementation were (1) the need to share package private information and
(2) the use of the scoped memory model. Sharing private information between
packages becomes problematic when such information has to be hidden from the
application developer, thus changing accessibility modifiers to public is not an
option. Our solution to this issue uses a singleton delegation mechanism that
avoids the use of reflection. The use of the scoped memory model requires extra
care as illegal references can be created within the SCJ framework itself, e.g.,
when registering a MEH to its corresponding mission. This is an important
issue that can complicate implementations of SCJ.

The concurrency model of SCJ is implemented on top of the existing real-time
thread facility provided by JOP. We used a simplified implementation of the
mission sequencer were we execute its operations on the main thread of the
system. This simplification is not restricted to our implementation and can also
be used by different SCJ implementations but only on L0 and L1 applications.

Our implementation of SCJ’s scoped memory uses a single system class, where
functionality of SCJ’s memory API classes defined in the safetycritical and
realtime packages is delagated to this system class. The use of scoped memory
requires that a set of rules should be enforced on every reference assignment. We
have presented two approaches to enforce the reference assignment rules, two of
them are implementation independent and use the auxiliary object information
to store the scope nesting level. The third approach is specific to our JOP

74 Safety-critical Java on an Embedded Java Processor

implementation and uses simple hardware extensions to reduce the execution
time of the reference assignment checks.

Our SCJ compliant access to memory mapped IO devices and physical memory
is provided with the RawMemory API. We have presented two ways of imple-
menting raw memory accessor objects: (1) using native methods and (2) using
hardware objects. The use of native methods is most likely what a JVM will
use while using hardware objects is specific to our implementation.7

First level interrupt handlers use SCJ’s ManagedInterruptServiceRoutine class
which, in contrast to using a plain method invoked by the hardware as interrupt
service routine, introduces additional overhead for the interrupt service routine
dispatch.

In our implementation we also provide support for L1 SCJ applications in a
multi-processor version of JOP. In the multi-processor version, there is, in ad-
dition to the immortal memory, one global mission memory shared between all
processors. Each processor has its own scheduler and a fixed number of MSOs
assigned thereby creating a fully partitioned system. Assignment of MSOs to
processors is done at mission initialization time and this assignment cannot be
changed during mission execution.

7The hardware-near virtual machine, HVM [67], also uses hardware objects

Chapter 4

Scoped Memory Use:
Patterns and Reusable

Libraries

Correct use of the scoped memory model is perhaps the most complex feature
of SCJ. Passing arguments and returning results without the use of static fields
is not obvious. In Section 4.1 of this chapter we analyze the expressive power
of SCJ’s memory model and propose patterns for its safe use. We provide a
collection of seven scoped-memory use patterns specific to SCJ that can be used
for simple subroutines, sequences of subroutine calls, and nested calls. The
patterns avoid memory leaks, unnecessary copying of values, and are illustrated
with an implementation in the SCJ profile. Section 4.1 is based on the following
published paper: Patterns for Safety-Critical Java Memory Usage [106].

In addition to scope-aware patterns, we explore on this chapter the topic of
scope-aware Java libraries. In Section 4.2 we analyze and propose solutions to
common programming patterns and idioms present in the Java class libraries
(JCL) that make library classes unsuitable for SCJ. We propose changes to
improve the class libraries to avoid the impact of the identified problematic
patterns and illustrate these changes in Section 4.3 by implementing a total of
five scope-safe classes from commonly used libraries. This chapter is based on
the following published paper: Reusable Libraries for Safety Critical Java [105].

76 Scoped Memory Use: Patterns and Reusable Libraries

4.1 Use Patterns and Idioms

Explicit scoping requires care from programmers when dealing with temporary
objects, passing scope-allocated objects as arguments to methods, and returning
scope-allocated objects from methods.

The SCJ specification avoids having references to arbitrary memory areas to
forbid MSOs from entering or executing code in another MSO’s private memory.
There are no public API methods to get references to arbitrary objects or to the
current allocation context.1 Traversing the scoped memory stack in SCJ (see
Section 3.5) is done with the following static methods:

• enterPrivateMemory(long size, Runnable logic) to move into an in-
ner nested private scope. This method creates a new nested private mem-
ory of size size (in the scope of the caller) or enters an already existent
nested private memory, and executes the runnable logic. It can only be
called from a private memory and will always add a new level into the
scope stack.

• executeInOuterAreaOf(Object obj, Runnable, logic) to execute the
logic runnable in the memory area where the object passed as argument
is allocated. This method is used to move into an arbitrary outer level in
the scope stack.

• executeInOuterArea(Runnable logic) to execute the runnable logic
in the immediately outer nested scoped memory in the scope stack.

Moving data between scopes requires a creative way of using these SCJ memory
API methods. In the remaining of this section we present several scoped memory
usage patterns that aim at helping in the development of SCJ applications. The
focus is on how to pass arguments into and return objects from methods that
change the allocation context to a nested memory.

4.1.1 The Basic Pattern

One can consider the use of an initial private memory executing the MSO code
to be the most basic use case of the SCJ memory model. In this basic pattern

1Without the possibility to obtain a reference to a memory area, the newInstance() and
newArray() methods defined in the javax.realtime.AllocationContext interface cannot be
used to create objects in explicit memory areas.

4.1 Use Patterns and Idioms 77

the event handler will not return results or need arguments as parameters (e.g.
no feedback is expected when sending control signals to actuators). In this case,
it is not necessary to preserve results for the next time the memory area is
activated.

Implementation of this pattern is straightforward: a managed event handler
overrides the handleAsyncEvent() method. Temporary objects are allocated
in the initial private memory and the memory area is recycled at the end of
the release. This pattern is called Scoped Run Loop Pattern in [94] but the
difference between the SCJ pattern and the RTSJ pattern is that the memory
area does not need to be explicitly created and entered, as this is all handled by
the SCJ infrastructure.

4.1.2 Loop Pattern

Memory in embedded applications is usually a scarce resource. Moreover, SCJ
private memories cannot be resized after their creation. Therefore, applications
should carefully use the available scoped-memory space. One way to recycle
memory is to use nested private scopes. A nested private scope can be entered
and exited several times during a release. The object representing the nested
private scope is reused in the implementation to avoid generating garbage in
the initial private memory [114]. This nested private memory is entered by
creating a Runnable object and change to the allocation context is done with
enterPrivateMemory().

An example scenario that benefits from temporary allocation within a nested
private memory is a loop body that has no dependency on variables declared
within the method and produces no results that need to be visible following
execution of the loop body. This is shown in Figures 4.1a and 4.1b.

In this example, all the objects created by the Runner object while executing its
run() method in the nested memory will be collected when the enterPrivate-
Memory()method returns. One can imagine the instance of the Runner class
to be applying an algorithm (e.g. encription, FFT, etc.) to a block of static
data that should be transmitted periodically. The algorithm can then generate
garbage as a result of temporal computations which will be collected at the end
of every release.

Two important issues need to be considered. First, avoidance of illegal references
and second, the possibility of introducing memory leaks as a result of allocating
objects in an outer memory (e.g.immortal or mission memory) on every iteration
of the loop. Furthermore, it is important to emphasize that this additional

78 Scoped Memory Use: Patterns and Reusable Libraries

1 class MyHandler extends PeriodicEventHandler {
2
3 public void handleAsyncEvent() {
4
5 int N = Constants.BLOCK_SIZE;
6 Runner r = new Runner();
7
8 for(int i = 0; i < N; i++){
9 ManagedMemory.enterPrivateMemory(256, r);

10 }
11 }
12 }

(a) An example code for the loop pat-
tern.

Mission Memory

Mission Memory

PM2PM1

PEH2PEH1

sObj

Private Memory 1

Periodic Handler 1:
sObj.mem1 =
ManagedMemory.getCurrentManagedMemory()
mem2 = MemoryArea.getMemoryArea(PEH2)

Periodic Handler 2:
sObj.mem2 =
ManagedMemory.getCurrentManagedMemory()
mem1 = MemoryArea.getMemoryArea(PEH1)

Immortal Memory

Private Memory 2

MM

Mission Memory

PM2PM1

PEH2PEH1

Immortal MemoryMM

T0
...

Temporary object

Periodic Thread executing in memory region

Tn

T0
...
Tm

Ti

Private
Memory 1

Private
Memory 2

Mission Memory

PM2PM1

PEH2PEH1

Immortal MemoryMM

T0
...

Temporary
object

Periodic Thread execu-
ting in memory region

Tn

Ti

Private
Memory 1

T0
...

Tm

Private
Memory 2

Nested
Memory

W

out

Nested
Memory

Private
Memory

out.result = temp.x

tmp

in

new()

2

1 Create temporary object

3 Updated fields in out object

NM

Lo
o

p
 N

ti

m
es

Object representing
memory area

(b) A graphical representation of
the loop pattern.

Figure 4.1: The loop pattern.

private memory is only useful when entered several times, as is the case in
this pattern. If the additional private memory would be entered only once per
release, one can stay within the primary private memory as the backing store
consumption would be the same.

4.1.3 Execute with Primitive Return Value

More interesting is the case when one wants to pass parameters and/or preserve
results within iterations of a scoped loop or handlers/runnables executing in its
own private memory. A simple and perhaps intuitive approach is to use static
fields to pass information between scopes. However, static fields are only allowed
to refer to objects residing in immortal memory; therefore, passing references of
scope-allocated objects will fail with an IllegalAssignmentException. More-
over, one has to consider concurrent access from other threads as they may
overwrite each other’s values.

References to an object allocated in mission memory (or any other outer scope)
used to pass arguments and return results need to be brought into the Runnable.
However, Runnable’s run() method has no parameters. As an alternative, we
can create a class that implements the Runnable interface and use auxiliary
input and output objects to pass and return information. References to the

4.1 Use Patterns and Idioms 79

1 public class Worker implements Runnable {
2
3 AuxIn in ; AuxOut out;
4
5 public Runner(AuxIn in, AuxOut out) {
6 this . in = in;
7 this .out = out;
8 }
9

10 public void run() {
11 // Use this . in , work and generate garbage
12 T tmp = new T();
13
14 // assign primitive values to a field in
15 // the auxiliary AuxOut object
16 out. result = tmp.x;
17 }
18 }
19
20 class MyHandler extends PeriodicEventHandler {
21
22 public void handleAsyncEvent() {
23 // allocate input and output parameters
24 // fill input arguments
25 Runnable w = new Worker(in, out);
26 ManagedMemory.enterPrivateMemory(256, w);
27 // now we can use out. result
28 }
29 }

(a) Code sample to pass and return
primitive values into a scope.

Mission Memory

Mission Memory

PM2PM1

PEH2PEH1

sObj

Private Memory 1

Periodic Handler 1:
sObj.mem1 =
ManagedMemory.getCurrentManagedMemory()
mem2 = MemoryArea.getMemoryArea(PEH2)

Periodic Handler 2:
sObj.mem2 =
ManagedMemory.getCurrentManagedMemory()
mem1 = MemoryArea.getMemoryArea(PEH1)

Immortal Memory

Private Memory 2

MM

Mission Memory

PM2PM1

PEH2PEH1

Immortal MemoryMM

T0
...

Temporary object

Periodic Thread executing in memory region

Tn

T0
...
Tm

Ti

Private
Memory 1

Private
Memory 2

Mission Memory

PM2PM1

PEH2PEH1

Immortal MemoryMM

T0
...

Temporary
object

Periodic Thread execu-
ting in memory region

Tn

Ti

Private
Memory 1

T0
...

Tm

Private
Memory 2

Nested
Memory

W

out

Nested
Memory

Private
Memory

out.result = tmp.x

tmp

in

new()

2

1
Handler creates
temporary objects

3
Fields in out object
can be used now

NM

Lo
o

p
 N

ti

m
es

Object representing
memory area

PM1

PEH1

...

(b) Graphical representation of
the execute with primitive re-
turn pattern.

Figure 4.2: Execute with primitive return value.

auxiliary objects are passed in the constructor of that class. Upon return,
the caller copies the value from the Runnable’s field. A drawback when using
this approach is that only primitive values can be copied as the return value.
Figures 4.2a and 4.2b show an example.

4.1.4 Returning a Newly Allocated Object

It might be the case that while executing a handler in a nested private memory,
we need to create objects that have to be used later. References to objects cre-
ated in inner scopes cannot be passed to outer contexts, as they will be reclaimed

80 Scoped Memory Use: Patterns and Reusable Libraries

1 class Runner implements Runnable {
2 RetObject rObj;
3
4 public void run() {
5
6 // Do some work
7 ...
8 ManagedMemory.executeInOuterArea(new Runnable() {
9 @Override

10 public void run() {rObj = new RetObject();}
11 });
12 }
13 };
14
15 class MyHandler extends PeriodicEventHandler {
16
17 public void handleAsyncEvent(){
18
19 Runner r = new Runner();
20 ManagedMemory.enterPrivateMemory(256,r);
21
22 // Use returned object and fields
23 r .rObj ...
24 }
25 }

Figure 4.3: Example of the use of executeInOuterArea(Runnable logic) to
create objects in outer nested scopes.

when leaving the inner scope. The key point here is that objects that will be
used after the inner scope is left, need to be created in an outer scope. SCJ’s API
offers two methods to move into outer levels in the scope stack and create the
required object directly after a change of allocation context. Figure 4.3 shows
an example of how to use nested memory scopes with return objects together
with executeInOuterArea(Runnable logic). The return object is allocated
in the immediately outer scope of the caller and can be accessed through the
reference that is part of the Runner instance. Note that any object created in
the context of the run() method of line 10 will be created in an outer nested
scope. Therefore, temporary objects should not be created inside this method as
oposed to the run() method of line 12 in Figure 4.2a where temporary objects
are allowed.

4.1 Use Patterns and Idioms 81

4.1.5 Scoped Methods

One can create an abstraction to hide the complexities of parameter passing,
returning results and switching between memory areas by combining the pat-
terns described above. Ideally, a scoped method will be an expression of the
form ret = f(params), can be executed in a specific memory area, has input
parameters, and can return values or references to objects.

For an SCJ application developer, executing code in a specific memory area is
achieved through the use of enterPrivateMemory() to go into a nested private
memory or by using any of the two versions of executeInOuterArea* to move
into an outer nested scope. Since both methods take a Runnable object as
argument, the active part of a scoped method should be coded within the run()
method of a Runnable object.

In Figure 4.4 we show an example of a scoped method that executes in a nested
private memory. To provide the functionality of parameter passing and return-
ing results, we use a parameter object (lines 1 – 7) whose fields contain the
method arguments, a field to store the reference of a new object so it can be ac-
cessed when the method returns, and an arbitrary object to provide the memory
area where the returning object shall be allocated.

4.1.6 Runnable Factory

In a large application, creating all the code as in Figure 4.4 for many scoped
methods might be a cumbersome task. To hide such complexity, one can use
a runnable factory whose methods have a Runnable return type. The required
code by a particular method is implemented in the run method of this returned
Runnable. The factory object itself can be instantiated in the handler’s private
memory or any other shared memory. Parameters can be passed when calling
the factory method. Figure 4.5 illustrates the concept with an example.

The example shows an auxiliary object, auxObjIn, used to pass arguments and
return values by means of the readTemperature() factory method. This object
has a field used to store a reference to an arbitrary object, resArbObj, that
should be returned. In this case, the memory area where the result object is
to be saved, is the memory area where the auxiliary object was allocated. The
drawback with this particular implementation is that the memory area where
the returned object is allocated will be restricted to the memory area of the
auxiliary object.

82 Scoped Memory Use: Patterns and Reusable Libraries

1 public class ParamObject {
2
3 int arg0; // Method parameters
4 ReturnObject retObject ; // Reference to returned object
5 Object destScope; // Returned object is allocated in the scope of the destScope object
6
7 }
8
9 public class Method implements Runnable {

10 ParamObject params;
11
12 Method(ParamObject params){ this.params = params;}
13
14 public void run() {
15
16 // Use parameters, do work, create garbage
17 ...
18 // Change context, create return object
19 ManagedMemory.executeInOuterAreaOf(params.destScope, new Runnable() {
20 public void run() {
21 ReturnObject rObject = new ReturnObject();
22
23 // Update return object fields
24 params.retObject = rObject;
25 }
26 });
27 }
28 }
29
30 class MyHandler extends PeriodicEventHandler {
31
32 Object mem = new Object(); // Allocated in mission memory when PEH is created
33
34 public void handleAsyncEvent(){
35
36 // Created in the scope where handler executes
37 ParamObject pObj = new ParamObject();
38
39 // Assign fields to the pObj
40 pObj.destScope = mem;
41 ...
42
43 // This object simulates the method with parameters that returns an object
44 Method myMethod = new Method(pObj);
45 ManagedMemory.enterPrivateMemory(256, myMethod);
46
47 // Now the returned object can be used
48 ...
49 }
50 }

Figure 4.4: Scoped method with parameters and a return object.

4.1 Use Patterns and Idioms 83

1 public class RunnableFactory implements IRunnable{
2
3 @Override
4 public Runnable readTemperature(final int i , final AuxObj auxObjIn) {
5
6 // This runnable will be allocated in the context of the caller , care should
7 // be taken when the factory is in any of the shared memory areas
8 return new Runnable() {
9

10 @Override
11 public void run() {
12 // Do work, here we can use input parameters
13 ...
14 // The log() method is an example of a method used by all the methods
15 // in the factory (a shared functionality in the application)
16 log ();
17
18 // Change execution context needs another runnable
19 ManagedMemory.executeInOuterAreaOf(auxObjIn, new Runnable(){
20
21 @Override
22 public void run() {
23 ArbObj resArbObj = new ArbObj();
24 resArbObj.a = 50;
25 auxObjIn.arbObj = resArbObj;
26 }
27 });
28
29 }
30 }
31
32 @Override
33 public Runnable otherFactoryMethod() {
34 ...
35 }
36 }
37
38 class MyHandler extends PeriodicEventHandler {
39
40 public void handleAsyncEvent() {
41
42 RunnableFactory factory = new RunnableFactory();
43 AuxObj auxObj = new AuxObj();
44
45 ManagedMemory.enterPrivateMemory(256, factory.readTemperature(5, auxObj));
46
47 ManagedMemory.enterPrivateMemory(512, factory.otherFactoryMethod());
48 }
49 }

Figure 4.5: Runnable factory.

84 Scoped Memory Use: Patterns and Reusable Libraries

4.1.7 Producer/Consumer

Control systems are often composed of producer and consumer processes that
run in their own thread of control. The exchange of information between a
producer and a consumer can involve data structures or objects, rather than
primitive types. In [94] and in [34] solutions are proposed for RTSJ. Such
solutions involve the use of portal objects (not part of SCJ), shared scopes, or
the introduction of safe violations to the reference assignment rules.

Communication between handlers goes through objects located in the shared
memory areas, mission and/or immortal memory. Objects in those areas are
not reclaimed until termination of the mission or the JVM respectively. Thus
we need to reuse objects in those shared memory areas. In [44], a solution is
devised using a memory pool of immortal objects. An alternative is the use of
a pool of objects in mission memory. In this way the pool of objects will be
collected when the mission finishes.

4.2 Reusable Libraries: Issues and Solutions

The standard Java class library (JCL) was not developed to be used in the SCJ
memory model. The JCL is based on a system where objects are allocated on
the heap and are automatically de-allocated by a GC. Furthermore, objects can
refer to each other unrestrictedly. These two assumptions are no longer valid
in SCJ as its memory model eliminates the heap and the GC. In addition, as
objects may have different lifetimes, scope allocations restrict how objects can
refer to each other. As a result, the different programming idioms and patterns
used in the JCL can lead to memory leaks and illegal reference assignments.

In Sections 4.2.1 to 4.2.6 we present a more detailed study of the programming
patterns and idioms present in three of the most commonly used JCLs: java.io,
java.lang and java.util. We also present possible solutions for its safe use
within SCJ’s soped memory model. The outlined solutions are then used for
our own implementation of a total of five scope-safe representative classes of the
mentioned packages.

4.2.1 Lazy Initialization

This pattern delays the initialization of a field that contains a reference to an
object until the object pointed by that field is used for the first time. This

4.2 Reusable Libraries: Issues and Solutions 85

pattern is used for two purposes: (1) to save memory in case the object is never
needed, and (2) to break circularities in class initialization [21]. The problem
with this pattern is that the object referred to by the lazily initialized field will
be created in the scope of the first handler that uses it. This scope and the
scope where the object with the lazy initialized field was allocated may not be
the same.

As an example, consider the keySet() and values()methods in the AbstractMap
class of the java.util package. These methods provide different views of the ob-
jects contained in a particular map implementation such as HashMap or TreeMap;
they return a Set and a Collection object respectively. To ensure referential
integrity, a call to these methods should be done from a scope that encloses the
scope of an AbstractMap subclass instance.

One can also view the singleton pattern as a different version of lazy initializa-
tion. The creation of singleton objects is prone to breaking referential integrity
in SCJ. The singleton pattern under the scoped memory model of RTSJ has
been analyzed in [34]. The solution, which can also be applied to SCJ, consists
of explicitly allocating the singleton instance in immortal memory by using the
available immortal memory API methods, e.g. with the newInstance()method.

Illegal references can be avoided by creating the lazy object either in immortal
memory or in the same scope as the object containing the lazy initialized field.
One possible solution is to execute the object creation code in class initializers,
which will execute in immortal memory, as it is done in [17]. This approach
works for objects that should be accessed during the whole VM lifetime, such
as a Properties object. For objects that are only used by specific missions,
another approach is to create the lazy initialized object when the instance of
the class containing the field is created, i.e., as part of the object’s constructor.
Of course this does not mean that the lazy initialized object will be used but
we are on the safe side of referential integrity. This is the approach followed in
the implementation of our libraries.

Another solution can be to change the allocation context to the memory area
where the object with the lazy initialized field is allocated. The lazy object can
then be safely created.

4.2.2 Dynamic Resizing

When a structure grows beyond its current capacity, it needs a size adjustment
to accommodate new elements. Resizing involves creation of a new and larger
array to accommodate the previous elements and the new ones. The old array

86 Scoped Memory Use: Patterns and Reusable Libraries

is de-referenced leading to a memory leak. The new array, created in the scope
of the caller, may eventually be referenced from an object in a different scope,
thereby potentially creating an illegal reference assignment. This situation is
illustrated in Figure 4.6a, where a method adds an object to a full collection.
The objects in the figure are annotated with the scope where they are allocated:
MM stands for the shared mission memory and PM for a private memory.

This method is called from a private memory, PM, while the object to be added
lives in mission memory, MM. In Figure 4.6a, the container array ends in a scope
that will be inaccessible to other handlers, even though it is perfectly legal for
all handlers to access the elements of the array. This is referred to as polluted
containers in [39].

An example of this situation is found in the Vector class. When an element
is added, the ensureCapacity method is used to resize the collection if neces-
sary. In case there is no resizing, the element to be added must be allocated
in the same scope or in an outer nested scope from where the Vector object is
allocated.

A similar situation occurs with some of the methods in the StringBuffer and
StringBuilder classes. Concatenation and append operations may need re-
sizing while character replacement operations will always create new character
arrays.

The fundamental problem here is that for every expansion of a data structure,
a new storage element (usually an array of objects) is created in the context
of the caller while the previous storage element gets dereferenced, producing a
memory leak.

One option to avoid structures to dynamically resize is to limit the maximum
amount of elements the structure can hold. This seems too restrictive, but it
is likely that most data structures for hard real-time systems are big enough to
hold all of the intended elements.

Another option is to change the allocation context before the expansion to guar-
antee that the storage element is created in the same memory area as the data
structure. However, memory leaks created by de-referencing the old storage
element cannot be avoided.

The approach we use in our libraries is to limit the maximum amount of elements
a structure can hold and to recycle objects from a pool of objects. Objects are
allocated from the pool when they are needed and returned to the pool when
removed from the data structure. In this way we avoid the risk of creating
the storage element in another region and the memory leaks associated with

4.2 Reusable Libraries: Issues and Solutions 87

Collection object
MM

Container Array MM

Obj

MM

Obj

MM

Obj

MM

Collection object
MM

Container Array PM

Obj

MM

Obj

MM

Obj

MM

Obj

MM

MM

Original, now unreferenced container array

Before adding new

element

After adding new

element

(a) Polluted container

Collection object
MM

Container Array MM

Object

MM

Object

MM

Object

PM

(b) Polluted object

Figure 4.6: Effects of using shared objects from different scopes. Scoped mem-
ories from where objects are allocated are represented as MM for
mission memory and PM for private memory

88 Scoped Memory Use: Patterns and Reusable Libraries

removing or replacing elements. The drawback is the overhead introduced by
the additional functionality needed to do the pool object management, i.e., get
an object from a pool and to reset it’s state when removing the object from the
structure.

4.2.3 Objects Used in Mixed Contexts

Modification of JCL objects shared between handlers requires special care be-
cause most of the methods may create new objects in the scope of the caller.
Consider for instance the following two examples:

• The addElement(Object obj) method of the Vector class. The already
existing object to be added to the collection should reside in the same or
in an outer nested scope as the Vector object. As long as the addition of
the new element does not exceed the capacity of the collection, the method
can be called from within any scope.

• The add(E e) method of the LinkedList class. This method will create
a wrapper object. This wrapper object is used to store book keeping
information (e.g. references to the next and previous elements in the
list) and a reference to the actual element to be added. There are two
requirements in this case: 1) call the method from the same memory,
or an outer nested scoped memory, as the one in which the LinkedList
object is allocated, and 2) to ensure the element is added in the same scope
or an outer nested scope from where the method is called. Neglecting to
do this may result in contamination of the container array with an object
allocated in a scope that is inaccessible to other handlers. This situation
is referred to as polluted objects in [39] and is illustrated in Figure 4.6b.

This is perhaps one of the most difficult issues to address in library code since
there is no easy way to ensure that caller-allocated results or arguments to
methods reside in appropriate scopes.

Illegal references come from field or array stores, either to new objects or to
objects referenced by arguments passed to methods. Arguments must reside
in the same scope as the this argument,2 or in an outer scope (e.g. for setter
methods). One option for ensuring that library code enforces this requirement
is to provide dynamic guards (see the memory annotations appendix of [77]).
A dynamic guard is a conditional statement used to test that the parenting

2this is a reference to the object whose method is being called.

4.2 Reusable Libraries: Issues and Solutions 89

relationship of the scopes in which arguments reside is appropriate to avoid
illegal references.

Another option is to change the allocation context to execute a method (or part
of it) in the scope of the this argument. This is particularly useful if the method
requires the creation of auxiliary objects as in a HashMap or a LinkedList,
where additional objects are created to store bookkeeping information. For our
libraries we reuse objects from pools and require that instances of library classes
are created in the same or an inner nested scope as the pool.

4.2.4 Iterators

It is common to use an iterator pattern in collection classes to traverse and access
elements of a container. This pattern is used in base classes such as AbstractMap
and AbstractList. Iterator patterns require the allocation of Iterator objects
that may lead to memory leaks if used within the shared memory areas (e.g. dur-
ing initialization phase) or if used repeatedly. Iterators also require additional
synchronization considerations by the application developer.

One option for the use of this pattern is to pre-allocate single iterator objects
when collection objects are created, as in [52]. However, we consider that not
much is gained by pre-allocating a single iterator object per collection, because
this solution only works on single-threaded applications. As described by the
authors of [52], if a handler requests use of the iterator object after another
handler has gained access to the single iterator object, then the iterator object’s
state is reset causing runtime errors.

The use of iterators may become problematic if used multiple times. The reason
is that to use the iterator pattern we need to obtain an Iterator object. 3 In
this case, a better idea is to use iterators within nested private memory areas
in the same way as with the loop pattern presented in Section 4.1.2.

4.2.5 Loop Bounds

Although not related to scope-safety, the methods in software libraries intended
for real-time systems must have predictable execution times. Unbounded loops
are a concern for real-time systems as worst-case execution time (WCET) anal-

3One can also reuse iterator objects however obtaining a new Iterator object seems to be
the common practice.

90 Scoped Memory Use: Patterns and Reusable Libraries

ysis tools cannot automatically extract loop bounds. For correct analysis, loops
must be annotated manually with bounds.

Most of the programming idioms, used for loops in the JCL, are not friendly for
our current WCET analysis tool, WCA [116]. The exit condition in loops may
depend on boolean flags or on a value that the data flow analysis in the tool is
not able to propagate (e.g. internal manipulation of an array size). The most
common case were loops in which the stop condition is a boolean check for a
null element. In our libraries, loops are limited to a maximum number specified
as an argument in the instance constructor. This argument can be propagated
by the data flow analysis of the WCA tool provided it is not modified inside the
library code. To enforce this restriction, such arguments are declared final.

4.2.6 Exceptions

Throwing exceptions may involve the creation of an exception object in the
current allocation context. Even if the scope has been sized to include the effects
of any thrown exception (that is, not only considering the normal execution
path), there is still the risk of ending up with illegal assignments if the exception
is thrown in an inner scope and propagated to be handled in an outer scope.
Furthermore, it is desirable to avoid exception propagation as this may introduce
program paths that are complicated to analyze [77].

Safe exception handling in SCJ requires the observation of the following rule:

• Propagation of exceptions to a scope different from the one in which
it was originally allocated causes a ThrowBoundaryError exception. In
this way, scoped memory errors such as illegal reference assignments are
avoided [77].

According to SCJ’s specification, there are no special requirements for the allo-
cation of exception objects. These objects can be created in the current scope
with the new keyword; in a different scope after a change of allocation context;
or they can be pre-allocated. Our libraries pre-allocate exceptions in immortal
memory and when necessary and possible, library exceptions are created with a
constant string message describing the cause of the error. Unnecessary memory
allocations that come from concatenation of strings are thus eliminated.

4.3 Reusable Libraries: Implementation 91

4.3 Reusable Libraries: Implementation

Real-time and safety-critical systems are typically less dynamic and more re-
stricted than non real-time or non safety-critical systems. Such characteristics
allow for certain simplifications and modifications to be made in Java’s library
code in order to achieve the characteristics listed below, which are required for
SCJ applications:

• Maintain referential integrity. Referential integrity concerns the avoid-
ance of throwing illegal assignment exceptions. It is important that SCJ
library classes are aware of the scoped memory where method arguments,
returned results, and objects allocated in methods reside.

• Predictable memory consumption. The size of a scoped memory area
has to be provided when the area is created. It is therefore important to
know how much memory will be allocated in the specific scoped memory.
Libraries with predictable memory consumption help to size scoped mem-
ory areas in such a way that allocation demands can be met at all times
during the execution of a program.

• Predictable worst-case execution time. Predictable execution time
in library code is essential for calculating the WCET of an application. In
turn, WCET values are used as input for the schedulability analysis.

The SCJ specification provides a list of class libraries for safety-critical applica-
tions defined with respect to the JDK 1.6. This set of core libraries is kept as
small as possible by restricting the use of certain methods and fields. The goal is
to reduce size and complexity to decrease the certification effort of safety-critical
applications. A summary of these classes is presented in Table 4.1.

The first part of Table 4.1 (rows 1 to 11), lists classes from the java.io package
and the second part (rows 12–37), from the java.lang package. This subset of
classes is our starting point either to modify or to create new safe classes, such
as the classes for the java.util package where only the Iterator interface is
provided in the SCJ specification. In the relation to JDK 1.6 column, Same
means that the definition of the corresponding class in SCJ is the same as in
JDK 1.6. Restricted means that the corresponding class in SCJ is allowed to
unse only a reduced set of the methods and fields of JDK’s 1.6 definition. The
reusability type column refers to wether or not event handlers can safely share
instances of this unmodified class. The next section provides more details.

92 Scoped Memory Use: Patterns and Reusable Libraries

Table 4.1: List of library classes allowed by SCJ. Exception classes are not
shown.

No. Class Name Relation to JDK 1.6 Reusability type

1 Closeable Same –
2 DataInput Same –
3 DataOutput Same –
4 Flushable Same –
5 Serializable Same –
6 DataInputStream Same Instance unsafe
7 DataOutputStream Same Instance unsafe
8 FilterOutputStream Same Instance safe
9 InputStream Same Instance safe
10 OutputStream Same Instance safe
11 PrintStream Same Instance unsafe

12 Appendable Same –
13 CharSequence Same –
14 Comparable Same –
15 Runnable Same –
16 Boolean Same Instance safe
17 Byte Same Instance safe
18 Character Restricted Instance safe
19 Class Restricted Instance unsafe
20 Double Same Instance safe
21 Enum Restricted Instance safe
22 Float Same Instance safe
23 Integer Same Instance safe
24 Long Same Instance safe
25 Math Same Instance unsafe
26 Number Same Instance safe
27 Object Restricted Instance safe
28 Short Same Instance safe
29 StackTraceElement Same Instance safe
30 StrictMath Same Instance unsafe
31 String Restricted Instance safe
32 StringBuilder Restricted Instance unsafe
33 System Restricted Instance unsafe
34 Thread Restricted Instance unsafe
35 Thread.Uncaught- Same definition –ExceptionHandler
36 Throwable Restricted Instance unsafe
37 Void Same Instance safe

4.3 Reusable Libraries: Implementation 93

4.3.1 Analysis of Standard Java Class Libraries

As a first step towards our SCJ libraries, an analysis of the classes defined in
JSR-302 (Table 4.1), using OpenJDK’s (version 6) source code, was performed
to:

• Classify a standard implementation of the classes allowed by JSR-302 ac-
cording to the taxonomy described in [41]. This classification is performed
to provide an estimate of the degree of reusability of unmodified classes.

• Locate the points where memory allocations take place. In order to provide
bounds on memory consumption it is important to know how memory
is being used and, whenever possible, to provide rules, restrictions, or
modifications that prevent unbounded memory allocations.

In [41], classes are cataloged according to whether or not they can be considered
as no-heap safe. No-heap safe means that a particular class can be used concur-
rently by both heap and no-heap threads without the risk of storing references
to heap-allocated objects.

To adapt this classification to SCJ, we abandon the concept of heap threads, as
SCJ does not allow the use of heap memory. In addition, what is referred to as
code executed by no-heap threads in [41] translates into periodic or aperiodic
event handlers. Our classification is for scope safety (i.e. without the risk of
generating illegal references) and has the following two categories:

• Instance safe: A class instance can be shared by different event handlers
or allocated in a handler’s private memory and used in a nested private
memory without the risk of generating illegal references. Few classes are
expected to fall into this category, as they need to have only final reference
fields.

• Instance unsafe: Event handlers cannot safely share instances of this
class.

The results of this classification are shown in Table 4.1. The following rules
were used for classification:

1. A class is instance safe if all of its reference fields are declared as final.

94 Scoped Memory Use: Patterns and Reusable Libraries

2. A class with non-final reference fields assigned only at class initialization
(execution of its <clinit> method) can be considered to be instance safe.

3. A class with non-final reference fields or with methods that perform array
reference assignments are instance unsafe.

4. A class inherits its superclass classification. For example, if class B extends
class A and class A is instance unsafe, then class B is also instance unsafe.
An unsafe class B can, however, have a safe class A as parent.

During the analysis of the JCL classes, we noted all allocation places and ref-
erence assignments. Once a problematic part in the code was located, we pro-
ceeded to implement our solutions, which combine techniques such as restricting
the size of different structures, changing between scopes, running specific code
in nested scopes, and recycling of objects by memory pooling.

In the following sections, we describe the implementation of five representative
classes of the standard Java libraries. The implemented classes were adapted
for use in safety-critical Java in accordance with the requirements of having
referential integrity, predictable memory consumption, and predictable worst-
case execution time; and the solutions outlined in Sections 4.2.1 to 4.2.6. Of the
five classes, three are defined in the safety-critical Java specification (Abstract-
StringBuilder, StringBuilder, and DataInputStream) while the other two
(Vector and HashMap) are not. Nevertheless, we consider them to be important
for the development of reusable software components.

4.3.2 AbstractStringBuilder and StringBuilder

Within these two classes, memory consumption is related to the size of the
character array backing those types of objects. To provide bounds on memory
consumption, we limit the maximum number of characters any of those classes
can hold. That is, the size of the character array is limited to the initial size
set at object creation. This decision can be supported by considering that
safety-critical programs typically do not incur in extensive text processing or
file manipulations [77].

Limiting the maximum number of characters also has the following two benefits:
1) Resizing operations are not needed and 2) we can have bounds on methods
that iterate over the character elements (through annotations, see Section 4.2.5).
For methods such as append(String str) creating a new character array will
be necessary if the resulting string exceeds the initial size. However, as resizing
operations are not allowed, an exception is thrown.

4.3 Reusable Libraries: Implementation 95

4.3.3 DataInputStream

The java.io package contains classes to perform input and output operations
in Java. We focus on the DataInputStream class because the additional classes
in this package defined in JSR-302 (see Table 4.1) are only wrapper classes.

Memory allocations within classes in this package come from re-sizable arrays
that are used for temporary processing or to perform buffered reads and writes.
Methods that perform temporary processing can be executed inside nested
scopes. In this way, array resizing is allowed if needed and any temporary array
will be collected when leaving the nested scope. As an example, Figure 4.7 shows
our modified version of the readUTF(DataInput in) method (lines 4–11) from
the DataInputStream class. This method reads a representation of a character
string encoded in modified UTF-8 format4 and uses two arrays of up to 65,535
bytes for temporary processing. The readUtfHelper inner class encapsulates in
its run() method (lines 22–25) the code of the original readUTF method and ex-
ecutes it in a nested private memory. The modified version needs an additional
parameter to set the size of the nested scope because the memory consumption
of objects is implementation dependent. The run() method also handles the
additional scope change needed to return the resulting string object into the
context of the caller (lines 29–34). The scope change is made using the SCJ’s
executeInOuterArea method, which moves the current allocation context one
level up in the scope stack.

Resizing operations can also be avoided by using working arrays and buffers
of size equal in size to the worst-case expected length. The drawback of this
approach is that arrays that are only needed for a few methods will be created
for every instance and will most likely be poorly utilized.

4.3.4 Vector and HashMap

These two classes are representative for the java.util package. The safety-
critical Java specification only provides the definition for the Iterator interface.
However, due to how useful this package is with regard to reusable software com-
ponents, we decided to provide some implementation examples for this package.

The modified Vector class, illustrated in Figure 4.8, shows how, through the
use of object pooling [64], a solution for most of the problems mentioned in
Sections 4.2.1 to 4.2.6 can be provided.

4See http://docs.oracle.com/javase/6/docs/api/java/io/DataInput.html#modified-utf-8
for a description of the modified UTF-8 format

96 Scoped Memory Use: Patterns and Reusable Libraries

1 public class DataInputStream ... {
2 /∗ Other methods of DataInputStream class ∗/
3 ...
4 public static final String readUTF(DataInput in, long size)... {
5 ReadUtfHelper readUtfHelper = new ReadUtfHelper();
6 readUtfHelper. in = in;
7 ManagedMemory.enterPrivateMemory(size, readUtfHelper);
8
9 /∗ Return String lives in the context of the caller ∗/

10 return readUtfHelper. retString ;
11 }
12 }
13
14 class ReadUtfHelper implements Runnable {
15 String retString ;
16 DataInput in ;
17
18 @Override
19 public void run() {
20 try {
21 /∗ Begin of original code of readUTF method ∗/
22 int utflen = in.readUnsignedShort();
23 byte [] bytearr = new byte[utflen];
24 final char [] chararr = new char[utflen];
25 ...
26 /∗ End of original code of readUTF method ∗/
27
28 /∗ Return a String object in the scope of the caller ∗/
29 ManagedMemory.executeInOuterArea(new Runnable() {
30 @Override
31 public void run() {
32 /∗ count is the length of the char array ∗/
33 retString = new String(chararr, 0, count);
34 }
35 });
36 } catch (IOException e) {...}
37 }
38 }

Figure 4.7: Example of a method modified to run in a nested private scope.

Our classes are restricted to store only elements belonging to a pool of pre-
allocated objects. When elements are removed or replaced, they are returned to
their corresponding pool, their state is reset, and they are marked as available
for reuse. To add an element, one must first obtain a free object from the pool
of pre-allocated objects and then add it to the Vector.

An ObjectPool instance is created with a fixed number of objects. The number
of objects is passed as a parameter in the constructor (if omitted, a default value
is used). The elements belonging to the pool are created when the ObjectPool

4.3 Reusable Libraries: Implementation 97

is instantiated and a PoolObjectFactory provides a strategy to define how they
will be created (through the createObject() method). Retrieving a free ob-
ject from the pool is done by calling the getPoolObject() method which in
turn will call an initialization hook, the initiaize() pool object’s method,
from the returned free object. When returning an object to the pool, the
releasePoolObject() method calls the termination hook method, reset(),
of the object being returned. It is important to note that the ObjectPool as
well as the Vector can only have elements of the PoolObject type or subtype.
This restriction is enforced through generics. Method getPool() returns a ref-
erence to the pool an object belongs to (it is possible that a Vector contains
elements from different pools).

To bound the use of memory, we note that memory allocations in the Vector
class result from resizing its internal storage element (an array of objects), throw-
ing new exceptions, and from the use of iterators (create a new Iterator ob-
ject). Resizing is avoided by fixing the size of the internal storage element. The
fixed-sized storage element together with the fixed-size pool of objects implies
that the maximum number of elements that the collection will store must be
known in advance. This value will be application-specific and can be calculated
according to the application requirements through static analysis. Creating new
exception objects is avoided by pre-allocating them in immortal memory during
class initialization.

For the modified version of the HashMap class, we also used pools of objects.
However, with the HashMap class we need a double object-pool management,
one for the objects representing entries in the bucket list (implementations of
Map.Entry) and one for the Map objects that are to be added to the hash map.

4.3.5 Comparison with JCL

Tables 4.2 and 4.3 show a comparison between our modified and the original
classes of the JDK 6 implementation. Tables 4.2 compares the lines of code
(LoC), number of fields (NoF), number of methods (NoM), and number of con-
structors (NoC). In each category the numbers to the left of the "/" symbol
correspond to the original JDK implementation while the number to the right
correspond to our implementation. The numbers in parenthesis represent the
number of methods belonging to the public API of the class. Table 4.3 shows
the number of modified methods and the number of additional methods. The
number in parenthesis indicates how many of the modified methods belong to
the public API.

None of the original interfaces implemented by the modified classes were changed.

98 Scoped Memory Use: Patterns and Reusable Libraries

+createObject() : PoolObject

<< In te r face>>
PoolObjectFactory
(libs::safeutil::extras)

#DEFAULT_CAPACITY : int = 16
+MAX_OBJECTS : int
#objects : PoolObject[]
#usedObjects : int
~factory : PoolObjectFactory

+ObjectPool(factory : PoolObjectFactory)
+ObjectPool(size : int, factory : PoolObjectFactory)
+usedObjects() : int
+maxObjects() : int
+getPoolObject() : E
+releasePoolObject(object : PoolObject) : void

ObjectPool
(libs::safeutil::extras)

<<Property>> +free : boolean
<<Property>> +pool : ObjectPool<?>

+initialize() : void
+reset() : void
+setPool(pool : ObjectPool<PoolObject>) : void

<< In te r face>>
PoolObject

(libs::safeutil::extras)

#elementCount : int
#DEFAULT_CAPACITY : int = 10
~biggerThanElemCntExc : ArrayIndexOutOfBoundsException
~indexExc : IndexOutOfBoundsException
~maxCapExc : IllegalStateException
~initCapExc : IllegalArgumentException
#elementData : PoolObject[]

+SafeVector(initialCapacity : int)
+SafeVector()
+copyInto(anArray : Object []) : void
+capacity() : int
+size() : int
+isEmpty() : boolean
+elements() : Enumeration<E>
+contains(o : E) : boolean
+indexOf(o : E) : int
+indexOf(o : E, index : int) : int
+lastIndexOf(o : Object) : int
+lastIndexOf(o : Object, index : int) : int
+elementAt(index : int) : E
+firstElement() : E
+lastElement() : E
+setElementAt(obj : E, index : int) : void
+removeElementAt(index : int) : void
+insertElementAt(obj : E, index : int) : void
+addElement(obj : E) : void
+removeElement(obj : Object) : boolean
+removeAllElements() : void
+toArray() : Object []
+get(index : int) : E
+set(index : int, element : E) : E
+add(e : E) : boolean
+remove(o : Object) : boolean
+add(index : int, element : E) : void
+remove(index : int) : E
+clear() : void
+equals(o : Object) : boolean
+hashCode() : int
+toString() : String
+listIterator(index : int) : ListIterator<E>
+listIterator() : ListIterator<E>
+iterator() : I terator<E>

Vector
(libs::safeutil)

E : PoolObject

E : PoolObject

factory

#elementData *

+poo l

Figure 4.8: Class hierarchy of the modified Vector class.

4.3 Reusable Libraries: Implementation 99

One of the goals is to keep compatibility as close as possible to standard Java
applications. However, a number of interfaces implemented by the original JDK
6 classes are not allowed by SCJ. For example, the Cloneable interface is not al-
lowed because of its weak definition. Therefore, the clone() method will throw
a CloneNotSupportedException. The Serializable interface is left as part of
the implemented classes for compatibility with standard Java, but its inclusion
or exclusion has no effects on a SCJ application.

Some of the constructors had to be eliminated due to their underlying algo-
rithm. For example, the Vector(Collection<? extends E> c) is omitted
because the size of the final array element created cannot be guaranteed. This
is because the constructor relies on the size of the Collection parameter, which
can be modified while the constructor is still executing. As a result of modifying
the collection, array objects of varying size can be created and it is not known
which one will be returned to be used as the storage element for the Vector.
From this it follows that methods operating on collections are also eliminated.
Constructors that require parameters for resizing are also omitted, as well as
methods for resizing and ensuring capacity. A similar restriction regarding con-
structors and resizing methods applies for HashMap.

The reduction in the number of methods and lines of code is a consequence
of two things: (1) the elimination of methods that are no longer needed (e.g.
resizing methods) and (2) the reduced number of methods allowed by the SCJ
profile. The increase in the number of fields in the implemented classes is a
consequence of the pre-allocated exceptions included as class variables.

Additional methods in the modified classes are the result of needing specific SCJ
functionality, such as a scope change in DataInputStream, or because exceptions
that may be thrown by the class are preallocated in immortal memory and
therefore introduce a static initializer method.

4.3.6 Testing

To check that the implemented classes are functionally correct, a set of test
cases were developed using the standard JUnit Java framework. The test cases
allow us to check the majority of methods, except for those that involve parts of
the SCJ API. For methods including parts of the SCJ API, the Java processor
JOP [113] our SCJ implementation was used.

To test that there are no reference assignment errors, we used the private mem-
ory analyzer tool described in [37] together with the reference assignment check
facility of JOP. Memory consumption is checked by measuring the amount of

100 Scoped Memory Use: Patterns and Reusable Libraries

Table 4.2: Comparison of the implemented classes with JDK’s implementation.
In each category the numbers to the left of the "/" symbol correspond
to the original JDK implementation. LoC = Lines of code, NoF =
Number of fields, NoM = Number of methods. Number of public
methods is in parenthesis.

Class Name LoC NoF NoM NoC1

AbstractStringBuilder 447 / 237 2 / 6 52 (50) / 29 (26) 2 / 2
StringBuilder 189 / 119 1 / 1 38 (35) / 19 (18) 4 / 4

DataInputStream 212 / 108 4 / 5 18 (18) / 17 (17) 1 / 1
DataInputStream$ReadUtfHelper2 – / 77 – / 2 – / 1 – / 1
DataInputStream$13 – / 6 – / 0 – / 1 – / 0

Vector 322 / 228 4 / 7 48 (45) / 36 (35) 4 / 2
Vector$14 14 / 14 1 / 1 2 / 2 0 / 0
Vector$Itr 33 / 33 3 / 3 4 / 4 0 / 0
Vector$ListItr 43 / 43 0 / 0 6 / 6 1 / 1

HashMap 356 / 269 10 / 22 36 (13) / 24 (11) 4 / 2
HashMap$Entry 48 / 57 4 / 5 8 / 9 1 / 1
HashMap$EntryIterator 5 / 5 0 / 0 1 / 1 0 / 0
HashMap$EntrySet 21 / 24 0 / 0 5 / 5 0 / 0
HashMap$HashIterator 41 / 43 4 / 4 3 / 3 1 / 1
HashMap$KeyIterator 5 / 5 0 / 0 1 / 1 0 / 0
HashMap$KeySet 17 / 27 0 / 0 5 / 5 0 / 0
HashMap$ValueIterator 5 / 5 0 / 0 1 / 1 0 / 0
HashMap$Values 14 / 14 0 / 0 4 / 4 0 / 0
1 Zero means only the default implicit constructor.
2 Not in JDK6, encapsulates SCJ functionality.
3 Not in JDK6. Anonymous Runnable class.
4 Anonymous Enumeration class.

4.3 Reusable Libraries: Implementation 101

Table 4.3: Number of modified methods and additional
methods in the modified classes. The num-
ber in parenthesis indicates how many of the
modified methods belong to the public API.

Class Name Modified Additional
methods methods

AbstractStringBuilder 11 (11) 1
StringBuilder 1 (0) 0

DataInputStream 1 (1) 1
DataInputStream$ReadUtfHelper 0 1
DataInputStream$1 0 1

Vector 16 (15) 2
Vector$1 0 0
Vector$Itr 0 0
Vector$ListItr 0 0

HashMap 11 (5) 1
HashMap$Entry 0 1
HashMap$EntryIterator 0 0
HashMap$EntrySet 1 0
HashMap$HashIterator 1 0
HashMap$KeyIterator 0 0
HashMap$KeySet 1 0
HashMap$ValueIterator 0 0
HashMap$Values 0 0

102 Scoped Memory Use: Patterns and Reusable Libraries

memory used by the different methods in the libraries. Memory measurements
are only carried out on methods that have memory allocations identified by the
analysis in Section 4.3.1. WCET is tested with JOP’s distribution WCET tool,
WCA [116]. We check that loop bounds are correctly found. Our synthetic test-
bench for this part of the testing is a SCJ application with shared data structures
in mission memory that are accessed from a set of PeriodicEventHandlers
(PEH).

As a final step, two additional, more complex applications were tested. First,
the new java.util collection classes were used as drop-in replacements for the
shared data structures in the parallel miniCDj benchmark [135]. The miniCDj
benchmark is a SCJ version of the benchmark described in [65]. miniCDj im-
plements an air traffic controller simulator that generates artificial radar frames
containing airplane positions. The frames are processed to detect possible col-
lisions. For the parallel version, one PEH generates the radar frames and a
selectable number of AperiodicEventHandlers process them.

The second test uses a SCJ version of a watchdog application running on top
of the Cubesat space protocol (CSP) [14]. CSP is a network-layer protocol
designed at Aalborg University that is used by small space-research satellites
called Cubesats. The watchdog application has one PEH that sends packets
to a set of nodes and one PEH functions as a router. An interrupt service
routine adds incoming packets into the router’s queue. For our experiments,
one of the CSP nodes was an on-board satellite computer used in commercial
Cubesats. The application has three main data structures that handle packets,
connections and sockets. We replaced the data structure used to handle packets
with our Vector implementation. Functionality was not affected nor were any
scope-related issues introduced. An interesting result was a reduction of almost
7% of the use in immortal memory; in the original implementation, the router
PEH needs additional packet-managing structures.

4.3.7 Discussion

Based on our analysis and the implementation of our reusable libraries, we found
certain issues that are worth discussing. We comment on the issues of setting
loop bounds for library code, idioms and patterns for WCET analysis, appli-
cation developer considerations while using library code for SCJ development,
certification issues related to library code, and the stability of our modified
classes between releases of the OpenJDK.

4.3 Reusable Libraries: Implementation 103

4.3.7.1 Loop Bounds for Library Code

Because library code is intended to be a working and proven solution for the
development of reusable software components, it is not possible to set the max-
imum number of iterations of loops in library code as a fixed constant, as can
be done for specific applications. For example, a loop that iterates over the
elements of a collection will need that the maximum number of iterations be
the size of the collection, which will not be the same for different instances. We
therefore need to rely on the ability of analysis tools to automatically extract
such bounds. The importance of finding the maximum number of iterations is
that such value is needed for WCET/WCMEM5 analysis.

To automatically find loop bounds with our WCET tool, some loop exit con-
ditions had to be changed. For example the loop below iterates over all the
elements of a linked list (one linked list per element in the tab[] array) and
stops once the last element is found (i.e., the next pointer of an element is
null).

for(Entry e = tab[i]; e != null; e = e.next)

The modified version of the loop is:

Entry e = tab[i];
for (int j = 0; j < entries.length; j++){

if(e == null) break;
...
e = e.next;

}

In the original code we don’t know how many elements the list has and therefore
we need the boolean test (test for a null element) as the loop stop condition.
In the modified code, the entries element is a fixed-size pool of entries. The
reason for this change is that, even if the maximum number of elements in the
original list was known, our WCET tool currently cannot automatically find
bounds on loops whose exit condition depends on testing boolean variables.
In the modified loop, the worst-case iteration count, entries.length, can be
propagated in the data flow analysis of the WCET tool and identified as the loop
bound. The break statement is necessary to avoid iterations being performed
when they are not necessary.

5Worst Case Memory consumption

104 Scoped Memory Use: Patterns and Reusable Libraries

An alternative approach for bounding loops in library code is the use of standard
Java annotations to pass symbolic information about loop bounds, as proposed
in [53], where loops can be bounded with annotations of the form:

@LoopBound(max=elementCount)
for (int i = 0; i < elementCount; i++){...}

where the maximum number of iterations, elementCount in the code above, is
obtained from an annotation attached to the declaration of the class instance
implementing the method with the loop. However, such non-standard annota-
tions require the use of a modified Java compiler and therefore this option is
not implemented in our libraries.

Annotations for loop bounds in String and StringBuilder objects are more dif-
ficult to handle with such type of annotations because those objects can be cre-
ated in different ways e.g. explicitly with the new keyword, with the toString()
method, when declaring constant strings, as a result of concatenation with the
“+” operator, etc. In these cases there is no easy way to propagate information
about the internal character array size to internal methods containing loops.
In our libraries, we rely in creating strings with a fixed maximum size (see
Section 4.3.2) and propagating such value in the data flow analysis.

4.3.7.2 Programming Idioms and Patterns for WCET Analysis

Another issue found when performing WCET analysis of library code was the
use of overridden implementations of Object.equals(). The problem here is
that the call graph generated during the analysis contains cycles, and the WCA
tool is not able to handle this type of recursion. Cycles in the call graph were
observed in classes that use the java.util.Map.Entry inner class. Testing for
equality between two entries requires testing for equality between the pair of
key-value mappings contained in the entry. The key and value objects will call
their own implementation of the equals() method. One possible solution could
be to restrict the types of objects that can be stored as key-value mappings, and
to implement a different form of equality that avoids the use of an overridden
form of Object.equals. This is, however, too restrictive on the types of key-
value objects that can be used in a map.

The delegation pattern also generates cycles in the call graphs. For example,
the methods of the AbstractList.Sublist inner class make calls to the “real”
implementation of a List passed as argument to the constructor. To avoid

4.3 Reusable Libraries: Implementation 105

cycles, the annotation system proposed in [60] can be used to tighten the number
of possible receiver types of a method invocation.

The solution to this issue will require a stronger analysis and to modify our
WCET tool which was not done for the development of this thesis.

4.3.7.3 Application Developer Considerations

Many of the problems outlined in Section 4.2 can be solved by modifications
of the Java class libraries source code. Such modifications can minimize, but
cannot completely eliminate the occurrence of scoped memory protocol errors in
a complete application. For example, it is the responsibility of the application
developer to use caller allocated results or arguments to methods correctly, so
as to avoid illegal assignments. We have presented patterns for SCJ memory
usage in Section 4.1. Furthermore, a typing system based on annotations, such
as the one described in [89], can be useful in this case. This typing system adds
extra information about the scope of the different elements of an application,
which can later be retrieved to perform static analysis. In addition, which
restrictions exist for passed arguments and returned results should be considered
when overriding library method implementations.

4.3.7.4 Certification Issues in Library Code

As a final remark, it is important to note that the use of reusable components
and libraries for the development of safety-critical systems presents additional
challenges, e.g., unused code from a library introduces code that is not traceable
to requirements (dead and/or deactivated code). Certification standards, such
as DO-178C [6], expect that code not associated to requirements is either elimi-
nated or that requirements for the code are developed [1, 2, 3, 4, 45]. Moreover,
dead and deactivated code will appear as noncovered code during structural
coverage analysis an if detected in a late phase of the certification process may
require complete re-verification of the system [102]. Therefore, the benefits of
re-usability should overcome a potential increased certification effort and costs.

Another type of issue is the encapsulation of data, as this complicates robust-
ness testing [1], i.e., “the degree to which a system or component can func-
tion correctly in the presence of invalid inputs or stressful environmental condi-
tions” [61]. Robustness tests will not be able to access library-private data.

106 Scoped Memory Use: Patterns and Reusable Libraries

4.3.7.5 Stability Between Releases of the JDK

By comparing the source code between JDK6 and JDK7 of the modified classes
in this work, we found very few changes. The changes concentrate in methods to
ensure capacity, the use of the enhanced for-loop and generics. Those minimal
changes made our libraries relatively stable between JDK’s releases.

4.4 Summary

In this chapter we have analyzed possible use patterns of the scoped memory
as defined in safety-critical Java aiming at helping in the development of appli-
cations. We have also analyzed, identified, and proposed solutions to common
problematic patterns and idioms present in three of the most used Java libraries:
java.lang, java.util, and java.io.

Temporary storage offered by nested private memories can be exploited with
the use of scoped loops which are entered more than once per handler release. If
results are to be preserved for the next loop iteration, a simple approach is to up-
date global objects in immortal memory. However, the use of objects in immortal
memory is limiting and not thread safe because static fields are only allowed to
refer to other immortal objects and multiple threads may overwrite each other’s
parameters. A different approach is the use of auxiliary objects to return results
and pass arguments from and into the Runnable object required by the different
static methods available to traverse the scope stack, i.e. enterPrivateMemory(),
executeInOuterArea(), and executeInOuterAreaOf(). Returning objects from
private or nested private memory areas is accomplished by an allocation con-
text change and by saving the reference to the newly allocated object in a field
of an auxiliary object. The complexities of creating auxiliary objects, passing
references and saving results can be hidden by means of encapsulated methods.

Problematic patterns and idioms present in library code arise from the absence
of a GC and restrictions on how objects can refer to each other. Safety-critical
systems are more restricted and less dynamic than non safety-critical systems.
These characteristics allows for restrictions and simplifications to be made for
the implementation of reusable libraries for SCJ. We have adapted representative
sample library classes from those allowed in SCJ as a first step towards the
development of reusable libraries. The provided classes have predictable memory
consumption, are WCET analyzable, and maintain referential integrity between
objects created and used internally by the classes.

Chapter 5

Evaluation

In this chapter we present an evaluation of our SCJ’s implementation. We eval-
uate two main categories: (1) performance and timeliness and (2) compliance to
the SCJ specification. For the performance and timeliness category we used the
miniCDj benchmark,1 an application-based benchmark, and we developed spe-
cific benchmarking methodologies were we evaluate (1) the accuracy of periods
(i.e. release jitter), (2) linear-time memory allocation, (3) aperiodic event han-
dling execution according to priorities, and aperiodic event queue overflow policy
and size, (4) dispatch latency for interrupts, (4) context switch preemption la-
tency, and (5) correct priority inversion avoidance when executing synchronized
methods. In the compliance category we test how good our implementation
adheres to the SCJ profile by using an early work on a technology compatibility
kit (TCK) for SCJ developed at Purdue University.

Our test platform is the Altera DE-2 70 evaluation board with a Cyclone II
FPGA and 2 MB of external SRAM with access latency of 3 clock cycles. JOP
runs in the FPGA at 60 MHz and is configured with 4 KB method cache with
32 blocks and a stack cache of 512 KB.

This chapter is based on the published paper: “An Evaluation of Safety-Critical
Java on a Java Processor” [104].

1The miniCDj benchmark is a reduced version of the CDx benchmark described in [65]
and adapted for SCJ.

108 Evaluation

mission start,

t0
T + Φ 2T + Φ 3T + ΦΦ

time
release jitter

expected release values

Figure 5.1: Precision of periods

5.1 Microbenchmarks

In this section we present the micro benchmarks developed to test our SCJ
implementation. Each test is organized as an independent mission, where we
use the mission memory to store test-specific configuration data. Test results
and statistics are computed and displayed during mission cleanup phase. For
the tests described in Sections 5.1.1, 5.1.2, 5.1.4, 5.1.5 we used JOP’s cycle
counter for accurate timing measurements. For the tests of Sections 5.1.3 and
5.1.6 SCJ’s clock API was used, as we do not need a high degree of accuracy.

5.1.1 Accuracy of Periods

The majority of the computational load in real-time systems comes from periodic
activities (e.g. sampling sensor data and applying control laws) [30]. Support
for periodic activities is provided in SCJ via the PeriodicEventHandler class
where an application developer adds its own functionality by overriding the
handleAsyncEvent() method and provides a start time and a period. The start
value represents an offset measured from the start of the mission until the first
release of the PEH (Φ in Figure 5.1).

Ideally, the j -th release of a PEH will happen at integer multiples of the PEH’s
period plus the initial offset, as shown in Figure 5.1. However, in practice this
is not the case as there are many factors that might delay the release of a PEH
and therefore introduce release jitter. Some of those factors are inherent to the
platform where the set of PEHs execute such as the granularity of the clock
used to trigger the periodic events and the time it takes for the platform to
notice those events [77, 29]. There are also factors that do not depend on the
platform but on the particular set of tasks (in this case PEHs) that is being
executed because executing higher priority tasks at the release time of lower
priority tasks will delay the execution of the latter.

5.1 Microbenchmarks 109

Table 5.1: Measured PEH start time deviations

Period Max (us) Min (us) Avg (us) Stdev (us) Jitter (us)

5 68.8667 66.5333 68.6312 0.1587 2.3333
10 69.1667 66.6000 69.0245 0.1586 2.5667
30 69.6167 67.3500 69.6141 0.0725 2.2667
50 69.3667 67.0333 69.2006 0.1774 2.3333
100 69.2000 66.6500 69.1972 0.0811 2.5500
150 68.9000 66.6667 68.7582 0.1537 2.2333
300 69.5667 66.8833 69.2897 0.1985 2.6833
500 68.8667 66.5333 68.7248 0.1551 2.3333

To have an idea on the accuracy of successive periodic releases, in this part of
the evaluation we measured the component of the release jitter that is inherent
to our system. Our test setup uses 8 different periodic tasks, and each of this
tasks is included in a single mission (a single PEH per mission). For each
mission, the period of its PEH is set to 5, 10, 30, 50, 100, 150, 300, and 500 ms
respectively. The PEH executes no logic in its handleAsyncEvent() method
and it is rescheduled by the SCJ framework to be release at the next ideal
release time (see Figure 5.1) by calling the waitForNextPeriod() method. For
our experiments, we set the initial delay (offset from mission startup) to 0 (i.e.,
Φ = 0 in Figure 5.1) and proceed as follows:

1. We first obtain the mission start time, t0

2. We measure the actual release time of the j -th instance of a PEH, tjr, equal
to the time at which its handleAsyncEvent() method is executed

3. We calculate the time interval between the actual j -th PEH release time
and the start of the mission, tjr − t0

4. We calculate the deviation of the start time for the j -th PEH release, ∆j ,
as ∆j = (tjr − t0) − jT

Table 5.1 shows the values of ∆j measured for 1,000 releases of the single PEH.
The release jitter is thus equal to the maximum deviation of the start times
(difference between the minimum offset and the maximum offset) among all
releases of the periodic task [30]. In this case, the release jitter has a maximum
value of 2.68 µs.

The values in Table 5.1 represent the time it takes for the hardware to generate
an interrupt (in this case the timer interrupt), the interrupt dispatch latency,

110 Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5000 10000 15000 20000 25000 30000 35000

T
im

e
 (

u
s)

Allocation size (B)

Figure 5.2: Linear time memory allocation time

and the scheduling/dispatching time. This is indeed the case, as it will be shown
latter in sections 5.1.4 and 5.1.5.

5.1.2 Linear-time Memory Allocation Time

SCJ requires that mission and private scoped memories be linear-time memory
areas, i.e., memory regions where the allocation time is proportional to the
size of the allocated data. Immortal memory however is not required to be of
linear-time type [77]. If allocations in immortal memory are restricted to the
initialization phase then whether or not the immortal memory is of linear-time
type is not relevant. However, in mission phase, allocating data in immortal
memory can affect the timeliness of the system as allocations may have variable
execution times. In our implementation, all the SCJ memory areas are derived
from a single system class, called Memory, that provides linear-time allocations.

To test the linearity in memory allocation times ideally we would like to measure
the time it takes to perform the pure memory allocation, that is, without consid-
ering the time to execute an object’s constructor method. The problem is that
we can only allocate memory as new objects are created and even if we know
the size of the objects being created (possibly obtained with the SizeEstimator
class), measuring the time it takes for object allocation will also include the ex-
ecution time of the constructor. To measure the linearity of memory allocations
we use a different approach which consists on measuring the time it takes to
allocate a variable number of bytes of an array of integers. The number of bytes
allocated was varied from 8 to 32 K and each measurement for every allocation
size was repeated 1,000 times.

The results of this test are shown in Table 5.2 and Figure 5.2. Figure 5.2 shows

5.1 Microbenchmarks 111

Table 5.2: Measured scoped memory allocation times. The allocation size is
in bytes, the system clock is of 60 MHz, and the timer used for
measurements has a 1 clock cycle resolution.

Size Cycles Time (us)

8 56 0.9333
16 98 1.6333
32 184 3.0667
64 360 6.0000

128 712 11.8667
256 1416 23.6000
512 2824 47.0667

1,024 5768 96.1333
2,048 11296 188.2667
4,096 22592 376.5333
8,192 45184 753.0667

16,384 90368 1506.1333
32,768 180736 3012.2667

a plot of the measured allocation times registered where it can be seen the
linearity in the allocation times. The linearity in allocation times comes from
only requiring a pointer to be bumped while performing memory allocations (the
allocPtr in Figure 3.9). From Table 5.2 we see that there is no variation in the
measurements, a desirable characteristic in real-time systems where consistency
is the main concern.

5.1.3 Aperiodic Event Handling

Real-time systems also need to respond to events (internal or external) that
occur at random points in time. Handling this type of events has to be done
as they occur, without disturbing the system’s main application logic, which
is usually executed by periodic activities [132]. Unanticipated events can be
handled by aperiodic or sporadic tasks. An aperiodic task has either soft or no
deadlines while sporadic tasks have hard deadlines and a minimum inter-arrival
time [76].

SCJ does not provide support for sporadic tasks, as there is no detection of
minimum inter-arrival time violations. Only aperiodic tasks can be implemented
through the AperiodicEventHandler (AEH) or AperiodicLongEventHandler
(ALEH) classes. Both AEHs and ALEHs must have a priority and, in the
absence of shared resources, they will not interfere with the execution of higher

112 Evaluation

priority PEHs. However, PEHs with lower priorities can miss their deadlines
due to a higher priority AEH or ALEH with a large execution time. As opposed
to RTSJ, where there is a configurable-size queue of events to service bursts of
events, in SCJ the queue is of fixed size and equals to one with a queue overflow
policy set to REPLACE, i.e. to overwrite pending event releases.

For this part of the evaluation, we test that: (1) high priority PEHs do not miss
their deadlines, (2) the event queue size is equal to one, and (3) the queue over-
flow policy is set to replace. Our setup is as follows: we generate the two task
sets of PEHs shown in Table 5.3 with a processor utilization of 69% and 88%.
The 69% is chosen as it is the theoretical utilization limit to guarantee schedu-
lability under rate monotonic [75] and the 88% value represents the average case
bound for rate monotonic [73]. Schedulability of the task sets was verified with
the TIMES tool [13].We then increase the total load of the system by generating
a burst of events that are to be served by a single ALEH. An ALEHs is used
instead of an AEH because we can piggy-back a payload of type long to the
servicing of an event request and then use this payload to identify which event
is being serviced. The priority of the ALEH is chosen to be a value between the
priorities of the PEHs with the purpose of dividing the periodic task sets in two
parts: one that can potentially miss deadlines (Prio(PEH_i) < Prio(ALEH))
and one that must not miss deadlines (Prio(PEH_i) ≥ Prio(ALEH)). The
ALEH priority was set to be Prio(PEH_3) > Prio(ALEH) > Prio(PEH_4).

The events are generated using a PEH (the “ST” task in 5.3) that fires the ALEH
at random times. The arrival times of events follows a Poisson distribution with
a mean arrival time of 200 ms (λ = 5). The Poisson distribution is chosen
because it can accurately model the arrival of random events in time due to its
no-memory property [92].2 Ten different sets of random events generated from
the mentioned distribution were used in our experiments.

The service time of each event, i.e. the execution time of the ALEH, varies from
15 ms to 200 ms in order to increase the aperiodic load of the system. The
aperiodic load is a function of the number of serviced events, N , and the ALEH
execution time, C, and is calculated as NC/∆T , where ∆T is the total running
time of the experiment, in this case 50,000 ms.

Figures 5.3 and 5.4 show the results of our experiments. In Figures 5.3a and
5.4a we see the increase in the total aperiodic load as the event service time
increases. In Figures 5.3b and 5.4b we see how the total number of events
serviced decreases as the event service time increases. This reduction is a conse-
quence of events overwriting each other if they arrive too close or if they arrive
while still servicing a previous event as only the most recent event received will

2The arrival of one event has no influence on the arrival/non-arrival of a latter event

5.1 Microbenchmarks 113

Table 5.3: Task sets used for the aperiodic event handling tests. The tasks are
listed in descending priority order, deadlines are equal to periods,
and the “ST” task is the PEH that fires the ALEH and runs at the
highest priority

(a) 69% utilization task set

Name C (ms) T (ms) U

ST 4.174 10 0.4174
PEH_0 5.000 200 0.0250
PEH_1 5.000 250 0.0200
PEH_2 15.000 300 0.0500
PEH_3 15.000 500 0.0300
PEH_4 20.000 750 0.0267
PEH_5 20.000 1125 0.0178
PEH_6 25.000 1250 0.0200
PEH_7 45.000 2000 0.0225
PEH_8 50.000 2500 0.0200
PEH_9 100.000 2525 0.0396

Total Utilization 0.6890

(b) 88% utilization task set

Name C (ms) T (ms) U

ST 4.170 10 0.4170
PEH_0 5.000 150 0.0333
PEH_1 5.000 155 0.0323
PEH_2 15.000 300 0.0500
PEH_3 25.000 500 0.0500
PEH_4 25.000 550 0.0455
PEH_5 30.000 1000 0.0300
PEH_6 50.000 1250 0.0400
PEH_7 110.000 1500 0.0733
PEH_8 110.000 1750 0.0629
PEH_9 100.000 2000 0.0500

Total Utilization 0.8843

be serviced. We checked that only the most recently arrived event is serviced
by using the long parameter of the released ALEH to identify which event is
being serviced. In this way we see that our implementation has a REPLACE
policy for the overflowing of an event queue and that the size of this queue is
equal to one. In JOP this queue is implemented as a one-element array. As
we are using a probability distribution to generate our events, the total number
of events released is variable with a maximum of 259 and a minimum of 217.
Therefore, Figures 5.3a, 5.3b,5.4a, 5.4b show the average values (solid lines or
bars) together with the maximum and minimum values.

Figures 5.3c and 5.4c show the number of deadlines missed normalized to the
total expected releases per PEH (T/∆T)). Deadlines start to be missed as the
aperiodic load reaches around 10% and 8% for the 69% and 88% periodic loads
respectively. High priority PEHs (Prio(PEH_i) ≥ Prio(ALEH)) never miss
a deadline and therefore are not included in figures 5.3c and 5.4c. Furthermore,
the lowest priority PEHs are the most affected by the increase in the aperiodic
load as they are the first to miss their deadlines and the ones that miss the most
deadlines. In these figures only average values are shown.

We ran a similar experiment with several ALEHs running at the lowest priority.
The results showed that PEHs do not miss any deadline and that the aperiodic
load stays below 12% and 31%. As the number of available low priority ALEHs

114 Evaluation

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p
er

io
d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p
er

io
d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

P
E

H
 M

is
se

d
 D

ea
d
li

n
e

R
at

io

ALEH Execution Time (ms)

PEH_4

PEH_5

PEH_6

PEH_7

PEH_8

PEH_9

(a) Aperiodic load as a function of the ALEH execution time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

P
E

H
 M

is
se

d
 D

ea
d

li
n
e

R
at

io

ALEH Execution Time (ms)

PEH_4

PEH_5

PEH_6

PEH_7

PEH_8

PEH_9

(b) Number of events serviced as a function of the ALEH execution time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

P
E

H
 M

is
se

d
 D

ea
d

li
n
e

R
at

io

ALEH Execution Time (ms)

PEH_4

PEH_5

PEH_6

PEH_7

PEH_8

PEH_9

(c) Fraction of missed deadlines per PEH as a function of the ALEH execution time

Figure 5.3: Aperiodic load (a), events serviced (b), and PEH’s missed dead-
lines (c) as a function of the ALEH execution time for the 69%
periodic load experiment.

5.1 Microbenchmarks 115

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p
er

io
d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p
er

io
d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

P
E

H
 M

is
se

d
 D

ea
d
li

n
e

R
at

io

ALEH Execution Time (ms)

PEH_4

PEH_5

PEH_6

PEH_7

PEH_8

PEH_9

(a) Aperiodic load as a function of the ALEH execution time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

P
E

H
 M

is
se

d
 D

ea
d

li
n
e

R
at

io

ALEH Execution Time (ms)

PEH_4

PEH_5

PEH_6

PEH_7

PEH_8

PEH_9

(b) Number of events serviced as a function of the ALEH execution time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 L
o

ad
 (

%
)

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

E
v

en
ts

 S
er

v
ic

ed

ALEH Execution Time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

P
E

H
 M

is
se

d
 D

ea
d

li
n
e

R
at

io

ALEH Execution Time (ms)

PEH_4

PEH_5

PEH_6

PEH_7

PEH_8

PEH_9

(c) Fraction of missed deadlines per PEH as a function of the ALEH execution time

Figure 5.4: Aperiodic load (a), events serviced (b), and PEH’s missed dead-
lines (c) as a function of the ALEH execution time for the 88%
periodic load experiment.

116 Evaluation

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f
se

rv
ic

ed
 e

v
en

ts

AEH execution time (ms)

1 AEH

2 AEHs

3 AEHs

4 AEHs

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 20 40 60 80 100 120 140 160 180 200

A
p
er

io
d
ic

 l
o
ad

 (
%

)

AEH execution time (ms)

(a) Aperiodic load and serviced events for a 69% periodic load.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
er

 o
f

se
rv

ic
ed

 e
v
en

ts

AEH execution time (ms)

1 AEH

2 AEHs

3 AEHs

4 AEHs

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120 140 160 180 200

A
p

er
io

d
ic

 l
o

ad
 (

%
)

AEH execution time (ms)

(b) Aperiodic load and serviced events for an 88% periodic load.

Figure 5.5: Aperiodic load and number of serviced events as a function of the
AEH execution time for a periodic load of 69% (top) and 88%
(bottom). The priority of the AEHs is lower than the priority of
the PEHs.

5.1 Microbenchmarks 117

increase, more events can be serviced, giving an intuition on how to dimen-
sion the system in terms of the number of aperiodic event handlers required to
serve aperiodic events with a known arrival pattern. The results are shown in
Figure 5.5a and Figure 5.5b for the 69% and 88% periodic load respectively.

5.1.4 Dispatch Latency for Interrupts

SCJ supports the notion of first level interrupt handlers in Java through the
ManagedInterruptServiceRoutine (MISR) class. Similar to other MSOs, MISR
objects have to be registered to a specific mission and the interrupt service rou-
tine (ISR) code is implemented by overriding the handle() method of RTSJ’s
InterruptServiceRoutine class, which in SCJ is more restricted than its RTSJ
counterpart. In general, in Java an ISR can be implemented as a handler or as
an event [114]. The handler approach uses a method invoked by the hardware
while the event approach uses a form of asynchronous event to fire an AEH or
unblock a managed thread. The advantages and disadvantages of both methods
are described in more detail in [114].

Interrupt handlers are executed at hardware priorities, i.e., priorities that are
higher than those of ordinary schedulable objects, and can delay the completion
of schedulable objects. It is therefore important that interrupts are dispatched
as fast as possible. An ISR can be preempted (or interrupted) only by a higher
priority interrupt, assuming that the ISR disables only lower or equal priority
interrupts. Nested interrupts can make the system more responsive to external
events but can increase the blocking times due to interrupts.

In this part of our evaluation we measure the interrupt dispatch latency when us-
ing the SCJ framework and compare it to the dispatch latency when JOP’s API
is used. For that we measure the time between the generation of an interrupt
and its delivery.3 How interrupts are generated is implementation dependent,
making it difficult to measure the time of the interrupt generation in a way that
can be ported between SCJ implementations. Measuring the time when the
interrupt is delivered is however non-implementation dependent and is equal
to the time when the handle() method of the InterruptServiceRoutine is
executed.

In our test setup we used JOP’s system device to generate interrupts triggered
by software. The interrupt generation time is therefore the time just before
triggering the interrupt. The interrupt delivery time will be the time when the

3Generation is the hardware mechanism that makes the interrupt available to the Java
program while delivery is the action that invokes an ISR [77]

118 Evaluation

Table 5.4: Number of interrupts serviced when measuring the interrupt dis-
patch latency.

(a) Using the SCJ framework

Mission Number of
No. Interrupts

1 788
2 834
3 820
4 800
5 804
6 822
7 798
8 832
9 811
10 823

(b) Using JOP’s API

Iteration Number of
No. Interrupts

1 813
2 701
3 917
4 304
5 204
6 391
7 705
8 903
9 294
10 190

first statement of the handle() method of the ISR is executed. Interrupts will
be triggered by a PEH when the SCJ framework is used or by the main thread
when JOP’s API is used.

When the SCJ framework was used, we run a total of 10 test iterations. Each test
iteration is structured as an SCJ mission with 10 PEHs from where interrupts
were triggered at random times and from different PEHs. Similarly a total of 10
test iterations were executed with JOP’s API. An iteration in this case consists
of randomly triggering interrupts from within the body of a loop in the main
thread. A total of 10 loop iterations were run.

The number of interrupts triggered on each test iteration when using the SCJ
framework and JOP’s API are shown Table 5.4a and 5.4b respectively. Table 5.5
compares the measured dispatch latencies when using SCJ’s MISR and when
using a plain runnable invoked by the hardware as the ISR. The overhead when
using the SCJ implementation comes from invoking four methods as opposed to
only one for the non-SCJ version. The additional methods result from an extra
indirection (invoking the InterruptServiceRoutine’s handle() method) and
having to execute the ISR in a private memory. Entering a private memory
requires two methods: (1) its enter() method, invoked by the SCJ framework,
and (2) the run() method of the runnable object that will execute in the private
memory.

5.1 Microbenchmarks 119

Table 5.5: Measured interrupt dispatch latency.

Cycles Time (us)

SCJ 1462 24.3667
Non-SCJ 266 4.4333

Table 5.6: Measured context switch latency times

Period Max (us) Min (us) Avg (us) Stdev (us)

5 65.6167 58.1500 64.8901 0.4701
10 65.7000 58.1500 65.2281 0.6212
30 66.0667 58.1500 65.1334 0.6791
50 66.0667 58.1500 64.4568 0.4831
100 65.7000 58.1500 65.2053 0.6060
150 66.0667 58.1500 64.8920 0.4710
300 66.0667 58.1500 65.2309 0.6206
500 66.0667 58.1500 65.0801 0.6872

5.1.5 Context Switch Latency

Context switch latency is a source of overhead that can affect the performance
of the system. To measure the context swith delay in our system we used two
PEHs, one with high priority, PEHH , and the other with a lower priority, PEHL.
The start times of both PEHs are selected in a way that makes PEHL begin
its execution before PEHH . PEHL has a long period, long enough to execute
only one release during the test, and an infinite loop that constantly updates
a variable with the current time, tL. PEHH has a shorter period and reads
the current time, tH , as the first statement of its handleAsyncEvent() method.
Because PEHH will always preempt PEHL, the context switch latency will be
equal to the difference between tH and tL.

The results of our measurements are shown in Table 5.6 In this test we used 10
high-priority PEHs with different periods and 1,000 context switches for each
test were registered. The minimum value is obtained when tL is updated just
before the context switch while the maximum value is obtained when the context
switch happens just before updating tL.

120 Evaluation

Table 5.7: Task set for synchronization test

Priority Offset (ms) Critical section (ms) WCET (ms)

HIGH 400 100 300
MEDIUM 300 0 400
LOW 0 500 600

Critical sectionH

L

M

100 500 1000 1500

Figure 5.6: Expected execution pattern of the task set used to test the correct
synchronization implementation (Table 5.7)

5.1.6 Synchronization

Contention for shared resources among managed schedulable objects can result
in priority inversions. To avoid priority inversions, SCJ requires the use of the
priority ceiling emulation (PCE) protocol to control access to shared resources.

To test a correct PCE implementation, we use the task set of Table 5.7 that
consists of three PEHs with low, medium, and high priorities. The offset column
is the time of the PEH’s first release, the critical section column is the amount
of time that the PEH requires a shared resource, measured from the time the
PEH gets the shared resource. The WCET column is the total execution time
of the PEH. The low and high priority PEHs require access to a shared object
located in mission memory and its lock is first acquired by the low priority PEH
at time t = 0. Then, at time t = 400, the high priority PEH will try to get
the lock to the shared object. With this setup we will force a potential priority
inversion in the task set. We expect that with a correct PCE implementation
the execution pattern to be as shown in Figure 5.6. The measured release delay
and response times for all PEHs are shown in Table5.8.

JOP’s implementation of the PCE protocol is done by globally disabling all in-
terrupts within synchronized methods. As the scheduler is a first level interrupt
handler fired by the programmable timer interrupt, with interrupts globally dis-
abled there will be no scheduling decisions, i.e., once a PEH has acquired a lock

5.1 Microbenchmarks 121

Table 5.8: Measured timing values of synchronization task set

PEH Release delay (ms) Resp. Time (ms)

HIGH 501.840 403.565
MEDIUM 802.397 907.115
LOW 0 1308.939

it cannot be preempted or interrupted. To provoke a priority inversion we need
the medium priority PEH to be able to preempt the low priority PEH once it
has acquired the lock to the shared object. However, this is not possible if no
scheduling decisions are made. The object’s monitor ceiling is therefore effec-
tively equal to the maximum priority of all the possible managed schedulable
objects that could ever acquire the lock of the shared object.

5.1.7 Discussion

By organizing each micro benchmark as a single mission we are also testing
compliance to the mission-based programming model of SCJ. We are implicitly
testing the mission life cycle by: (1) changing missions and executing them
in a predetermined sequence, (2) resizing the mission memory before mission
initialization, (3) providing mission termination mechanisms, (4) using nested
private memories at mission cleanup, and (5) delaying the start of tasks with
the start parameter of the ReleaseParameters class.

In order to make our micro benchmarks portable across SCJ implementations
we developed them using the available public SCJ API features. However, when
we used SCJ’s clock API for timing measurements an overhead is introduced
due to additional method calls and normalization operations. Moreover, saving
such measurements in clock objects allocated in shared memory areas increases
the complexity. The use of the clock API is kept for portability however there
are some tests where it is necessary to increase the accuracy of measurements.
For the tests described in Sections 5.1.1, 5.1.2, 5.1.4, 5.1.5 we used JOP’s cycle
counter instead.

One of the SCJ’s features that complicates portability is the correct sizing of
memory resources of MEHs, in particular for mission sequencers. Contrary to all
other MEHs, mission sequencers do not have a private scope and they execute
either in the memory of its enclosing mission (or in immortal memory if it is
the top level sequencer) or, during mission initialization, in the memory of the
mission returned by its getNextMission() method. Memory requirements are

122 Evaluation

specified by the sequencer’s StorageParameters that has two arguments whose
value limit the amount of immortal and mission memory that the sequencer can
use: maxImmortal and maxMissionMemory respectively. The problem is that, in
addition to the explicit memory requirements set by the application developer for
the mission being initialized, an implementation may need to allocate additional
data structures and objects in immortal and/or mission memory, e.g. structures
to register the handlers. This amount of memory required by the implementation
is unknown to the application developer meaning that knowledge of the mission’s
memory requirements alone is not enough to correctly set the maxImmortal and
maxMissionMemory parameters.

A similar issue applies for the the sizes array, also an argument of StorageParameters
as this array is completely implementation specific and most likely implementa-
tions will use this array in different forms or even ignore it.

5.2 SCJ’s TCK and miniCDj

As SCJ is still in an early draft phase, currently there is no official TCK avail-
able that can be used to check our implementation against the specification.
There is however a reduced functionality TCK done at Purdue University that
we used to check the portions of the SCJ implementation that this TCK ex-
ercises. The TCK is organized as a collection of SCJ applications and each
of them evaluate different features of the SCJ specification. It is however not
possible to apply all the tests of the TCK to our implementation because some
tests rely either on outdated or L2-specific features. Other tests require access
from user space to non-public methods of the SCJ specification such as test-
ing that private memories are entered by only one thread. This test is done
by explicitly creating private memories and entering them with the enter()
method. To run these type of tests we need access to implementation details
of the javax.safetycritical package. We can either use a delegate class in
the javax.safetycritical package to access such methods or make them tem-
porarily public. We used the latter option to exercise such type of tests.

The TCK tests successfully executed are summarized in Table 5.9. The reader
is referred [136] for the details of the tests. Every subdivision in the table
represents what is being tested on a single test case of the TCK.

Test 1 requires that all missions can be executed and that their executions do
not overlap, that is, each mission is executed in a predefined order. Test 2 is
satisfied by design, because there is no heap in JOP when scopes are used and
there are no daemon activities in JOP (which typically depend on an operating

5.2 SCJ’s TCK and miniCDj 123

Table 5.9: TCK tests implementation and successfully passed

No. Test description

1 Missions can be executed sequentially

2 AEH, PEH, NHRT are no-heap and non-daemon

3 The default ceiling for locks is PriorityScheduler.instance().getMax-
Priority()

4 Nested calls from one synchronized method to another are allowed
5 The only scheduler is the preemptive priority-based scheduler with at least 28

priorities. There is no support for changing base priorities.

6 Test classes CyclicExecutive and CyclicSchecule to make sure all frames in
a mission are issued sequentially according to the order of their creations

7 Only one server thread of control shall be provided by the VM at L0
8 The handlers shall be executed non preemptively on Level 0
9 Synchronized code is not allowed to self suspend on Level 0 and 1. An Illegal-

MonitorStateException is thrown if this constraint is violated

10 Priority Ceiling Emulation supported on Level 1+

11 Full preemptively scheduling shall be supported Level 1+

12 A preempted schedulable object must be placed at the front of the run queue
for its active priority level

13 Each application uses a global mission scope in the place of immortal memory
to hold global objects used during a mission

14 In initialization phase and mission phase all objects are allocated in mission
memory

15 Each schedulable object has its private scoped memory
16 Object creation in mission scoped memory or immortal memory during the

mission phase is allowed
17 MissionMemory is ScopedMemory
18 PrivateMemory is based on LTMemory
19 Deep nested private memory is supported

20 A given private scoped memory can only be entered by a single thread at any
given time

21 Mission memory is resizable

22 The real-time clock should be monotonic and non-decreasing

124 Evaluation

system).

Tests 3 and 5 are also satisfied by design as we are in control of the default
priority ceiling and the maximum priority values. Test 4 basically tests a correct
implementation of synchronized methods. Test 6 is required for a correct cyclic
executive implementation. Satisfying tests 7 and 8 is a consequence of how we
implement L0. We are sure that only one thread will be executing, the main
thread (see Section 3.3.1) and therefore no preemption can occur. Test 10 is
also satisfied by the particular implementation of JOP’s synchronized methods
(see Section 5.1.6).

Level 1 applications will use JOP’s scheduler, which is a fixed priority preemptive
scheduler and therefore test 11 is satisfied. In JOP there are no independent
priority queues for tasks with the same priority. Another way to see this is that
there is a single one-element queue for each priority thus test 12 will be satisfied.

Test 13 is only testing that given a shared object in mission memory it will
be accessible to all MSOs that can get a reference to it. Test 14 requires that
the default allocation context when using the new keyword is mission memory,
that is, it is testing that the infrastructure is able to change to mission memory
once entering any of those phases. To satisfy test 15 it is required that the
allocation context of any MSO is a private memory (i.e., neither immortal nor
mission memories). Tests 17 and 18 are testing a correct memory hierarchy
implementation.

Test 20 is satisfied also by design, as we do not have any method to explicitly
create or enter private memory areas. We can only execute several MSOs in the
shared memories. Test 21 is trivially satisfied, a mission memory either can or
cannot be resized. Test 22 is checking a correct normalization of time values.

It is also important to mention that from the TCK, a maximum of 66 error
messages can be obtained as the test cases fail. From those 66 errors, up to 35
apply to our implementation4 and the rest are either for L2 features, to test the
Java native interface, or refer to features no longer available. Of those applicable
failures none was observed.

To test our implementation with a complete application, we have used the
miniCDj benchmark. We used six planes, 1,000 frames, and the period of the
detector was set to 1,000 ms. No frame overruns were detected and values for
the detector’s execution time are shown in Table 5.10.

The variation in the computation time is because collision detection depends

4Each test in Table 5.9 can produce more than one error message.

5.3 Summary 125

Table 5.10: miniCDj benchmark execution time measurements

Min (ms) Max (ms) Avg (ms) Stdev (ms)

422.94 744.05 568.03 75.72

on both, the current and the previous frames, thus generating a variable size
space to search for potential collisions. The measured release delay is less than
3 microseconds thus it is not shown in Table 5.10.

To see if parts of our SCJ implementation may affect the execution times, we
also run this test with scope checks enabled and disabled, and using both, JOP’s
microsecond counter and the SCJ clock API to drive the cyclic schedule. None
of these showed to add considerable overhead. The main source of execution
time comes from the large number of floating point operations that in JOP are
done in software.

5.3 Summary

In this chapter we have presented an evaluation of the SCJ implementation on
a Java processor. We have developed a series of micro benchmarks organized as
independent missions in order to test timeliness and performance of the system.
We have tested the accuracy of periods, linear-time memory allocations, ape-
riodic event handling, interrupt dispatch latency, context switch latency, and
synchronization. In addition, we have used an application-oriented benchmark,
the miniCDj benchmark, to test in a non-isolated way our implementation. We
have also used a reduced version of Purdue’s SCJ technology compatibility kit
to show how well our implementation adheres to the SCJ specification.

126 Evaluation

Chapter 6

Conclusions

In this thesis we have examined the use of the safety-critical Java profile for
embedded systems through an implementation of the safety-critical specifica-
tion for Java, JSR-302, on a time-predictable Java processor. In this work we
have reported in our experiences while implementing the profile, explored hard-
ware extensions for time-critical operations, and examined the impact of SCJ’s
scoped memory model on the development of applications and reusable libraries.
Our implementation is open source and can be downloaded from JOP’s main
repository.

6.1 Main Results

The SCJ specification is reaching its maturity and with this implementation we
have proved its feasibility on an embedded platform. Our implementation is
kept completely in the Java space and even structures typically implemented
in the target platform’s native language (e.g., C, or assembly) or with some
operating system support are implemented in Java (e.g., a task scheduler).

The two major issues we faced during this implementation were (1) the need to
share package private information and (2) the use of the scoped memory model.
Sharing private information between packages becomes problematic when such

128 Conclusions

information has to be hidden from the application developer, thus changing
accessibility modifiers to public is not an option. Our solution to this issue uses
a singleton delegation mechanism that avoids the use of reflection or other unsafe
mechanisms such as those used by Sun1 on its SharedSecrets class. The major
drawback of this solution is the overhead introduced by an additional indirection
when methods in a different package are accessed through an intermediate class.

The scoped memory model is perhaps the most difficult feature to use as both,
SCJ applications and the SCJ infrastructure are affected by an extra dimension
in the design space: that of conserving referential integrity. Implementing the
SCJ infrastructure on top of this scoped memory model requires extra care as
illegal references can be introduced. For example, in our implementation, the
scheduler object and thread structures are allocated in mission memory to avoid
illegal reference assignments between the scheduler and the MSOs that run under
the scheduler’s control. However, there are parts in our implementation where
we were unable to avoid such illegal assignments. In those cases, we need to
guarantee by design that such violations can be considered as safe, i.e., there is
no risk of ending with dangling pointers. Formally proving that such violations
are indeed safe will be the recommended approach however this is beyond the
context of this work.

An example of a safe violation that can be guaranteed by construction is the
case of the scheduler object itself, which is attached to an array of schedulers
allocated in immortal memory. The scheduler is required only during mission
execution meaning that after a mission termination the scheduler object can be
safely collected as the application leaves the mission memory. A new scheduler
is attached to execute the next mission in the transition to the mission execution
phase of the next mission.

As the mission sequencer runs only at the initialization of the first mission or
in between missions, we have simplified the mission sequencer and instead of
executing it under the control of the scheduler, we run it on the main thread
of the system. This simplification is not restricted to our implementation and
can also be used by different SCJ implementations though only for L0 and L1.
An RTSJ-based implementation will however require that the sequencer thread
is executed in a NoHeapRealtimeThread as the main thread by default runs in
the heap.

SCJ requires the use of three memory areas free of garbage collector interfer-
ence: immortal memory, mission memory, and private memory. However, all
three memory areas can be implemented with a single class [114]. Our imple-
mentation uses a single system memory class and to be compliant with the SCJ

1Now part of Oracle Inc.

6.1 Main Results 129

specification, the SCJ memory classes are implemented by delegating function-
ality to this system class. Scoped memories are sized according to their local
allocation size and total backing store size requirements. To avoid fragmenta-
tion, each scoped memory is physically nested within its parent e.g., mission
memory is an inner memory of immortal memory, private memories are inner
memories of mission memory, etc.

The use of the scoped memory model and the absence of a garbage collector
requires that reference assignment operations be checked in order to avoid mak-
ing references from shorter-lived objects to longer-lived objects. However, the
restricted memory model that SCJ provides greatly simplifies the reference as-
signment checks. In SCJ, the hierarchy of nested scopes grows in a linear stack
and each scope is located at a unique nesting level within this stack thus allow-
ing for simpler illegal reference assignment checks. Assignment checks can be
performed by simply comparing the nesting level of the scoped memories where
the objects involved in a reference assignment were created. We have presented
three approaches to perform these checks, two of them can be implemented in
any JVM and use the auxiliary object information to store the scope nesting
level. The third approach is specific to our JOP implementation and uses simple
hardware extensions to reduce the execution time of the reference assignment
checks. Our hardware-based scope checks are performed as part of the execu-
tion of the reference assignment bytecodes. Those bytecodes are executed in the
memory management unit of JOP. We showed that our hardware implementa-
tion adds a very small overhead to the memory management unit, around a 4%
increase in logic resources. The performance gain is however strongly dependent
on the application and on how frequent reference assignments are.

The execution, concurrency, and memory models constitute the core of SCJ.
Within our implementation we have also provided support for other features
that have been left unimplemented in previous works [96, 121]. Those other
features are the raw memory interface, based on RTSJ’s 1.1 raw memory API;
the necessary framework to use managed interrupts; and managed long event
handlers. We believe that such features are especially important in the context
of embedded systems.

We have presented two ways of gaining access to raw memory areas through
the use of the RawMemory API: (1) using native methods and (2) using hardware
objects. Native methods are most likely what a JVM will use and in JOP native
methods are mapped to special bytecodes implemented as microcode sequences.
The use of hardware objects is specific, but not restricted to JOP. The use of
native methods provides the most flexible option however the use of hardware
objects is beneficial if we want to avoid native methods in application code as
such methods break Java’s type safety.

130 Conclusions

First level interrupt handlers use SCJ’s ManagedInterruptServiceRoutine class.
Using ManagedInterruptServiceRoutine objects introduces additional delay
in the interrupt processing due to the extra indirection of executing the handle()
method and because a private memory needs to be entered to execute the ISR
code. In contrast, the delay of servicing an interrupt is smaller when using a
plain method invoked by the hardware as ISR.

In addition to our implementation of the SCJ profile, we have also analyzed
use patterns of the scoped memory aiming at helping in the development of
applications. The scoped memory use patterns we provide are intended to be
a working solution for a recurring problem: how to reuse the scoped memory
available and how to move data between scopes. Returning objects from private
or nested private memory areas is accomplished by an allocation context change
and by saving the reference to the newly allocated object in a field of an auxiliary
object. The complexities of creating auxiliary objects, passing references and
saving results can be hidden by means of encapsulated methods.

We have also analyzed, identified, and proposed solutions to common prob-
lematic patterns and idioms present in three of the most used Java libraries:
java.lang, java.util, and java.io. Problematic patterns and idioms present
in library code arise from the absence of a GC and restrictions on how objects
can refer to each other. However, the more conservative nature of safety-critical
systems allows for certain restrictions and simplifications to be made for the im-
plementation of scope-safe reusable libraries. We have modified representative
classes of different standard Java packages that illustrate different ways to solve
problematic patterns and idioms. This work can be considered as a first step
towards the development of reusable libraries for SCJ. The provided classes have
predictable memory consumption, are WCET analyzable, and maintain refer-
ential integrity between objects created and used internally by the classes. Our
starting point for our scope-safe classes was the OpenJDK 6 source and our
goal was to minimize the required changes in order to keep compatibility with
standard Java applications.

To evaluate our implementation we developed a series of micro benchmarks or-
ganized as independent missions, used an application-oriented benchmark, and
used Purdue’s SCJ’s technology compatibility kit. With our micro benchmarks
we showed that: (1) our implementation has a small release jitter for periodic
activities, (2) has linear time memory allocation times, (3) aperiodic event han-
dling execution is done according to priorities and event queue overflow policy
is set to replace, (4) preemption latencies have small variation, (5) a correct
priority inversion mechanism for synchronized methods is implemented.

The application benchmark we used was the miniCDj benchmark. This bench-
mark simulates a collision detector implemented as L0 application. Maximum,

6.2 Lessons Learned 131

minimum, and average values of the collision detector execution times are re-
ported by the benchmark. Rather than testing performance, our main goal
while using the miniCDj was to successfully execute a third-party application
in our framework and therefore fully exercise our L0 implementation.

With Purdue’s SCJ technology compatibility kit we showed how well our imple-
mentation adheres to the SCJ specification. From the TCK, a total of 22 tests
can be applied to our implementation. Those 22 tests can report 35 failures.
We successfully ran every test with no errors reported. The TCK also contains
tests that we cannot use because they either test L2 features, the Java native
interface, or refer to features no longer available in the current version of the
specification.

6.2 Lessons Learned

During the development of this thesis we have gained a good insight into SCJ’s
proposal for the use of Java in software for safety-critical systems. SCJ follows
the same approach as the MISRA C [16] and Ravenscar-Ada [28] variants of
the C and Ada programming languages respectively. This approach consists
on providing a subset of a language that excludes features that affect timing
predictability and complicate safety certification.

One of the strengths of SCJ is that its simpler subset can simplify the task of
developing analysis tools. Even though the SCJ specification incorporates many
annotations intended to implement static analysis tools [126], recent research
has shown that it is indeed feasible to develop analysis tools that do not rely
on such annotations [37, 14, 81]. Moreover, a simplified subset of a language is
easier to express in a formal way and therefore it is expected that implementing
formal analysis tools for SCJ to be a feasible task. There is indeed research
in this direction that uses the Java modeling language (JML) [49, 100, 122] to
formally specify and verify properties of SCJ (the next section elaborates on this
topic). From these arguments it follows that two of the generic challenges for
safety-critical systems presented at the end of Section 2.2, namely those related
to formal verification and development time and effort can be addressed with
the new technology proposal of SCJ.

From an application developer perspective, SCJ at levels 0 and 1 provides a
familiar programming model for real-time systems developers. However, one of
SCJ’s weak points is the absence of a garbage collector, which has made stan-
dard Java so popular. In our experience, the use of the scoped memory model
initially leads to constant cycles of testing and debugging as we needed to keep

132 Conclusions

track of where objects are allocated in order to avoid illegal reference assign-
ments. Correct use of the scoped memory model is indeed the most difficult
part when developing SCJ applications. This change of mindset is most likely
the biggest barrier that Java developers may face. However after getting used
to the scoped memory model, development of SCJ applications become easier
and more intuitive.

The development of the SCJ profile has followed a top-down approach, start-
ing with the full Java language, enhancing several of its ill-defined areas (e.g.,
thread scheduling and dispatching) through the RTSJ, and finally restricting
what methods and classes can be used, and how a developer can structure an
application. Unfortunately, this top-down approach makes SCJ dependent on
RTSJ and forces developers to know and possibly rely on another technology,
namely the RTSJ. The consequences are that (1) the issues described in Chap-
ter 3 regarding package crossing must be considered, (2) most RTSJ classes
become greatly restricted and possibly empty, and (3) complex implementation
features of RTSJ will also be part of an SCJ implementation that runs on top
of the RTSJ. For safety-critical applications that need to be certified this de-
pendency will increase the effort and cost and there will be a lot of dead and
deactivated code. A simpler profile that follows a bottom-up approach would
be desirable in order to avoid inheriting unnecessary complexity (see for exam-
ple [98, 118, 23]).

A factor that limits the development of reusable software in SCJ comes from the
restrictions that the scoped memory imposes to library code. Libraries in Java
offer a working and tested solution to ease the development of reusable software.
However, in SCJ, safe use of library code is restricted to the boundaries of scoped
memories as any temporary or auxiliary object created by the library code can
be safely allocated and referenced only from within the boundaries of scoped
memories. The use of library code becomes more difficult when crossing scope
boundaries (i.e., calling methods of library classes from different scopes) either
as a result of the developer’s intent or because the library classes make calls to
other library classes (which is very common). If it is the intent of the developer
to use library code in mixed scoped memory contexts, then the developer has
to be aware of the memory allocation behavior of the code. Such behavior is
not documented in standard library code and therefore, library code developed
for SCJ must document, in addition to its functional behavior, its memory
allocation behavior in terms of temporary objects and the expected allocation
context of arguments and returned objects.

Special attention has to be paid on analysis of library code to ensure that space
and time requirements are met. This task is not trivial, as existing library code
uses the full potential of the Java language which can introduce programming
patterns difficult to analyze, loops where automatic bound detection is difficult,

6.3 Future Work 133

and reflective calls. There is also the alternative of developing reusable libraries
from scratch instead of trying to use or modify existing libraries. Given the
less dynamic nature of safety-critical software a balance between functionality,
scope-safety, and predictability in terms of memory consumption and execution
time can be achieved.

Despite the limitations mentioned, SCJ is a good choice for the development
of embedded safety-critical systems as it brings the possibility to implement
hard real-time systems using a safer language (strongly typed without pointer
arithmetic). Once the developer is familiar with the use of the scoped memory
model, development of SCJ applications becomes easier.

6.3 Future Work

During the development of this work we have covered many practical aspects
on the use of SCJ for embedded systems. However, there are many issues not
covered in this work which can provide a good basis for future work. We present
in this section some possible research directions or issues that we would like to
address in the future.

SCJ Level 2

To the best of our knowledge, there is no SCJ Level 2 implementation. All
previous work has focused in levels 0 and 1 of the specification. L2 proposes a
more dynamic programming model which is interesting from a practical point
of view.

We would need to extend our implementation and add support for: (1) nested
sequencers and missions, (2) managed threads, (3) the use of Object.wait
and Object.notify. To implement nested sequencers and missions we need to
remove our simplification of a sequencer implemented in the main thread and
make it a full managed schedulable object. We also need to modify our concept
of mission execution as currently we do not allow managed schedulable objects
to be added to the scheduler at the mission execution phase.

With these additional features, our SCJ implementation will be a good research
platform to test new features and proposed changes to the SCJ specification
such as those proposed in [133] e.g., deadlines on mission sequencers. It would

134 Conclusions

also be interesting to see the challenges of verifying L2 applications and the level
of acceptance that the L2 model can have in the real-time community.

Technology Compatibility Kit and Use Cases

Any Java specification request is composed of the specification itself, a reference
implementation, and a technology compatibility kit. In this work we have used
an early work done at Purdue University regarding a SCJ TCK [136] and while
we could adapt it to the current version and use most of its tests, a complete
and updated version of the TCK is necessary. As the SCJ specification is still
evolving, such TCK will also have to be in a continuous update process.

Another issue related to testing SCJ implementations is the lack of use cases.
Developing real-life use cases is an important and necessary step.

Verification Tools

The work of this thesis was focused on an implementation of the SCJ profile. The
next step will be to focus on the development and integration of verification tools
as verification is a key process on the certification of safety-critical systems. Here
we describe what type of tools may be required from a certification perspective
and we give some pointers into previous work.

As SCJ is intended to provide a reduced set of the Java language amenable to
certification, it should be easier to apply or develop tools that help in this certifi-
cation process. Safety standards such as DO-178C require verification activities
such as analysis, testing, and verification of testing. The analysis process is
involved with providing repeatable evidence of correctness [102] and it requires,
amongst others, WCET analysis and memory consumption analysis. In this
regard, it is reported by the authors of [14], a worst-case memory consumption
analysis tool, that using SCJ’s scopes, which use a backing store model to avoid
memory fragmentation, simplify the object layout and therefore the memory
consumption analysis.

Testing in the framework of DO-178C is requirements-based however, DO-178C
allows formal methods to be used as alternatives to testing [6] and to this end
requirements should be expressed in a formal language or as a logic function
contract. Some work related to the second approach has been done in [?] where
the authors derive conformance test suites for SCJ from formal specifications
expressed in JML [72]. Integration testing, i.e., ”the process of putting software

6.3 Future Work 135

components together” [102], also suggested by DO-178C, can benefit from the
use of JML. Work has been done in the context of SCJ in [49] where the author
integrates functional and timing constraints for SCJ programs in SafeJML, an
extension to JML, with the purpose of statically reasoning about timing proper-
ties in an application from timing properties of several independent components.

Verification of testing is involved with structural coverage analysis, i.e., with
identifying code that was not exercised during testing. Modified condition/de-
cision (MC/DC) coverage is one of the requirements in this category. Work has
been done on automatic test generation for high MC/DC coverage for the RTSJ
in[11]. Though not for SCJ, this work uses properties specified in JML for the
test case generation and as SCJ is based on RTSJ, the main ideas can also be
applied to SCJ.

Certifiable Garbage Collector

One of the main problems faced while developing both infrastructure code and
applications is that of having to know the allocation context of objects. Trying
to keep track of this information quickly becomes cumbersome and error prone
and leads to long cycles of testing and debugging. Java’s GC is one of its main
strengths but is also its weak point for hard real-time systems due to the risk
of interfering tasks with stringent time constraints.

Work has been done to develop garbage collectors suitable for hard-real time
systems and while it can be proved that a GC task can be scheduled on hard-
real time systems given that allocation rates of the mutator task are known (see
e.g., [119]), safety-critical systems will need a certified GC, i.e., a GC that can
be proved in a formal way to be correct. Efforts towards a certified GC [55, 84,
86, 129] have focused on correctly specifying the collector-mutator interface in
order to avoid implementers either on the collector or mutator side to violate
intended invariants [83].

Certifying a garbage collector is a big task but can be a one time investment
but the benefits are worth the effort. With a GC, development of software be-
comes easier and opens the possibility to reuse existing libraries and components
without major changes.

136 Conclusions

Bibliography

[1] Handbook for Object-Oriented Technology in Aviation (OOTiA). Techni-
cal Report Volume 1, Federal Aviation Administration, October 2004.

[2] Handbook for Object-Oriented Technology in Aviation (OOTiA). Techni-
cal Report Volume 2, Federal Aviation Administration, October 2004.

[3] Handbook for Object-Oriented Technology in Aviation (OOTiA). Techni-
cal Report Volume 3, Federal Aviation Administration, October 2004.

[4] Handbook for Object-Oriented Technology in Aviation (OOTiA). Techni-
cal Report Volume 4, Federal Aviation Administration, October 2004.

[5] HIJA Safety Critical Java Proposal. Technical report, May 2006.

[6] DO-333 Formal Methods Supplement to DO-178C and DO-278A. Tech-
nical report, RTCA & EUROCAE, December 2011.

[7] Ajile Systems. http://www.ajile.com/index.php, January 2014.

[8] JamVM. http://jamvm.sourceforge.net/, January 2014.

[9] The picoJava-II Source Readme. http://www1.pldworld.com/@xilinx/html/-
pds/HDL/picoJava-II/README.html, June 2014.

[10] Xenomai: Real-Time Framework for Linux. http://www.xenomai.org/,
January 2014.

[11] Wolfgang Ahrendt, Wojciech Mostowski, and Gabriele Paganelli. Real-
time java api specifications for high coverage test generation. In Proceed-
ings of the 10th International Workshop on Java Technologies for Real-
time and Embedded Systems, page 145–154, 2012.

138 BIBLIOGRAPHY

[12] Jim Alves-Foss, Paul W. Oman, Carol Taylor, and W. Scott Harrison. The
MILS architecture for high-assurance embedded systems. International
journal of embedded systems, 2(3):239–247, 2006.

[13] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: a Tool for Schedulability Analysis and Code Generation
of Real-Time Systems. In In Proc. of FORMATS’03, number 2791 in
LNCS, pages 60–72. Springer-Verlag, 2003.

[14] Jeppe L. Andersen, Mikkel Todberg, Andreas E. Dalsgaard, and René Ry-
dhof Hansen. Worst-case memory consumption analysis for SCJ. In Pro-
ceedings of the 11th International Workshop on Java Technologies for Real-
time and Embedded Systems, pages 2–10. ACM Press, 2013.

[15] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David
Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A
real-time Java virtual machine with applications in avionics. ACM Trans.
Embed. Comput. Syst., 7(1):1–49, 2007.

[16] Motor Industry Software Reliability Association. MISRA C 2012: Guide-
lines for the Use of the C Language in Critical Systems. 2013.

[17] Joshua Auerbach, David F. Bacon, Bob Blainey, Perry Cheng, Michael
Dawson, Mike Fulton, David Grove, Darren Hart, and Mark Stoodley.
Design and implementation of a comprehensive real-time Java virtual ma-
chine. In Proceedings of the 7th ACM & IEEE international conference
on Embedded software, page 249–258. ACM, 2007.

[18] T.P. Baker and A. Shaw. The cyclic executive model and ada. In Real-
Time Systems Symposium, 1988., Proceedings., pages 120–129, Dec 1988.

[19] Edward G. Benowitz and Albert F. Niessner. A patterns catalog for RTSJ
software designs. In On the Move to Meaningful Internet Systems 2003:
OTM 2003 Workshops, page 497–507. Springer, 2003.

[20] Peter Bishop and Robin Bloomfield. A Methodology for Safety Case De-
velopment. In Proceedings of the Sixth Safety-Critical Systems Symposium,
Birmingham, 1998. Springer.

[21] Joshua Bloch. Effective Java. Addison-Wesley, Upper Saddle River, NJ,
2008.

[22] Robin Bloomfield and Peter Bishop. Safety and assurance cases: Past,
present and possible future–an Adelard perspective. In Making Systems
Safer, page 51–67. Springer, 2010.

BIBLIOGRAPHY 139

[23] Thomas Bøgholm, René R. Hansen, Anders P. Ravn, Bent Thomsen, and
Hans Søndergaard. A predictable Java profile: rationale and implementa-
tions. In Proceedings of the 7th International Workshop on Java Technolo-
gies for Real-Time and Embedded Systems, page 150–159. ACM, 2009.

[24] G. Bollella. The real-time specification for Java. Addison-Wesley, 2000.

[25] Greg Bollella, Tim Canham, Vanessa Carson, Virgil Champlin, Daniel
Dvorak, Brian Giovannoni, Mark Indictor, Kenny Meyer, Alex Murray,
and Kirk Reinholtz. Programming with non-heap memory in the real
time specification for Java. In Companion of the 18th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications, page 361–369. ACM, 2003.

[26] Greg Bollella, James Gosling, Benjamin M. Brosgol, Peter Dibble, Steve
Furr, and Mark Turnbull. The Real-Time Specification for Java 1.0.2.
Technical report, 2006.

[27] Eric J Bruno and Greg Bollella. Real-time Java programming with Java
RTS. Prentice Hall, Upper Saddle River, NJ, 2009.

[28] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the use of
the Ada Ravenscar Profile in high integrity systems. ACM SIGAda Ada
Letters, 24(2):1–74, 2004.

[29] Alan Burns and Andy Wellings. Real-Time Systems and Programming
Languages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-
Wesley Educational Publishers Inc, 2009.

[30] Giorgio C. Buttazzo. Hard real-time computing systems: predictable
scheduling algorithms and applications. Real-time systems series. Springer,
New York, 3rd ed edition, 2011.

[31] Lisa J. Carnahan and M. Ruark. Requirements for Real-Time Exten-
sions to the Java Platform: Report From the Requirements Group for
Real-Time Extensions for the Java Platform. Technical report, National
Institute of Standards and Technology, September 1999.

[32] Adele-Louise Carter. Safety-critical versus security-critical software. In
System Safety 2010, 5th IET International Conference on, page 1–6, 2010.

[33] J. E. Cooling. Software Engineering for Real-Time Systems. Addison-
Wesley, 2003.

[34] Angelo Corsaro and Corrado Santoro. Design patterns for RTSJ applica-
tion development. In On the Move to Meaningful Internet Systems 2004:
OTM 2004 Workshops, page 394–405. Springer, 2004.

140 BIBLIOGRAPHY

[35] Angelo Corsaro and Douglas C. Schmidt. Evaluating Real-Time Java fea-
tures and performance for real-time embedded systems. In Real-Time
and Embedded Technology and Applications Symposium, 2002. Proceed-
ings. Eighth IEEE, page 90–100. IEEE, 2002.

[36] W.J. Cullyer and B.A. Wickmann. The choice of computer languages for
use in safety-critical systems. Software Engineering Journal, 6(2):51–58,
March 1991.

[37] Andreas E. Dalsgaard, René Rydhof Hansen, and Martin Schoeberl. Pri-
vate memory allocation analysis for safety-critical Java. In Proceedings of
the 10th International Workshop on Java Technologies for Real-time and
Embedded Systems, page 9–17, 2012.

[38] Jean-Marie Dautelle. Javolution. http://javolution.org/, September
2012.

[39] M.H. Dawson. Challenges in Implementing the Real-Time Specification
for Java (RTSJ) in a Commercial Real-Time Java Virtual Machine. In
Object Oriented Real-Time Distributed Computing (ISORC), 2008 11th
IEEE International Symposium on, pages 241–247, May 2008.

[40] Michael Dawson. Real-time Java, Part 6: Simplifying real-time Java devel-
opment. http://www.ibm.com/developerworks/java/library/j-rtj6/, July
2007. Last accessed on July 6, 2012.

[41] Peter Dibble. No-Heap Safe Classes, August 2004.

[42] Peter Dibble. Real-time Java platform programming. Sun Microsystems
Press, Santa Clara, Calif., 2008.

[43] Brian P. Doherty. A real-time benchmark for Java. In Proceedings of the
5th international workshop on Java technologies for real-time and embed-
ded systems, page 35–46. ACM, 2007.

[44] Daniel L. Dvorak and William K. Reinholtz. Hard real-time: C++ versus
RTSJ. In Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, page
268–274. ACM, 2004.

[45] Michael R. Elliott and Peter Heller. Object-oriented software considera-
tions in airborne systems and equipment certification. In Proceedings of
the ACM international conference companion on Object oriented program-
ming systems languages and applications companion, page 85–96. ACM,
2010.

http://javolution.org/

BIBLIOGRAPHY 141

[46] Huáscar Espinoza, Alejandra Ruiz, Mehrdad Sabetzadeh, and Paolo Pa-
naroni. Challenges for an open and evolutionary approach to safety assur-
ance and certification of safety-critical systems. In Software Certification
(WoSoCER), 2011 First International Workshop on, page 1–6, 2011.

[47] David Flanagan. Java in a nutshell. O’Reilly, Beijing, 5th edition, March
2005.

[48] James Gosling and Henry McGilton. The Java Language Environment: A
White Paper. Technical report, Sun Microsystems Computer Company,
October 1995.

[49] Ghaith Haddad. Specification and Runtime Checking of Timing Con-
straints in Safety Critical Java. PhD thesis, University of Central Florida,
2012.

[50] Wolfgang A. Halang and Alexander D. Stoyenko. Comparative evalua-
tion of high-level real-time programming languages. Real-Time Systems,
2(4):365–382, 1990.

[51] Wolfgang A. Halang and Janusz Zalewski. Programming languages for
use in safety-related applications. Annual Reviews in Control, 27(1):39–
45, January 2003.

[52] T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad. Toward libraries
for real-time java. In Object Oriented Real-Time Distributed Computing
(ISORC), 2008 11th IEEE International Symposium on, pages 458–462,
May 2008.

[53] Trevor Harmon, Martin Schoeberl, Raimund Kirner, and Raymond Klef-
stad. A Modular Worst-case Execution Time Analysis Tool for Java Pro-
cessors. In Real-Time and Embedded Technology and Applications Sympo-
sium, 2008. RTAS ’08. IEEE, pages 47–57. IEEE, April 2008.

[54] Joel Hasbrouck and Gideon Saar. Low-Latency Trading. Technical Report
No. 35-2010, Chicago, May 2013.

[55] Chris Hawblitzel and Erez Petrank. Automated verification of practical
garbage collectors. In ACM SIGPLAN Notices, volume 44, page 441–453.
ACM, 2009.

[56] M. Hecht, S. Graff, SoHaR Incorporated, W. Green, H. Hecht, U. S. Nu-
clear Regulatory Commission Office of Nuclear Regulatory Research Divi-
sion of Systems Technology, S. Koch, D. Lin, A. Tai, and D. Wendelboe.
Review Guidelines for Software Languages for Use in Nuclear Power Plant
Safety Systems: Final Report. U.S. Nuclear Regulatory Commission, 1996.

142 BIBLIOGRAPHY

[57] M. Teresa Higuera-Toledano. About 15 years of real-time java. In Proceed-
ings of the 10th International Workshop on Java Technologies for Real-
time and Embedded Systems, page 34–43, 2012.

[58] M. Teresa Higuera-Toledano and Miguel A. de Miguel-Cabello. Dynamic
detection of access errors and illegal references in RTSJ. In Proceedings of
the Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’02), RTAS ’02, Washington, DC, USA, 2002. IEEE
Computer Society.

[59] M.T. Higuera-Toledano. Hardware-based solution detecting illegal refer-
ences in real-time Java. In Real-Time Systems, 2003. Proceedings. 15th
Euromicro Conference on, pages 229–337, July 2003.

[60] EY-S. Hu, Guillem Bernat, and Andy Wellings. Addressing dynamic
dispatching issues in WCET analysis for object-oriented hard real-
time systems. In Object-Oriented Real-Time Distributed Computing,
2002.(ISORC 2002). Proceedings. Fifth IEEE International Symposium
on, page 109–116. IEEE, 2002.

[61] IEEE. IEEE standard glossary of software engineering terminology. Insti-
tute of Electrical and Electronics Engineers, New York, N.Y, 1990.

[62] International J Consortium Specification. Real-Time Core Extensions,
Draft 1.0.14. Technical report, September 2000.

[63] ISO. ISO/IEC TR 15942:2000 Programming languages Guide for the Use
of the Ada Programming Language in High Integrity Systems. ISO, 2000.

[64] Prashant Jain and Michael Kircher. Pattern Oriented Software Architec-
ture: Patterns for Resource Management. In Software Architecture, 2007.
WICSA’07. The Working IEEE/IFIP Conference on, page 41–41, 2007.

[65] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben Titzer, and
Jan Vitek. CDx: a family of real-time Java benchmarks. In Proceedings of
the 7th International Workshop on Java Technologies for Real-Time and
Embedded Systems, page 41–50. ACM, 2009.

[66] John C. Knight. Safety critical systems: challenges and directions. In Soft-
ware Engineering, 2002. ICSE 2002. Proceedings of the 24rd International
Conference on, page 547–550, 2002.

[67] Stephan E. Korsholm. HVM lean Java for small devices, 2014.

[68] Jagun Kwon. Ravenscar-Java: Java Technology for High-Integrity Real-
Time Systems. PhD thesis, University of York, 2006.

BIBLIOGRAPHY 143

[69] Jagun Kwon and Andy Wellings. Memory management based on method
invocation in RTSJ. In On the Move to Meaningful Internet Systems 2004:
OTM 2004 Workshops, page 333–345. Springer, 2004.

[70] Jagun Kwon, Andy Wellings, and Steve King. Ravenscar-Java: a high-
integrity profile for real-time Java. Concurrency and Computation: Prac-
tice and Experience, 17(5-6):681–713, April 2005.

[71] Douglas Lea. Concurrent programming in Java: design principles and
patterns. Addison-Wesley, Reading, Mass., 1999.

[72] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, Daniel M Zim-
merman, and Werner Dietl. JML reference manual, 2008.

[73] J. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior. pages 166–171,
December 1989.

[74] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java
Virtual Machine Specification. Addison-Wesley Professional, 1 edition,
February 2013.

[75] Chung Laung Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the ACM
(JACM), 20(1):46–61, 1973.

[76] Jane W. S. Liu. Real-Time systems. Prentice Hall, Upper Saddle River,
NJ, 2000.

[77] Doug Locke, B. Scott Andersen, Ben Brosgol, Mike Fulton, Thomas Hen-
ties, James J. Hunt, Johan Olmütz Nielsen, Kelvin Nilsen, Martin Schoe-
berl, Joyce Tokar, Jan Vitek, and Andy Wellings. Safety-Critical Java
Technology Specification, Public draft. 2013. v 0.94.

[78] P. Mader, P.L. Jones, Y. Zhang, and J. Cleland-Huang. Strategic Trace-
ability for Safety-Critical Projects. Software, IEEE, 30(3):58–66, June
2013.

[79] Mark W. Maier. Architecting principles for systems-of-systems. Systems
Engineering, 1(4):267–284, 1998.

[80] Rajib Mall. Real-time systems theory and practice. Dorling Kindersley,
New Delhi, India, 2008.

[81] Chris Marriott and Ana Cavalcanti. Scj: Memory-safety checking without
annotations. In Cliff Jones, Pekka Pihlajasaari, and Jun Sun, editors,
FM 2014: Formal Methods, volume 8442 of Lecture Notes in Computer
Science, pages 465–480. Springer International Publishing, 2014.

144 BIBLIOGRAPHY

[82] James Mc Enery, David Hickey, and Menouer Boubekeur. Empirical eval-
uation of two main-stream RTSJ implementations. In Proceedings of the
5th international workshop on Java technologies for real-time and embed-
ded systems, page 47–54. ACM, 2007.

[83] Andrew McCreight, Tim Chevalier, and Andrew Tolmach. A certified
framework for compiling and executing garbage-collected languages. In
ACM Sigplan Notices, volume 45, page 273–284. ACM, 2010.

[84] Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A general
framework for certifying garbage collectors and their mutators. ACM
SIGPLAN Notices, 42(6):468–479, 2007.

[85] Y. Moy, E. Ledinot, H. Delseny, Vi. Wiels, and B. Monate. Testing or
Formal Verification: DO-178C Alternatives and Industrial Experience.
Software, IEEE, 30(3):50–57, June 2013.

[86] Magnus O. Myreen. Formal verification of machine-code programs. PhD
thesis, University of Cambridge, Computer Laboratory, Trinity College,
2008.

[87] R. Nelson. Certification Processes for Safety-Critical and Mission- Critical
Aerospace Software. Technical report, NASA, 2003.

[88] Kelvin Nilsen. Issues in the design and implementation of real-time Java.
Java Developer’s Journal, 1(1):44, 1996.

[89] Kelvin Nilsen. A type system to assure scope safety within safety-critical
Java modules. In Proceedings of the 4th international workshop on Java
technologies for real-time and embedded systems, page 97–106. ACM, 2006.

[90] Kelvin Nilsen. Revisiting the perc real-time API. In Proceedings of the 10th
International Workshop on Java Technologies for Real-time and Embedded
Systems, page 165–174, 2012.

[91] Linda Northrop, Peter H Feiler, Bill Pollak, and Daniel Pipitone. Ultra-
large-scale systems: the software challenge of the future. Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, Pa., 2006.

[92] Jon Ogborn, Simon Collins, and Mick Brown. Randomness at the root of
things 2: Poisson sequences. Physics Education, 38(5):398, 2003.

[93] Marcel Vinicius Medeiros Oliveira. Formal Derivation of State-Rich Re-
active Programs using Circus. PhD thesis, University of York, 2005.

[94] Filip Pizlo, Jason M. Fox, David Holmes, and Jan Vitek. Real-time Java
scoped memory: design patterns and semantics. In Object-Oriented Real-
Time Distributed Computing, 2004. Proceedings. Seventh IEEE Interna-
tional Symposium on, page 101–110. IEEE, 2004.

BIBLIOGRAPHY 145

[95] Ales Plsek. SOLEIL: An Integrated Approach for Designing and Develop-
ing Component-based Real-time Java Systems. PhD thesis, Université des
Sciences et Technologie de Lille-Lille I, 2009.

[96] Ales Plsek, Lei Zhao, Veysel H. Sahin, Daniel Tang, Tomas Kalibera, and
Jan Vitek. Developing safety critical Java applications with oSCJ/L0. In
Proceedings of the 8th International Workshop on Java Technologies for
Real-Time and Embedded Systems, page 95–101. ACM, 2010.

[97] Alex Potanin, James Noble, Tian Zhao, and Jan Vitek. A high integrity
profile for memory safe programming in real-time Java. In The 3rd work-
shop on Java Technologies for Real-time and Embedded Systems, San
Diego, CA, USA, 2005.

[98] P. Puschner and A. Wellings. A profile for high-integrity real-time Java
programs. In Object-Oriented Real-Time Distributed Computing, 2001.
ISORC - 2001. Proceedings. Fourth IEEE International Symposium on,
pages 15–22. IEEE Comput. Soc, 2001.

[99] Anders P. Ravn and Martin Schoeberl. Safety-critical Java with cyclic ex-
ecutives on chip-multiprocessors. Concurrency and Computation: Practice
and Experience, 24(8):772–788, 2012.

[100] Anders P. Ravn and Hans Søndergaard. A test suite for safety-critical
Java using JML. In Proceedings of the 11th International Workshop on
Java Technologies for Real-time and Embedded Systems, JTRES ’13, pages
80–88. ACM Press, 2013.

[101] Jorge Real and Alfons Crespo. Mode Change Protocols for Real-Time
Systems: A Survey and a New Proposal. Real-Time Systems, 26(2):161–
197, March 2004.

[102] Leanna Rierson. Developing safety-critical software: a practical guide for
aviation software and DO-178c compliance. CRC Press/Taylor & Francis
Group, Boca Raton, 2013.

[103] Juan Rios and M. Schoeberl. Hardware Support for Safety-Critical Java
Scope Checks. In Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC), 2012 IEEE 15th International Symposium
on, pages 31–38, April 2012.

[104] Juan Rios and M. Schoeberl. An Evaluation of Safety-Critical Java on a
Java Processor. In Software Technologies for Future Embedded and Ubiq-
uitous Systems (SEUS), 2014 IEEE/IFIP 10th Workshop on, pages 276 –
283, June 2014.

146 BIBLIOGRAPHY

[105] Juan Rios and M. Schoeberl. Reusable Libraries for Safety-Critical Java.
In Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2014 IEEE 17th International Symposium on, pages 188–197,
June 2014.

[106] Juan Ricardo Rios, Kelvin Nilsen, and Martin Schoeberl. Patterns for
safety-critical Java memory usage. In Proceedings of the 10th Interna-
tional Workshop on Java Technologies for Real-time and Embedded Sys-
tems, page 1–8, 2012.

[107] RTCA. DO-178B/ED-12B, Software Considerations in Airborne Systems
and Equipment Certification. Technical report, RTCA, 1992.

[108] RTCA. DO-178C/ED-12C, Software Considerations in Airborne Systems
and Equipment Certification. Technical report, RTCA, 2011.

[109] John Rushby. New challenges in certification for aircraft software. In Pro-
ceedings of the ninth ACM international conference on Embedded software,
page 211–218, 2011.

[110] Martin Schoeberl. Restrictions of Java for embedded real-time systems.
In Object-Oriented Real-Time Distributed Computing, 2004. Proceedings.
Seventh IEEE International Symposium on, page 93–100. IEEE, 2004.

[111] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-
Time Systems. PhD thesis, Technische Universität Wien, 2005.

[112] Martin Schoeberl. JOP Reference Handbook: Building Embedded Systems
with a Java Processor. Virtualbookworm, Alpha Edition edition, October
2007.

[113] Martin Schoeberl. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54(1):265–286, 2008.

[114] Martin Schoeberl. Memory management for safety-critical Java. In Pro-
ceedings of the 9th International Workshop on Java Technologies for Real-
Time and Embedded Systems, page 47–53, 2011.

[115] Martin Schoeberl, Stephan Korsholm, Tomas Kalibera, and Anders P.
Ravn. A Hardware Abstraction Layer in Java. ACM Transactions on
Embedded Computing Systems, 10(4):1–40, November 2011.

[116] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen, and
Benedikt Huber. Worst-case execution time analysis for a Java proces-
sor. Softw. Pract. Exper., 40(6):507–542, 2010.

BIBLIOGRAPHY 147

[117] Martin Schoeberl and Juan Ricardo Rios. Safety-critical Java on a Java
processor. In Proceedings of the 10th International Workshop on Java
Technologies for Real-time and Embedded Systems, pages 54–61, Copen-
hagen, Denmark, 2012. ACM.

[118] Martin Schoeberl, B. Thomsen, A. P. Ravn, and H. Sondergaard. A pro-
file for safety critical java. In Object and Component-Oriented Real-Time
Distributed Computing, 2007. ISORC’07. 10th IEEE International Sym-
posium on, page 94–101. IEEE, 2007.

[119] Martin Schoeberl and Jan Vitek. Garbage collection for safety critical
Java. In Proceedings of the 5th international workshop on Java technolo-
gies for real-time and embedded systems, page 85–93. ACM, 2007.

[120] David John Smith and Kenneth G. L Simpson. Safety critical systems
handbook a straightforward guide to functional safety, IEC 61508 (2010
edition) and related standards. Butterworth-Heinemann, Oxford, 2010.

[121] Hans Søndergaard, Stephan E. Korsholm, and Anders P. Ravn. Safety-
critical Java for low-end embedded platforms. In Proceedings of the 10th
International Workshop on Java Technologies for Real-time and Embedded
Systems, page 44–53, 2012.

[122] Hans Søndergaard, Stephan E. Korsholm, and Anders P. Ravn. A safety-
critical java technology compatibility kit. In Proceedings of the 12th In-
ternational Workshop on Java Technologies for Real-time and Embedded
Systems, JTRES ’14, pages 1:1–1:9, New York, NY, USA, 2014. ACM.

[123] Hans Søndergaard, Bent Thomsen, and Anders P. Ravn. A Ravenscar-
Java profile implementation. In Proceedings of the 4th international work-
shop on Java technologies for real-time and embedded systems, page 38–47.
ACM, 2006.

[124] SPEC. SPEC JBB2005. http://www.spec.org/jbb2005/.

[125] Daniel Tang, Ales Plsek, and Jan Vitek. Static checking of safety criti-
cal Java annotations. In Proceedings of the 8th International Workshop
on Java Technologies for Real-Time and Embedded Systems, JTRES ’10,
pages 148–154, New York, NY, USA, 2010. ACM.

[126] Daniel Tang, Ales Plsek, and Jan Vitek. Memory safety for safety critical
java. In M. Teresa Higuera-Toledano and Andy J. Wellings, editors, Dis-
tributed, Embedded and Real-time Java Systems, pages 235–264. Springer
US, 2012.

[127] TimeSys. RTSJ Reference Implementation.
http://www.timesys.com/java/.

148 BIBLIOGRAPHY

[128] K.W. Tindell, A. Burns, and A.J. Wellings. Mode changes in priority
preemptively scheduled systems. In Real-Time Systems Symposium, 1992,
pages 100–109, Dec 1992.

[129] Noah Torp-Smith, Lars Birkedal, and John C. Reynolds. Local reasoning
about a copying garbage collector. ACM Trans. Program. Lang. Syst.,
30(4):1–58, 2008.

[130] U.S. DoD. Department of Defense Requirements for High Order Compuer
ProgrammingLanguages "STEELMAN", 1978.

[131] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, Inc., New
York, NY, USA, 1996.

[132] Andy Wellings and MinSeong Kim. Asynchronous event handling and
safety critical Java. In Proceedings of the 8th International Workshop
on Java Technologies for Real-Time and Embedded Systems, pages 53–62,
Prague, Czech Republic, 2010. ACM.

[133] Andy Wellings, Matt Luckcuck, and Ana Cavalcanti. Safety-critical java
level 2: Motivations, example applications and issues. In Proceedings of
the 11th International Workshop on Java Technologies for Real-time and
Embedded Systems, JTRES ’13, pages 48–57, New York, NY, USA, 2013.
ACM.

[134] B. A. Wichmann. Requirements for programming languages in safety
and security software standards. Computer standards & interfaces,
14(5):433–441, 1992.

[135] F. Zeyda, A. Cavalcanti, A. Wellings, J. Woodcock, and K. Wei. Refine-
ment of the Parallel CDx. Technical report, Tech. Rep., University of
York, Department of Computer Science, York, UK, 2012.

[136] Lei Zhao, Daniel Tang, and Jan Vitek. A technology compatibility kit for
safety critical Java. In Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded Systems, pages 160 –168.
ACM, 2009.

[137] Tian Zhao, James Noble, and Jan Vitek. Scoped types for real-time Java.
In Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE Inter-
national, page 241–251. IEEE, 2004.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Background and Related Work
	2.1 Real-time and Safety-critical Systems
	2.2 Programming Languages for Safety-critical Systems
	2.3 Java for Real-time Systems
	2.3.1 Java for High-integrity Real-time Systems

	2.4 Safety-critical Java Specification (JSR-302)
	2.4.1 Execution Model
	2.4.2 Concurrency
	2.4.3 Memory Model
	2.4.4 An SCJ HelloWorld Example

	2.5 Java Optimized Processor JOP
	2.6 High Integrity Java Profiles on Embedded Systems
	2.6.1 Ravenscar-Java in the aJ-100 Processor
	2.6.2 oSCJ
	2.6.3 SCJ on HVM
	2.6.4 Predictable Java
	2.6.5 Cyclic Executive for SCJ on Chip-multiprocessors

	2.7 Reference Assignment Checks
	2.8 Scoped Memory Use
	2.8.1 Patterns
	2.8.2 Libraries

	2.9 Testing Real-time Features in Real-time Virtual Machines
	2.10 Summary

	3 Safety-critical Java on an Embedded Java Processor
	3.1 Overview
	3.1.1 Design Decisions
	3.1.2 Limitations
	3.1.3 Building and Running an SCJ Application in JOP

	3.2 Package Crossing
	3.3 Concurrency and Scheduling
	3.3.1 Missions and Mission Sequencer
	3.3.2 Periodic and Aperiodic Event Handlers
	3.3.3 Scheduler
	3.3.4 Multi-core Support

	3.4 Memory
	3.5 Scope Checks
	3.5.1 Referential Integrity and the Scope Stack
	3.5.2 Detecting Illegal Reference Assignments
	3.5.3 Evaluation
	3.5.4 Discussion

	3.6 Interaction with Devices and External Events
	3.6.1 Raw Memory
	3.6.2 Managed Interrupts

	3.7 Summary

	4 Scoped Memory Use: Patterns and Reusable Libraries
	4.1 Use Patterns and Idioms
	4.1.1 The Basic Pattern
	4.1.2 Loop Pattern
	4.1.3 Execute with Primitive Return Value
	4.1.4 Returning a Newly Allocated Object
	4.1.5 Scoped Methods
	4.1.6 Runnable Factory
	4.1.7 Producer/Consumer

	4.2 Reusable Libraries: Issues and Solutions
	4.2.1 Lazy Initialization
	4.2.2 Dynamic Resizing
	4.2.3 Objects Used in Mixed Contexts
	4.2.4 Iterators
	4.2.5 Loop Bounds
	4.2.6 Exceptions

	4.3 Reusable Libraries: Implementation
	4.3.1 Analysis of Standard Java Class Libraries
	4.3.2 AbstractStringBuilder and StringBuilder
	4.3.3 DataInputStream
	4.3.4 Vector and HashMap
	4.3.5 Comparison with JCL
	4.3.6 Testing
	4.3.7 Discussion

	4.4 Summary

	5 Evaluation
	5.1 Microbenchmarks
	5.1.1 Accuracy of Periods
	5.1.2 Linear-time Memory Allocation Time
	5.1.3 Aperiodic Event Handling
	5.1.4 Dispatch Latency for Interrupts
	5.1.5 Context Switch Latency
	5.1.6 Synchronization
	5.1.7 Discussion

	5.2 SCJ's TCK and miniCDj
	5.3 Summary

	6 Conclusions
	6.1 Main Results
	6.2 Lessons Learned
	6.3 Future Work

	Bibliography

