407 research outputs found

    QoS and energy efficient resource allocation in downlink OFDMA systems

    Get PDF
    In this paper we present and evaluate the performance of a resource allocation algorithm to enhance the Quality of Service (QoS) provision and energy efficiency of downlink Orthogonal Frequency Division Multiple Access (OFDMA) systems. The proposed algorithm performs resource allocation using information on the downlink packet delay, the average delay and data rate of past allocations, as well as the downlink users' buffer status in order to minimize packet segmentation. Based on simulation results, the proposed algorithm achieves significant performance improvement in terms of packet timeout rate, goodput, fairness, and average delay. Moreover, the effect of poor QoS provision on energy efficiency is demonstrated through the evaluation of the performance in terms of energy consumption per successfully received bit

    Energy efficient resources allocations for wireless communication systems

    Get PDF
    The energy consumption level of the telecommunication process has become a new consideration in resource management scheme. It is becoming a new parameter in the resource management scheme besides throughput, spectral efficiency, and fairness. This work proposes a power control scheme and user grouping method to keep the rational energy consumption level of the resource management scheme. Inverse water-filling power allocation is a power allocation scheme that optimizes the energy efficiency by giving the power to the user which have good channel conditions. The user grouping method becomes the solution for carrier aggregation (CA) scheme that prevents edge cell user get the resources from the high-frequency carrier. This can prevent energy wastage in the transmission process. This power control scheme and user grouping method can optimize the spectral and energy efficiency without increasing the time complexity of the system

    Comparative Analysis of Scheduling Algorithms Performance in a Long Term Evolution Network

    Get PDF
    The advancement in cellular communications has enhanced the special attention given to the study of resource allocation schemes. This study is to enhance communications to attain efficiency and thereby offers fairness to all users in the face of congestion experienced anytime a new product is rolled out. The comparative analysis was done on the performance of Enhanced Proportional Fair, Qos-Aware Proportional Fair and Logarithmic rule scheduling algorithms in Long Term Evolution in this work. These algorithms were simulated using LTE system toolbox in MATLAB and their performances were compared using Throughput, Packet delay and Packet Loss Ratio. The results showed Qos-Aware Proportional Fair has a better performance in all the metrics used for the evaluation

    Subcarrier and Power Allocation in WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is one of the latest technologies for providing Broadband Wireless Access (BWA) in a metropolitan area. The use of orthogonal frequency division multiplexing (OFDM) transmissions has been proposed in WiMAX to mitigate the complications which are associated with frequency selective channels. In addition, the multiple access is achieved by using orthogonal frequency division multiple access (OFDMA) scheme which has several advantages such as flexible resource allocation, relatively simple transceivers, and high spectrum efficient. In OFDMA the controllable resources are the subcarriers and the allocated power per subband. Moreover, adaptive subcarrier and power allocation techniques have been selected to exploit the natural multiuser diversity. This leads to an improvement of the performance by assigning the proper subcarriers to the user according to their channel quality and the power is allocated based on water-filling algorithm. One simple method is to allocate subcarriers and powers equally likely between all users. It is well known that this method reduces the spectral efficiency of the system, hence, it is not preferred unless in some applications. In order to handle the spectral efficiency problem, in this thesis we discuss three novel resources allocation algorithms for the downlink of a multiuser OFDM system and analyze the algorithm performances based on capacity and fairness measurement. Our intensive simulations validate the algorithm performances.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Delay aware optimal resource allocation in MU MIMO-OFDM using enhanced spider monkey optimization

    Get PDF
    In multiple users MIMO- OFDM system allocates the available resources to the optimal users is a difficult task. Hence the scheduling and resource allocation become the major problem in the wireless network mainly in case of multiple input and multiple output method that has to be made efficient. There is various method introduced to give an optimal solution to the problem yet it has many drawbacks. So we propose this paper to provide an efficient solution for resource allocation in terms of delay and also added some more features such as high throughout, energy efficient and fairness. To make optimal resource allocation we introduce optimization algorithm named spider monkey with an enhancement which provides the efficient solution. In this optimization process includes the scheduling and resource allocation, the SNR values, channel state information (CSI) from the base station. To make more efficient finally we perform enhanced spider - monkey algorithm hence the resource allocation is performed based on QoS requirements. Thus the simulation results in our paper show high efficiency when compared with other schedulers and techniques

    Downlink Radio Resource Management for QoS Provisioning in OFDMA Systems:with emphasis on Admission Control and Packet Scheduling

    Get PDF

    COMPARATIVE ANALYSIS OF THE PERFORMANCE OF RESOURCE ALLOCATION ALGORITHMS IN LONG TERM EVOLUTION NETWORKS

    Get PDF
    The growth in the good number of real-time and non-real-time applications has sparked a renewed interest in exploring resource allocation schemes that can be efficient and fair to all the applications in overloaded scenarios. In this paper, the performance of six scheduling algorithms for Long Term Evolution (LTE) downlink networks were analyzed and compared. These algorithms are Proportional Fair (PF), Exponential/Proportional Fair (EXP/PF), Maximum Largest Weighted Delay First (MLWDF), Frame Level Scheduler (FLS), Exponential (EXP) rule and Logarithmic (LOG) rule.  The performances of these algorithms were evaluated using an open source simulator (LTE simulator) and compared based on network parameters which include: throughput, delay, Packet Loss Ratio (PLR), and fairness. This work aims at giving insight on the gains made on radio resource scheduling for LTE network and to x-ray the issues that require improvement in order to provide better performance to the users. The results of this work show that FLS algorithm outperforms other algorithms in terms of delay, PLR, throughput, and fairness for VoIP and video flow. It was also observed that for Best Effort (BE) flows, FLS outperforms other algorithms in terms of delay and PLR but performed least in terms of throughput and fairness. http://dx.doi.org/10.4314/njt.v36i1.2
    corecore