181 research outputs found

    k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data

    Full text link
    Data Mining has wide applications in many areas such as banking, medicine, scientific research and among government agencies. Classification is one of the commonly used tasks in data mining applications. For the past decade, due to the rise of various privacy issues, many theoretical and practical solutions to the classification problem have been proposed under different security models. However, with the recent popularity of cloud computing, users now have the opportunity to outsource their data, in encrypted form, as well as the data mining tasks to the cloud. Since the data on the cloud is in encrypted form, existing privacy preserving classification techniques are not applicable. In this paper, we focus on solving the classification problem over encrypted data. In particular, we propose a secure k-NN classifier over encrypted data in the cloud. The proposed k-NN protocol protects the confidentiality of the data, user's input query, and data access patterns. To the best of our knowledge, our work is the first to develop a secure k-NN classifier over encrypted data under the semi-honest model. Also, we empirically analyze the efficiency of our solution through various experiments.Comment: 29 pages, 2 figures, 3 tables arXiv admin note: substantial text overlap with arXiv:1307.482

    Exploring Privacy-Preserving Disease Diagnosis: A Comparative Analysis

    Get PDF
    In the healthcare sector, data is considered as a valuable asset, with enormous amounts generated in the form of patient records and disease-related information. Leveraging machine learning techniques enables the analysis of extensive datasets, unveiling hidden patterns in diseases, facilitating personalized treatments, and forecasting potential health issues. However, the flourish of online diagnosis and prediction still faces some challenges related to information security and privacy as disease diagnosis technologies utilizes a lot of clinical records and sensitive patient data. Hence, it becomes imperative to prioritize the development of innovative methodologies that not only advance the accuracy and efficiency of disease prediction but also ensure the highest standards of privacy protection. This requires collaborative efforts between researchers, healthcare practitioners, and policymakers to establish a comprehensive framework that addresses the evolving landscape of healthcare data while safeguarding individual privacy. Addressing this constraint, numerous researchers integrate privacy preservation measures with disease prediction techniques to develop a system capable of diagnosing diseases without compromising the confidentiality of sensitive information. The survey paper conducts a comparative analysis of privacy-preserving techniques employed in disease diagnosis and prediction. It explores existing methodologies across various domains, assessing their efficacy and trade-offs in maintaining data confidentiality while optimizing diagnostic accuracy. The review highlights the need for robust privacy measures in disease prediction, shortcomings related to existing techniques of privacy preserving disease diagnosis, and provides insights into promising directions for future research in this critical intersection of healthcare and privacy preservation

    Secure k-Nearest Neighbor Query over Encrypted Data in Outsourced Environments

    Full text link
    For the past decade, query processing on relational data has been studied extensively, and many theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, users now have the opportunity to outsource their data as well as the data management tasks to the cloud. However, due to the rise of various privacy issues, sensitive data (e.g., medical records) need to be encrypted before outsourcing to the cloud. In addition, query processing tasks should be handled by the cloud; otherwise, there would be no point to outsource the data at the first place. To process queries over encrypted data without the cloud ever decrypting the data is a very challenging task. In this paper, we focus on solving the k-nearest neighbor (kNN) query problem over encrypted database outsourced to a cloud: a user issues an encrypted query record to the cloud, and the cloud returns the k closest records to the user. We first present a basic scheme and demonstrate that such a naive solution is not secure. To provide better security, we propose a secure kNN protocol that protects the confidentiality of the data, user's input query, and data access patterns. Also, we empirically analyze the efficiency of our protocols through various experiments. These results indicate that our secure protocol is very efficient on the user end, and this lightweight scheme allows a user to use any mobile device to perform the kNN query.Comment: 23 pages, 8 figures, and 4 table

    Privacy-preserving query processing over encrypted data in cloud

    Get PDF
    The query processing of relational data has been studied extensively throughout the past decade. A number of theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, data owners now have the opportunity to outsource not only their data but also data processing functionalities to the cloud. Because of data security and personal privacy concerns, sensitive data (e.g., medical records) should be encrypted before being outsourced to a cloud, and the cloud should perform query processing tasks on the encrypted data only. These tasks are termed as Privacy-Preserving Query Processing (PPQP) over encrypted data. Based on the concept of Secure Multiparty Computation (SMC), SMC-based distributed protocols were developed to allow the cloud to perform queries directly over encrypted data. These protocols protect the confidentiality of the stored data, user queries, and data access patterns from cloud service providers and other unauthorized users. Several queries were considered in an attempt to create a well-defined scope. These queries included the k-Nearest Neighbor (kNN) query, advanced analytical query, and correlated range query. The proposed protocols utilize an additive homomorphic cryptosystem and/or a garbled circuit technique at different stages of query processing to achieve the best performance. In addition, by adopting a multi-cloud computing paradigm, all computations can be done on the encrypted data without using very expensive fully homomorphic encryptions. The proposed protocols\u27 security was analyzed theoretically, and its practicality was evaluated through extensive empirical results --Abstract, page iii

    Hybrid Cloud-Based Privacy Preserving Clustering as Service for Enterprise Big Data

    Get PDF
    Clustering as service is being offered by many cloud service providers. It helps enterprises to learn hidden patterns and learn knowledge from large, big data generated by enterprises. Though it brings lot of value to enterprises, it also exposes the data to various security and privacy threats. Privacy preserving clustering is being proposed a solution to address this problem. But the privacy preserving clustering as outsourced service model involves too much overhead on querying user, lacks adaptivity to incremental data and involves frequent interaction between service provider and the querying user. There is also a lack of personalization to clustering by the querying user. This work “Locality Sensitive Hashing for Transformed Dataset (LSHTD)” proposes a hybrid cloud-based clustering as service model for streaming data that address the problems in the existing model such as privacy preserving k-means clustering outsourcing under multiple keys (PPCOM) and secure nearest neighbor clustering (SNNC) models, The solution combines hybrid cloud, LSHTD clustering algorithm as outsourced service model. Through experiments, the proposed solution is able is found to reduce the computation cost by 23% and communication cost by 6% and able to provide better clustering accuracy with ARI greater than 4.59% compared to existing works

    Outsourced Privacy-Preserving kNN Classifier Model Based on Multi-Key Homomorphic Encryption

    Get PDF
    Outsourcing the k-Nearest Neighbor (kNN) classifier to the cloud is useful, yet it will lead to serious privacy leakage due to sensitive outsourced data and models. In this paper, we design, implement and evaluate a new system employing an outsourced privacy-preserving kNN Classifier Model based on Multi-Key Homomorphic Encryption (kNNCM-MKHE). We firstly propose a security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan (BGV) for collaborative evaluation of the kNN classifier provided by multiple model owners. Analyze the operations of kNN and extract basic operations, such as addition, multiplication, and comparison. It supports the computation of encrypted data with different public keys. At the same time, we further design a new scheme that outsources evaluation works to a third-party evaluator who should not have access to the models and data. In the evaluation process, each model owner encrypts the model and uploads the encrypted models to the evaluator. After receiving encrypted the kNN classifier and the user’s inputs, the evaluator calculated the aggregated results. The evaluator will perform a secure computing protocol to aggregate the number of each class label. Then, it sends the class labels with their associated counts to the user. Each model owner and user encrypt the result together. No information will be disclosed to the evaluator. The experimental results show that our new system can securely allow multiple model owners to delegate the evaluation of kNN classifier
    corecore