
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2015

Privacy-preserving query processing over encrypted data in cloud Privacy-preserving query processing over encrypted data in cloud

Yousef M. Elmehdwi

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Computer Sciences Commons

Department: Computer Science Department: Computer Science

Recommended Citation Recommended Citation
Elmehdwi, Yousef M., "Privacy-preserving query processing over encrypted data in cloud" (2015). Doctoral
Dissertations. 2442.
https://scholarsmine.mst.edu/doctoral_dissertations/2442

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229070614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2442&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2442&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2442?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2442&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PRIVACY-PRESERVING QUERY PROCESSING

OVER ENCRYPTED DATA IN CLOUD

by

YOUSEF M. ELMEHDWI

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

2015

Approved by

Dr. Wei Jiang, Advisor
Dr. Ali Hurson
Dr. Dan Lin

Dr. Xuerong (Meggie) Wen
Dr. Zhaozheng Yin

Copyright 2015

YOUSEF M. ELMEHDWI

All Rights Reserved

iii

ABSTRACT

The query processing of relational data has been studied extensively throughout the

past decade. A number of theoretical and practical solutions to query processing have been

proposed under various scenarios. With the recent popularity of cloud computing, data

owners now have the opportunity to outsource not only their data but also data processing

functionalities to the cloud. Because of data security and personal privacy concerns, sensitive

data (e.g., medical records) should be encrypted before being outsourced to a cloud, and

the cloud should perform query processing tasks on the encrypted data only. These tasks

are termed as Privacy-Preserving Query Processing (PPQP) over encrypted data. Based

on the concept of Secure Multiparty Computation (SMC), SMC-based distributed protocols

were developed to allow the cloud to perform queries directly over encrypted data. These

protocols protect the confidentiality of the stored data, user queries, and data access patterns

from cloud service providers and other unauthorized users. Several queries were considered

in an attempt to create a well-defined scope. These queries included the k-Nearest Neighbor

(kNN) query, advanced analytical query, and correlated range query. The proposed protocols

utilize an additive homomorphic cryptosystem and/or a garbled circuit technique at different

stages of query processing to achieve the best performance. In addition, by adopting a multi-

cloud computing paradigm, all computations can be done on the encrypted data without

using very expensive fully homomorphic encryptions. The proposed protocols’ security was

analyzed theoretically, and its practicality was evaluated through extensive empirical results.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who have helped me with this

thesis. First, I would like to extend my sincere thanks to my advisor, Dr. Wei Jiang, for

his continuous suggestions, encouragement, and motivation, which greatly helped me carry

through difficult times. I consider him more than just an advisor, but a dear friend.

I would also like to thank the members of my Ph.D. committee, Prof. Ali Hurson,

Dr. Dan Lin, Dr. Xuerong (Meggie) Wen, and Dr. Zhaozheng Yin, for their constructive

and valuable suggestions.

I appreciate the advice and support of Gerry Howser, Hu Chun, Bharath Samanthula,

Amir Bahmani, and Michael Howard. Thanks should be extended also to the staff members

of the computer department and to Amy Ketterer, in the graduate editing services, for their

great assistance.

Lastly, but most importantly, I owe a great debt to my father Mohammed, to whom

I would like to dedicate this work- for his undying love and faith in me-, my mother Salma,

my dear wife Azza, my lovely kids, Sammy and Mohammed, and all other family members.

With their support over the years, I have overcome the difficulties in my study and life.

Thank you all.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS. iv

LIST OF ILLUSTRATIONS. viii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION . 1

1.1. DEFINING THE PROBLEM . 2

1.2. OBJECTIVES AND CONTRIBUTIONS . 3

1.3. ORGANIZATION . 5

2. RELATED WORK . 7

2.1. SECURE k-NEAREST NEIGHBOR TECHNIQUES 7

2.2. PRIVACY-PRESERVING DATA MINING 9

2.3. PRIVACY-PRESERVING BIOMETRIC AUTHENTICATION/ IDENTIFI-
CATION . 11

3. SECURITY DEFINITIONS AND BASIC SECURITY PRIMITIVES. 15

3.1. SECURE MULTIPARTY COMPUTATION 15

3.2. THREAT MODEL . 16

3.2.1. Justification of Use of Semi-Honest Model 17

3.3. ADDITIVE HOMOMORPHIC ENCRYPTION 18

3.4. DISTANCE COMPUTATION . 20

3.4.1. Euclidean Distance . 20

3.4.2. Hamming Distance . 20

3.5. BASIC SECURITY PRIMITIVES . 20

3.5.1. Secure Multiplication . 21

3.5.2. Secure Squared Euclidean Distance 24

vi

3.5.3. Secure Squared Euclidean Distance-Random Share 25

3.5.4. Secure Hamming Distance-Random Share 28

3.5.5. Secure Bit-Decomposition . 30

3.5.6. Secure Bit-OR . 31

3.5.7. Secure Minimum . 31

3.5.8. Secure Minimum out of n Numbers 38

3.5.9. Secure Frequency . 41

3.5.10. Secure Comparison with a Threshold 44

3.6. OVERVIEWOF THE PROPOSED PRIVACY-PRESERVINGQUERY PRO-
CESSING PROTOCOLS . 46

4. k-NEAREST NEIGHBOR QUERY . 48

4.1. DEFINING THE PROBLEM . 49

4.2. MAIN CONTRIBUTIONS . 51

4.3. THE PROPOSED SECURE k-NEAREST NEIGHBOR PROTOCOLS . . . 52

4.3.1. Basic Secure k-Nearest Neighbor Protocol 53

4.3.2. Maximally Secure k-Nearest Neighbor Protocol 55

4.4. SECURITY ANALYSIS . 59

4.5. COMPLEXITY ANALYSIS . 60

4.6. PERFORMANCE EVALUATION . 61

4.6.1. Performance of the Basic Secure k-Nearest Neighbor Protocol 61

4.6.2. Performance of the Maximally Secure k-Nearest Neighbor Protocol . 62

4.6.3. Performance Improvement . 64

5. ADVANCED ANALYTICAL QUERY. 66

5.1. DEFINING THE PROBLEM . 67

5.2. MAIN CONTRIBUTIONS . 68

5.3. THE PROPOSED PRIVACY-PRESERVING k-NEAREST NEIGHBOR CLAS-
SIFICATION PROTOCOL . 69

5.3.1. Stage 1: Secure Retrieval of k-Nearest Neighbors 70

5.3.2. Stage 2: Secure Computation of Majority Class 74

vii

5.4. SECURITY ANALYSIS . 75

5.4.1. Security Proof for Stage 1 . 76

5.4.2. Security Proof for Stage 2 . 77

5.5. COMPLEXITY ANALYSIS . 78

5.6. PERFORMANCE EVALUATION . 79

5.6.1. Performance Improvement . 80

6. CORRELATED RANGE QUERY. 83

6.1. OUTSOURCEABLE AND PRIVACY-PRESERVING BIOMETRIC AUTHEN-
TICATION . 84

6.1.1. Defining the Problem . 84

6.1.2. Main Contributions . 85

6.1.3. The Proposed Outsourceable and Privacy-Preserving Biometric Au-
thentication Protocol . 86

6.1.3.1. Sub-Components of the PPBAO Protocol 87

6.1.3.2. The PPBAO Protocol: . 89

6.1.4. Security Analysis . 90

6.1.5. Complexity Analysis . 91

6.1.6. Performance Evaluation . 91

6.1.6.1. Performance Improvement 92

6.2. OUTSOURCEABLE AND PRIVACY-PRESERVING BIOMETRIC IDEN-
TIFICATION . 94

6.2.1. Defining the Problem . 94

6.2.2. The Proposed Outsourceable and Privacy-Preserving Biometric
Identification Protocol . 95

6.2.3. Security Analysis . 97

6.2.4. Complexity Analysis . 97

7. CONCLUSIONS AND FUTURE DIRECTIONS . 99

BIBLIOGRAPHY . 101

VITA. 108

viii

LIST OF ILLUSTRATIONS
Figure Page

3.1. Binary execution tree for n = 6 based on the SMINn 41

4.1. Time complexities of both SkNNb and SkNNb for varying values of n, m, l,
k, and encryption key size K . 63

4.2. Parallel vs. serial versions of the SkNNb protocol for m = 6, k = 5, and
K = 512 . 65

5.1. Computation costs of the PPkNN protocol for varying number of kNNs and
different encryption key sizes in bits (K) . 82

6.1. Time complexities of a) SSEDR, b) SCT, and c) PPBAO by varying n and m 93

ix

LIST OF TABLES

Table Page

3.1. Common notations . 16

3.2. Garbled circuit vs. homomorphic-based secure multiplication 31

3.3. P1’s random permutation functions . 36

3.4. SMIN example: P1 chooses F as v > u, where u = 55 and v = 58 37

3.5. SF example: P1’s random permutation function 43

3.6. SF example: Vectors Si,j and Zi,j, for 1 ≤ i ≤ k = 6 and 1 ≤ j ≤ w = 3 . . . 44

3.7. SF example: Vector Vi,j, for 1 ≤ i ≤ k = 6 and 1 ≤ j ≤ w = 3 44

4.1. Common notations used in the SkNN protocols 50

4.2. Sample heart disease dataset T . 51

4.3. Attribute description of heart disease dataset T 52

5.1. Common notations used in the PPkNN protocol 68

6.1. Common notations used in the PPBAO/PPBIO protocols 85

1. INTRODUCTION

Cloud computing [51, 66] enables an entity to outsource both its database and its data

processing functionalities. The cloud provides access mechanisms for not only querying but

also managing the hosted database. When data is outsourced, the data owner can enjoy the

benefits of reduced data management costs, reduced data storage overhead, and improved

service. Unfortunately, the cloud cannot be fully trusted; preserving data confidentiality and

query privacy is a challenging task. This is because it is difficult for the cloud to actually

guarantee the confidentiality of sensitive data. The challenge arises due to several well-

documented security risks faced by existing cloud service providers [31, 47, 81, 82, 94, 103].

One such risk, for instance, is that when a breach occurs in the cloud, any sensitive data

stored in the clear (i.e., not encrypted) can be easily exposed to the attacker.

One straightforward way to protect the confidentiality of outsourced data from the

cloud as well as from unauthorized users involves the data owner encrypting the data before

it is outsourced [1, 61, 77]. This encryption guarantees the confidentiality of data, even

when a cloud is compromised due to external threats such as hacking. A potentially curious,

untrustworthy, or even malicious cloud operator can track down the user’s queries and infer

what the user is looking for. Thus, a user’s query privacy may be compromised while

searching through hosted data within the cloud. To help preserve query privacy, authorized

users demand that their queries become encrypted before they are sent to the cloud for

evaluation. Furthermore, the cloud can derive useful and sensitive information about the

actual data items by observing the data access patterns during query processing, even if

the data and the query are encrypted [27, 97]. The term “data access patterns” refers to

the relationships between the encrypted data that can be observed by the cloud during the

query processing, such as the outcome of the search (i.e., which records have been retrieved).

During query processing, the need is to keep not only the data private from the cloud

but also the users’ input queries. The question to ask is “how can the cloud execute queries

over encrypted data without ever decrypting them or compromising the user’s privacy?”

Such a question has resulted in a specific research area known as query processing over

encrypted data.

2

A trivial solution is to encrypt the data with symmetric key encryption schemes(
e.g., Advanced Encryption Standard (AES)

)
and then outsource it to a cloud. At first,

it seems to be a better approach. Data encryption by symmetric key encryption schemes,

however, restricts a cloud’s ability to perform fundamental data processing functionality

(e.g., query processing) without disclosing the original data and user queries. Under this

case, the only option for the user is to download the whole encrypted data from the cloud,

decrypt the data, and then perform queries on the plaintext data locally. However, this is

clearly impractical, especially for mobile users and large data.

Following the aforementioned discussions, it is clear that there is a strong need to

develop protocols for query processing over encrypted data that can guarantee the following:

(1) maintaining the confidentiality of encrypted data, (2) ensuring the privacy of a user’s

query, and (3) hiding data access patterns.

This work was conducted to address the challenge of performing queries on encrypted

outsourced data in a cloud without compromising either the data’s confidentiality or the

user’s queries. This work focuses on developing secure protocols over encrypted data under

the semi-honest model for the following types of queries: the k-Nearest Neighbor (kNN)

query, advanced analytical query, and correlated range query. The k-Nearest Neighbor

query identifies the top k closest records to the query input record at the database. The

advanced analytical query performs any data mining task (e.g., classification). Given a

specific threshold t, the correlated range query aims to find all records in the dataset whose

distances with the query lie either below or above t, depending on the application.

1.1. DEFINING THE PROBLEM

This work considers the following scenarios. There are three different distributed

parties including the data owner (here referred to as Alice), the cloud, and the data autho-

rized consumer/user (here referred to as Bob). Let T denote Alice’s database with n records,

denoted by 〈t1, . . . , tn〉, and m attributes. Let ti,j denote the jth attribute value of tuple ti

for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Assume that Alice encrypts her database (T) attribute-wise

using her public key (pk) and outsources both the encrypted database and all future query

3

processing services to a cloud. This work assumed that Alice’s public/secret keys are gen-

erated using a semantically secure and an Additive Homomorphic Public Key Encryption

(AH-Enc) scheme (such as the Paillier cryptosystem [75]). Semantic security means that

ciphertexts should be computationally indistinguishable from the cloud’s perspective. If the

encryption scheme is semantically secure, then the ciphertexts are random numbers from

the cloud’s perspective. That ensures that the cloud cannot distinguish an encryption of

one message from another [45]. More details are given in Section 3.3. By encrypting the

data using an AH-Enc scheme, Alice makes it possible for the cloud to conduct certain

mathematical operations directly over encrypted data.

Let T ′ denote Alice’s encrypted database. Suppose Alice allows Bob to securely

retrieve data from T ′ in the cloud. Suppose also that at some future time, Bob wants to

execute a query
(
q = 〈q1, . . . , qm〉

)
on T ′ in the cloud in a privacy-preserving manner. During

this process, neither Bob’s query (q) nor the database’s contents (T) should be revealed to

the cloud. Access patterns to the data should also be protected from the cloud and other

unauthorized users. This process is referred to as Privacy-Preserving Query Processing

(PPQP) over encrypted data in the cloud. Let qout denote the set of records that satisfies

q. The PPQP protocol can now be formally defined as:

PPQP(T ′, q)→ qout

At the end of the PPQP protocol, the output qout should be revealed only to Bob (the

authorized user who initiated the query).

1.2. OBJECTIVES AND CONTRIBUTIONS

This thesis addresses the problem of performing queries on encrypted data stored on

a cloud. PPQP protocols are proposed to facilitate different types of queries, namely, the k-

Nearest Neighbor query, the advanced analytical query, and the correlated range query that

protect the confidentiality of the stored data, user queries, and data access patterns from

cloud service providers and other unauthorized users. In the proposed protocols, once Alice

outsources her encrypted data to the cloud, she stops participating in the query processing

4

task. Therefore, no information is revealed to Alice. The protocols proposed in this thesis

meet the following privacy requirements:

• Data confidentiality - During the query processing, neither the contents (T) nor any

intermediate results are disclosed to the cloud.

• Query privacy - At any point in time, Bob’s input query (q) should not be disclosed

to the cloud or to Alice.

• Hiding data access patterns - Access patterns to the data (e.g., the records correspond-

ing to q) should not be revealed to either Alice or the cloud to prevent any inference

attacks. Access patterns related to any intermediate computations should also be hid-

den from the cloud, thereby preserving the semantic security of the encrypted data.

• Output security - At the end of the protocol, the output qout should be revealed only

to Bob; no information should be revealed to the cloud. Additionally, no information

other than qout should be revealed to Bob.

The intermediate results observed by the cloud in these protocols are either newly generated,

randomized encryptions or random numbers. Thus, the data records that correspond to

query q are unknown to the cloud.

The desirable privacy requirements can be relaxed to provide a practical, more ef-

ficient protocol. For example, a protocol can be allowed to leak a specified amount of

information (e.g., data access patterns) to the cloud to improve efficiency.

Additionally, the proposed protocols achieve the following properties:

• Efficiency - These protocols incur a low computational overhead (negligible compu-

tation cost) on the end-user. After Bob sends his encrypted query to the cloud, he

stops involving in any computations (less workload at Bob’s local machine). Hence,

data access patterns are further protected from Bob. He only performs a very small

number of encryption/decryption operations (bounded by the number of attributes).

• Correctness - The output qout should be computed accurately.

5

1.3. ORGANIZATION

The thesis is organized as follows. Chapter 2 presents an overview of some existing

work that is closely related to the research being proposed. Chapter 3 provides basic in-

formation regarding SMC and the AH-Enc scheme. This chapter also introduces a set of

privacy-preserving primitives, along with their implementations and security analysis, under

the semi-honest model.

Chapter 4 considers the kNN query over relational data. In particular, this chapter

focuses on solving the secure processing of kNN query over encrypted relational data. More

specifically, this chapter presents two novel Secure k-Nearest Neighbor (SkNN) protocols

[29]. Data confidentiality and query privacy of both protocols are completely protected.

The first protocol (which acts as a basic solution) leaks a specified amount of information

(data access patterns) to the cloud. The second protocol is more secure (provides a better

security guarantee) as it hides the data access patterns. The second protocol, however, is

more expensive than the first protocol.

Chapter 5 addresses the advanced analytical query over relational data. In par-

ticular, this chapter focuses on solving the classification problem over encrypted data. A

novel Privacy-Preserving k-Nearest Neighbor (PPkNN) protocol over semantically secure

encrypted data is developed [85]. This protocol protects not only the confidentiality of the

original data but also the user query from the cloud. It also hides the data access patterns

and the classification result. The proposed protocol’s performance under different parameter

settings is evaluated in this chapter.

The correlated range query over image data is discussed in Chapter 6. More specifi-

cally, Content-Based Image Retrieval (CBIR) is considered. A desirable image was retrieved

from a large amount of image data based on the similarity of some common attributes,

known as features. More specifically, this chapter proposes a secure Outsourceable and

Privacy-Preserving Biometric Authentication (PPBAO) protocol, which is a special case of

CBIR [21]. At a high level, a hybrid approach is adopted to implement PPBAO in order to

take advantage of both homomorphic encryption and garbled circuit-based approaches to

achieve the best performance while simultaneously protecting both the confidentiality of the

biometric data and the user’s input query, in addition to hiding the data access patterns.

6

In this chapter, the protocol’s security is analyzed and it’s performance under different pa-

rameter settings is evaluated. The proposed PPBAO was also modified slightly to produce

an Outsourceable and Privacy-Preserving Biometric Identification (PPBIO) protocol. The

PPBIO protocol completely protects the confidentiality of the stored biometric data, user

queries, and data access patterns from cloud service providers and other unauthorized users.

Both the contributions of this work as well as the potential for future studies are

discussed in Chapter 7.

7

2. RELATED WORK

This chapter reviews the existing work related to the Secure k-Nearest Neighbor

[29] techniques, Privacy-Preserving Data Mining [85], and Privacy-Preser- ving Biometric

Authentication/Identification [21] protocols.

2.1. SECURE k-NEAREST NEIGHBOR TECHNIQUES

Retrieving the k-Nearest Neighbors to a given query (q) is one of the most fundamen-

tal problems in many application domains such as similarity search, pattern recognition, and

data mining. In the literature, many techniques have been proposed to address the SkNN

problem, which can be classified into two categories based on whether the data are encrypted

or not: centralized and distributed.

Centralized Methods : In the centralized methods, the data owner is assumed to

outsource his/her database and DBMS functionalities (e.g., kNN query) to an untrusted

external service provider, which manages the data on behalf of the data owner, where only

the trusted users are allowed to query the hosted data. By outsourcing data to an untrusted

server, many security issues arise such as data privacy (protecting the confidentiality of the

data from both the server and the query issuer). To achieve data privacy, the data owner

is required to use data anonymization models (e.g., k-anonymity) or cryptographic (e.g.,

encryption and data perturbation) techniques over his/her data before outsourcing them to

the server.

Encryption is a traditional technique used to protect the confidentiality of sensitive

data such as medical records. Due to data encryption, the process of query evaluation

over encrypted data becomes challenging. Along this direction, various techniques have

been proposed for processing range queries [49, 50, 91] and aggregation queries [46, 68] over

encrypted data. This work, however, restricts the discussion to secure evaluation of the

kNN query.

In the past few years, researchers have proposed different methods [51, 98, 99, 105]

to address the SkNN problem. Wong et al. [98] proposed a new encryption scheme called

8

Asymmetric Scalar-Product-preserving Encryption (ASPE) that preserves the scalar prod-

uct between the query vector (q) and any tuple vector (ti) from database (T) for distance

comparison, which is sufficient to find kNN. Both the data and query are encrypted using

slightly different encryption schemes before outsourcing to the server, and all the query

users know the decryption key. As an improvement, Zhu et al. [105] proposed a novel

SkNN method in which the key of the data owner is not disclosed to the user. However,

their architecture requires the participation of the data owner during query encryption.

As an alternative, Hu et al. [51] proposed a method based on a provably secure privacy

homomorphism encryption scheme from a provably secure additive and multiplicative pri-

vacy homomorphism [28] that supports modular addition, subtraction, and multiplication

over encrypted data. They addressed the SkNN problem under the following setting: the

client has the ciphertexts of all data points in database T and the encryption function of

T , whereas the server has the decryption function of T and some auxiliary information re-

garding each data point. Both methods [51, 98], however, are not secure because they are

vulnerable to chosen-plaintext attacks. All the above methods also leak data access patterns

to the server.

Recently, Yao et al. [99] proposed a new SkNN method based on partition-based a

Secure Voronoi Diagram (SVD). Instead of asking the cloud to retrieve the exact kNN, they

required the cloud to retrieve a relevant encrypted partition
(
Epk(G) for Epk(T)

)
such that

G is guaranteed to contain the k-nearest neighbors of q. This work, however, solves the

SkNN problem accurately by letting the cloud retrieve the exact k-Nearest Neighbors of q

(in encrypted form). Additionally, most of the computations during the query processing

step in [51, 99, 105] are performed locally by the end-user. That conflicts with the purpose

of outsourcing the DataBase Management System (DBMS) functionalities to the cloud.

Furthermore, the protocol in secure nearest neighbor revisited [99] leaks data access patterns,

such as the partition ID corresponding to a user query, to the cloud.

Data Distribution Methods : In the data distributed methods, data are assumed to

be partitioned either vertically or horizontally and distributed among a set of independent,

non-colluding parties. The data distributed methods rely on SMC techniques that enable

multiple parties to securely evaluate a function using their respective private inputs without

9

disclosing the input of one party to the others. Many efforts have been made to address

the problem of the kNN query in a distributed environment. Shaneck et al. [89] proposed

a privacy-preserving algorithm to perform the k-Nearest Neighbor search. The protocol in

privacy preserving nearest neighbor search [89] is based on Secure Multiparty Computation

for privately computing kNN points in a horizontally partitioned dataset. Qi et al. [79]

proposed a single-step kNN search protocol that is provably secure with linear computa-

tion and communication complexities. Vaidya et al. [92] studied privacy-preserving top-k

queries in which the data are vertically partitioned. Ghinita et al. [39] proposed a Private

Information Retrieval (PIR) based framework for answering kNN queries in location-based

services. Their solution, however, protects only the query privacy (i.e., it does not address

data confidentiality and access pattern issues). Note that, in private queries in location

based services [39], the data residing in the server are in plaintext format. However, if the

data are encrypted to ensure data confidentiality, it is not clear how a user can obliviously

retrieve the output records because he/she does not know the indices that match his/her

input query. Nevertheless, even if a user can retrieve the records using PIR, the user still

needs to perform local computations to identify the k-Nearest Neighbors. However, in this

study, the user’s computation is completely outsourced to a cloud.

In summary, the above data distribution methods are not applicable to perform kNN

queries over encrypted data for two reasons: (1) This work deals with an encrypted form of

the data and query, which is not the case in the above methods. (2) The data in this work

are assumed to be encrypted and stored in the cloud, whereas, in the above methods, they

are partitioned (in plaintext format) among different parties.

2.2. PRIVACY-PRESERVING DATA MINING

Privacy-Preserving Data Mining (PPDM) is defined as the process of extracting/

deriving knowledge about data without compromising the privacy of the data [3, 64, 80]. In

the past decade, a number of PPDM techniques have been proposed to facilitate users in

performing data mining tasks in privacy-sensitive environments. Agrawal and Srikant [3], as

well as Lindell and Pinkas [63], were the first to introduce the notion of privacy-preserving

10

under data mining applications. Existing PPDM techniques can be classified into two broad

categories: data perturbation and data distribution.

Data Perturbation Methods : With these methods, values of individual data records

are perturbed by adding random noise in such a way that the distribution of the perturbed

data look very different from that of the actual data. After such a transformation, the

perturbed data is sent to the Miner to perform the desired data mining tasks. Agrawal

and Srikant [3] proposed the first data perturbation technique that could be used to build a

decision-tree classifier. A number of randomization-based methods were later proposed [6,

33, 34, 73, 104]. Data perturbation techniques are not, however, applicable to semantically-

secure encrypted data. They also fail to produce accurate data mining results due to the

addition of statistical noises to the data.

Data Distribution Methods: These methods assume that the dataset is partitioned

either horizontally or vertically and distributed across different parties. The parties can later

collaborate to securely mine the combined data and learn the global data mining results.

During this process, data owned by individual parties is not revealed to other parties. This

approach was first introduced by Lindell and Pinkas [63] who proposed a decision tree

classifier under a two-party setting. A number of studies have since used SMC techniques

[2, 22, 51, 57, 100].

Classification is one important task in many applications of data mining, including

health-care and business. Recently, performing data mining in the cloud attracted signifi-

cant attention. In cloud computing, the data owner outsources his/her data to the cloud.

However, from the user’s perspective, privacy becomes an important issue when sensitive

data needs to be outsourced to the cloud. The direct way to guard the outsourced data is

to apply encryption on the data before outsourcing.

Existing privacy-preserving classification techniques are not sufficient and applicable

in this work for the following reasons: (i) In the existing methods, data are partitioned (in

plaintext format) among different parties, whereas in this work, they are assumed to be

encrypted and stored in the cloud. (ii) They fail to produce accurate data mining results

because some amount of information is lost due to the addition of statistical noises (in order

to hide the sensitive attributes). (iii) Data access patterns can be leaked. The cloud can

11

easily derive useful and sensitive information about users’ data items by simply observing

the data access patterns.

2.3. PRIVACY-PRESERVING BIOMETRIC AUTHENTICATION/ IDENTI-
FICATION

Biometric authentication or identification is a special case of Content-Based Image

Retrieval (CBIR). In a CBIR system, a desirable image is retrieved from a large image

database based on the similarity of some common attributes, which are called features.

There are two kinds of features: global and local. Global features usually include color,

texture, and shape, which are well-known and studied in image retrieval. Local features are

usually used in a localized circumstance, which needs to recognize objects more precisely.

The formulation of Privacy-Preserving Biometric Identification (PPBI) is slightly

different from Privacy-Preserving Biometric Authentication (PPBA). The PPBI protocol

generally returns the profile of any person whose biometric data record (stored on the

server) matches the user’s input biometric data record. In contrast, the PPBA protocol

only returns a single bit to indicate if there is a match or not. Existing PPBI protocols

can be easily modified to satisfy the PPBA problem statement definition. From a technical

perspective, the difference between PPBI and PPBA is negligible. Since there is a lack of

existing work directly related to PPBA, works mainly related to PPBI are presented. In

both PPBA and PPBI, the involved biometric data is never disclosed to the participating

parties, except for their own data.

Erkin et al. [30] proposed the first privacy-preserving biometric face recognition

protocol based on the standard Eigenfaces recognition algorithm. The protocol is a secure

two-party computation protocol where one party (client) wants to learn whether its can-

didate biometric reading matches for one or more records in the other party’s (server’s)

database without disclosing any information except the final result. The protocol computes

Euclidean distances between face image feature vectors from the client and server’s face

image database, and it returns the profile information associated with the facial image data

record that has the smallest distance to the client’s input biometric data. In the end, the

client only knows the profile information without knowing other biometric data and their

12

associated profiles stored at the server, and the server knows nothing, even regarding the

profile information returned to the client. The data exchanged during an execution of the

protocol are encrypted by an AH-Enc scheme, but the data stored at the sever are not

encrypted. Therefore, the server knows the contents of its biometric database.

Sadeghi et al. [83] developed a hybrid privacy-preserving face recognition protocol

that improved the efficiency of Erkin’s work. This protocol follows the problem setting of

Erkin’s work and also uses an AH-Enc (the Paillier cryptosystem) to securely compute

Euclidean distances. On the other hand, garbled circuits [53, 102] are used to find out the

minimum distance. The authors also proposed a method of packing multiple values together

into a single ciphertext before blinding. This can save significant communication costs.

Huang et al. [32] developed an efficient Privacy-Preserving Biometric Identification

protocol for fingerprint recognition. The basic algorithm for fingerprint identification is

based on FingerCode [55]. In the main system, the server and a client jointly perform

the protocol to retrieve the identity record from the server’s database whose fingerprint

best matches the client’s input fingerprint reading. The protocol provides the same security

guarantee as the previously mentioned protocols. In addition, similar to Sadeghi’s work,

this protocol also combines AH-Enc with garbled circuits. However, the protocol improves

efficiency for both the distance-computing phase and matching phase compared to Sadeghi’s

work. The protocol separates the retrieval step from the matching phase, and it uses the

by-product of evaluating the garbled circuit in the matching phase to perform the oblivious

retrieval efficiently. In the retrieval phase, the protocol utilizes a backtracking tree to

obliviously and efficiently recover the profile corresponding to the closest matching vector.

Blanton and Gasti [11] developed a Privacy-Preserving Biometric Identification pro-

tocol for iris codes based on Hamming distance. In their protocol, the client who possesses

an iris reading would also like to learn whether his/her reading matches one or more records

in an iris database managed by the server. The contents of the server’s database are never

disclosed to the client, but the client learns the comparison results between his/her input iris

record and every record in the server’s database. The implementation of the protocol also

uses both AH-Enc and garbled circuits, and it reduces the complexity of the circuits used for

comparison based on an optimization that permits XOR gates to be evaluated for free. The

13

proposed techniques can be applied in protocols where FingerCode and Euclidean distances

are adopted to improve the performance compared to the existing Euclidean distance-based

solutions.

SCiFI [74] is a realization of a privacy-preserving face identification system that

uses a component-based face identification technique that builds a binary index into a

vocabulary representation. The adopted image representation technique is robust against

different viewing conditions, such as illumination, occlusions, and changes in appearance

(like wearing glasses). The protocol utilizes Hamming distance to measure image similarity,

and its implementation was based on AH-Enc and oblivious transfer [69].

Although the aforementioned privacy-preserving biometric identification/authentica-

tion protocols protect the confidentiality of both the server’s and client’s biometric data, in

this study, the problem setting is quite different from these protocols. This study deals with

the encrypted form of the biometric database that is outsourced to a server (or a cloud),

and the server does not have the key to decrypt the data. Thus, the server does not know

anything regarding the original biometric database. Since the previously proposed solutions

require the server to perform computations on the original biometric data, these solutions

cannot be applied to solve this outsourced biometric authentication problem.

Recently, Blanton and Aliasgari [10] developed a secure approach to outsourcing the

computations of matching iris biometric data records. The setting of their work is very

similar to this study. Two protocols were proposed for either a single-server setting or a

multiple-server setting. In their single-server setting, the protocol uses a predicated encryp-

tion scheme [59, 90] that allows the server to perform non-interactive computations. The

predicate encryption scheme is not as secure as AH-Enc. As a result, the protocol proposed

in this study offers much better protection of the biometric data’s confidentiality. Under

the multiple-server setting, the protocol adopts a secret sharing scheme (e.g., Shamir [88])

to “encrypt” the outsourced biometric database. The protocol, however, requires at least

three independent servers to perform the intermediate computations, whereas this study

only requires two; thus, it is more practical. Additionally, the protocol mainly focuses on

calculating Hamming distance, whereas this work allows Euclidean and Hamming distances

to be calculated. Since both distances are commonly used to retrieve images according to

14

different kinds of biometric data, this work offers more generality. Another difference is that,

at the end of protocol execution, the server can know which encrypted biometric data record

matches the client’s input. This access pattern leakage can violate the security guarantee of

the underlying encryption scheme [54]. Because this work does not disclose this information

to any participating party, it offers the same security protection as the encryption scheme

used to encrypt the outsourced biometric data.

15

3. SECURITY DEFINITIONS AND BASIC SECURITY PRIMITIVES

This chapter presents basic information about Secure Multiparty Computation along

with the security threat or adversary models that best match in this study. Then, it sum-

marizes the homomorphic properties of the encryption scheme used in this study as a back-

ground. Finally, it introduces a set of sub-protocols [21, 29, 85] that were used as basic

primitives when constructing the proposed PPQP protocols, along with their possible im-

plementations, security, and complexity analysis. For ease of presentation, some common

notations that are used extensively throughout this chapter are summarized in Table 3.1.

3.1. SECURE MULTIPARTY COMPUTATION

Secure Multiparty Computation (SMC) was first introduced by Yao’s Millionaire

Problem [101, 102], where Alice and Bob want to know who is richer without disclosing their

actual wealth to each other. Suppose there are n parties (P1, . . . , Pn) who hold private inputs

(a1, . . . , an). An SMC protocol allows P1, . . . , Pn to collaboratively compute a function f on

inputs a1, . . . , an without disclosing ai to Pj, where 1 ≤ i, j ≤ n and i 6= j. To achieve that,

the participating parties have to exchange messages and perform some local computations

until all the parties get the desired output. More formally, SMC allows the evaluation of

the function f(a1, . . . , an) = (r1, . . . , rn) such that the output (ri) is known only to party Pi

and the privacy of each party’s input (ai) is preserved.

The first general and provably secure solution for a two-party case was developed

by Yao, and it demonstrated that any function that can be described by a polynomial

size boolean circuit of logarithm depth can be solved securely [101, 102]. This work was

extended to multiparty computations by Goldreich et al. [42]. It was proved in [42] that

any computation that can be done in polynomial time by a single party can also be done

securely by multiple parties. Since then, much work has been published for the multiparty

case [7, 8, 18, 19, 23, 40, 58, 62].

16

Table 3.1: Common notations

P1, P2 Two non-colluding semi-honest parties

〈Epk, Dsk〉
A pair of Paillier’s encryption and decryption functions with
(pk, sk) as public-secret key pair

X , Y
m-dimensional vectors, and the content of the individual dimen-
sion is represented by xj (yj), where 1 ≤ j ≤ m

Epk(X), Epk(Y)
Attribute-wise encryption of X, Y in which Epk(X) =〈
Epk(x1), . . . , Epk(xm)

〉
and Epk(X) =

〈
Epk(y1), . . . , Epk(ym)

〉

3.2. THREAT MODEL

In general, there is a conceptual difference between privacy and security. This work,

however, will not differentiate the two terms. Regarding a distributed protocol, security is

generally related to the amount of information leaked during the protocol execution. The

goal is to ensure no information, other than what they can deduce from their own outputs,

is leaked to the involved parties. There are many ways to define information disclosure. To

maximize privacy, or minimize information disclosure, security definitions that appear in

the literature of SMC were adopted for this study.

SMC-based secure protocols generally assume three basic adversarial models: semi-

honest (also referred to as honest but curious), covert, and malicious. An adversarial model

generally specifies what an adversary or attacker is allowed to do during an execution of

a secure protocol. In the semi-honest model, an attacker (i.e., one of the participating

parties) is expected to follow the prescribed steps of a protocol. The attacker, however, can

compute any additional information based on his/her private input, output, and messages

received during an execution of the secure protocol. As a result, whatever can be inferred

from the private input and output of an attacker is not considered as a privacy violation.

An adversary in the semi-honest model can be treated as a passive attacker, whereas an

adversary in the malicious model can be treated as an active attacker who can arbitrarily

diverge from the normal execution of a protocol. In contrast, the covert adversary model

[5] lies between the semi-honest and malicious models. More specifically, an adversary

under the covert model may deviate arbitrarily from the rules of a protocol in the case of

cheating. The honest party is guaranteed to detect this cheating with good probability. In

17

this study, to develop secure, efficient protocols, all the participating parties were assumed

to be semi-honest.

Detailed security definitions and models can be found in other studies [40, 41]. The

following definition briefly captures the previous discussion regarding a secure protocol under

a semi-honest model:

Definition 1. Let ai be the input of party Pi, Πi(π) be the party Pi’s execution image of

the protocol π, and ri be the result computed from π for the party Pi. Then, π is secure

if Πi(π) can be simulated from (ai, ri) such that the distribution of a simulated image is

computationally indistinguishable from Πi(π).

A formal way to prove the security of a protocol under the semi-honest model is to

use the simulation approach [43]. The execution image in Definition 1 typically includes

the input, the output, and the messages communicated during the execution of a protocol.

To prove a protocol is secure under the semi-honest model, it is required to show that the

execution image of a protocol does not leak any information regarding the private inputs of

participating parties [40].

Definition 2. Composition Theorem [41]: If a protocol consists of sub-protocols, the protocol

is secure as long as the sub-protocols are secure and all the intermediate results are random

or pseudo-random.

In this work, the proposed PPQP protocols are constructed based on a sequential

composition of sub-protocols. Thus, the security of each sub-protocol needed to be proved

before the PPQP’s security could be proved. In other words, to formally prove the security

of the proposed PPQP protocols under the semi-honest model, according to the composi-

tion theorem given in Definition 2, one needed to show that the simulated image of each

sub-protocol was computationally indistinguishable from the actual execution image and it

produced random shares or pseudo-random as intermediate results.

3.2.1. Justification of Use of Semi-Honest Model. By semi-honest model,

this work implicitly assumes that the cloud service providers (or other participating users)

utilized in the protocols proposed in this study do not collude. This model may not be

18

appropriate for situations in which background knowledge on the parties is missing (e.g.,

P1 and P2). There are two main reasons to adopt the semi-honest adversary model in

this study. First, as mentioned in “Faster secure two-party computation using garbled

circuits” [53], developing protocols under the semi-honest setting is an important first step

towards constructing protocols with stronger security guarantees. Almost all practical SMC-

based protocols (e.g., [48, 52, 53, 72]) are secure under the semi-honest model. Using zero-

knowledge proofs [43], these protocols can be transformed into secure protocols under the

malicious model. Second, both P1 and P2 were assumed to be two cloud service providers.

Today, cloud service providers in the market are legitimate, well-known companies (e.g.,

Amazon, Google, and Microsoft). These companies maintain reputations that are invaluable

assets that need to be protected at all costs. Thus, a collusion between them is highly

unlikely as it will damage their reputation, which, in turn, affects their revenues. Therefore,

P1 and P2 can safely be assumed to be semi-honest. As a consequence, in this study, it is

very realistic to assume that the participating parties are semi-honest.

3.3. ADDITIVE HOMOMORPHIC ENCRYPTION

Homomorphic encryption is a special type of encryption that allows operating on

ciphertexts without decrypting them [67]. This work adopted an Additive Homomorphic

Public Key Encryption (AH-Enc) scheme as the building block. Let Epk and Dsk be the

encryption and decryption functions, respectively, in an AH-Enc scheme with public key pk

and private key sk. Without sk, no one can discover x from Epk(x) in polynomial time. For

any given two plaintexts x, y ∈ ZN , an AH-Enc scheme exhibits the following properties:

a. Homomorphic Addition - The encryption function is additive homomorphic. The

product of two ciphertexts will decrypt to the sum of their corresponding plaintexts.

Dsk

(
Epk(x+ y)

)
= Dsk

(
Epk(x) ∗ Epk(y) mod N2

)

b. Homomorphic Multiplication - An encrypted plaintext raised to the power of another

plaintext will decrypt to the product of the two plaintexts. Given a constant c and

19

ciphertext Epk(x):

Dsk

(
Epk(c ∗ x)

)
= Dsk

(
Epk(x)c mod N2

)

c. Probablistic - Let c1 = Epk(x) and c2 =Epk(y),

Probability for c1 6= c2 is very high even if x = y

d. Semantic Security - The encryption scheme is semantically secure, as defined in “The

Foundations of Cryptography” and “The knowledge complexity of interactive proof

systems” [41, 44]. Briefly, given a set of ciphertexts, an encryption scheme is seman-

tically secure if an adversary cannot deduce/learn any information about the plain-

text(s) with polynomial-bounded computing power. In other words, the encryption

scheme is secure against a chosen-plaintext attack.

Any Additive Homomorphic Public Key Encryption (AH-Enc) system is applicable,

but the Paillier encryption scheme [75] was adopted in this study for its implementation

simplicity. Informally speaking, the public key in the system is (N ,g), where N is the result

of multiplying two large prime numbers of similar bit length and g ∈ Z∗N2 is a randomly

chosen generator. For succinctness, the mod N2 term that occurs during homomorphic

operations has been dropped from the remainder of this work. Note that, for any given

x ∈ ZN, “N − x” is equivalent to “−x” under ZN . Hereafter, the notation r ∈R ZN is used

to denote r as a random number in ZN .

Example 1. Let Epk be the encryption function with public key pk for any given two plaintexts

x, y ∈ ZN , and r ∈R Z. According to the additive homomorphic property of the encryption

scheme, Epk(x− y + r) can be computed as follows:

Epk(x− y + r)← Epk(x) ∗ Epk(y)N−1 ∗ Epk(r) �

20

3.4. DISTANCE COMPUTATION

This work adopted the two most common distance metrics to implement the proposed

PPQP protocols: Euclidean distance and Hamming distance. Suppose X and Y are m-

dimensional vectors and the content of dimension j is represented by xj (yj), where 1 ≤ j ≤

m.

3.4.1. Euclidean Distance. The Euclidean distance between X and Y can be

computed as follows:

Euclidean_Dist(X, Y) =

√√√√ m∑
i=1

(xj − yj)2 (3.1)

When comparing two distances, the square root does not make any difference. Thus,

in this work, the square root was dropped to compute the square of the Euclidean distance

between X and Y :

Euclidean_Dist2(X, Y) = |X − Y |2 =
m∑
i=1

(xj − yj)2 (3.2)

where |X − Y | denotes the Euclidean distance between vectors X and Y .

3.4.2. Hamming Distance. When X and Y are binary vectors, Hamming dis-

tance can be used to determine how close X and Y are. At a high level, the Hamming

distance can be computed as follows:

Hamming_Dist(X, Y) = m−
m∑
j=1

xj ∗ yj (3.3)

3.5. BASIC SECURITY PRIMITIVES

A set of generic sub-protocols that are used as basic primitives when constructing

the proposed Privacy-Preserving Query Processing (PPQP) protocols are presented here

[21, 29, 85]. All of the following protocols are considered under a two-party semi-honest

setting. In particular, assume the existence of two semi-honest parties (P1 and P2) such

that Paillier’s secret key (sk) is known only to P2; the pk is public. Also, let X and

21

Y be m-dimensional vectors in which Epk(X) =
〈
Epk(x1), . . . , Epk(xm)

〉
and Epk(Y) =〈

Epk(y1), . . . , Epk(ym)
〉
.

The term random shares means that the actual value is divided into two additive

random shares, each of which is independently and uniformly distributed in a group
(
e.g.,

ZN = {0, 1, . . . , N − 1}
)
. The actual value can be reconstructed by adding the two shares’

modulo N .

As mentioned in Section 3.2, to formally prove that a protocol is secure under the

semi-honest model, one must show that the simulated execution image of that protocol is

computationally indistinguishable from its actual execution image [41]. In other words, an

execution image of that protocol does not leak any information regarding the private inputs

of participating parties. An execution image generally includes the messages exchanged and

the information computed from these messages.

Next, each of these protocols are discussed in detail along with their complexity and

security analysis. This work either proposed a new solution or referred to the most efficient

known implementation to each of these protocols.

3.5.1. Secure Multiplication. Consider a party (P1) with input
(
Epk(a), Epk(b)

)
and a party (P2) with the secret key (sk). The goal of the Secure Multiplication (SM)

protocol is to return the encryption of a∗ b (i.e., Epk(a∗ b) as output to P1). No information

regarding either a or b is revealed either to P1 or P2 during this protocol. The basic idea of

the SM protocol is based on the following property, which holds for any given a, b ∈ ZN :

a ∗ b = (a+ ra) ∗ (b+ rb)− a ∗ rb − b ∗ ra − ra ∗ rb (3.4)

where all the arithmetic operations are performed under ZN . The overall steps in SM

are shown in Algorithm 1. Briefly, P1 initially randomizes both a and b by computing

a′ = Epk(a) ∗ Epk(ra) and b′ = Epk(b) ∗ Epk(rb) and sends them to P2. Here, ra and rb are

random numbers in ZN and known only to P1. Upon receiving, P2 decrypts and multiplies

them to get h = (a + ra) ∗ (b + rb) mod N . Then, P2 encrypts h and sends it to P1. After

this, P1 removes extra random factors from h′ = Epk
(
(a+ ra) ∗ (b+ rb)

)
based on Equation

3.4 to get Epk(a ∗ b).

22

Algorithm 1 SM(Epk(a), Epk(b))→ Epk(a ∗ b)
Require: P1 has Epk(a) and Epk(b); P2 has sk
1: P1:

(a). Pick two random numbers ra, rb ∈ ZN
(b). a′ ← Epk(a) ∗ Epk(ra)
(c). b′ ← Epk(b) ∗ Epk(rb)
(d). Send a′, b′ to P2

2: P2:

(a). Receive a′ and b′ from P1

(b). ha ← Dsk(a
′); hb ← Dsk(b

′)

(c). h← ha ∗ hb mod N

(d). h′ ← Epk(h)

(e). Send h′ to P1

3: P1:

(a). Receive h′ from P2

(b). s← h′ ∗ Epk(a)N−rb

(c). s′ ← s ∗ Epk(b)N−ra

(d). Epk(a ∗ b)← s′ ∗ Epk(N − ra ∗ rb)

Example 2. Assume that a = 59 and b = 58. For simplicity, let ra = 1 and rb = 3. Initially,

P1 computes a′ = Epk(60) = Epk(a) ∗ Epk(ra) and b′ = Epk(61) = Epk(b) ∗ Epk(rb) and

sends them to P2. Then, P2 decrypts and multiplies them to get h = 3660. After this,

P2 encrypts h to get h′ = Epk(3660) and sends it to P1. Upon receiving h′, P1 computes

s = Epk(3483) = Epk(3660 − a ∗ rb) and s′ = Epk(3425) = Epk(3483 − b ∗ ra). Finally, P1

computes Epk(a ∗ b) = Epk(3422) = Epk(3425− ra ∗ rb). �

Security Analysis: According to Algorithm 1, the execution image of P2 is denoted by

ΠP2(SM), where

ΠP2(SM) =
{
〈a′, ha〉, 〈b′, hb〉

}
Observe that ha = a + ra mod N and hb = b + rb mod N are derived upon decrypting a′

and b′, respectively. Note that both ha and hb are random numbers in ZN . Suppose that

23

the simulated image of P2 is ΠS
P2

(SM), where

ΠS
P2

(SM) =
{
〈a∗, r′a〉, 〈b∗, r′b〉

}
Here, a∗ and b′∗ are randomly generated from ZN2 , whereas r′a and r′b are randomly gen-

erated from ZN . Because Epk is a semantically secure encryption scheme with a resulting

ciphertext size that is less than N2, a′ and b′ are computationally indistinguishable from

a∗ and b∗, respectively. Similarly, as ra and rb are randomly chosen from ZN , ha and hb

are computationally indistinguishable from r′a and r′b, respectively. As a result, ΠP2(SM) is

computationally indistinguishable from ΠS
P2

(SM).

Similarly, assume that the execution image of P1 is denoted by ΠP1(SM), where

ΠP1(SM) = {h′}

Here, h′ is an encrypted value. Let the simulated image of P1 be denoted by ΠS
P1

(SM),

where

ΠS
P1

(SM) = {h∗}

where h∗ is randomly chosen from ZN2 . Since Epk is a semantically secure encryption scheme

with a resulting ciphertext size of less than N2, h′ is computationally indistinguishable from

h∗. As a result, ΠP1(SM) is computationally indistinguishable from ΠS
P1

(SM). Putting the

above results together, and following from Definition 1, it was concluded that the SM was

secure under the semi-honest model.

Complexity Analysis: Each step of the SM protocol needed to be examined before the upper

bound could be derived. The SM protocol performed 4 encryptions and 2 multiplications at

Step 1. Step 2(b) involved performing 2 decryptions. A decryption has a cost that is similar

to an encryption (encryption and decryption times are almost the same under Paillier’s

scheme). Thus, 2 encryptions were counted for Step 2(a). Step 2(c,d) involved performing

1 multiplication and 1 encryption. Step 3(b-d) involved performing 2 encryptions and 3

multiplications. Although it was slightly less expensive than an encryption operation, the

24

exponentiation operation was treated as one encryption operation. Thus, the two expo-

nentiations
(
Epk(a)N−rb and Epk(b)N−ra

)
were counted as two encryptions. Therefore, the

total number of multiplications and encryptions for the Secure Multiplication protocol was

9 encryptions and 6 multiplications. Thus, the computation cost of Secure Multiplication

was bounded by a (small) constant number of encryptions and multiplications.

3.5.2. Secure Squared Euclidean Distance. Suppose P1 holds two encrypted

vectors
(
Epk(X), Epk(Y)

)
and P2 holds the secret key (sk). The goal of the Secure Squared

Euclidean Distance (SSED) protocol is to securely compute the encryption of the squared

Euclidean distance between vectorsX and Y . During this protocol, no information regarding

X and Y is revealed to either P1 or P2. The output of this protocol returns Epk
(
|X − Y |2

)
,

which is known only to P1. According to Equation 3.2, the main challenge is to compute

x2
j , y2

j , and xj ∗ yj from Epk(xj) and Epk(yj), where Epk(xj) and Epk(yj) are encryptions of

xj and yj.

The main steps involved in the SSED protocol are shown in Algorithm 2. Briefly, for

1 ≤ j ≤ m, P1 initially computes Epk(xj − yj) by using the homomorphic properties. Then,

P1 and P2 jointly compute Epk
(
(xj − yj)2

)
, using the SM protocol, for 1 ≤ j ≤ m. Note

that the outputs of SM are known only to P1. Finally, by applying homomorphic properties

on Epk
(
(xj − yj)2

)
, P1 can compute Epk

(
|X − Y |2

)
locally based on Equation 3.2.

Example 3. Suppose that P1 holds the encrypted data records of X and Y , given by Epk(X) =〈
Epk(63), Epk(1), Epk(1), Epk(145), Epk(233), Epk(1), Epk(3), Epk(0), Epk(6), Epk(0)

〉
and

Epk(Y) =
〈
Epk(56), Epk(1), Epk(3), Epk(130), Epk(256), Epk(1), Epk(2),

Epk(1), Epk(6), Epk(2)
〉
. During the SSED protocol, P1 initially computes Epk(x1 − y1) =

Epk(7), . . . , Epk(x10 − y10) = Epk(−2). Then, P1 and P2 jointly compute Epk
(
(x1 − y1)2

)
=

Epk(49) = SM
(
Epk(7), Epk(7)

)
, . . . , Epk

(
(x10 − y10)2

)
= SM

(
Epk(−2) , Epk(−2)

)
= Epk(4).

P1 locally computes Epk
(
|X − Y |2

)
= Epk

(∑10
i=1(xi − yi)2

)
= Epk(813). �

Security Analysis: The security of the SSED protocol directly follows from the SM protocol,

which is used as the fundamental building block in the SSED protocol. This is because,

apart from the SM protocol, the rest of the steps in the SSED protocol are non-interactive.

More specifically, as shown in Algorithm 2, P1 and P2 jointly compute Epk
(
(xi − yi)2)

25

Algorithm 2 SSED
(
Epk(X), Epk(Y)

)
→ Epk

(
|X − Y |2

)
Require: P1 has Epk(X) and Epk(Y); P2 has sk
1: P1, for 1 ≤ j ≤ m do:

(a). Epk(xj − yj)← Epk(xj) ∗ Epk(yj)N−1

2: P1 and P2, for 1 ≤ j ≤ m do:

(a). Compute Epk
(
(xj − yj)2

)
using the SM protocol

3: P1:

(a). Epk
(
|X − Y |2

)
←
∏m

j=1Epk
(
(xj − yj)2

)

using the SM protocol for 1 ≤ i ≤ m. P1 then performs homomorphic operations on

Epk
(
(xi − yi)2) locally (i.e., with no interaction between P1 and P2).

Complexity Analysis: Each step of the protocol needed to be examined before the upper

bound could be derived. The protocol performed m encryptions and m multiplications at

Step 1. Although it was slightly less expensive than an encryption operation, the Epk(yj)
N−1

was treated as one encryption. Since the SSED protocol utilized the SM protocol as a

sub-routine, Step 2 consisted of 7m multiplications and 10m encryptions (a detailed com-

plexity analysis of SM is discussed in Section 3.5.1). Step 3 required m− 1 multiplications.

Therefore, the total number of multiplications and encryptions for the SSED protocol was

bounded by O(m). Additionally, because an encryption operation is generally several orders

of magnitude more expensive than a multiplication, this work can claim that the computa-

tion complexity of the SSED protocol was bounded by O(m) encryptions, where m is the

vector size.

3.5.3. Secure Squared Euclidean Distance-Random Share. Suppose that P1

holds two encrypted vectors
(
Epk(X), Epk(Y)

)
and P2 holds the secret key sk. The goal

of the Secure Squared Euclidean Distance-Random Share (SSEDR) protocol is to securely

compute the encryption of squared Euclidean distance between vectors X and Y , denoted

by Epk
(
|X −Y |2

)
. During the computation, both X and Y are never decrypted to preserve

the confidentiality of X and Y . Let de denote the squared Euclidean distance between X

and Y . The output of this protocol returns two random shares (d′e and d′′e), one for each

26

Algorithm 3 SSEDR

(
Epk(X), Epk(Y)

)
→ (d′e, d

′′
e)

Require: P1 has Epk(X) and Epk(Y); P2 has the decryption key
1: P1:

(a) Epk(tj)← Epk(xj)− Epk(yj) + Epk(rj), where rj ∈R ZN and 1 ≤ j ≤ m

(b) Send Epk(t1), . . . , Epk(tm) to P2

2: P2:

(a) Perform decryption to get t1, . . . , tm

(b) Compute Epk(t21), . . . , Epk(t
2
m), and send them to P1

3: P1:

(a) Obtain Epk
(
(xj − yj)2) by eliminating r2

j and 2rj(xj − yj) from Epk(t
2
j), for 1 ≤

j ≤ m

(b) Epk(de)← Epk
(∑m

j=1 (xj − yj)2)
(c) Compute Epk(de + r), where r ∈R ZN

(d) Set d′e = N − r and send Epk(de + r) to P2

4: P2:

(a) Perform decryption on Epk(de + r) to obtain de + r

(b) Set d′′e = de + r

party, such that d′e + d′′e mod N = de. Note that the random share d′e is known only to

P1, whereas the random share d′′e is known only to P2. The key steps to securely compute

the Euclidean distance between the two vectors, X and Y , based on Equation 3.2 are given

by Algorithm 3, where the computations are only based on either encrypted or randomized

data. At Step 1(a) of the algorithm, tj is a randomized difference between xj and yj, and rj

is randomly chosen to hide the actual difference. According to the additive homomorphic

property of the encryption scheme, Epk(tj) can be computed as follows:

Epk(xj − yj + rj)← Epk(xj) ∗ Epk(yj)N−1 ∗ Epk(rj)

P2 can decrypt Epk(tj) to obtain tj because it has the decryption key. P2 then

computes the square of tj and sends the encrypted results (e.g., Epk(t1), . . . , Epk(tm)) to P1.

27

Because P1 knows rj and Epk(xj − yj), it can easily compute Epk(r2
j) and Epk

(
2rj(xj − yj)

)
.

Since Epk(t2j) = Epk
(
(xj − yj)2 + 2rj(xj − yj) + r2

j

)
, P1 can obtain Epk

(
(xj − yj)2) by:

Epk
(
(xj − yj)2)← Epk(t

2
j) ∗

(
Epk(xj − yj)2rj ∗ Epk(r2

j)
)N−1

From here, Epk(de) can be directly derived:

Epk(de)← Epk
(
(x1 − y1)2) ∗ · · · ∗ Epk((xm − ym)2)

The rest of the steps are straightforward. All of the above computations are based on the

additive homomorphic property of the encryption schemes.

Security Analysis: The security of the SSEDR protocol was dependent on the encryption

key’s size. In general, N needed to be at least 1024 bits long. One can then say that

the Paillier encryption scheme possessed semantic security. Thus, N in this proof was

assumed to be either 1024-bit or larger. The security guarantee in the semi-honest model

was quite easy to prove because the computations were performed on either encrypted data

or randomized data. The following steps were used to ensure the data are either protected

or never disclosed.

The computations are performed directly on each pair of Epk(xj) and Epk(yj) at

Step 1(a) of Algorithm 3. They were never decrypted, nor was information leaked regarding

X and Y , as long as the encryption scheme was semantically secure. The original data

could only be disclosed at Step 2(a) because decryption operations are performed on the

intermediate computation results. However, tj was uniformly distributed in ZN from the

viewpoint of P2 because tj = xj−yj+rj mod N and rj was randomly chosen and known only

to P1. Therefore, tj did not leak any information regarding X and Y to P2. The remaining

computations were based on either encrypted or randomized data. As a consequence, if P1

and P2 did not collude, no information related to either X or Y was ever disclosed to the

two parties. (Note that collusion was prohibited under the semi-honest model).

Complexity Analysis: The number of multiplications and encryptions was bounded by O(m),

where m is the vector size for the SSEDR protocol. Each step of the protocol needed to be

28

examined before the upper bound could be derived. The protocol performed 2m encryptions

and 2m multiplications at Step 1. Although it was slightly less expensive than an encryption

operation, the Epk(yj)
N−1 was treated as one encryption. Step 2(a) involved performing m

decryptions. A decryption has a cost that is similar to an encryption. Thus, m encryptions

were counted for Step 2(a). Step 2(b) involved performing m encryptions and m multipli-

cations. Step 3(a) involved performing 3m encryptions and 2m multiplications. The two

exponentiations were counted as two encryptions. Step 3(b) required m− 1 multiplications.

The computations for the remaining steps were constant. Therefore, the total number of

multiplications and encryptions for this sub-protocol was bounded by O(m). Additionally,

because an encryption operation is generally several orders of magnitude more expensive

than a multiplication, this work can claim that the computation complexity of the SSEDR

protocol was bounded by O(m) encryptions.

3.5.4. Secure Hamming Distance-Random Share. Suppose that P1 holds two

encrypted binary vectors
(
Epk(X), Epk(Y)

)
and P2 holds the secret key (sk). Here, X and Y

are two m-dimensional binary vectors. The goal of the Secure Hamming Distance-Random

Share (SHDR) protocol is to securely compute the encryption of Hamming distance between

the two binary vectors, X and Y . During this protocol, no information regarding X and

Y is revealed to either P1 or P2. Let dh denote the Hamming distance between X and

Y . The output of this protocol returns two random shares (d′h and d′′h) such that d′h + d′′h

mod N = dh. Note that the random share d′h is known only to P1, whereas the random

share d′′h is known only to P2.

According to Equation 3.3, the main challenge is to compute xj ∗yj from Epk(xj) and

Epk(yj), where Epk(xj) and Epk(yj) are encryptions of xj and yj. The key steps to securely

compute the Hamming distance between the two binary vectors, X and Y , are given by

Algorithm 4, where the computations are only based on either encrypted or randomized

data. At Step 1(a) of the algorithm, tj1 and tj2 are randomizations of xj and yj, respectively,

and rj1 and rj2 are randomly chosen to hide the actual values of xj and yj. According to

the additive homomorphic property of the encryption scheme, Epk(tj1) and Epk(tj2) can be

computed as follows:

Epk(xj + rj1)← Epk(xj) ∗ Epk(rj1)

29

Algorithm 4 SHDR

(
Epk(X), Epk(Y)

)
→ (d′h, d

′′
h)

Require: P1 has Epk(X) and Epk(Y); P2 has the decryption key
1: P1:

(a) Epk(tj1) ← Epk(xj + rj1) and Epk(tj2) ← Epk(yj + rj2), where rj1 , rj2 ∈R ZN and
1 ≤ j ≤ m

(b) Send
(
Epk(t11), Epk(t12)

)
, . . . ,

(
Epk(tm1), Epk(tm2)

)
to P2

2: P2:

(a) Perform decryption operation to get (t11 , t12), . . ., (tm1 , tm2)

(b) Compute Epk(t11 ∗ t12), . . . , Epk(tm1 ∗ tm2), and send them to P1

3: P1:

(a) Obtain Epk(xj · yj) by eliminating rj1 ∗ rj2 , rj2 ∗ xj, and rj1 ∗ yj from Epk(tj1 ∗ tj2),
for 1 ≤ j ≤ m

(b) Epk(dh)← Epk
(
m−

∑m
j=1 xj ∗ yj

)
(c) Compute Epk(dh + r), where r ∈R ZN

(d) Set d′h = N − r and send Epk(dh + r) to P2

4: P2:

(a) Perform decryption on Epk(dh + r) to obtain dh + r

(b) Set d′′h = dh + r

Epk(yj + rj2)← Epk(yj ∗ Epk(rj2)

P2 can decrypt
(
Epk(tj1), Epk(tj2)

)
to obtain (tj1 , tj2) at Step 2(a) because it has the decryp-

tion key. P2 computes the multiplication of tj1 ∗ tj2 . It sends then the encrypted results to

P1. Because P1 knows rj1 , rj2 , Epk(xj), and Epk(yj), it can easily compute Epk(rj1 ∗ rj2),

rj2 ∗xj, and rj1 ∗yj. In Step 3(a), since Epk(tj1 ∗tj2) = Epk(xj ∗yj+rj1 ∗rj2 +rj2 ∗xj+rj1 ∗yj),

P1 can obtain Epk(xj ∗ yj) by:

Epk(xj ∗ yj)← Epk(tj1 ∗ tj2) ∗ (Epk(rj1 ∗ rj2) ∗ Epk(rj2 ∗ xj) ∗ Epk(rj1 ∗ yj))N−1

From here, Epk(dh) can be directly derived at Step 3(b):

Epk(dh)← Epk(m) ∗
(
Epk(xj · yj) ∗ · · · ∗ Epk(xm · ym)

)N−1

30

The rest of the steps are fairly obvious. All of the above computations are based on the

additive homomorphic property of the encryption schemes.

Security Analysis: The SHDR protocol has the same structure as the SSEDR protocol.

Therefore, it is secure under the semi-honest model as well.

Complexity Analysis: This work can claim that the computation complexity of SHDR was

bounded by O(m) encryptions. This asymptotic bound can be derived by following the

same steps as discuses in Section 3.5.3.

Justification for using AH-Enc to securely implement a distance: The SM protocol is the

main building block and the performance bottleneck for securely computing the distance in

both Euclidean and Hamming metrics. Therefore, the computation costs of two different

implementations of the SM protocol are analyzed and compared: homomorphic encryption

approach (SM-HE) and garbled circuit approach (SM-GC). The running times of the two

implementations were compared for varying number of bits required to perform multipli-

cation. The running time of each implementation was independent of the input size, and

the computation cost of SM-GC was significantly higher than that of SM-HE (see Table

3.2). For example, the computation time when SM-GC was used to multiply two 10-bit

numbers was 1.752 seconds. While in contrast was 0.02984 second when SM-HE is used.

Therefore, the homomorphic encryption approach was adopted to implement the distance

in both Euclidean and Hamming metrics.

3.5.5. Secure Bit-Decomposition. Assume that P1 has Epk(z) and P2 has sk,

where z is not known to both parties and 0 ≤ z < 2l, where l is referred to as the domain size

(in bits) of z. Given Epk(z), the Secure Bit-Decomposition (SBD) protocol [86, 87] protocol

is used primarily to compute the encryptions of the individual bits of binary representation

of z. The output [z] =
〈
Epk(z1), . . . , Epk(zl)

〉
is known only to P1 at the end, where z1 and

zl denote the most and least significant bits of z, respectively. During this process, neither

the value of z nor any zi’s is revealed either to P1 or P2. Since the goal of this work is

not to investigate existing SBD protocols, the most efficient SBD scheme that was recently

proposed in [86] is used in the proposed protocols.

31

Share size Distance size SM-GC SM-HE

1024 10 1.752s 0.02984s
1024 20 1.792s 0.02985s

Table 3.2: Garbled circuit vs. homomorphic-based secure multiplication

Example 4. Assume z = 55 and l = 6. Then, the SBD protocol in [86] with input Epk(55)

returns [55] =
〈
Epk(1), Epk(1), Epk(0), Epk(1), Epk(1), Epk(1)

〉
as the output to P1. �

Security Analysis: The SBD protocol in “An efficient and probabilistic secure bit- decom-

position” [86] is secure under the semi-honest model.

Complexity Analysis: The computation complexity of the SBD protocol proposed in “An

efficient and probabilistic secure bit-decomposition” [86] was bounded by O(l) encryptions

(under the assumption that encryption and decryption operations based on the Paillier

cryptosystem [75] take similar amount of time) .

3.5.6. Secure Bit-OR. In the Secure Bit-OR (SBOR) protocol, both P1, with

input
(
Epk(o1), Epk(o2)

)
and P2 with (sk) securely compute Epk(o1 ∨ o2), where o1 and o2

are two bits. The output Epk(o1 ∨ o2) is known only to P1.

Security Analysis: The security of the SBOR depends solely on the underlying SM protocol.

This is because, the only step at which P1 and P2 interact in the SBOR protocol is during

the SM protocol. Since the SM is secure under the semi-honest model, this work claims

that the SBOR protocol is also secure under the semi-honest model.

Complexity Analysis: Since the SBOR protocol utilized the Secure Multiplication (SM)

protocol as a sub-routine, the computation cost of the Secure Bit-OR protocol was bounded

by (small) constant number of encryptions and multiplications.

3.5.7. Secure Minimum. Assume that in the Secure Minimum (SMIN) proto-

col, P1 holds private input (u′, v′) and P2 holds sk, where u′ =
(
[u], Epk(su)

)
and v′ =(

[v], Epk(sv)
)
. Here, [u] =

〈
Epk(u1), . . . , Epk(ul)

〉
and [v] =

〈
Epk(v1), . . . , Epk(vl)

〉
where

u1 (resp., v1) and ul (resp., vl) are the most and least significant bits of u (resp., v), re-

spectively. Here, su (resp., sv) denotes the secret corresponding to u (resp., v). The goal

of the SMIN is for P1 and P2 to jointly compute the encryptions of the individual bits of

32

minimum number between u and v, denoted by
(
[min(u, v)]

)
. In addition, they compute

Epk
(
smin(u,v)

)
, the encryption of the secret corresponding to the minimum value of u and

v. That is, the output is
(
[min(u, v)], Epk

(
smin(u,v))

)
, which will be known only to P1. No

information regarding the contents of u,v,su, or sv is revealed to either P1 or P2 during this

protocol.

The basic concept of the proposed SMIN protocol is that P1 randomly chooses the

functionality F by flipping a coin, where F is either u > v or v > u and obliviously executes

F with P2. The result of the functionality F is oblivious to P2 because F is randomly

chosen and known only to P1. Based on the comparison result and chosen F , P1 computes[
min(u, v)

]
and Epk

(
smin(u,v)

)
locally using homomorphic properties.

The overall steps involved in the SMIN protocol are shown in Algorithm 5. P1

initially chooses the functionality F as either u > v or v > u randomly. P1 then uses the

SM protocol, with the help of P2, to compute Epk(ui ∗ vi) for 1 ≤ i ≤ l. P1 then follows

several steps for 1 ≤ i ≤ l:

• Use Ti = Epk(ui) ∗ Epk(vi) ∗ Epk(ui ∗ vi)N−2 to compute the encrypted bit-wise XOR

between the bits ui and vi. In general, for any two given bits (o1 and o2), the property

o1 ⊕ o2 = o1 + o2 − 2(o1 ∗ o2) always holds.

• Compute an encrypted vector H by preserving the first occurrence of Epk(1) (if there

exists one) in T by initializing H0 = Epk(0). The remaining H entries are computed

as Hi = Hri
i−1 ∗Ti. At most one of the entries in H is Epk(1), and the remaining entries

are encryptions of either 0 or a random number.

• P1 then computes Φi = Epk(−1) ∗Hi. Note that, “−1” is equivalent to “N − 1” under

ZN . Here, Φi = Epk(0) occurs at most once because Hi is equal to Epk(1) occurs at

most once. Additionally, if Φj = Epk(0), then index j is the position at which the bits

of u and v differ first (beginning at the most significant bit position).

P1 creates two encrypted vectors (W and Γ) for 1 ≤ i ≤ l as follows:

33

Algorithm 5 SMIN(u′, v′)→
[

min(u, v)
]
, Epk

(
smin(u,v)

)
Require: P1 has u′ =

(
[u], Epk(su)

)
and v′ =

(
[v], Epk(sv)

)
, where 0 ≤ u, v < 2l; P2 has sk

1: P1:

(a). Randomly choose the functionality F
(b). for i = 1 to l do:

• Epk(ui ∗ vi)← SM
(
Epk(ui), Epk(vi)

)
• Ti ← Epk(ui ⊕ vi)
• Hi ← Hri

i−1 ∗ Ti; ri ∈R ZN and H0 = Epk(0)

• Φi ← Epk(−1) ∗Hi

• if F : u > v then:
Wi ← Epk(ui) ∗ Epk(ui ∗ vi)N−1 and Γi ← Epk(vi − ui) ∗ Epk(r̂i); r̂i ∈R ZN
else Wi ← Epk(vi) ∗ Epk(ui ∗ vi)N−1 Γi ← Epk(ui − vi) ∗ Epk(r̂i); r̂i ∈R ZN
• Li ←Wi ∗ Φ

r′i
i ; r

′
i ∈R ZN

(c). if Epk(su) and Epk(su) 6= Nil then

• if F : u > v then: δ ← Epk(sv − su) ∗ Epk(r̄)

• else δ ← Epk(su − sv) ∗ Epk(r̄), where r̄ ∈R ZN

(d). Γ′ ← π1(Γ) and L′ ← π2(L)

(e). Send δ,Γ′ and L′ to P2

2: P2:

(a). Receive δ,Γ′ and L′ from P1

(b). Decryption: Mi ← Dsk(L′i), for 1 ≤ i ≤ l
(c). if ∃ j such that Mj = 1 then α← 1 else α← 0

(d). if α = 0 then:

• M ′i ← Epk(0), for 1 ≤ i ≤ l
• if δ′ 6= nil then δ′ ← Epk(0)

else

• M ′i ← Γ
′α
i ∗ rN , where r ∈R ZN and is different for 1 ≤ i ≤ l

• if δ′ 6= nil then δ′ ← δ ∗ rNδ , where rδ ∈R ZN

(e). Send M ′, Epk(α) and δ′ to P1

3: P1:

(a). Receive M ′, Epk(α) and δ′ from P2

(b). M̃ ← π−1
1 (M ′) and θ ← δ′ ∗ Epk(α)N−r̄

(c). λi ← M̃i ∗ Epk(α)N−r̂i , for 1 ≤ i ≤ l
(d). if F : u > v then:

• Epk
(

min(u, v)i
)
← Epk(ui) ∗ λi, for 1 ≤ i ≤ l

• if Epk(su) 6= nil then Epk(smin(u,v))← Epk(su) ∗ θ else Epk(smin(u,v))← nil

else

• Epk
(

min(u, v)i
)
← Epk(vi) ∗ λi, for 1 ≤ i ≤ l

• if Epk(sv) 6= nil then Epk
(
smin(u,v)

)
← Epk(sv) ∗ θ else Epk(smin(u,v))← nil

34

• If F : u > v,

Wi = Epk(ui) ∗ Epk(ui ∗ vi)N−1

= Epk
(
ui ∗ (1− vi)

)
Γi = Epk(vi − ui) ∗ Epk(r̂i)

= Epk(vi − ui + r̂i)

• If F : v > u,

Wi = Epk(vi) ∗ Epk(ui ∗ vi)N−1

= Epk
(
vi ∗ (1− ui)

)
Γi = Epk(ui − vi) ∗ Epk(r̂i)

= Epk(ui − vi + r̂i)

where r̂i is a random number (hereafter denoted by ∈R) in ZN . Observe that if F : u > v,

thenWi = Epk(1) iff ui > vi. Otherwise,Wi = Epk(0). Similarly, when F : v > u, thenWi =

Epk(1) iff vi > ui. Otherwise Wi = Epk(0). Also dependent on F , Γi stores the encryption

of the randomized difference between ui and vi, which is used in later computations.

P1 computes L by combining Φ with W . More precisely, P1 computes Li = Wi ∗Φ
r′i
i ,

where r′i is a random number in ZN . The observation here is if ∃ an index j such that

Φj = Epk(0), denoting the first flip in the bits of u and v, then Wj stores the corresponding

desired information (i.e., whether uj > vj or vj > uj) in encrypted form. Dependent on F ,

P1 also computes the encryption of the randomized difference between su and sv, storing it in

δ. More specifically, if F : u > v, then δ = Epk(sv−su+ r̄). Otherwise, δ = Epk(su−sv + r̄),

where r̄ ∈R ZN .

P1 next uses two random permutation functions functions (π1 and π2) to permute the

encrypted vectors Γ and L. More specifically, he/she computes Γ′ = π1(Γ) and L′ = π2(L)

and then sends them, along with δ, to P2. Upon receiving, P2 decrypts L′ component-wise

to obtain Mi = Dsk(L
′
i) for 1 ≤ i ≤ l and checks for index j. That is, if Mj = 1, then P2

sets α to 1. Otherwise, he/she sets α to 0. P2 also computes a new encrypted vector (M ′)

35

depending on the value of α. Precisely, If α = 0, then M ′
i = Epk(0) for 1 ≤ i ≤ l. Here,

Epk(0) is different for each i. In contrast, when α = 1, P2 sets M ′
i to the re-randomized

value of Γ′i. That is, M ′
i = Γ

′α
i ∗ rN , where the term rN comes from the re-randomization

and r ∈R ZN should be different for each i. Re-randomization property means that any one

can alter a ciphertext for a plaintext into a new ciphertext in an unlinkable way, such that

both ciphertexts will decrypt to the same original plaintext [78]. Furthermore, P2 computes

δ′ = Epk(0) if α = 0. However, when α = 1, P2 sets δ′ to δ ∗ rNδ , where rδ is a random

number in ZN . P2 then sends M ′, Epk(α) and δ′ to P1. After receiving M ′, Epk(α), and

δ′, P1 computes the inverse permutation of M ′ as M̃ = π−1
1 (M ′). P1 then performs the

following homomorphic operations to compute the encryption of the ith bit of min(u, v)(
i.e., Epk

(
min(u, v)i

))
for 1 ≤ i ≤ l:

• Remove the randomness from M̃i by computing λi = M̃i ∗ Epk(α)N−r̂i

• If F : u > v, compute Epk
(

min(u, v)i
)

= Epk(ui) ∗ λi = Epk
(
ui + α ∗ (vi − ui)

)
.

Otherwise, compute Epk
(

min(u, v)i
)

= Epk(vi) ∗ λi = Epk
(
vi + α ∗ (ui − vi)

)
.

P1 also computes Epk
(
smin(u,v)

)
as follows: If F : u > v, P1 computes Epk

(
smin(u,v)

)
=

Epk(su) ∗ θ, where θ = δ′ ∗Epk(α)N−r̄. Otherwise, P1 computes Epk
(
smin(u,v)

)
= Epk(sv) ∗ θ.

One main observation in the SMIN protocol, (upon which the correctness of the

final output can be justify) is that, if F : u > v, then min(u, v)i = (1 − α) ∗ ui + α ∗ vi

always holds for 1 ≤ i ≤ l. In contrast, if F : v > u, then min(u, v)i = α ∗ ui + (1− α) ∗ vi

always holds. Similar conclusions can be drawn for smin(u,v). Similar formulations can

also be used to design a Secure Maximum (SMAX) protocol to compute both
[

max(u, v)
]

and Epk
(
smax(u,v)

)
. Multiple secrets of u and v can also be fed as input (in encrypted

form) to SMIN and SMAX. For example, let s1
u and s2

u (resp., s1
v and s2

v) be two secrets

associated with u (resp., v). The SMIN protocol then takes
(
[u], Epk(s

1
u), Epk(s

2
u)
)
and(

[v], Epk(s
1
v), Epk(s

2
v)
)
as P1’s input. It outputs

[
min(u, v)

]
, Epk

(
s1

min(u,v)

)
and Epk

(
s2

min(u,v)

)
to P1.

Example 5. For simplicity, consider that u = 55, v = 58, and l = 6. Suppose su and sv

are the secrets associated with u and v, respectively. Assume that P1 holds
(
[55], Epk(su)

)
(
[58], Epk(sv)

)
. Additionally, assume that P1’s random permutation functions are as given

in Table 3.3. Suppose P1 chooses the functionality F : v > u without loss of generality.

36

Table 3.3: P1’s random permutation functions

i = 1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓

π1(i) = 6 5 4 3 2 1

π2(i) = 2 1 5 6 3 4

Then, various intermediate results based on the SMIN protocol are as given in Table 3.4.

These results lead to the following observations’:

• One of the entries in H is , at most Epk(1), namely, H3 and the remaining entries

are encryptions of either 0 or a random number in ZN .

• Index j = 3 is the first position at which the corresponding bits of u and v differ.

• Because H3 is equal to Epk(1), Φ3 = Epk(0). Additionally, because M5 = 1, P2 sets α

to 1.

• Epk(smin(u,v)) = Epk
(
α ∗ su + (1− α) ∗ sv

)
= Epk(su).

At the end, only P1 knows
[

min(u, v)
]

= [u] = [55] and Epk
(
smin(u,v)

)
= Epk(su). �

Security Analysis: According to Algorithm 5, the execution image of P2 is denoted by

ΠP2(SMIN), where

ΠP2(SMIN) =
{
〈δ, s+ r̄ mod N〉, 〈Γ′i, µi + r̂i mod N〉, 〈L′i, α〉

}
Observe that s + r̄ mod N and µi + r̂i mod N are derived upon decrypting δ and Γ′i for

1 ≤ i ≤ l, respectively. Note that the modulo operator is implicit in the decryption function.

Also, P2 receives L′ from P1. Let α denote the (oblivious) comparison result computed from

L′. Without loss of generality, suppose the simulated image of P2 be denoted by ΠS
P2

(SMIN),

where

ΠS
P2

(SMIN) =
{
〈δ∗, r∗〉, 〈s′1,i, s′2,i〉, 〈s′3,i, α′〉 | for 1 ≤ i ≤ l

}
Here, δ∗, s′1,i and s′3,i are randomly generated from ZN2 , whereas r∗ and s′2,i are randomly

generated from ZN . Additionally, α′ denotes a random bit. Since Epk is a semantically secure

37

Table 3.4: SMIN example: P1 chooses F as v > u, where u = 55 and v = 58

[u] [v] Wi Ti Gi Hi Φi Li Γ′i L′i Mi λi mini

1 1 0 r 0 0 −1 r 1 + r r r 0 1
1 1 0 r 0 0 −1 r r r r 0 1
0 1 1 −1 + r 1 1 0 1 1 + r r r −1 0
1 0 0 1 + r 1 r r r −1 + r r r 1 1
1 1 0 r 0 r r r r 1 1 0 1
1 0 0 1 + r 1 r r r r r r 1 1

*All column values except those inMi column are in encrypted form. Additionally, r ∈R ZN which
is different for each row and column.

encryption scheme a with resulting ciphertext size that is less than N2, δ is computation-

ally indistinguishable from δ∗. Similarly, Γ′i and L′i are computationally indistinguishable

from s′1,i and s′3,i, respectively. Also, as r̄ and r̂i are randomly generated from ZN , both

s + r̄ mod N and µi + r̂i mod N are computationally indistinguishable from r∗ and s′2,i,

respectively. Furthermore, because the functionality is randomly chosen by P1 (at Step 1(a)

of Algorithm 5), α is either 0 or 1 with equal probability. Thus, α is computationally indis-

tinguishable from α′. Putting the above results together, and following from Definition 1,

it was concluded that ΠP2(SMIN) was computationally indistinguishable from ΠS
P2

(SMIN).

This implies that, during the execution of the SMIN protocol, P2 does not learn any infor-

mation regarding either u, v, su, sv, or the actual comparison result. Intuitively speaking,

the information that P2 has during an execution of the SMIN protocol is either random

or pseudo-random, so this information does not disclose anything regarding u, v, su, or sv.

Additionally, as F is known only to P1, the actual comparison result is oblivious to P2.

In contrast, the execution image of P1, denoted by ΠP1(SMIN), is given by

ΠP1(SMIN) =
{
M ′

i , Epk(α), δ′ | for 1 ≤ i ≤ l
}

Here, M ′
i , and δ′ are encrypted values, which are random in ZN2 , received from P2

(at Step 3(a) of Algorithm 5). Let the simulated image of P1 be denoted by ΠS
P1

(SMIN),

where

ΠS
P1

(SMIN) = {s′4,i, b′, b′′ | for 1 ≤ i ≤ l}

38

Values s′4,i, b′ and b′′ are randomly generated from ZN2 . Since Epk is a semantically se-

cure encryption scheme with a resulting ciphertext size of less than N2, it implies that

both M ′
i , Epk(α) and δ′ are computationally indistinguishable from s4,i, b

′ and b′′, respec-

tively. Therefore, ΠP1(SMIN) is computationally indistinguishable from ΠS
P1

(SMIN) based

on Definition 1. As a result, P1 cannot learn any information regarding u, v, su, sv, or the

comparison result during the execution of the SMIN. Putting everything together, and fol-

lowing from Definition 1, it was concluded that the SMIN protocol was secure under the

semi-honest model.

Complexity Analysis: Recall that, under Paillier’s encryption scheme, a decryption opera-

tion had almost the same cost as an encryption operation and an exponentiation operation

treated as an encryption operation. Additionally, because an encryption operation is gen-

erally several orders of magnitude more expensive than a multiplication, it was concluded

that the computation complexity of the Secure Minimum protocol was bounded by O(l)

encryptions. This asymptotic bound can be derived by following the same techniques used

to prove the previous sub-protocols.

3.5.8. Secure Minimum out of n Numbers. Consider P1 with n encrypted

vectors
(
[d1], . . . , [dn]

)
along with their encrypted secrets and P2 with sk, where 0 ≤ di < 2l

for 1 ≤ i ≤ n. Here, [di] =
〈
Epk(di,1), . . . , Epk(di,l)

〉
, where di,1 and di,l are the most and

least significant bits of integer di, respectively, for 1 ≤ i ≤ n. Here, the secret of di is

denoted by sdi for 1 ≤ i ≤ n. The primary goal of the Secure Minimum Out of n Numbers

(SMINn) protocol is to compute
[

min(d1, . . . , dn)
]

=
[
dmin

]
along with the encryption of the

secret that corresponds to the global minimum, denoted by Epk
(
smin(d1,...,dn)

)
= Epk

(
sdmin

)
without revealing any information about di’s and their secrets to either P1 or P2. . This

work constructed a new SMINn protocol by utilizing the SMIN protocol as the building

block. The proposed SMINn protocol is an iterative approach that computes the desired

output in a hierarchical fashion. In each iteration, both the minimum between a pair of

values and the secret that corresponds to the minimum value are computed (in encrypted

form) and fed as input to the next iteration. That will generate a binary execution tree in

a bottom-up fashion. At the end, only P1 knows the final results [dmin] and Epk(sdmin
). The

overall steps involved in the proposed SMINn protocol are highlighted in Algorithm 6.

39

Algorithm 6 SMINn

((
[d1], Epk(sd1)

)
, ..,
(
[dn], Epk(sdn)

))
→
(
[dmin], Epk(sdmin

)
)

Require: P1 has
((

[d1], Epk(sd1)
)
, . . . ,

(
[dn], Epk(sdn)

))
; P2 has sk

1: P1:

(a). [d′i]← [di] and s′i ← Epk(sdi), for 1 ≤ i ≤ n

(b). num← n

2: for i = 1 to dlog2 ne:

(a). for 1 ≤ j ≤
⌊
num

2

⌋
:

• if i = 1 then:

–
(
[d′2j−1], s′2j−1

)
← SMIN(x, y), where x =

(
[d′2j−1], s′2j−1

)
and y =(

[d′2j], s
′
2j

)
– [d′2j]← 0 and s′2j ← 0

else

–
(
[d′2i(j−1)+1], s′2i(j−1)+1

)
← SMIN(x, y), where x =(

[d′2i(j−1)+1], s′2i(j−1)+1

)
and y =

(
[d′2ij−1], s′2ij−1

)
– [d′2ij−1]← 0 and s′2ij−1 ← 0

(b). num←
⌈
num

2

⌉
3: P1: [dmin]← [d′1] and Epk

(
sdmin

)
← s′1

Initially, P1 assigns both [di] and Epk(sdi) to a temporary vector [d′i] and variable s′i

for 1 ≤ i ≤ n, respectively. Also, he/she creates a global variable (num) and initializes it to

n, where num represents the number of (non-zero) vectors involved in each iteration. Since

the SMINn protocol executes in a binary tree hierarchy (bottom-up fashion), it has dlog2 ne

iterations. In each iteration, the number of vectors involved varies. In the first iteration

(i.e., i = 1), P1 with private input
((

[d′2j−1], s′2j−1

)
,
(
[d′2j], s

′
2j

))
, and P2 with sk involve in

the SMIN protocol, for 1 ≤ j ≤
⌊
num

2

⌋
. At the end of the first iteration, only P1 knows[

min(d′2j−1, d
′
2j)
]
and s′min(d′2j−1,d

′
2j)
, and nothing is revealed to P2 for 1 ≤ j ≤

⌊
num

2

⌋
. Also,

P1 stores the result
[

min(d′2j−1, d
′
2j)
]
and s′min(d′2j−1,d

′
2j)

in [d′2j−1] and s′2j−1, respectively.

Additionally, P1 updates the values of [d′2j], s′2j to 0 and num to
⌈
num

2

⌉
, respectively.

40

During the ith iteration, only the non-zero vectors (along with the corresponding

encrypted secrets) are involved in the SMIN protocol for 2 ≤ i ≤ dlog2 ne. For example,

during the second iteration (i.e., i = 2), only
(
[d′1], s′1

)
,
(
[d′3], s′3

)
, and so on are involved.

Note that in each iteration, the output is revealed only to P1 and num is updated to
⌈
num

2

⌉
.

At the end of the SMINn protocol, P1 assigns the final encrypted binary vector of global

minimum value
(
i.e.,

[
min(d1, . . . , dn)

])
, which is stored in [d′1], to [dmin]. P1 also assigns s′1

to Epk(sdmin
).

Example 6. Suppose that P1 holds
〈
[d1], . . . , [d6]

〉
(i.e., n = 6). For simplicity, it is assuming

that there are no secrets associated with di’s. Then, based on SMINn protocol, the binary

execution tree (in a bottom-up fashion) to compute
[

min(d1, . . . , d6)
]
is shown in Figure 3.1.

Note that, [d′i] is initially set to [di] for 1 ≤ i ≤ 6. �

Security Analysis: According to Algorithm 6, it is clear that the SMINn protocol uses

SMIN protocol as a building block in an iterative manner. As proved in Section 3.5.7, the

SMIN protocol is secure under the semi-honest model. Also, the output of SMIN which

is passed as input to the next iteration in the SMINn protocol is in encrypted format.

Note that the SMINn protocol is solely based on SMIN and there are no other interactive

steps between P1 and P2. Hence, by composition theorem [40], it was concluded that the

sequential combination of the SMIN routines led to the proposed SMINn protocol that

guarantees security under the semi-honest model.

Complexity Analysis: Recall that, under Paillier’s encryption scheme [75], a decryption

operation had almost the same cost as an encryption operation and an exponentiation op-

eration treated as an encryption operation. Additionally, because an encryption operation

is generally several orders of magnitude more expensive than a multiplication, it was con-

cluded that the computation complexity of the Secure Minimum Out of n Numbers protocol

was bounded by O(l ∗ n ∗ log2 n) encryptions, where l referred as the domain size (in bits).

log2 n because the SMINn protocol executed in a binary tree hierarchy (bottom-up fashion).

This asymptotic bound can be derived by following the same techniques used to prove the

previous sub-protocols.

41

[dmin]← [d′1]←
[

min(d′1, d
′
5)
]

[d′1]←
[

min(d′1, d
′
3)
]

[d′1]←
[

min(d′1, d
′
2)
]

[d′1] [d′2]

[d′3]←
[

min(d′3, d
′
4)
]

[d′3] [d′4]

[d′5]

[d′5]←
[

min(d′5, d
′
6)
]

[d′5] [d′6]

Figure 3.1: Binary execution tree for n = 6 based on the SMINn

3.5.9. Secure Frequency. Consider a situation where P1 holds private input(〈
Epk(c1), . . . , Epk(cw)

〉
,
〈
Epk(c

′
1), . . . , Epk(c

′
k)
〉)

and P2 holds the secret key sk. The Se-

cure Frequency (SF) protocol is used primarily to securely compute the encryption of the

frequency of cj, denoted by Epk
(
f(cj)

)
, in the list 〈c′1, . . . , c′k〉, for 1 ≤ j ≤ w. Here, f(cj)

denotes the number of times element cj occurs (i.e., frequency) in the list 〈c′1, . . . , c′k〉. Here,

it is explicitly assumed that cj’s are unique and c′i ∈ {c1, . . . , cw} for 1 ≤ i ≤ k. The output〈
Epk
(
f(c1)

)
, . . . , Epk

(
f(cw)

)〉
is revealed only to P1. During the SF protocol, neither c′i nor

cj is revealed to either P1 or P2. Additionally, f(cj) is kept private from both P1 and P2 for

1 ≤ i ≤ k and 1 ≤ j ≤ w.

The overall steps involved in the proposed SF protocol are presented in Algorithm

7. P1 initially computes an encrypted vector Si such that Si,j = Epk(cj − c′i) for 1 ≤ j ≤ w.

P1 then randomizes Si component-wise to obtain S ′i,j = Epk
(
ri,j ∗ (cj − c′i)

)
where ri,j is a

random number in ZN . P1 next uses a random permutation function πi (known only to P1)

to randomly permutes S ′i component-wise for 1 ≤ i ≤ k. The output Zi ← πi(S
′
i) is sent to

P2. Upon receiving, P2 decrypts Zi component-wise, computes a vector ui, and proceeds as

follows:

• If Dsk(Zi,j) = 0, then ui,j is set to 1. Otherwise, ui,j is set to 0.

• The observation is, since c′i ∈ {c1, . . . , cw}, that exactly one of the entries in vector Zi

is an encryption of 0 and the rest are encryptions of random numbers. This further

implies that exactly one of the decrypted values of Zi is 0 and the rest are random

numbers. Precisely, if ui,j = 1, then c′i = cπ−1(j).

42

Algorithm 7 SF(Λ,Λ′)→
〈
Epk
(
f(c1)

)
, . . . , Epk

(
f(cw)

)〉
Require: P1 has Λ =

〈
Epk(c1), . . . , Epk(cw)

〉
, Λ′ =

〈
Epk(c

′
1), . . . , Epk(c

′
k)
〉
and

〈
π1, . . . , πk

〉
;

P2 has sk
1: P1:

(a). for i = 1 to k do:

• Ti ← Epk(c
′
i)
N−1

• for j = 1 to w do:

– Si,j ← Epk(cj) ∗ Ti

– S ′i,j ← Si,j
ri,j , where ri,j ∈R ZN

• Zi ← πi(S
′
i)

(b). Send Z to P2

2: P2:

(a). Receive Z from P1

(b). for i = 1 to k do

• for j = 1 to w do:

– if Dsk(Zi,j) = 0 then ui,j ← 1
else ui,j ← 0

– Ui,j ← Epk(ui,j)

(c). Send U to P1

3: P1:

(a). Receive U from P2

(b). Vi ← π−1
i (Ui), for 1 ≤ i ≤ k

(c). Epk
(
f(cj)

)
←
∏k

i=1 Vi,j, for 1 ≤ j ≤ w

• Compute Ui,j = Epk(ui,j) and send it to P1, for 1 ≤ i ≤ k and 1 ≤ j ≤ w.

P1 then performs row-wise inverse permutation on it to obtain Vi = π−1
i (Ui) for 1 ≤ i ≤ k.

Finally, P1 computes Epk(f
(
cj)
)

=
∏k

i=1 Vi,j locally for 1 ≤ j ≤ w.

Example 7. Suppose that P1 holds Λ =
〈
Epk(2), Epk(3), Epk(5)

〉
and Λ′ =

〈
Epk(3), Epk

(2), Epk(3), Epk(2), Epk(5), Epk(2)
〉
(i.e., w = 3 and k = 6). For simplicity, it is assuming

that P1 has only one random function which is as given in Table 3.5. Then, based on SF

43

Table 3.5: SF example: P1’s random permutation function

i = 1 2 3

↓ ↓ ↓

π(i) = 3 1 2

protocol, the various intermediate results based on the SF protocol are given in Tables 3.6

and 3.7. By applying the Homomorphic properties, Epk
(
f(c1)

)
= Epk

(
f(2)

)
= Epk(0) ∗

Epk(1) ∗ Epk(0) ∗ Epk(1) ∗ Epk(0) ∗ Epk(1) = Epk(3), Epk
(
f(c2)

)
= Epk

(
f(3)

)
= Epk(1) ∗

Epk(0) ∗Epk(1) ∗Epk(0) ∗Epk(0) ∗Epk(0) = Epk(2), and Epk
(
f(c3)

)
= Epk

(
f(5)

)
= Epk(0) ∗

Epk(0) ∗ Epk(0) ∗ Epk(0) ∗ Epk(1) ∗ Epk(0) = Epk(1). Thus, the output of the SF to P1 is

〈Epk(3), Epk(2), Epk(1)〉 �

Security Analysis: Let the execution image of the SF for P2 is denoted by ΠP2(SF), and is

given as (according to Algorithm 7)

ΠP2(SF) = {Zi,j, ui,j | for 1 ≤ j ≤ w}

where ui,j is derived upon decrypting Zi,j (at step 2(b) of Algorithm 7). Suppose that the

simulated image of P2 is denoted by ΠS
P2

(SF) which can be given by

ΠS
P2

(SF) = {Z∗i,j, u∗i,j | for 1 ≤ j ≤ w}

Here, Z∗i,j is randomly generated from ZN2 . Also, u∗i is a vector generated at random such

that exactly one of them is 0, and the rest are random numbers in ZN . Since Epk is a

semantically secure encryption scheme with a resulting ciphertext size that is less than N2,

Zi,j is computationally indistinguishable from Z∗i,j. Also, since πi is a random permutation

function known only to P1, ui will be a vector with exactly one zero (at random location)

and the rest are random numbers in ZN . Hence, ui is computationally indistinguishable

from u∗i . Thus, it was concluded that ΠP2(SF) was computationally indistinguishable from

ΠS
P2

(SF).

44

Table 3.6: SF example: Vectors Si,j and Zi,j, for 1 ≤ i ≤ k = 6 and 1 ≤ j ≤ w = 3

c′i
c j

Si,j 3 2 3 2 5 2 Zi,j 3 2 3 2 5 2

2 -1 0 -1 0 -3 0

c j

5 0 r2,2 0 r2,4 r2,5 r2,6

3 0 1 0 1 -2 1 1 r3,1 r3,2 r3,3 r3,4 0 r3,6

5 2 3 2 3 0 3 3 r1,1 0 r1,3 0 r1,5 0

Table 3.7: SF example: Vector Vi,j, for 1 ≤ i ≤ k = 6 and 1 ≤ j ≤ w = 3

c′i

c j

Vi,j 3 2 3 2 5 2

2 Epk(0) Epk(1) Epk(0) Epk(1) Epk(0) Epk(1)

3 Epk(1) Epk(0) Epk(1) Epk(0) Epk(0) Epk(0)

5 Epk(0) Epk(0) Epk(0) Epk(0) Epk(1) Epk(0)

In contrast, let the execution image of P1 is denoted by ΠP1(SF), and is given by

ΠP1(SF) = {Ui,j | for 1 ≤ i ≤ k and 1 ≤ j ≤ w}

Here, Ui,j is an encrypted value sent by P2 at step 2(c) of Algorithm 7. Suppose that the

simulated image of P1 is given by

ΠS
P1

(SF) = {U∗i,j | for 1 ≤ i ≤ k and 1 ≤ j ≤ w}

where U∗i,j is a random number in ZN2 . Since Epk is a semantically secure encryption scheme

with a resulting ciphertext size of less thanN2, Ui,j is computationally indistinguishable from

U∗i,j. As a result, ΠP1(SF) is computationally indistinguishable from ΠS
P1

(SF). Combining

all the above results, and following from Definition 1, it was concluded that the SF protocol

was secure under the semi-honest model.

Complexity Analysis: This work can claim that the computation complexity of the SF

protocol was bounded by O(k ∗w) encryptions. This upper bound can be derived the same

way that used in the previous sub-routines.

45

3.5.10. Secure Comparison with a Threshold. In the Secure Comparison with

a Threshold (SCT) protocol, P1 holds a private input (d′) and P2 holds a private input

(d′′). Here, d′ and d′′ are two random shares for d such that d′ + d′′ mod N = d. Given

a threshold t as a publicly known parameter, the goal of the SCT protocol is to securely

evaluate the condition d < t. The output of this protocol returns two random shares (b′

and b′′) for b such that b′ + b′′ mod N = b, where b denotes the comparison result. More

specifically, b = 0 if d < t, otherwise, b = 0. Note that the random share b′ is revealed only

to P1, whereas the random share b′′ is revealed only to P2.

The inputs received from most existing, secure, comparison protocols [9, 25, 26, 35,

71] are either non-encrypted or non-random shares. Thus, they are not directly applicable

to this problem domain. In contrast, garbled circuit has been known for its efficiency

in securely evaluating simple functionalities (e.g., comparison). Additionally, the garbled

circuit requires only one round of communication. As a result, it can easily be modified

to fit this problem domain. Therefore, Garbled Circuit Parser tool (GCParser) [65],

an interpreter for garbled circuits intermediate language, was adopted in this study to

implement the SCT protocol. Technical details on how to produce and evaluate a garbled

circuit have been well documented in “Faster secure two-party computation using garbled

circuits” [53].

Security Analysis: The SCT protocol was implemented using a garbled circuit, which was

also secure under the semi-honest model [53].

Complexity Analysis: Inputs to the SCT protocol were two random shares with a size that

bounded by N . Thus, the initial phase of the garbled circuit needed O(logN) gates to add

the shares. The resulting distance value was much smaller than N in the problem domain.

Therefore, the total number of gates in the garbled circuit was bound by O(logN). Since

the fast garbled circuit evaluation method proposed in “Faster secure two-party computation

using garbled circuits” [53] is very efficient and use a symmetric key encryption to garble

the circuit. One can expect that the total computation cost of the SCT protocol is about

performing several homomorphic encryption operations. Thus, O(m) encryptions provided

an appropriate upper bound for the SCT protocol.

46

3.6. OVERVIEW OF THE PROPOSED PRIVACY-PRESERVING QUERY
PROCESSING PROTOCOLS

According to the number of participants, an SMC protocol can be classified into

either two-party or multi-party protocol. In this work, it is more cost effective to use two

cloud service providers, so one will focus on developing two-party Privacy-Preserving Query

Processing (PPQP) protocol.

Let C1 denote a cloud service provider who stores Alice’s encrypted data (T ′) and per-

forms query processing based on T ′ and a user query (q) on behalf of her. When outsourced

data (T ′) are encrypted with a fully homomorphic encryption scheme [13, 14, 36, 38, 93],

C1 can perform any possible computations over the encrypted data. Fully homomorphic en-

cryptions, however, have yet to be practical due to their extremely high computation costs.

The research community is still looking for more efficient constructions of fully homomorphic

encryptions. Therefore, in addition to C1, this work will utilize another independent cloud

service provider (C2) and use an Additive Homomorphic Public Key Encryption (AH-Enc)

scheme to encrypt each records in T and q component-wise to produce T ′ and Epk(q). There

are several AH-Enc schemes, and without loss of generality, this work adopted the Paillier

cryptosystem [75] for its simple implementation and being semantically secure. Both C1

and C2 are assumed to be semi-honest cloud service providers. Such an assumption is not

new and has been commonly used in the recent related works (e.g., [15, 95]). The intu-

ition behind such an assumption is as follows: Most of the cloud service providers in the

market are legitimate, well-known IT companies (e.g., Google, Amazon, and Microsoft).

These companies maintain reputations that are invaluable assets that need to be protected

at all costs. Therefore, a collusion between them is highly unlikely as it will damage their

reputations which in turn can affect their revenues and profits.

Under this setting, Alice outsources her encrypted database (T ′) to C1, and the secret

key (sk) to C2. Here, it is possible for Alice to replace C2 with her private server. However,

if Alice has a private server, one can argue that there is no need for data outsourcing from

Alice’s point of view. The main purpose of using C2 can be motivated by the following

two reasons: (i) With limited computing resource and technical expertise, it is in the best

interest of Alice to completely outsource her data management and operational tasks to a

47

cloud. For example, Alice may want to access her data and analytical results using either a

smart phone or any device with very limited computing capability. (ii) If Alice uses a private

server, she has to perform computations assumed by C2 under which the very purpose of

outsourcing the encrypted data to C1 is negated. Moreover, she might be able to track

down Bob’s queries and infer what he is looking for. Thus, Bob’s query privacy and access

patterns may be compromised while searching through hosted data within the cloud and

Alice’ private server.

In general, whether Alice uses either a private server or a cloud service provider (C2)

actually depends on her resources. This work preferred to use a multi-cloud computing

framework as this would avoid the above-mentioned disadvantages (i.e., in case of Alice

using a private server) altogether.

Note that Bob sends only his encrypted query and never participates in any inter-

mediate computations. Thus, how the user behaves is irrelevant to the protocol’s security.

48

4. k-NEAREST NEIGHBOR QUERY

Using encryption as a way to achieve data confidentiality may cause another issue

during the query processing step in the cloud. In general, it is very difficult to process

encrypted data without ever having to decrypt it. The question here is how the cloud can

execute the queries over encrypted data while the data stored at the cloud are encrypted at

all times. In the literature, various techniques related to query processing over encrypted

data have been proposed, including range queries [49, 50, 91] and other aggregate queries

[46, 68]. These techniques, however, are either not applicable or inefficient to solve advanced

queries such as the kNN query.

In this chapter, the problem of secure processing of kNN (SkNN) query over en-

crypted relational data in a cloud was addressed [29]. That is, given a user’s encrypted

query record (q), the objective of the SkNN problem is to securely identify the top k-nearest

(closest) records to q using the encrypted database (T ′) in the cloud without allowing the

cloud to learn anything regarding either the actual contents of the database (T) or q. More

specifically, an effective SkNN protocol needs to satisfy the following properties:

• Preserve the confidentiality of T and q at all times

• Hiding data access patterns from the cloud

• Accurately compute the k-nearest neighbors of query q

• Incur low computation overhead on the end-user

Various techniques related to solving the SkNN problem have been proposed [51, 98, 99, 105].

The existing SkNN methods violate, however, at least one of the above-mentioned desirable

properties of a SkNN protocol. On one hand, the methods in [51, 98] are insecure because

they are vulnerable to chosen and known plaintext attacks. On the other hand, the recent

method in [99] returns a non-accurate kNN result to the end-user. More precisely, in [99],

the cloud retrieves the relevant encrypted partition instead of finding the encrypted exact k-

nearest neighbors. Furthermore, in [51, 99, 105], the end-user involves in heavy computations

during the query processing step. By doing so, these methods utilize cloud as just a storage

medium, i.e., no significant work is done on the cloud side. Additionally, the existing SkNN

49

methods do not protect data access patterns from the cloud. More details regarding the

existing SkNN methods were provided in Section 2.1.

This chapter presented first a basic scheme to solve SkNN problem and demonstrated

that such a naive solution was not secure. To provide better security, a novel maximum

SkNN protocol was also proposed that protected both the data confidentiality and the access

patterns [29]. For ease of presentation, some common notations that are used extensively

throughout this chapter are summarized in Table 4.1.

4.1. DEFINING THE PROBLEM

Suppose that Alice owns a database T of n records t1, . . . , tn and m attributes.

Let ti,j denote the jth attribute value of record ti. Also, assume that Alice generates a

pair of public-secret key pair (pk, sk) based on an Additive Homomorphic Public Key

Encryption (AH-Enc) cryptosystem that is semantically secure (e.g., Paillier cryptosystem

[75]). Initially, Alice encrypts her database (T). Let T ′ =
{
Epk(t1), . . . , Epk(tn)

}
denote the

encryption of T , where each Epk(ti) is encrypted component-wise. That is, she computes

Epk(ti,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, where Epk denotes the encryption function of a

public-key cryptosystem that is semantically secure [75]. Assume that Alice outsources both

T ′ and the future querying processing services to the cloud.

Consider Bob who wants to ask the cloud for k-neighbor records that are closest to

his input query q = 〈q1, . . . , qm〉 based on T ′, where m denotes the number of attributes.

During this process, neither Bob’s query (q) nor the database’s contents (T) should be

revealed to the cloud. Access patterns for the data should also be protected from the cloud.

This process is referred to here as a Secure k-Nearest Neighbor (SkNN) query over encrypted

relational data in the cloud [29]. Let {t′1, . . . , t′k} denote the k-nearest records to q. The

SkNN protocol can now be formally defined.

SkNN
(
T ′, q

)
→ {t′1, . . . , t′k}

At the end of the SkNN protocol, the output {t′1, . . . , t′k} should be revealed only to Bob.

The following example presented a real-life application of the SkNN protocol.

50

Table 4.1: Common notations used in the SkNN protocols

Alice The data owner of relational database T
Bob An authorized user who can access T ′ in the cloud
C1, C2 Two non-colluding semi-honest cloud service providers〈

Epk(.), Dsk(.)
〉 A pair of Paillier’s encryption and decryption functions with

(pk, sk) as public-secret key pair
Epk(x) Component-wise encryption of x: Epk(x1), . . . , Epk(xm)

T A relational database with n records: t1, . . . , tn
T ′ An encryption of T : Epk(t1), . . . , Epk(tn)

n Number of data records in T
m Number of attributes in T
ti ith record in T
q Bob’s input query record
t′i ith nearest record to q based on T

Example 8. Consider a physician who wants to know the risk factor of heart disease in a

specific patient. Let T denote the sample heart disease dataset with attributes record-id, age,

sex, cp, trestbps, chol, fbs, slope, ca, thal, and num as shown in Table 4.2. The description

and range for each of these attributes are shown in Table 4.3. The heart disease dataset

given in Table 4.2 is obtained from the UCI machine learning repository [56]. Initially,

the data owner (hospital) encrypts T attribute-wise, outsources the encrypted database T ′

to the cloud for easy management. Additionally, the data owner delegates the future query

processing services to the cloud. Now, we consider a doctor working at the hospital, say

Bob, who would like to know the risk factor of heart disease in a specific patient based on

T . Let the patient medical information be q = 〈58, 1, 4, 133, 196, 1, 2, 1, 6〉. In the SkNN

protocol, Bob first need to encrypt q (to preserve the privacy of his query) and send it to

the cloud. The cloud then searches on the encrypted database T ′ to figure out the k-Nearest

Neighbors to the user’s request. For simplicity, let us assume k = 2. Under this case, the

2-nearest neighbors to q are t4 and t5 (by using Euclidean distance as the similarity metric).

The cloud then sends both t4 and t5 (in encrypted form) to Bob. Here, the cloud should

identify the nearest neighbors of q in an oblivious manner without knowing any sensitive

information, i.e., all the computations have to be carried over encrypted records. Finally,

Bob receives both t4 and t5 that will help him to make medical decisions. �

51

Table 4.2: Sample heart disease dataset T

record-id age sex cp trestbps chol fbs slope ca thal num

t1 63 1 1 145 233 1 3 0 6 0
t2 56 1 3 130 256 1 2 1 6 2
t3 57 0 3 140 241 0 2 0 7 1
t4 59 1 4 144 200 1 2 2 6 3
t5 55 0 4 128 205 0 2 1 7 3

4.2. MAIN CONTRIBUTIONS

A novel SkNN protocol to facilitate the kNN search over semantically encrypted

relational data is proposed [29]. Withing this protocol, Alice does not participate in any

computations once the encrypted data are outsourced to the cloud. Therefore, no informa-

tion is revealed to Alice. This protocol also meets the desired requirements discussed in

Section 1.2:

• Neither the contents of T nor any intermediate results should be revealed to the cloud.

• Bob’s query (q) should not be revealed to the cloud.

• The output {t′1, . . . , t′k} should be computed accurately and revealed only to Bob.

Additionally, no information other than {t′1, . . . , t′k} should be revealed to Bob.

• Incurs a low computational overhead on Bob after the encrypted query record is sent

to the cloud.

• Access patterns for the data (e.g., the records corresponding to the k-Nearest Neigh-

bors of q) should not be revealed to either Alice or the cloud to prevent any inference

attacks.

The intermediate results observed by the clouds in this protocol are either newly

generated, randomized encryptions or random numbers. Thus, the data records correspond

to the k-Nearest Neighbors of q are unknown to the cloud. Also, after Bob sends his

encrypted query record to the cloud, he stops involving in computations. Hence, data

access patterns are further protected from Bob. More details are given in Section 4.3.2.

52

Table 4.3: Attribute description of heart disease dataset T

sex 1=male, 0=female

cp
chest pain type: 1=typical angina, 2=atypical angina,
3=non-anginal pain, 4=asymptomatic

trestbps resting blood pressure (mm Hg)
chol serum cholesterol in mg/dl
fbs fasting blood sugar > 120 mg/dl (1=true; 0=false)

slope
slope of the peak exercise ST segment
(1=upsloping, 2=flat, 3=downsloping)

ca number of major vessels (0-3) colored by fluoroscopy
thal 3=normal, 6=fixed defect, 7=reversible defect
num diagnosis of heart disease from 0 (no presence) to 4

4.3. THE PROPOSED SECURE k-NEAREST NEIGHBOR PROTOCOLS

A basic version of the SkNN protocol is first presented and demonstrated why such

a simple solution was not secure. Then, the second approach that achieved better security

under the semi-honest model is presented. Both protocols were constructed based on the

set of sub-components presented in Section 3.5 as building blocks.

In the SkNN protocols, the existence of two non-colluding semi-honest cloud service

providers, denoted by C1 and C2, which together form a federated cloud was assumed. Such

an assumption is not new and has been commonly used in the related problem domains

[16, 96]. More details are given in Section 3.6.

Recall that Alice’s database consists of n records, denoted by T = {t1, . . . , tn}, andm

attributes, where ti,j denotes the jth attribute value of record ti. Initially, Alice encrypts her

database attribute-wise using here public key pk. Let the encrypted database be denoted

by T ′. Assume that all attribute values and their Euclidean distances lie in [0, 2l).

Under this setting, Alice outsources her encrypted database (T ′) to C1, and the secret

key (sk) to C2. The goal of the proposed SkNN protocols is to retrieve the top k records

that are closest to a user’s query in an efficient, secure manner. Briefly, consider Bob who

wants to find k records that are closest to his query record q = 〈q1, . . . , qm〉 based on T ′ in

C1. Bob initially sends his query q (in encrypted form) to C1. After this, both C1 and C2

involve in a set of sub-protocols to securely retrieve (in encrypted form) the set of k records

53

corresponding to the k-nearest neighbors of the input query q. At the end of the proposed

protocols, only Bob will receive the k-Nearest Neighbors to q as the output.

4.3.1. Basic Secure k-Nearest Neighbor Protocol. In the basic protocol, de-

noted by SkNNb, the desirable properties discussed in Section 1.2 are relaxed to produce

an efficient protocol (More details on this are given in the latter part of this section). The

overall steps involved in the SkNNb protocol are presented in Algorithm 8. Initially, Bob

encrypts his query (q) attribute-wise, that is, he computes Epk(q) =
〈
Epk(q1), . . . ,

Epk(qm)
〉
. He then sends Epk(q) to C1. Upon receiving Epk(q) from Bob, both C1 with

private input
(
Epk(q), Epk(ti)

)
, and C2 with the secret key sk jointly involve in the Secure

Squared Euclidean Distance (SSED) protocol, where Epk(ti) =
〈
Epk(ti,1), . . . , Epk(ti,m)

〉
for

1 ≤ i ≤ n. The output of this step, denoted by Epk(di), is the encryption of squared Eu-

clidean distance between q and ti, i.e., di = |q − ti|2. Recall that, Epk(di) is known only to

C1 for 1 ≤ i ≤ n. Note that computation of the exact Euclidean distance between encrypted

vectors is hard to achieve as it involves square root. In the kNN, however, it is sufficient

to compare the squared Euclidean distances as it preserves relative ordering. After this, C1

sends
{〈

1, Epk(d1)
〉
, . . . ,

〈
n,Epk(dn)

〉}
to C2, where the entry

〈
i, Epk(di)

〉
corresponds to

the data record ti for 1 ≤ i ≤ n. Upon receiving
〈
1, Epk(d1)

〉
, . . . ,

〈
n,Epk(dn)

〉
, C2 decrypts

the encrypted distance in each entry to obtain di = Dsk

(
Epk(di)

)
. C2 then generates an

index list δ = 〈i1, . . . , ik〉 such that 〈di1 , . . . dik〉 are the top k smallest distances among

〈d1, . . . , dn〉. After this, C2 sends δ to C1. Upon receiving δ, C1 proceeds as follows:

• Select the encrypted records Epk(ti1), . . . , Epk(tik) as the k-nearest records to q and

randomize them attribute-wise. More specifically, C1 computes Epk(γj,h) = Epk(tij ,h)∗

Epk(rj,h) for 1 ≤ j ≤ k and 1 ≤ h ≤ m. Here, rj,h is a random number in ZN and tij ,h

denotes the column h attribute value of the data record tij . C1 then send γj,h to C2,

and rj,h to Bob for 1 ≤ j ≤ k and 1 ≤ h ≤ m.

Upon receiving γj,h, for 1 ≤ j ≤ k and 1 ≤ h ≤ m, C2 decrypts it to obtain γ′j,h = Dsk(γj,h)

and sends them to Bob. Note that due to randomization by C1, γ′j,h is always a random

number in ZN .

54

Algorithm 8 SkNNb

(
T ′, q

)
→ 〈t′1, . . . , t′k〉

Require: C1 has T ′; C2 has sk; Bob has q

1: Bob:

(a). Compute Epk(qj), for 1 ≤ j ≤ m

(b). Send Epk(q) =
〈
Epk(q1), . . . , Epk(qm)

〉
to C1

2: C1 and C2:

(a). C1 receives Epk(q) from Bob

(b). for i = 1 to n do:

• Epk(di)← SSED
(
Epk(q), Epk(ti)

)
(c). Send

{〈
1, Epk(d1)

〉
, . . . ,

〈
n,Epk(dn)

〉}
to C2

3: C2:

(a). Receive
{〈

1, Epk(d1)
〉
, . . . ,

〈
n,Epk(dn)

〉}
from C1

(b). di ← Dsk

(
Epk(di)

)
, for 1 ≤ i ≤ n

(c). Generate δ ← 〈i1, . . . , ik〉, such that 〈di1 , . . . , dik〉 are the top k smallest distances
among 〈d1, . . . , dn〉

(d). Send δ to C1

4: C1:

(a). Receive δ from C2

(b). for 1 ≤ j ≤ k and 1 ≤ h ≤ m do:

• γj,h ← Epk(tij ,h) ∗ Epk(rj,h), where rj,h ∈R ZN

• Send γj,h to C2 and rj,h to Bob
5: C2:

(a). for 1 ≤ j ≤ k and 1 ≤ h ≤ m do:

• Receive γj,h from C1

• γ′j,h ← Dsk(γj,h); send γ′j,h to Bob
6: Bob:

(a). for 1 ≤ j ≤ k and 1 ≤ h ≤ m do:

• Receive rj,h from C1 and γ′j,h from C2

• t′j,h ← γ′j,h − rj,h mod N

55

Finally, upon receiving rj,h from C1 and γ′j,h from C2, Bob computes the attribute

values of jth nearest neighbor to q as t′j,h = γ′j,h−rj,h mod N for 1 ≤ j ≤ k and 1 ≤ h ≤ m.

4.3.2. Maximally Secure k-Nearest Neighbor Protocol. The Basic Secure k-

Nearest Neighbor (SkNNb) protocol completely protected both the data confidentiality and

the user’s query privacy because the computations were performed on either encrypted data

or randomized data. It did reveal, however, the data access patterns to C1 and C2. That

is, both C1 and C2 knew which data records correspond to the k-Nearest Neighbors for any

given q. It also did reveal di values to C2. Leakage of such information, however, may not

be acceptable in privacy-sensitive applications (e.g., medical data).

Along with this direction, this work proposed a Maximally Secure k-Nearest Neighbor

(SkNNm) protocol under the semi-honest model, where m stands for maximally secure. The

desirable properties discussed in Section 1.2 are completely preserved in the SkNNm protocol.

The overall steps involved in the proposed SkNNm protocol are presented in Al-

gorithm 10. Bob initially sends his attribute-wise encrypted query q, that is, Epk(q) =〈
Epk(q1), . . . , Epk(qm)

〉
to C1. Upon receiving Epk(q), both C1 with input

(
Epk(q), Epk(ti)

)
and C2 with the secret key sk jointly involve in the SSED protocol to compute Epk

(
|q−ti|2

)
for 1 ≤ i ≤ n. The output Epk(di) = Epk

(
|q − ti|2

)
will be known only to C1 for 1 ≤ i ≤ n.

Using the Secure Bit-Decomposition (SBD) protocol, both C1 with input Epk(di), and C2

with sk securely compute [di], the encryptions of the individual bits of di, for 1 ≤ i ≤ n.

The output [di] =
〈
Epk(di,1), . . . , Epk(di,l)

〉
for 1 ≤ i ≤ n will be known only to

C1, where di,1 and di,l are the most and least significant bits of di, respectively. Note that

0 ≤ di < 2l for 1 ≤ i ≤ n.

After this, both C1 and C2 compute the top k (in encrypted form) records that

are closest to q in an iterative manner. More specifically, they compute Epk(t′1) in the first

iteration, Epk(t′2) in the second iteration, and so on. Here, t′s denote the sth nearest neighbor

to q for 1 ≤ s ≤ k. At the end of k iterations, only C1 knows
〈
Epk(t

′
1), . . . , Epk(t

′
k)
〉
. To

start with, in the first iteration, both C1 and C2 jointly compute the encryptions of the

individual bits of the minimum value among d1, . . . , dn using the Secure Minimum Out of n

Numbers (SMINn) protocol. That is, C1, with input (θ1, . . . , θn), and C2, with sk compute(
[dmin], nil

)
, where θi =

(
[di], nil

)
for 1 ≤ i ≤ n. Here, dmin denotes the minimum value

56

Algorithm 9 SkNNm

(
T ′, q

)
→
〈
t′1, . . . , t

′
k

〉
Require: C1 has T ′ and π; C2 has sk; Bob has q
1: Bob sends Epk(q) =

〈
Epk(q1), . . . , Epk(qm)

〉
to C1

2: C1 and C2:
(a). C1 receives Epk(q) from Bob

(b). for i = 1 to n do:

• Epk(di)← SSED
(
Epk(q), Epk(ti)

)
• [di]← SBD

(
Epk(di)

)
3: for s = 1 to k do:

(a). C1 and C2:

• [dmin], nil← SMINn(θ1, . . . , θn), where θi =
(
[di], nil

)
(b). C1:

• Epk(dmin)←
∏l−1

γ=0Epk(dmin,γ+1)2l−γ−1

• if s 6= 1 then, for 1 ≤ i ≤ n

– Epk(di)←
∏l−1

γ=0 Epk(di,γ+1)2l−γ−1

• for i = 1 to n do:

– τi ← Epk(dmin) ∗ Epk(di)N−1

– τ ′i ← τ rii , where ri ∈R ZN

• β ← π(τ ′); send β to C2

(c). C2:

• Receive β from C1

• β′i ← Dsk(βi), for 1 ≤ i ≤ n

• Compute U , for 1 ≤ i ≤ n:

– if β′i = 0 then Ui = Epk(1)

– else Ui = Epk(0)

• Send U to C1

(d). C1:

• Receive U from C2 and compute V ← π−1(U)

• V ′i,j ← SM
(
Vi, Epk(ti,j)

)
, for 1 ≤ i ≤ n and 1 ≤ j ≤ m

• Epk(t′s,j)←
∏n

i=1 V
′
i,j, for 1 ≤ j ≤ m

• Epk(t′s) =
〈
Epk(t

′
s,1), . . . , Epk(t

′
s,m)
〉

(e). C1 and C2, for 1 ≤ i ≤ n:

• Epk(di,γ)← SBOR
(
Vi, Epk(di,γ)

)
, for 1 ≤ γ ≤ l

The rest of the steps are similar to steps 4-6 of SkNNb

57

among d1, . . . , dn. In this chapter, during the process of the SMINn protocol, the secret

information associated with each tuple does not involve in the computation. Therefore, the

corresponding parameter for the secret information in the SMINn protocol is set to nil.

The output
(
[dmin], nil

)
is known only to C1. C1 then follows several steps:

• Compute the encryption of dmin from its encrypted individual bits as follows:

Epk(dmin) =
l−1∏
γ=0

Epk(dmin,γ+1)2l−γ−1

= Epk(dmin,1 ∗ 2l−1 + · · ·+ dmin,l)

Where dmin,1 and dmin,l are the most and least significant bits of dmin, respectively.

• Compute the encryption of difference between dmin and each di. That is, C1 computes

τi = Epk(dmin) ∗ Epk(di)N−1 = Epk(dmin − di) for 1 ≤ i ≤ n.

• Randomize τi to obtain τ ′i = τ rii = Epk
(
ri ∗ (dmin − di)

)
, where ri is a random number

in ZN . Note that τ ′i is an encryption of either 0 or a random number for 1 ≤ i ≤ n.

Next, use a random permutation function π (known only to C1) to permute τ ′ such

that β = π(τ ′). Send β to C2.

Upon receiving β, C2 decrypts it component-wise to obtain β′i = Dsk(βi) for 1 ≤ i ≤ n. It

then computes an encrypted vector U of length n. If β′i = 0, then Ui = Epk(1); otherwise,

Ui = Epk(0). It is assumed here that exactly one of the entries in β equals to zero and

the remaining entries are random. This further implies that exactly one of the entries in

U is an encryption of 1 and the remaining entries are encryption of 0’s. However, if β′ has

more than one 0’s, then C2 can randomly pick one of those indexes and set Epk(1) to the

corresponding index of U , and Epk(0) to the rest. C2 then sends U to C1. After receiving

U , C1 performs inverse permutation on it to obtain V = π−1(U). Note that exactly one of

the entries in V is Epk(1) and the remaining entries are encryption of 0’s. Additionally, if

Vi = Epk(1), then ti is the closest record to q. Both C1 and C2, however, do not know which

entry in V is corresponding to Epk(1).

C1 computes Epk(t′1), the encryption of the closest record to q, and updates the

distance vectors as follows:

58

• Both C1 and C2 jointly involve in the Secure Multiplication (SM) protocol to compute

V ′i,j = Vi ∗Epk(ti,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The output V ′ from the SM protocol

is known only to C1. After this, by using homomorphic properties, C1 computes

the encrypted record Epk(t′1) =
〈
Epk(t1,1), . . . , Epk(t1,m)

〉
locally, Epk(t′1,j) =

∏n
i=1 V

′
i,j,

where 1 ≤ j ≤ m. Note that, t′1,j denotes the jth attribute value of record t′1.

• It is important to note that the first nearest record to q should be obliviously ex-

cluded from further computations. However, because C1 does not know the record

corresponding to Epk(t′1), one need to obliviously eliminate the possibility of choosing

this record again in next iterations. For this, C1 obliviously updates the distance cor-

responding to Epk(t′1) to the maximum value, i.e., 2l−1. More specifically, C1 updates

the distance vectors with the help of C2 using the Secure Bit-OR (SBOR) protocol

as following for 1 ≤ i ≤ n and 1 ≤ γ ≤ l.

Epk(di,γ) = SBOR
(
Vi, Epk(di,γ)

)
Note that, when Vi = Epk(1), the corresponding distance vector di is set to the max-

imum value. That is, under this case, [di] =
〈
Epk(1), . . . , Epk(1)

〉
. However, when

Vi = Epk(0), the OR operation has no effect on di.

The above process is repeated for k iterations. In each iteration, [di], corresponding to

the currently chosen record, is set to the maximum value. However, because C1 and C2

do not know which [di] is updated, they have to re-compute Epk(di) in each iteration for

1 ≤ i ≤ n. In iteration s, Epk(t′s) is known only to C1. At the end of the iterative step (Step

3 of Algorithm 10), C1 has
{
Epk(t

′
1), . . . , Epk(t

′
k)
}
, the list of encrypted records of k-Nearest

Neighbors to q.

The rest of the process is similar to steps 4 to 6 of Algorithm 8. Briefly, C1 randomizes

Epk(t
′
j) attribute-wise to obtain γj,h = Epk(t

′
j,h)∗Epk(rj,h). It sends γj,h to C2 and rj,h to Bob

for 1 ≤ j ≤ k and 1 ≤ h ≤ m. Here, rj,h is a random number in ZN . Upon receiving γj,h’s,

C2 decrypts them to obtain the randomized k-nearest records as γ′j,h = Dsk(γj,h) and sends

them to Bob for 1 ≤ j ≤ k and 1 ≤ h ≤ m. Finally, upon receiving rj,h from C1 and γ′j,h

from C2, Bob computes the jth nearest neighboring record to q, as t′j,h = γ′j,h − rj,h mod N

for 1 ≤ j ≤ k and 1 ≤ h ≤ m.

59

4.4. SECURITY ANALYSIS

First, due to the encryption of q and by semantic security of the Paillier cryptosystem,

Bob’s input query q was protected from Alice, C1, and C2 in both protocols. In the SkNNb

protocol, the decryption operations at step 3(b) of Algorithm 8 did reveal di values to C2.

Additionally, since C2 generates the top k index list (at step 3(c) of Algorithm 8) and sends

it to C1, the data access patterns are revealed to both C1 and C2. Therefore, the SkNNb

protocol was secure under the assumption that di values can be revealed to C2 and data

access patterns can be revealed to both C1 and C2.

In contrast, the security analysis of the SkNNm protocol is as follows. At step 2 of

Algorithm 10, the outputs of the SSED and SBD protocols were in encrypted format and

were known only to C1. Additionally, all the intermediate results decrypted by C2 in the

SSED protocol were uniformly random in ZN . Also, as discussed in [86], the SBD protocol

was secure. Thus, no information was revealed during step 2 of Algorithm 10. In each

iteration, the output of the SMINn protocol was known only to C1 and no information was

revealed to C2. Also, both C1 and C2 did not know which record belongs to the current

global minimum. Thus, data access patterns were protected from both C1 and C2. At step

3(c) of Algorithm 10, a component-wise decryption of β did reveal the tuples that satisfy

the current global minimum distance to C2. Due to permutation by C1, however, C2 could

not trace back to the corresponding data records. Note that, the decryption of β gave either

encryptions of 0’s or random numbers in ZN . Similarly, because U is an encrypted vector,

C1 could not know which record that corresponds to the current global minimum distance.

Thus, the data access patterns were further protected at this step from C1. Additionally,

the update process at step 3(e) of Algorithm 10 did not leak any information to either C1

or C2. In summary, both C1 and C2 did not know which data records that correspond to

the output set 〈t′1, . . . , t′k〉.

Following from the previous discussions, it was clear that the SkNNm protocol pro-

tected the data confidentiality, the privacy of a user’s input query, and hide the data access

patterns from C1 and C2. Also, since all these sub-protocols of the SkNNm protocol pro-

duced pseudo-random values as intermediate results, according to the Composition Theorem

[41] given in Definition 2, the SkNNm protocol is also secure under the semi-honest model.

60

4.5. COMPLEXITY ANALYSIS

The proposed SkNNb and SkNNm protocols’ computation complexity were analyzed

under the assumption that encryption and decryption operations based on Paillier cryp-

tosystem take a similar amount of time, an exponentiation operation was treated as an

encryption operation, and an encryption operation is generally several orders of magnitude

more expensive than a multiplication.

The computation complexity of the SkNNb protocol was bounded by O(n ∗m + k)

encryptions. In practice, k � n ∗m; therefore, the computation complexity of the SkNNb

protocol could be bounded by O(n ∗m) encryptions.

In contrast, the computation complexity of the SkNNm protocol was bounded by

O(n) instantiations of the SBD and the SSED protocols, O(k) instantiations of the SMINn

protocol , and O(n ∗ l) instantiations of the SBOR protocol. Note that, the computation

complexity of the SBD protocol proposed in [86] was bounded by O(l) encryptions. Also,

the computation complexity of the SSED protocol was bounded by O(m) encryptions. In

addition, the computation complexity of the SMINn protocol was bounded by O
(
(l ∗ n ∗

log2 n)
)
encryptions. Since the SBOR protocol utilized the SM protocol as a sub-routine,

the computation cost of the SBOR protocol was bounded by (small) constant number

of encryptions. Based on the previous analysis, the total computation complexity of the

SkNNm protocol was bounded by O
(
n ∗ (l + m + k ∗ l ∗ log2 n)

)
encryptions. More details

regarding the complexity analysis of sub-protocols are given in Section 3.5.

Depending on the encryption key size, the overall computation cost of the proposed

SkNNm protocol (more expensive than SkNNb) is between 2 and 3 orders of magnitude higher

than the non-crypto cases. This is the cost we need to pay to maximize data confidentiality.

However, on the user or client side, the running time is comparable to the non-crypto case

since the user only performs a very small number of encryption operations (bounded by

the number of attributes) which was done in less than a second as will be shown in the

experiments. The goal here is to outsource all or most computations to the cloud so that

the user can issue queries using any mobile device with limited storage and computing

capability. Note that data confidentiality is fully protected under the SkNNm protocol.

61

4.6. PERFORMANCE EVALUATION

The proposed protocols were implemented using Paillier cryptosystem [75] in C lan-

guage on top of the GNU multiple precision arithmetic library (http://gmblib.org/). Their

performance was also measured across a range of inputs.

Synthetic datasets were randomly generated according to the parameter values being

considered because it is difficult to control the parameters in a real dataset. The advantage

of using these synthetic datasets is that a more elaborated analysis could be performed

on the computation costs of the proposed protocols under different parameter settings.

These datasets were encrypted attribute-wise by the Paillier cryptosystem [75] with varied

key sizes. The encrypted data were stored on a local machine. A Linux machine with

an Intel R© Xeon R© Six-CoreTM CPU 3.07 GHz processor and 12GB RAM running Ubuntu

10.04 LTS was used to conduct all the experiments performed. The proposed protocols were

performed according to these dataset. Then, a random query was chosen and executed over

the encrypted data based on the proposed protocol.

For the rest of this section, the performance of Alice was not discussed as she was a

one-time cost, and she did not participate in computations. Instead, the evaluations were

based on the performance of both SkNNb and SkNNm protocols separately. Additionally,

the computation costs of the two proposed protocols were compared. In the experiments,

the Paillier encryption key size K was either 512 or 1024 bits.

4.6.1. Performance of the Basic Secure k-Nearest Neighbor Protocol. The

computation costs of the SkNNb protocol were evaluated by varying the number of data

records (n), number of attributes (m), number of nearest neighbors (k), and encryption key

size (K). Note that the SkNNb protocol is independent of the domain size of attributes (l).

The computation costs of the SkNNb protocol were evaluated first by fixing k = 5

and K = 512 and varying values of n and m. The computation cost grew linearly with n

and m (see Figure 4.1(a)). For example, when m = 6, the computation time of the SkNNb

protocol increased from 44.08 to 87.91 seconds when n changed from 2000 to 4000. A similar

trend could be observed for K = 1024 (see Figure 4.1(b)). For any fixed parameters, the

computation time of the SkNNb increased by almost a factor of 7 whenever K doubled.

62

The computation costs of the SkNNb protocol were analyzed next by fixing m = 6

and n = 2000 and varying values of k and K (see Figure 4.1(c)). Irrespective of K, the

computation time of the SkNNb protocol did not change much with varying k. This is

because the computation time for the SkNNb protocol was dominated by the SSED protocol

which was independent of k. For example, when K = 512 bits, the computation time of the

SkNNb protocol changed from 44.08 to 44.14 seconds when k changed from 5 to 25. The

computation costs of the SkNNb protocol mainly depended on (or grew linearly with) n and

m. This finding is consistent with the upper bound derived in Section 4.5.

4.6.2. Performance of the Maximally Secure k-Nearest Neighbor Protocol.

The computation costs of the SkNNm protocol were analyzed by varying values of k, l, and

K. Throughout this evaluation, the values ofm and n were fixed to 6 and 2000, respectively.

However, the running time of the SkNNm protocol grew almost linearly with n and m. For

K = 512 bits, the computation costs of the SkNNm protocol for varying k and l are given

in Figure 4.1(d). For l = 6, the running time of the SkNNm protocol varied from 11.93 to

55.65 minutes when k was changed from 5 to 25, respectively. Also, for l = 12, the running

time of the SkNNm protocol varied from 20.68 to 97.8 minutes when k varied from 5 to

25, respectively. In either case, the cost of the SkNNm protocol grew almost linearly with

k and l. A similar trend can be observed for K = 1024 (see Figure 4.1(e)). In particular,

for any given fixed parameters, the computation cost of the SkNNm protocol increased by

almost a factor of 7 when K is doubled. For example, when k = 10, the SkNNm protocol

took 22.85 and 157.17 minutes to generate the 10 nearest neighbors of q under K = 512 and

K=1024 bits, respectively. Furthermore, when k = 5, around 69.7% of the cost in SkNNm

is accounted due to the SMINn protocol which is initiated k times in SkNNm (once in each

iteration). Also, the cost incurred due to the SMINn protocol increased from 69.7% to, at

least, 75% when k was increased from 5 to 25.

Additionally, the running times of both protocols were compared by fixing n = 2000,

m = 6, l = 6, and K = 512 and varying values of k. The running time of the SkNNb

protocol remained to be constant at 0.73 minutes because it was almost independent of k.

The running time of the SkNNm protocol , however, changed from 11.93 to 55.65 minutes

when k increased from 5 to 25 (see Figure 4.1(f)).

63

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

T
im

e
 (

s
e

c
o

n
d

s
)

Number of data records (n)

m=6
m=12
m=18

(a) SkNNb for k = 5 and K = 512

 0

 15

 30

 45

 60

 75

 0 2000 4000 6000 8000 10000

T
im

e
 (

m
in

u
te

s
)

Number of data records (n)

m=6
m=12
m=18

(b) SkNNb for k = 5 and K = 1024

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

T
im

e
 (

s
e

c
o

n
d

s
)

Number of nearest neighbors (k)

K=512

K=1024

(c) SkNNb for m = 6 and n = 2000

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

T
im

e
 (

m
in

u
te

s
)

Number of nearest neighbors (k)

l=6
l=12

(d) SkNNm for n = 2000 and K = 512

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25

T
im

e
 (

m
in

u
te

s
)

Number of nearest neighbors (k)

l=6
l=12

(e) SkNNm for n = 2000 and K = 1024

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

T
im

e
 (

m
in

u
te

s
)

Number of nearest neighbors (k)

SkNNb
SkNNm

(f) Time Complexity: SkNNb vs. SkNNm

Figure 4.1: Time complexities of both SkNNb and SkNNb for varying values of n, m, l, k,
and encryption key size K

Putting the above results together, it was concluded that the computation costs of

the the SkNNm were significantly higher than that of the SkNNb protocol. However, the

SkNNm protocol is more secure than the SkNNb protocol; therefore, the two protocols acts as

a trade-off between security and efficiency. Note that Bob’s computation cost is mainly due

64

to the encryption of his input query record. As an example, for m = 6, Bob’s computation

costs are 4 and 17 milliseconds when K is 512 and 1024 bits, respectively. In the proposed

protocols, it is worth pointing out that users do not involve in any computations. Therefore,

the proposed protocols are very efficient from the end-user’s perspective.

4.6.3. Performance Improvement. At first, it seems that the proposed protocols

are costly and may not scale well for large datasets. However, in both protocols, the compu-

tations involved in each data record are independent of others. Therefore, the operations on

data records can be parallelized for efficiency purpose. To empirically evaluate this claim, a

parallel version of the SkNNb protocol was implemented using OpenMP programming [24]

and compared its computation costs with its serial version. Recall that the machine used in

experiments had 6 cores which could be used to perform parallel operations on 6 threads.

For m = 6, k = 5, and K = 512 bits, the comparison results are given in Figure 4.2.

The parallel version of the SkNNb protocol was roughly 6 times more efficient than

its serial version because of the fact that the parallel version could execute operations on

6 data records at a time (i.e., on 6 threads in parallel). For example, the running times of

parallel and serial versions of the SkNNb protocol for n = 10000 were 40 and 215.59 seconds,

respectively. Similar efficiency gains could be achieved by parallelizing the operations in the

SkNNm protocol.

Based on the above discussions, it was concluded that the scalability issue of the

proposed protocols can be eliminated or mitigated especially in a cloud computing environ-

ment, where high-performance parallel processing can easily be achieved. Additionally, using

the existing map-reduce techniques, one can drastically improve the performance further by

executing parallel operations on multiple nodes. Following from the previous empirical anal-

ysis, it is clear that SMINn protocol is the most costly sub-routine utilized in the SkNNm

protocol. Therefore, by improving the efficiency of the SMINn protocol, that can improve

the overall computation cost of the SkNNm protocol.

65

Figure 4.2: Parallel vs. serial versions of the SkNNb protocol form = 6, k = 5, and K = 512

66

5. ADVANCED ANALYTICAL QUERY

Data Mining has wide applications in many areas including banking, medicine, sci-

entific research, and government agencies. Classification is a very important task in various

data mining applications. Performing data mining tasks by a cloud has recently attracted

significant attentions. In general, performing any data mining tasks becomes challenging

without ever decrypting the data irrespective of the underlying encryption scheme [76, 84].

Existing privacy-preserving classification techniques are not applicable because the data

on the cloud is in encrypted form. Additional privacy concerns are demonstrated by the

following example.

Example 9. Suppose an insurance company outsourced its encrypted customers’ database

and relevant data mining tasks to a cloud. When an agent from the company wants to

determine the risk level of a potential new customer, he/she can use a classification method

to determine the customer’s risk level. First, the agent needs to generate a data record (q)

for the customer. This record contains certain personal information of the customer, e.g.,

credit score, age, marital status, etc. This record can then be sent to the cloud, and the

cloud will compute the class label for q. Nevertheless, to protect the customer’s privacy, q

should be encrypted before it is sent to the cloud because it contains sensitive information.

�

The above example illustrates that Data Mining over Encrypted Data (denoted by

DMED) on a cloud also needs to protect a user’s record when the record is part of a data

mining process. A cloud can also derive useful, sensitive information about the actual

data items by observing the data access patterns, even if the data are encrypted [27, 97].

Therefore, the privacy/security requirements of the DMED problem on a cloud are threefold:

(1) confidentiality of the encrypted data, (2) confidentiality of a user’s query record, and

(3) hiding data access patterns.

Existing work on Privacy-Preserving Data Mining (PPDM) (either perturbation or

a SMC-based approach) cannot solve the DMED problem. Perturbed data do not possess

semantic security, so data perturbation techniques cannot be used to encrypt highly sensitive

67

data. Additionally, perturbed data do not produce accurate data mining results. The SMC-

based approach assumes that data are distributed and not encrypted at each participating

party. Additionally, many intermediate computations are performed based on non-encrypted

data.

Fully homomorphic cryptosystems (e.g., [36]) can solve the DMED problem because

they allow a third-party (that hosts the encrypted data) to execute arbitrary functions

over encrypted data without ever decrypting them. Such techniques, however, are very

expensive, and their usage in practical applications has yet to be explored. For example, it

was shown in [37] that even for weak security parameters one “bootstrapping” operation of

the homomorphic operation would take at least 30 seconds on a high- performance machine.

As a result, in this chapter, a method to effectively solve the DMED problem on encrypted

relational data outsourced to a cloud is proposed.

This chapter specifically was focused on the classification problem over encrypted

data because the classification is one of the most common data mining tasks. Each clas-

sification technique has its own advantage. In particular, this work was concentrated on

executing the k-Nearest Neighbor (kNN) classification method over encrypted cloud data.

More specifically, a Secure k-Nearest Neighbor (SkNN) classifier over encrypted relational

data in the cloud was proposed [85]. Briefly, given a user’s encrypted query record q, the

goal is for a cloud to securely returns the encrypted class label for q based on the kNN

classification method. This protocol protects not only confidentiality of the original data

but also the user query from the cloud. It also hides the data access patterns and the clas-

sification result. This work was the first to develop a SkNN classifier over encrypted data

under the semi-honest model [85]. For ease of presentation, some common notations that

are used extensively throughout this chapter were summarized in Table 5.1.

5.1. DEFINING THE PROBLEM

Suppose Alice owns a database T of n records t1, . . . , tn and m+1 attributes. Let ti,j

denote the jth attribute value of record ti. Initially, Alice encrypts her database attribute-

wise. That is, she computes Epk(ti,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m + 1, where the

column (m + 1) contains the class labels. Assume that the underlying encryption scheme

68

Table 5.1: Common notations used in the PPkNN protocol

Alice The data owner holding database T
Bob An authorized user who can access T ′ in the cloud

C1 or C2 Two non-colluding semi-honest cloud service providers

〈Epk, Dsk〉
A pair of Paillier’s encryption and decryption functions with (pk, sk)

as public-secret key pair
Epk(x) Component-wise encryption of x: Epk(x1), . . . , Epk(xm)

T A relational database with n records: t1, . . . , tn
T ′ An encryption of T : Epk(t1), . . . , Epk(tn)

q Bob’s input query (m-dimensional vector): 〈q1, . . . , qm〉
w Number of unique class labels in T
l Domain size (in bits)

〈z1, zl〉 The least and most significant bits of integer z
[z] Vector of encryptions of the individual bits of z
cq The class label corresponding to q based on T

is semantically secure [75]. Let the encrypted database be denoted by T ′. Assume Alice

outsources both T ′ and the future classification process to a cloud.

Let Bob be an authorized user who wants to classify his input record q = 〈q1, . . . , qm〉

by applying the kNN classification method based on T ′. Such a process is referred to as

a Privacy-Preserving k-Nearest Neighbor (PPkNN) classification over encrypted relational

data in the cloud. Formally, the PPkNN protocol is defined as:

PPkNN(T ′, q)→ cq

where cq denotes the class label for q after the kNN classification method is applied to both

T ′ and q.

5.2. MAIN CONTRIBUTIONS

A novel PPkNN protocol, a secure kNN classifier over semantically secure encrypted

data, is proposed [85]. Within this protocol, Alice does not participate in any computations

once the encrypted data are outsourced to the cloud. Therefore, no information is revealed

to Alice. This protocol also meets all the desired requirements discussed in Section 1.2:

69

• Neither the contents of T nor any intermediate results should be revealed to the cloud.

• Bob’s input query q should not be revealed to the cloud.

• The output cq should be computed accurately and revealed only to Bob; no other

information should be revealed to Bob.

• Incur low computation overhead on the Bob after the encrypted query record is sent

to the cloud.

• Data access patterns, such as the records corresponds to the k-Nearest Neighbors of

q, should not be revealed to either Bob or the cloud (thereby preventing any inference

attacks).

The intermediate results that the cloud can see as part of this protocol are either newly

generated, randomized encryptions or random numbers. Thus, the cloud does not know

which data records correspond to the k-Nearest Neighbors and the output class label. Bob

does not involve in any computations after he sends his encrypted query record to the cloud.

Hence, the data access patterns are further protected from Bob.

5.3. THE PROPOSED PRIVACY-PRESERVING k-NEAREST NEIGHBOR
CLASSIFICATION PROTOCOL

A novel PPkNN classification protocol is proposed[85]. This protocol was constructed

based on the set of sub-components presented in Section 3.5 as building blocks [21, 29, 85]. In

the PPkNN protocol, the existence of two non-colluding semi-honest cloud service providers,

denoted by C1 and C2, which together form a federated cloud was assumed.

Recall that Alice’s database consists of n records, denoted by T = {t1, . . . , tn}, and

m + 1 attributes, where ti,j denotes the jth attribute value of record ti and the column

(m+ 1) contains the class labels. Initially, Alice encrypts her database attribute-wise using

her public key (pk). Let the encrypted database be denoted by T ′. Without loss of generality,

assume also that all attribute values and their Euclidean distances lie in [0, 2l). Additionally,

let w denote the number of unique class labels in T .

70

Under this setting, Alice outsources her encrypted database (T ′) to C1, and the secret

key (sk) to C2. In this work, after outsourcing encrypted data to the cloud, Alice does not

participate in any future computations.

The goal of the PPkNN protocol is to classify users’ query records using T ′ in a

privacy-preserving manner. Consider Bob who wants to classify his query record q =

〈q1, . . . , qm〉 based on T ′ in C1. The proposed PPkNN protocol mainly consists of the

following two stages [85]:

• Stage 1 - Secure Retrieval of k-Nearest Neighbors (SRkNN):

In this stage, Bob initially sends his query q (in encrypted form) to C1. Both C1 and

C2 then involve in a set of sub-protocols to securely retrieve (in encrypted form) the

class labels corresponding to the k-Nearest Neighbors of the input query q. At the

end of this step, encrypted class labels of the k-Nearest Neighbors are known only to

C1.

• Stage 2 - Secure Computation of Majority Class (SCMCk):

Following from Stage 1, both C1 and C2 jointly compute the class label with a majority

voting among the k-Nearest Neighbors of q. At the end of this step, only Bob knows

the class label that corresponds to his input query record q.

The main steps involved in the proposed PPkNN protocol are presented in Algorithm 10.

Next, each of the two stages in the PPkNN protocol is explained in detail.

5.3.1. Stage 1: Secure Retrieval of k-Nearest Neighbors. During Stage 1

(SRkNN), Bob initially encrypts his query q attribute-wise. That is, he computes Epk(q) =〈
Epk(q1), . . . , Epk(qm)

〉
. He then sends Epk(q) to C1. The main steps involved in Stage 1

are shown as the steps 1 to 3 in Algorithm 10. Upon receiving Epk(q), C1 with private

input
(
Epk(q), Epk(ti)

)
, and C2 with the secret key sk jointly involve in the Secure Squared

Euclidean Distance (SSED) protocol. Here, Epk(ti) =
〈
Epk(ti,1), . . . , Epk(ti,m)

〉
for 1 ≤ i ≤

n. The output of this step, denoted by Epk(di), is the encryption of squared Euclidean

distance between q and ti
(
i.e., di = |q − ti|2

)
. Recall that Epk(di) is known only to C1

for 1 ≤ i ≤ n. Note that the computation of exact Euclidean distance between encrypted

vectors is hard to achieve as it involves square root. In this study, however, it is sufficient

71

to compare the squared Euclidean distances as it preserves relative ordering. Both C1

with input Epk(di), and C2 then securely compute the encryptions of the individual bits

of di using the Secure Bit-Decomposition (SBD) protocol. Note that, the output [di] =〈
Epk(di,1), . . . , Epk(di,l)

〉
is known only to C1, where di,1 and di,l are the most and least

significant bits of di, for 1 ≤ i ≤ n, respectively.

Both C1 and C2 then compute the encryptions of class labels that correspond to the

k-nearest neighbors of q in an iterative manner. More specifically, they compute Epk(c′1)

in the first iteration, Epk(c′2) in the second iteration, and so on. Here, c′s denotes the class

label of sth nearest neighbor to q for 1 ≤ s ≤ k. At the end of k iterations, only C1 knows〈
Epk(c

′
1), . . . , Epk(c

′
k)
〉
. To start with, consider the first iteration. Both C1 and C2 jointly

compute the encryptions of the individual bits of the minimum value among d1, . . . , dn and

encryptions of both the location and class label corresponding to dmin using the Secure

Minimum Out of n Numbers (SMINn) protocol. That is, both C1, with input (θ1, . . . , θn),

and C2, with sk, compute
(
[dmin], Epk(I), Epk(c

′)
)
, where θi =

(
[di], Epk(Iti), Epk(ti,m+1)

)
for

1 ≤ i ≤ n. Here, dmin denotes the minimum value among d1, . . . , dn; Iti and ti,m+1 denote

the unique identifier and the class label corresponding to the data record ti, respectively.

Specifically,
(
Iti , ti,m+1

)
is the secret information associated with ti. For simplicity, this

work assumes that Iti = i. In the output, I and c′ denote the index and the class label

corresponding to dmin. The output
(
[dmin], Epk(I), Epk(c)

)
is known only to C1. Now, C1

performs the following operations locally:

• Assign Epk(c
′) to Epk(c′1). Remember that, according to the SMINn protocol, c′ is

equivalent to the class label of the data record that corresponds to dmin. Thus, it is

same as the class label of the most nearest neighbor to q.

• Compute the encryption of difference between I and i, where 1 ≤ i ≤ n. That is, C1

computes τi = Epk(i) ∗ Epk(I)N−1 = Epk(i− I) for 1 ≤ i ≤ n.

• Randomize τi to obtain τ ′i = τ rii = Epk
(
ri∗(i−I)

)
, where ri is a random number in ZN .

Note that τ ′i is an encryption of either 0 or a random number for 1 ≤ i ≤ n. Also, it is

worth noting that exactly one of the entries in τ ′ is an encryption of 0 (which happens

iff i = I) and the remaining entries are encryptions of random numbers. Permute τ ′

72

Algorithm 10 PPkNN(T ′, q)→ cq

Require: C1 has T ′ and π; C2 has sk; Bob has q
1: Bob:

(a). Compute Epk(qj), for 1 ≤ j ≤ m

(b). Send Epk(q) =
〈
Epk(q1), . . . , Epk(qm)

〉
to C1

2: C1 and C2:

(a). C1 receives Epk(q) from Bob

(b). for i = 1 to n do:

– Epk(di)← SSED
(
Epk(q), Epk(ti)

)
– [di]← SBD

(
Epk(di)

)
3: for s = 1 to k do:

(a). C1 and C2:

–
(
[dmin], Epk(I), Epk(c

′)
)
← SMINn(θ1, . . . , θn),

where θi =
(
[di], Epk(Iti), Epk(ti,m+1)

)
– Epk(c

′
s)← Epk(c

′)

(b). C1:

– ∆← Epk(I)N−1

– for i = 1 to n do:

∗ τi ← Epk(i) ∗∆

∗ τ ′i ← τ rii , where ri ∈R ZN

– β ← π(τ ′); send β to C2

(c). C2:

– Receive β from C1

– β′i ← Dsk(βi), for 1 ≤ i ≤ n
– Compute U ′, for 1 ≤ i ≤ n: if β′i = 0 then U ′i = Epk(1) else U ′i = Epk(0)

– Send U ′ to C1

(d). C1:

– Receive U ′ from C2 and compute V ← π−1(U ′)

(e). C1 and C2, for 1 ≤ i ≤ n and 1 ≤ γ ≤ l: Epk(di,γ)← SBOR
(
Vi, Epk(di,γ)

)
4: SCMCk

(
Epk(c

′
1), . . . , Epk(c

′
k)
)

73

using a random permutation function π (known only to C1) to obtain β = π(τ ′) and

send it to C2.

Upon receiving β, C2 decrypts it component-wise to obtain β′i = Dsk(βi) for 1 ≤ i ≤ n.

After this, C2 computes an encrypted vector U ′ of length n. If β′i = 0, then Ui = Epk(1);

otherwise Ui = Epk(0). Because exactly one of the entries in τ ′ is an encryption of 0, this

further implies that exactly one of the entries in U ′ is an encryption of 1 and the remaining

entries are encryptions of 0’s. It is important to note that if β′k = 0, then π−1(k) is the index

of the data record that corresponds to dmin. C2 then sends U ′ to C1. After receiving U ′, C1

performs inverse permutation on it to obtain V = π−1(U ′). Note that exactly one of the

entry in V is Epk(1) and the remaining are encryptions of 0’s. Additionally, if Vi = Epk(1),

then ti is the most nearest tuple to q. Both C1 and C2, however, do not know which entry

in V is corresponding to Epk(1).

Finally, C1 updates the distance vectors [di] as follows:

• It is important to note that, the first nearest tuple to q should be obliviously excluded

from further computations. Since C1, however, does not know the record correspond-

ing to Epk(c′1), one need to obliviously eliminate the possibility of choosing this record

again in next iterations. For this, C1 obliviously updates the distance corresponding to

Epk(c
′
1) to the maximum value (i.e., 2l−1). More specifically, C1 updates the distance

vectors with the help of C2 using the Secure Bit-OR (SBOR) protocol for 1 ≤ i ≤ n

and 1 ≤ γ ≤ l as follows:

Epk(di,γ) = SBOR
(
Vi, Epk(di,γ)

)
Observe that, when Vi = Epk(1), the corresponding distance vector di is set to the
maximum value. That is, under this case, [di] =

〈
Epk(1), . . . , Epk(1)

〉
. In contrast,

when Vi = Epk(0), the OR operation has no effect on the corresponding encrypted

distance vector.

The above process is repeated for k iterations. In each iteration, [di] corresponding to the

current chosen label is set to the maximum value. Both C1 and C2, however, do not know

which [di] is updated. In iteration s, Epk(c′s) is returned only to C1. At the end of Stage 1, C1

74

has
〈
Epk(c

′
1), . . . , Epk(c

′
k)
〉
, the list of the encrypted class labels of the k-Nearest Neighbors

to q.

5.3.2. Stage 2: Secure Computation of Majority Class. Without loss of

generality, suppose Alice’s dataset T consists of w unique class labels
(
denoted by c =

〈c1, . . . , cw〉
)
. Assume that Alice outsources her list of encrypted classes to C1. That is,

Alice outsources
〈
Epk(c1), . . . , Epk(cw)

〉
to C1 along with her encrypted database T ′ during

the data outsourcing step. Note that, for security reasons, Alice may add dummy cate-

gories into the list to protect the number of class labels (i.e., w) from both C1 and C2. For

simplicity, this work, however, assumes that Alice does not add any dummy categories to c.

During Stage 2 (SCMCk), C1 with private inputs Λ =
〈
Epk(c1), . . . , Epk(cw)

〉
and

Λ′ =
〈
Epk(c

′
1), . . . , Epk(c

′
k)
〉
, and C2 with sk securely compute Epk(cq). Here, cq denotes the

majority class label among c′1, . . . , c′k. At the end of the stage 2, only Bob knows the class

label cq.

The overall steps involved in Stage 2 are presented in Algorithm 11. To start with,

both C1 and C2 jointly compute the encrypted frequencies of each class label using the

k-nearest set as input. That is, they compute Epk
(
f(ci)

)
using (Λ,Λ′) as C1’s input to

the Secure Frequency protocol for 1 ≤ i ≤ w. The output
〈
Epk
(
f(c1)

)
, . . . , Epk

(
f(cw)

)〉
is

known only to C1. Both C1, with Epk
(
f(ci)

)
, and C2, with sk, then involve in the SBD

protocol to compute
[
f(ci)

]
for 1 ≤ i ≤ w. Here,

[
f(ci)

]
denotes the vector of encryptions of

the individual bits of f(ci) for 1 ≤ i ≤ w. Both C1 and C2, then jointly involve in the Secure

Maximum Out of w Numbers (SMAXw) protocol. It’s worth mentioning that by using the

similar formulations used to design SMIN and SMINn protocols, as discussed in Sections

3.5.7 and 3.5.8, one can also design SMAX and SMAXw protocols. Briefly, SMAXw utilizes

the sub-routine SMAX to eventually compute
(
[fmax], Epk(cq)

)
in an iterative fashion. Here,

[fmax] =
[

max
(
f(c1), . . . , f(cw)

)]
and cq denotes the majority class out of Λ′. At the end,

the output
(
[fmax], Epk(cq)

)
is known only to C1. C1 locally computes γq = Epk(cq + rq),

where rq is a random number in ZN that known only to C1. C1 then sends γq to C2 and

rq to Bob. Upon receiving γq, C2 decrypts it to obtain the randomized majority class label

γ′q = Dsk(γq) and sends it to Bob. Finally, upon receiving both rq from C1 and γ′q from C2,

Bob computes the output class label that is corresponding to q as cq = γ′q − rq mod N .

75

Algorithm 11 SCMCk

(
Epk(c

′
1), . . . , Epk(c

′
k)
)
→ cq

Require:
〈
Epk(c1), . . . , Epk(cw)

〉
,
〈
Epk(c

′
1), . . . , Epk(c

′
k)
〉
are known only to C1; sk is known

only to C2

1: C1 and C2:

(a).
〈
Epk
(
f(c1)

)
, . . . , Epk

(
f(cw)

)〉
← SF(Λ,Λ′),

where Λ =
〈
Epk(c1), . . . , Epk(cw)

〉
, Λ′ =

〈
Epk(c

′
1), . . . , Epk(c

′
k)
〉

(b). for i = 1 to w do:

•
[
f(ci)

]
← SBD

(
Epk
(
f(ci)

))
(c).

(
[fmax], Epk(cq)

)
← SMAXw(ψ1, . . . , ψw), where ψi =

([
f(ci)

]
, Epk(ci)

)
, for 1 ≤

i ≤ w

2: C1:

(a). γq ← Epk(cq) ∗ Epk(rq), where rq ∈R ZN
(b). Send γq to C2 and rq to Bob

3: C2:

(a). Receive γq from C1

(b). γ′q ← Dsk(γq); send γ′q to Bob

4: Bob:

(a). Receive rq from C1 and γ′q from C2

(b). cq ← γ′q − rq mod N

5.4. SECURITY ANALYSIS

A formal security proof for the PPkNN protocol under the semi-honest model was

provided [85]. First, Bob’s input query (q) is protected from Alice, C1 and C2 due to the

encryption of q and by semantic security of the Paillier cryptosystem [75]. Apart from

guaranteeing query privacy, remember that, the goal of the PPkNN protocol is to protect

data confidentiality and hide data access patterns.

In this study, to prove a protocol’s security under the semi-honest model, the well-

known security definitions from the literature of the Secure Multiparty Computation (SMC)

was adopted. More specifically, the security proofs based on the standard simulation

paradigm [41] was adopted (As discussed in Section 3.2). For presentation purpose, formal

76

security proofs (under the semi-honest model) for Stages 1 and 2 of the PPkNN protocol

separately were provided. Note that, the outputs returned by each sub-protocol were in

encrypted form and would be known only to C1.

5.4.1. Security Proof for Stage 1. Recall that, the computations involved in

Stage 1 of the PPkNN were given as steps 1 to 3 in Algorithm 10. For ease of presentation,

this work considered the messages exchanged between both C1 and C2 in a single iteration

(however, similar analysis could be deduced for other iterations).

According to Algorithm 10, the execution image of C2 is given by

ΠC2(PPkNN) =
{
〈βi, β′i〉 | for 1 ≤ i ≤ n

}
where βi is an encrypted value which is a random in ZN2 . Also, β′i is derived upon decrypting

βi by C2. Remember that, exactly one entries in the β′ is 0 and the remaining entries are

random numbers in ZN . Without loss of generality, let the simulated image of C2 be denoted

by ΠS
C2

(PPkNN), where

ΠS
C2

(PPkNN) =
{
〈a′1,i, a′2,i〉 | for 1 ≤ i ≤ n

}
where a′1,i is randomly generated from ZN2 and the vector a′2 is randomly generated in such

a way that exactly one of the entries is 0 and the remaining entries are random numbers

in ZN . Since Epk is a semantically secure encryption scheme with a resulting ciphertext

size that is less than ZN2 , βi is computationally indistinguishable from a′1,i. Additionally,

since the random permutation function π is known only to C1, β′ is a random vector of

exactly one 0 and random numbers in ZN . Thus, β′ is computationally indistinguishable

from a′2. As a result, the ΠC2(PPkNN) protocol is computationally indistinguishable from

ΠS
C2

(PPkNN). This implied that, C2 did not learn anything during the execution of Stage

1 in PPkNN.

Similarly, suppose the execution image of C1 is denoted by ΠC1(PPkNN), and is

given by

ΠC1(PPkNN) = {U ′}

77

where U ′ is an encrypted value sent by C2 (at Step 3(c) of Algorithm 10). Let the simulated

image of C1 in Stage 1 be denoted by ΠS
C1

(PPkNN), which is given as

ΠS
C1

(PPkNN) = {a′}

where a′ is randomly generated from ZN2 . Since Epk is a semantically secure encryption

scheme with resulting ciphertexts in ZN2 , U ′ is computationally indistinguishable from a′.

This implied that ΠC1(PPkNN) is computationally indistinguishable from ΠS
C1

(PPkNN).

Hence, C1 could not learn anything during the execution of Stage 1 in PPkNN. Putting

the above results together, it was concluded that Stage 1 of PPkNN was secure under the

semi-honest model.

In each iteration, it is worth pointing out that both C1 and C2 did not know which

data record belongs to the current global minimum. Thus, the data access patterns were

protected from both C1 and C2. Informally speaking, at Step 3(c) of Algorithm 10, a

component-wise decryption of β did reveal the tuple that satisfy the current global minimum

distance to C2. Due to the random permutation by C1, however, C2 could not trace back

to the corresponding data record. Also, note that, decryption operations on vector β by

C2 would result in exactly one 0 and the remaining results were random numbers in ZN .

Similarly, since U ′ was an encrypted vector, C1 could not know which tuple corresponds to

current global minimum distance.

5.4.2. Security Proof for Stage 2. Stage 2 of the PPkNN protocol was secure

under the semi-honest model. Briefly, since the sub-protocols SF, SBD, and SMAXw are

secure, no information was revealed to C2. In contrast, the operations performed by C1

were entirely on encrypted data. No information, therefore, was revealed to C1.

Furthermore, the output data of Stage 1 which were passed as input to Stage 2

are in encrypted format. Therefore, the sequential composition of the two stages lead to

our PPkNN protocol and one could claim it to be secure under the semi-honest model

according to the Composition Theorem [41] given in Definition 2. In particular, based on

the above discussions, it was clear that the proposed PPkNN protocol protected the data

78

confidentiality, user’s input query, and also hide data access patterns from Alice, C1, and

C2. Note that, Alice did not participate in any computations of the PPkNN protocol.

5.5. COMPLEXITY ANALYSIS

The proposed PPkNN protocol’s computation was analyzed. The computation com-

plexity for each sub-protocol was analyzed first under the assumptions that encryption and

decryption operations based on Paillier cryptosystem [75] take a similar amount of time, an

exponentiation operation was treated as an encryption operation, and an encryption oper-

ation is generally several orders of magnitude more expensive than a multiplication. The

computation complexity of Stage 1 in PPkNN was bounded by O(n) instantiations of the

SBD and the SSED protocols, O(k) instantiations of SMINn protocol, and O(n ∗ k ∗ l)

instantiations of the SBOR protocol. The computation complexity of the SBD protocol

proposed in [86] was bounded by O(l) encryptions. Also, the computation complexity of

the SSED protocol was bounded by O(m) encryptions. Additionally, the computation

complexity of the SMINn protocol was bounded by O(l ∗ n ∗ log2 n) encryptions. Since

the SBOR protocol utilized the SM protocol as a sub-routine, the computation cost of

the SBOR protocol was bounded by (small) constant number of encryptions and exponen-

tiations. Based on the above analysis, the total computation complexity of Stage 1 was

bounded by O
(
n ∗ (l +m+ k ∗ l ∗ log2 n)

)
encryptions.

In contrast, the computation complexity of Stage 2 was bounded by O(w) instanti-

ations of the SBD protocol, and one instantiation of both the SF and the SMAXw. Here,

the computation complexity of the SF protocol was bounded by O(k ∗ w) encryptions and

O(k ∗ w) exponentiations. More details regarding the complexity analysis of sub-protocols

were given in Section 3.5. Therefore, the total computation complexity of Stage 2 was

bounded by O
(
w ∗ (l + k + l ∗ log2w)

)
encryptions.

In general, w � n, therefore, the computation cost of Stage 1 should be significantly

higher than that of Stage 2. This observation was further justified by the empirical results

given in the next section.

79

5.6. PERFORMANCE EVALUATION

The proposed PPkNN protocol was implemented and its performance was measured

across a range of inputs [85]. By using the Paillier cryptosystem[75] as the underlying

additive homomorphic encryption scheme, the protocol was implemented in C. Various

experiments were conducted on a Linux machine with an Intel R© Xeon R© Six-CoreTM CPU

3.07 GHz processor and 12GB RAM running Ubuntu 12.04 LTS.

This work is the first effort to develop a secure k-Nearest Neighbor classifier under the

semi-honest model. Thus, there was no existing work to compare with this work. Therefore,

the performance of the PPkNN protocol is evaluated under different parameter settings.

For the experiments, the Car Evaluation dataset from the UCI KDD archive [12] had

used. The dataset consisted of 1728 data records (i.e., n = 1728) with 6 input attributes (i.e.,

m = 6). Also, there is a separate class attribute. The dataset categorized into four different

classes (i.e., w = 4) and encrypted attribute-wise, using the Paillier [75] encryption whose

key size is varied in the experiments. The encrypted data stored on the above machine.

Then, a random query was chosen and executed over the encrypted data based on the

PPkNN protocol. For the rest of this section, the performance of Alice was not discussed

as she was a one-time cost. Instead, the evaluation were based on the performances of the

two stages in the PPkNN protocol separately.

The computation costs of Stage 1 in the PPkNN protocol were analyzed first by

varying values of number of k-nearest neighbors (see Figure 5.1(a)). The Paillier encryption

key size K was either 512 or 1024 bits. The computation cost of Stage 1 for K=512 bits

varied from 9.98 to 46.16 minutes when k varied from 5 to 25, respectively. In contrast,

the computation cost of Stage 1 for K=1024 bits varied from 66.97 to 309.98 minutes when

k varied from 5 to 25, respectively. In either case, the computation time of Stage 1 grew

almost linearly with k. Additionally, for any given k, the cost of Stage 1 increased by almost

a factor of 7 whenever K doubled. For example, when k=10, Stage 1 required 19.06 and

127.72 minutes to generate the encrypted class labels of the 10 nearest neighbors under

K=512 and K=1024 bits, respectively. Furthermore, when k=5, one could observe that

around 66.29% of the cost in Stage 1 accounted due to SMINn which initiated k times

80

in the PPkNN protocol (once in each iteration). Also, the cost incurred due to SMINn

increased from 66.29% to 71.66% when k varied from 5 to 25.

The computation costs of Stage 2 were analyzed next by varying values of k and K

(see Figure 5.1(b)). The computation time for Stage 2 varied from 0.118 to 0.285 seconds

when k varied from 5 to 25. In contrast, for K=1024 bits, Stage 2 took 0.789 and 1.89

seconds when k = 5 and k=25, respectively. The low computation costs of Stage 2 were

due to SMAXw which incurred significantly fewer computations than the SMINn in Stage

1. This further justified the theoretical analysis given in Section 5.5. Note that, in the

dataset, w=4 and n=1728. Like in Stage 1, for any given k, the computation time of Stage

2 increased by almost a factor of 7 whenever K doubled. For example, when k=10, the

computation time of Stage 2 varied from 0.175 to 1.158 seconds when the encryption key

size K changed from 512 to 1024 bits. A similar analysis could be observed for other values

of k and K (see Figure 5.1(b)).

Based on the above results, it was clear that the computation cost of Stage 1 was

significantly higher than that of Stage 2. More specifically, the computation time of Stage

1 accounted for at least 99% of the total time in the PPkNN protocol. For example, when

k = 10 and K=512 bits, the computation costs of Stage 1 and 2 are 19.06 minutes and

0.175 seconds, respectively. Under this scenario, the cost of Stage 1 was 99.98% of the total

cost of the PPkNN protocol. Putting the above together, it was concluded that the total

computation time of the PPkNN protocol grew almost linearly with both n and k.

5.6.1. Performance Improvement. Two different approaches are proposed to

boost the efficiency of Stage 1 (as the performance of the PPkNN protocol depended pri-

marily on Stage 1).

The first approach to improving the performance the performance of Stage 1 is by

pushing some computation offline. More specifically, some of the computations in Stage

1 could be pre-computed (pushed offline). For example, encryptions of random numbers,

0s and 1s could be pre-computed (by the corresponding parties) in the offline phase. As

a result, the online computation cost of Stage 1 (denoted by SRkNNo) is expected to be

improved. To see the actual efficiency gains of such a strategy, the costs of SRkNNo were

computed and compared with the costs of Stage 1 without an offline phase (simply denoted

81

by SRkNN) and the results for K = 1024 bits are shown in Figure 5.1(c). Irrespective of

the values of k, one could observe that SRkNNo was around 33% faster than SRkNN. For

example, the computation costs of SRkNNo and SRkNN for k = 10 were 84.47 and 127.72

minutes, respectively (boosting the online running time of Stage 1 by 33.86%).

The second approach to improving the performance of Stage 1 is by using parallelism.

Since operations on data records are independent of one another, the most computations in

Stage 1 could be parallelized. To empirically evaluate this claim, a parallel version of Stage 1

(denoted by SRkNNp) was implemented using OpenMP programming [24] and compared its

cost with the costs of SRkNN (i.e., the serial version of Stage 1). The computation cost of

SRkNNp for K = 1024 varied from 12.02 to 55.5 minutes when k changed from 5 to 25 (see

Figure 5.1(c)). SRkNNp was almost 6 times more efficient than SRkNN. This was because

the machine used for this experiments had 6 cores. Thus, the computations could be run in

parallel on 6 separate threads. Based on the above discussions, it was clear that efficiency of

Stage 1 could indeed be improved significantly using parallelism. Moreover, one could also

use the existing map-reduce techniques to execute parallel operations on multiple nodes to

drastically improve the performance further. Hence, the level of achievable performance in

the PPkNN protocol actually depended on the implementation.

In contrast, Bob’s computation cost in the PPkNN protocol was mainly due to the

encryption of his input query. In the dataset, Bob’s computation cost was 4 and 17 millisec-

onds whenK was 512 and 1024 bits, respectively. It was apparent that PPkNN protocol was

very efficient from Bob’s computational perspective which was especially beneficial when he

issued queries from a resource-constrained device (such as mobile phone and PDA).

82

(a) Total cost of Stage 1

(b) Total cost of Stage 2

(c) Efficiency gains of Stage 1 for K = 1024

Figure 5.1: Computation costs of the PPkNN protocol for varying number of kNNs and
different encryption key sizes in bits (K)

83

6. CORRELATED RANGE QUERY

Recently, biometric authentication/identification has increasingly gained importance

for various application domains. Those systems which include fingerprint-, face- and iris-

authentication/identification systems are widely used in enterprise, civilian and law en-

forcement. Such systems typically consist of an entity whose databases hold biometric

records and users/clients who send the entity their biometric recordings for authentica-

tion/identification [32]. During the process of biometric authentication, the systems need

to identify whether candidate biometric readings from users match the records in the en-

tity’s biometric database. In contrast, during the process of biometric identification, the

systems need to retrieve the profile of a person whose biometric data record in the entity’s

biometric database matches the user’s input biometric data record.

There are potential privacy concerns regarding biometric authentication/ identifica-

tion: biometric matching process would cause a leakage of user’s biometric data especially

running on untrusted servers. Biometric data are usually very sensitive because they could

uniquely identify a person. Thus, the leakage of biometric data to malicious parties can

lead to a violation of personal privacy. To avoid this privacy concern, Privacy-Preserving

Biometric Authentication (PPBA) and Privacy-Preserving Biometric Identification (PPBI)

protocols have been developed (e.g., [10, 11, 30, 32, 83]). A PPBI protocol generally returns

the profile of a person whose biometric data record stored on the server matches the user’s

input biometric data record. Whereas a PPBA protocol only returns a single bit to indicate

if there is a match or not. Under the existing PPBA and PPBI protocols, a user’s biometric

data record is never disclosed to the entity, and the entity’s biometric database is never

exposed to the user [21].

Due to the cost efficiency and operational flexibility of the cloud computing paradigm

[4, 20, 60], an entity has the opportunity to outsource its data and their relevant computa-

tions to a cloud which can provide on-demand services. To outsource biometric authenti-

cation tasks, the entity’s biometric database needs to be encrypted before outsourced to a

cloud.

84

Recall that the goal of PPBA/PPBI protocols are to perform biometric authen-

tication/identification without disclosing the involved biometric data to the participating

parties, except for their own data. When the biometric data are encrypted and cannot be

decrypted by a cloud, the existing PPBA/PPBI protocols are not applicable in the cloud

computing environment where the cloud stores encrypted biometric data for authenti-

cation/identification purposes. Therefore, in this chapter, Outsourceable and Privacy-

Preserving Biometric Authentication (PPBAO) [21] and Outsourceable and Privacy-

Preserving Biometric Identification (PPBIO)) protocols over biometric data stored in the

cloud were presented. For ease of presentation, some common notations that are used

extensively throughout this chapter are summarized in Table 6.1.

6.1. OUTSOURCEABLE AND PRIVACY-PRESERVING BIOMETRIC AU-
THENTICATION

This section focused on developing the PPBAO protocol. In this protocol, a user

issues an encrypted biometric data query record to a cloud. The cloud then securely returns

a single bit to indicate if the distance between any of the biometric data records stored in

a cloud and the user’s input query is below t. Here, t denotes a pre-defined threshold.

6.1.1. Defining the Problem. Let D = {v1, . . . , vn} denote an entity’s biometric

image database with n biometric data records. Each vi, 1 ≤ i ≤ n is an m-dimensional

vector representation of a biometric data record. Let D′ =
{
Epk(v1), . . . , Epk(vn)

}
denote

the encryption of D, where each Epk(vi) is encrypted component-wise using an Additive

Homomorphic Public Key Encryption (AH-Enc) scheme. Let Bob be a user who wants

to be authenticated securely using his biometric image data denoted by u. Here, u is

represented by the same method as the records in D. A PPBAO protocol can be defined as

follows [21]:

PPBAO

(
D′, Epk(u), t

)
→ b (6.1)

A biometric data record (vi) exists in D such that the distance between u and vi is below

t when b = 1, otherwise b = 0. t is defined by the underlying biometric authentication

system. It varies from system to system. It also depends on the biometric data used for

authentication. How to determine the best value for t is out of the scope of this work, so one

85

Table 6.1: Common notations used in the PPBAO/PPBIO protocols

C1 or C2 Two non-colluding semi-honest cloud service providers

Bob
A user who wants to securely perform biometric authentica-
tion/identification

vi or u m-dimension feature vector representation of a biometric data image
pi s-dimension vector representation of an identity profile data

Epk(x) Component-wise encryption of x: Epk(x1), . . . , Epk(xm)

D A biometric database with n records: v1, . . . , vn

D′ An encryption of D: Epk(v1), . . . , Epk(vn)

P An identity profile database with n records: p1, . . . , pn

P ′ An encryption of P : Epk(p1), . . . , Epk(pn)

u Bob’s biometric image data record: u1, . . . , um

t A Pre-defined threshold

can just assume t is publicly known parameter. Both D′ and Epk(u) are never decrypted to

maximize the confidentiality protection of both D and u during an execution of PPBAO.

This work inherits the common structure of the existing PPBA systems which mainly

consist of two phases: distance computation, and matching and retrieval [32]. In the distance

computation phase, either Euclidean or Hamming distance between the feature vectors of

biometric records vi’s in D and the user’s biometric data record u are calculated pairwise.

After that in matching and retrieval phase, those distances are compared with a pre-defined

threshold t to decide whether u matches some vi with t-distance apart. Some biometric

authentication protocols such as face recognition [30] need a feature extraction phase to get

the biometric feature vectors; however, this work assumed that the feature extraction phase

as a pre-computation stage to produce the feature vectors in both D and u.

6.1.2. Main Contributions. A secure PPBAO protocol is proposed [21]. Within

this protocol, the entity (data owner) does not participate in any computations once the

encrypted data are outsourced to the cloud. Therefore, no information is revealed to the

entity. This protocol also meets all the desired requirements discussed in Section 1.2:

• Neither the contents of D or any intermediate results should not be revealed to the

cloud.

• Bob’s biometric image data u should not be revealed to the cloud.

86

• The output b should not be revealed to the cloud.

• Incur low computation overhead at the end-user side because Bob stops involving in

computations after he sends his encrypted biometric data.

• Data access patterns, such as the biometric data records corresponding to the matching

or comparison results with u, should not be revealed to either Bob or the cloud.

It is worth pointing out that the intermediate results that the cloud can see as part of this

protocol are either newly generated randomized encryptions or random numbers.

6.1.3. The Proposed Outsourceable and Privacy-Preserving Biometric Au-

thentication Protocol. Let C1 denote a cloud service provider who storesD′ and performs

biometric authentication based on D′, Epk(u), and t. In addition to C1, another independent

cloud service provider (C2) is utilized in the proposed PPBAO protocol. This protocol uses

an AH-Enc scheme to encrypt each vi and u component-wise to produce Epk(vi) and Epk(u).

There are several AH-Enc schemes, and, without loss of generality, this work adopts the

Paillier cryptosystem [75] because it is simple to implement and semantically secure. D′ is

outsourced and stored at C1, and only C2 has the corresponding decryption key sk. There-

fore, D′ and Epk(u) cannot be decrypted by C1 without accessing the decryption key. To

solve the proposed PPBAO problem, one might suggest using garbled circuits [53] for every

secure computation between C1 and C2. This is logical for simple tasks (e.g., secure com-

parison), where such an approach can be quite efficient. However, biometric authentication

is a complex process consisting of several sub-components.

The best way to implement an efficient two-party secure protocol for a functionality

as complex as biometric authentication is to combine a homomorphic encryption approach

and a garbled circuit approach. This hybrid approach was adopted in [72] to produce a

secure protocol that is more efficient than either the homomorphic encryption approach or

the garbled circuit approach alone. The key challenges in utilizing the hybrid approach are:

• Breaking a complex functionality into a set of simpler sub-components.

• Determining which approach to use to implement each sub-component securely.

87

In the next section, this work dissects the PPBAO into sub-components and identifies the

most efficient approach, between homomorphic encryption or garbled circuit, to implement

each component [21].

6.1.3.1. Sub-Components of the PPBAO Protocol. To implement a PPBAO

protocol, each biometric image first needs to be represented as a feature vector. For the

rest of this work, assume the feature vector of each biometric image is given as part of the

input to a PPBAO protocol.

According to Equation 6.1 and based on the description given in Section 6.1.1, a

PPBAO protocol (with input D′ = {Epk(v1), . . . , Epk(vn)}, Epk(u) and t) consists of three

main sub-components or protocols that need to be performed sequentially. According to

the composition theorem [41], when a protocol is implemented based on a set of secure

primitives, and for the protocol to be secure, the intermediate results produced from these

primitives must be in the form of random shares. Both the description and the outcome of

each sub-component are given as follows [21]:

(1) Distance computation: This component computes the distance between u and each vi for

1 ≤ i ≤ n. Note that the distance is between the actual feature vectors, but the input

should be the encrypted feature vectors Epk(u) and Epk(vi). During the computation,

both Epk(u) and Epk(vi) are never decrypted to preserve the confidentiality of both u

and vi. Let di denote the distance between u and vi. The output of this component

returns two random shares d′i and d′′i for each di such that d′i + d′′i mod N = di.

(2) Comparing with the threshold : Once computed, these distances need to be compared

with the threshold t to find out if u is one of v1, . . . , vn. A distance less than t indicates

that u matches some biometric record in D. Again, all these computations are based on

encrypted data or random shares. More specifically, the (d′i, d
′′
i) pairs and the threshold

t are the input for this sub-component. Let bi denote the comparison result between di

and t. If di < t, then bi = 1, otherwise bi = 0. The output of this component returns

two random shares b′i and b′′i for each bi such that b′i + b′′i mod N = bi.

(3) Combining the comparison results : As long as there is a bi equal to 1, one can conclude

that u matches some vi in D. Then the authentication succeeds. The (b′i, b
′′
i) are the

input for this sub-component. Let bf denote the final authentication result. If bf = 1,

88

then authentication succeeds. On the other hand, if bf = 0, then the authentication

fails. The output of this component returns two random shares b′f and b′′f such that

b′f + b′′f mod N = bf .

Note that it is possible for the last component to return bf directly, but both b′f and b′′f are

more useful in case bf serves as an intermediate result for a more complex protocol. Based

on their need, the participating parties can decide the appropriate output. Without loss of

generality, this work adopts b′f and b′′f as the final outcome of the proposed PPBAO protocol.

Depending on the specific functionality or computation, this work has identified the

most efficient and secure method (either a homomorphic encryption based approach or

garbled circuit) to implement each sub-component.

(1) Secure Distance Computation - Since biometric data have multiple types, and each

type can be represented in various ways, this work implemented secure sub-protocols

to compute the two most common distance metrics adopted in the existing PPBI work:

Euclidean distance and Hamming distance (as discussed in Section 3.5). Both metrics

have their advantages and disadvantages, and an entity can decide which metric to

use for its PPBAO protocol. Two sub-protocols for implementing secure Euclidean

and Hamming distances, namely Secure Squared Euclidean Distance-Random Share

(SSEDR) and Secure Hamming Distance-Random Share (SHDR), were implemented

based on the homomorphic encryption approach. They were more efficient than gar-

bled circuit-based solutions. A detailed analysis is provided in Sections 3.5.3 and

3.5.4. This chapter does not specify the distance metric (either Euclidean or Ham-

ming). Depending on the type of biometric data and the feature vector, the entity

who outsourced its biometric authentication to the cloud can decide the appropriate

metric to use. For simplicity, the term Secure_Distance(a, b) is used to refer to

the process of securely computing the distance between a and b.

(2) Securely Comparing with the Threshold - A secure comparison protocol is needed to

implement the second sub-component securely. The secure comparison protocol, de-

noted by Secure Comparison with a Threshold (SCT) (as discussed in Section 3.5.10),

takes random shares (i.e., d′i and d′′i) and a threshold t as input and returns two random

shares b′i and b′′i . If di ≤ t, then b′i + b′′i mod N = 1; otherwise b′i + b′′i mod N = 0.

89

It was assumed here that SCT(d′i, d
′′
i , t)→ (b′i, b

′′
i) was the protocol used to implement

this sub-component. A garbled circuit was used to construct it, where d′i and d′′i are

private input values from C1 and C2, respectively, and t is a publicly known parameter.

The protocol returns b′i to C1 and b′′i to C2.

(3) Securely Combining the Comparison Results - The third sub-component/ functional-

ity was used to identify the existence of a comparison result that is equal to 1. The

individual comparison results cannot be disclosed to maximize the security guarantee;

otherwise, the first two sub-components would have been sufficient. The challenge now

is to determine whether or not there is a comparison result of 1 without disclosing

which encrypted biometric record Epk(vi) matches Epk(u). Disclosing the matching

result may be considered harmless because a server only knows if two encrypted bio-

metric data records match. The matching result, however, must not be leaked to

preserve the security guarantee of the underlying encryption scheme [54].

The protocol’s design was based on the following observations to prevent disclosing

either the matching or the comparison results to C1 and C2 [21]:

Observation 1. Let b1, . . . , bn be the n actual comparison results from comparing d1, . . . ,

dn with the threshold t, where d1, . . . , dn are the distances between u and each of

v1, . . . , vn. Then, bf = 1 if and only if 0 <
∑n

i=1 bi.

Observation 2. Let α =
∑n

i=1 b
′
i and β =

∑n
i=1 b

′′
i . Then, α + β mod N =

∑n
i=1 bi.

These observations reveal that the same secure comparison protocol used to implement

the second sub-component can be used here to implement this sub-component. More

specifically, the protocol SCT(α, β, 0) → (b′f , b
′′
f) was used to implement the sub-

component. A garbled circuit was used to conduct it, where α and β are private input

values from C1 and C2, respectively, and 0 is a public parameter. The protocol returns

b′f to C1 and b′′f to C2 such that b′f + b′′f mod N = bf .

6.1.3.2. The PPBAO Protocol: . A PPBAO protocol, directly based on these

components, can be built once the three sub-components have been properly and securely

implemented (as discussed in Section 3.5). The key steps in the PPBAO protocol are given

in Algorithm 12 [21]. Here, a user’s encrypted biometric data record Epk(u) is assumed to

90

Algorithm 12 PPBAO

(
D′, Epk(u), t

)
→ b

Require: C1 has D′ and Epk(u), C2 has the decryption key sk, and t is a public parameter
1: C1 and C2 jointly execute Secure_Distance

(
Epk(vi), Epk(u)

)
, for i = 1 to n

2: C1 and C2 jointly execute SCT(d′i, d
′′
i , t), for i = 1 to n

3: C1: α←
∑n

i=1 b
′
i mod N

4: C2: β ←
∑n

i=1 b
′′
i mod N

5: C1 and C2 jointly execute SCT(α, β, 0)

6: b← b′f + b′′f mod N

have been received by C1. The same public key that was used to encrypt D to produce D′

was used here, where D′ was encrypted by the entity that owns the biometric database D.

Step 1 of Algorithm 12 can be used to securely compute the distance between u

and each of v1, . . . , vn. Both C1 and C2 receive d′1, . . . , d′n and d′′1, . . . , d
′′
n as their private

outputs, respectively. Note that the distance metric (neither Euclidean nor Hamming) is

specified in the protocol. Depending on the type of biometric data and the feature vector,

the entity who outsourced its biometric authentication to a cloud can decide the appropriate

metric to use (either Euclidean nor Hamming). The SSEDR and SHDR in Algorithm 12

are interchangeable without affecting the PPBAO protocol’s security and correctness.

The output from Step 1 serves as the input for Step 2. At the end of Step 2, C1

receives b′1, . . . , b′n, and C2 receives b′′1, . . . , b′′n. Both C1 and C2 compute α and β (each one

an input for Step 5 of the algorithm) independently. Step 5 returns b′f to C1 and b′′f to C2.

C2 can send d′′f to C1, and bf can be reconstructed by adding the two random shares modulo

N to obtain the actual authentication result. Steps 2, 3, and 5 of Algorithm 12 correspond

to the three sub-components. Their implementations are investigated in Section 3.5.

6.1.4. Security Analysis. The PPBAO protocol was secure under the semi-honest

adversary model of Secure Multiparty Computation (SMC). The protocol was a sequential

composition of sub-protocols. Thus, the security of each sub-protocol needed to be proved

before the PPBAO’s security could be proved. As discussed in Sections 3.5.3 and 3.5.4,

both SSEDR and SHDR protocols were proven secure under the semi-honest model because

the computations were performed on either encrypted data or randomized data [21]. The

SCT protocol was implemented using a garbled circuit, which was also secure under the

91

semi-honest model [53]. All these sub-protocols of PPBAO produced random shares as

intermediate results. Therefore, according to the sequential composition theorem [41] given

in Definition 2, the PPBAO protocol was also secure under the semi-honest model.

6.1.5. Complexity Analysis. The proposed PPBAO protocol’s computation com-

plexity was analyzed under the assumptions that encryption and decryption operations

based on the Paillier cryptosystem [75] take a similar amount of time, an exponentiation

operation was treated as an encryption operation, and an encryption operation is gener-

ally several orders of magnitude more expensive than a multiplication. Recall that the

computation complexity of the SSEDR and the SHDR protocols were bounded by O(m)

encryptions. Also, O(m) encryptions provided an appropriate upper bound for the SCT

protocol. Since the PPBAO protocol executed the Secure_Distance protocol n times

and the SCT protocol n+1 times, this work can claim that the total computation complex-

ity of PPBAO was bound by O(mn) encryptions. More details regarding the complexity

analysis of sub-protocols are given in Section 3.5.

6.1.6. Performance Evaluation. Recall that the proposed protocol is a sequen-

tial composition of three sub-protocols. Each sub-protocol was implemented, and its per-

formance was measured across a range of inputs [21].

Synthetic datasets were randomly generated according to the parameter values being

considered. The advantage of using these synthetic datasets is that a more elaborated

analysis could be performed on the computation costs of the proposed protocols under

different parameter settings. Biometrics feature vectors were randomly generated according

to the parameter values being considered (e.g., n- number of record vectors and m-vector

size). These feature vectors were encrypted component-wise by the Paillier cryptosystem [75]

with a 1024-bit modulus and stored on a local machine. The PPBAO protocol was performed

according to this dataset. A Linux machine with an Intel R© Xeon R© Six-CoreTM CPU 3.07

GHz was used to conduct all of the experiments.

The computation costs of the SSEDR sub-protocol (Step 1 of Algorithm 12) were

analyzed first by varying m and n. The computation costs of the SCT sub-protocols (Steps

3 and 5 of Algorithm 12) were analyzed next by varying n because m is irrelevant to the

secure comparison task.

92

The SSEDR was implemented by the Paillier encryption [75] in C language on top of

the GNU multiple precision arithmetic library (https://gmplib.org/). The computation cost

grew linearly with n and m (see Figure 6.1(a)). For example, when m = 5, the computation

time of SSEDR increased from 1.987 to 9.921 minutes when n was varied from 1000 to 5000.

The SCT sub-protocol was built on top of a GCParser framework [65], which is a

modular intermediate level language for easily optimizing and executing garbled circuits.

The m did not affect this stage’s performance because the size of the inputs for this stage

were fixed by 1024 bits modulus, which are random shares of a 1024 bit number. The

computation costs of this SCT were evaluated by fixing m = 5 and varying values of n.

The SCT’s running time varied from 37.45 to 185.013 minutes when n changed from 1000

to 5000, respectively (see Figure 6.1(b)). Thus, the running time grew almost linearly with

n.

The computation costs of the PPBAO protocol scaled almost linearly with n and m

(see Figure 6.1(c)). For example, whenm = 5, the computation time of the PPBAO protocol

increased from 39.032 to 194.934 minutes when n varied from 1000 to 5000. Therefore, the

computation time for the PPBAO protocol was dominated by the time required to compare

the encrypted distance vectors. The run-time complexity of the SSEDR protocol was,

however, greater than the SCT protocol when m was sufficiently large (e.g., over 100). This

finding is consistent with the upper bound derived in Section 6.1.5.

The communication cost was roughly 16MB for n = 5000, m = 25, and an encryption

key size of 1024. The time needed to transmit 16MB of data was significantly less than the

computation time. Therefore, this communication complexity was ignored in the proposed

protocol.

6.1.6.1. Performance Improvement. The proposed PPBAO protocol is not prac-

tical if biometric authentication needs to be completed in real time, even though it is the

best two-party protocol that is known. One primary advantage of the proposed protocol is

that the computations of the sub-components can be parallelized. For example, at Steps

1 and 2 of Algorithm 12, the Secure_Distance computation and the SCT are indepen-

dent and can be performed at the same time. The PPBAO protocol can take advantage of

highly parallel computing capabilities because C1 and C2 are assumed to be cloud service

93

(a) Secure_DistanceeR

(b) Secure_Comparison for m = 5

(c) OPPBA execution time

Figure 6.1: Time complexities of a) SSEDR, b) SCT, and c) PPBAO by varying n and m

providers. If C1 and C2 have n nodes available to execute the PPBAO protocol, Step 1 can

be performed within a second, and Step 2 can be performed in slightly more than 2 seconds.

Thus, the total running time would be approximately 5 seconds. In general, SMC-based

94

privacy-preserving protocols are very expensive. Utilizing the cloud is the only way to make

real-time applications (e.g., biometric authentication) practical.

6.2. OUTSOURCEABLE AND PRIVACY-PRESERVING BIOMETRIC IDEN-
TIFICATION

This section is focused on developing Outsourceable and Privacy-Preserving Biomet-

ric Identification (PPBIO) protocol. In this protocol, a user issues an encrypted biometric

data query record to a cloud. The cloud then securely returns all the identity profiles asso-

ciated with the biometric image data records whose distances from the user’s input query

are below t. Here, t denotes a pre-defined threshold.

6.2.1. Defining the Problem. Let D = {v1, . . . , vn} denote an entity’s biometric

database with n biometric data records. Each vi, 1 ≤ i ≤ n is anm-dimensional vector repre-

sentation of a biometric image data record. Let D′ =
{
Epk(v1), . . . , Epk(vn)

}
denote the en-

cryption ofD, where each Epk(vi) is encrypted component-wise. Let P = {p1, . . . , pn} denote

an identity profile database of n records and s attributes (e.g., SSN, name, age, and criminal

record). Let pi,j denote the jth attribute value of record pi. Let P ′ =
{
Epk(p1), . . . , Epk(pn)

}
denote the encryption of P , where each Epk(pi) is encrypted component-wise. Here, vi de-

notes the biometric image data that corresponds to an identity profile pi for 1 ≤ i ≤ n.

Suppose Bob is a user who wants to learn all the identity profile records associated with the

biometric image data records whose distances from his input query u are below t. Here, u

is represented by the same method as the records in D.

Briefly, the goal of the PPBIO protocol is to securely retrieve the set of identity

profile records, denoted by S, such that the following property holds:

∀pi ∈ S, bi = 1, for 1 ≤ i ≤ n

where b1, . . . , bn is the n actual comparison result. If the distance between u and vi is less

than t then b = 1; otherwise, bi = 0 for 1 ≤ i ≤ n. The t is defined by the underlying

biometric identification system. It varies from system to system. It also depends on the

biometric data used for identification. More formally, the PPBIO protocol can be defined

95

as follows, with D′, P ′, and Epk(u) used as inputs:

PPBIO
(
D′, P ′, Epk(u), t

)
→ S (6.2)

The D′, P ′, and Epk(u) are never decrypted to maximize the confidentiality protection

of D, P , and u during an execution of the PPBIO protocol. This protocol also meets the

desired requirements discussed in Section 1.2:

6.2.2. The Proposed Outsourceable and Privacy-Preserving Biometric

Identification Protocol. The PPBIO protocol proposed here consists of three phases:

distance computation, matching, and retrieval. Each biometric image needs to be repre-

sented as a feature vector before a PPBIO protocol can be implemented. The feature vector

of each biometric image is assumed to be given as part of the input to a PPBIO protocol.

According to Equation 6.2 and the above description, a PPBIO protocol consists of two main

sub-components that need to be performed sequentially: distance computation and com-

paring with the threshold. A PPBIO protocol can be built based on the same components

used to implement the PPBAO protocol.

The primary steps involved in the proposed PPBIO protocol are given in Algorithm

13. Here, Bob’s encrypted biometric image data record Epk(u) =
{
Epk(u1), . . . , Epk(um)

}
is assumed to have been received by C1. It is encrypted with the same public key as

that used to encrypt D to produce D′, where D′ is encrypted by the entity that owns the

biometric image database D. Step 1(a) of Algorithm 13 securely computes the distance

between u and v1, . . . , vn. C1 and C2 receive d′1, . . . , d
′
n and d′′1, . . . , d

′′
n as their private

outputs, respectively. Note that, in this protocol, the distance metric (either Euclidean or

Hamming) is not specified. The entity that outsourced its biometric identification to C1

and C2 can decide which metric to use. The SSEDR and the SHDR protocols in Algorithm

13 are interchangeable without affecting the PPBIO protocol’s security and correctness.

The output from Step 1(a) serves as the input for Step 1(b). At the end of Step 1(b), C1

receives b′1, . . . , b′n, and C2 receives b′′1, . . . , b′′n, respectively, and then sends them to Bob
(
step

1(c)
)
. Steps 1(a) and 1(b) of Algorithm 13 correspond to the two sub-components and their

implementations investigated in Section 3.5.

96

Algorithm 13 PPBIO(D′, P ′, Epk(u), t)→ S
Require: C1 has D′, P ′ and Epk(u), C2 has the decryption key, and t is a public parameter
1: C1 and C2: for 1 ≤ i ≤ n do:

(a). (d′i, d
′′
i)←Secure_Distance

(
Epk(vi), Epk(u)

)
(b). (b′i, b

′′
i)← SCT(d′i, d

′′
i , t)

(c). C1 send b′i to Bob, C2 send b′′i to Bob

2: Bob: for 1 ≤ i ≤ n do:
(a). Receive b′i from C1 and b′′i from C2

(b). Compute bi ← (b′i, b
′′
i)

(c). if @ bi = 1, for 1 ≤ i ≤ n
• No Match

(d). else
• S ← φ

• Retrieve the ith record from C1 using Oblivious_Transfer(n1):
Epk(pi)← OTn1 (i)

• Epk(γi,h)← Epk(pi,h) ∗ Epk(ri,h), where ri,h ∈R ZN , for 1 ≤ h ≤ s

• Send Epk(γi,h) to C2, for 1 ≤ h ≤ s

• C2: for 1 ≤ h ≤ s
– Receive Epk(γi,h) from Bob

– γ′i,h ← Dsk(Epk
(
γi,h)

)
– Send γ′i,h to Bob

• Bob: :
– Receive γ′i,h from C2, for 1 ≤ h ≤ s

– pi,h ← γ′i,h − ri,h mod N , for 1 ≤ h ≤ s

– S ← S ∪ pi

In Step 2, upon receiving the comparison results b1, . . . , bn from comparing d1, . . . , dn

from C1 and C2, Bob proceeds as follows:

• Compute bi ← b′i + b′′i mod N , for 1 ≤ i ≤ n and verify if there is a match or a “no

match”. In case there is a match, Bob initially sets the output set S to φ and continues

as follows:

• For each bi = 1, Bob retrieves the ith encrypted identity profile record
(
Epk(pi)

)
whose

corresponding comparison result (bi) is equal to one by using any (1-n)-Oblivious_

transfer protocol (e.g., [70]). He then randomizes it attribute-wise by computing

97

Epk(γi,h) = Epk(pi,h) ∗ Epk(ri,h) for 1 ≤ h ≤ s. Here, ri,h is a random number in ZN ,

pi,h denotes the column h attribute value of the identity profile record pi, Epk(ri,h)

denotes the encryption of ri,h, and Epk(γi,h) denotes the encryption of γi,h. Epk(γi,h)

is sent to C2 for 1 ≤ h ≤ s.

C2 decrypts each entry Epk(γi,h) received from Bob to obtain γ′i,h = Dsk

(
Epk(γi,h)

)
. It then

sends them back to Bob. Note that, γ′i,h is always a random number in ZN due to the

randomization by Bob.

Bob then removes the randomness from γ′i,h to obtain the attribute values of the ith

identity profile as pi,h = γ′i,h − ri,h mod N for each received entry {ri,h, γ′i,h} for 1 ≤ h ≤ s.

Finally, Bob adds the identity profile record pi to his output set (S = S ∪ pi).

6.2.3. Security Analysis. The PPBIO protocol was secure under the semi-honest

adversary model of SMC. The protocol was a sequential composition of sub-protocols. Thus,

the security of each sub-protocol needed to be proved before the PPBIO’s security could be

proved. A detailed analysis is provided in Sections 3.5.3 and 3.5.4. Both SSEDR and SHDR

protocols were proven secure under the semi-honest model because the computations were

performed on either encrypted data or randomized data. The SCT protocol was imple-

mented using a garbled circuit, which was also secure under the semi-honest model [53].

A detailed analysis is provided in Section 3.5.10. Also, the (1-n)-Oblivious_transfer

protocol (e.g., [70]) was proved secure under the semi-honest model. All these sub-protocols

of PPBIO produced either random shares or pseudo-random as intermediate results. There-

fore, according to the sequential composition theorem [41] given in Definition 2, the PPBIO

protocol was also secure under the semi-honest model.

6.2.4. Complexity Analysis. The proposed PPBIO protocol’s computation com-

plexity was analyzed under the assumptions that encryption and decryption operations

based on the Paillier cryptosystem [75] take a similar amount of time, an exponentiation

operation was treated as an encryption operation, and an encryption operation is generally

several orders of magnitude more expensive than a multiplication. The computation com-

plexity of the SSEDR protocol was bounded by O(m) encryptions (as discussed in Section

6.1.5). The same asymptotic bound for the SHDR can be derived in a similar manner.

Additionally, the total computation cost of the SCT protocol is about that of performing

98

several homomorphic encryption operations. Thus, O(m) encryptions provided an appro-

priate upper bound for the SCT (as discussed in Section 6.1.5). Also, the computational

complexity of the (1-n)-Oblivious_transfer protocol (e.g., [70]) was bounded by O(n).

The rest of the computation complexity was bounded by O(s ∗ n) encryption operations.

In order to hide the data access patterns from C1 and C2, Bob, jointly with C1, had to

retrieve the ith encrypted identity profile whose corresponding comparison result was bi = 1

for 1 ≤ i ≤ n. As a consequence, Bob’s computation cost was not negligible. He did perform

some expensive computational operations bounded by O(s ∗n) encryptions. Therefore, this

work can claim that the total computation complexity of PPBIO was bound by O(s ∗ n)

encryptions.

99

7. CONCLUSIONS AND FUTURE DIRECTIONS

The cloud computing paradigm [17, 66] has recently revolutionized the organization’s

way of operating their data, particularly in the way they store, access, and process data. As

an emerging computing paradigm, cloud computing attracts many organizations to consider

a cloud’s potential in terms of its cost-efficiency, flexibility, and offload of administrative

overhead. Organizations often delegate their computational operations, in addition to their

data, to a cloud; otherwise, there would be no point in outsourcing the data at the first

place. Privacy and security issues in the cloud are preventing companies from utilizing those

advantages despite the tremendous advantages that the cloud offers. Therefore, due to the

rise of various privacy issues, sensitive data need to be encrypted before being outsourced to

the cloud. Using encryption as a way to achieve data confidentiality may cause another issue

at the cloud during the query evaluation. In general, it is very difficult to process encrypted

data in a privacy-preserving manner without ever having to decrypt it. The question here

is how the cloud can perform computations over encrypted data while the data stored in

the cloud are encrypted at all times.

Along with this direction, this study proposed three different sets of Privacy-Preserving

Query Processing (PPQP) protocols to facilitate different types of queries, namely, the k-

Nearest Neighbor (kNN) query, advanced analytical query, and correlated range query, which

preserve both the data confidentiality and the query privacy. In the proposed PPQP proto-

cols, once the data owner has outsourced his/her encrypted data to the cloud, he/she does

not participate in any computations. The proposed protocols utilize additive homomorphic

cryptosystem and/or garbled circuit technique at different stages of query processing to

achieve the best performance. In addition, all computations can be done on the encrypted

data without using very expensive fully homomorphic encryptions by adopting a multi-

cloud computing paradigm. This work empirically analyzed the efficiency of the proposed

protocols through various experiments. These results indicated that the PPQP protocols

are efficient from the end-user’s perspective. This work also emphasized that the proposed

protocols are practical in the cloud environment.

100

One possible extension to the current work is to explore alternative ways of develop-

ing efficient PPQP protocols. The construction of the PPQP protocols is the most efficient

and secure two-party implementation known today. However, the empirical results clearly

showed that they are not practical. The scalability issue of PPQP protocols can be elimi-

nated or mitigated, especially in a cloud computing environment, where high-performance

parallel processing can easily be achieved. Thus, one possible work would be to implement

and evaluate the PPQP protocols using a MapReduce techniques in real cloud environment.

The set of sub-protocols that would be developed and used as basic primitives when con-

structing the proposed PPQP protocols need efficient implementation in order to improve

the performance of PPQP. One way to achieve that is to try to develop parallel solutions

to those basic primitives, which, in turn, will improve the overall performance of the PPQP

protocols.

Encryption is not the only way to protect data confidentiality, and a variety of

different techniques, such as randomization and secret sharing, exist. One can plan to

investigate whether these techniques are more efficient and scalable than the encryption

based solutions. In addition, the current work can be extended to other adversary models,

such as the malicious model. One can develop PPQP protocols that are secure under the

malicious model and evaluate the trade-offs between security and efficiency.

101

BIBLIOGRAPHY

[1] D. J. Abadi. Data management in the cloud: Limitations and opportunities. IEEE
Data Eng. Bull, 32(1):3–12, 2009.

[2] C. C. Aggarwal and P. S. Yu. A general survey of privacy-preserving data mining
models and algorithms. Privacy-preserving data mining, pages 11–52, 2008.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. In ACM Sigmod Record,
volume 29, pages 439–450. ACM, 2000.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.
Communications of the ACM, 53:50–58, April 2010.

[5] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. Journal of Cryptology, 23(2):281–343, Apr. 2010.

[6] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In
IEE ICDE, pages 217–228, 2005.

[7] D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology -
CRYPTO ’91, pages 377–391. Springer-Verlag, 1991.

[8] A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp - a system for secure multi-party
computation. In ACM CCS, October 2008.

[9] I. F. Blake and V. Kolesnikov. One-round secure comparison of integers. Journal of
Mathematical Cryptology, 3(1):37–68, May 2009.

[10] M. Blanton and M. Aliasgari. Secure outsourced computation of iris matching. Journal
of Computer Security, 20(2):259–305, 2012.

[11] M. Blanton and P. Gasti. Secure and efficient protocols for iris and fingerprint iden-
tification. In Computer Security–ESORICS 2011, pages 190–209. Springer, 2011.

[12] M. Bohanec and B. Zupan. The UCI KDD Archive. University of Cali-
fornia, Department of Information and Computer Science, Irvine, CA, 1997.
http://archive.ics.uci.edu/ml/datasets/Car+Evaluation.

[13] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In CRYPTO, page 78, 2012.

[14] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In Proceedings of the 31st Annual Conference
on Advances in Cryptology, pages 505–524, 2011.

[15] S. Bugiel, S. Nurnberger, A. Sadeghi, and T. Schneider. Twin clouds: An architecture
for secure cloud computing. In Workshop on Cryptography and Security in Clouds
(WCSC 2011), 2011.

[16] S. Bugiel, S. Nürnberger, A.-R. Sadeghi, and T. Schneider. Twin clouds: An architec-
ture for secure cloud computing (extended abstract). In Workshop on Cryptography
and Security in Clouds, March 2011.

102

[17] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation computer systems, 25(6):599–616, 2009.

[18] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[19] R. Canetti. Universally composable security: a new paradigm for cryptographic pro-
tocols. In IEEE FOCS, pages 136 – 145, oct. 2001.

[20] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina.
Controlling data in the cloud: outsourcing computation without outsourcing control.
In Proceedings of the 2009 ACM workshop on Cloud computing security, CCSW ’09,
pages 85–90. ACM, 2009.

[21] H. Chun, Y. Elmehdwi, F. Li, P. Bhattacharya, and W. Jiang. Outsourceable two-
party privacy-preserving biometric authentication. In Proceedings of the 9th ACM
symposium on Information, computer and communications security, pages 401–412.
ACM, 2014.

[22] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for privacy
preserving distributed data mining. ACM SIGKDD Explorations Newsletter, 4(2):28–
34, 2002.

[23] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In Advances in Cryptology – EUROCRYPT, pages 280–299,
2001.

[24] L. Dagum and R. Enon. Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[25] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-line
auctions. In Proceedings of the 12th Australasian conference on Information security
and privacy, pages 416–430. Springer-Verlag, 2007.

[26] I. Damgard, M. Geisler, and M. Kroigard. Homomorphic encryption and secure com-
parison. International Journal of Applied Cryptology, 1(1):22–31, 2008.

[27] S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Managing and accessing
data in the cloud: Privacy risks and approaches. In CRiSIS, pages 1–9. IEEE, 2012.

[28] J. Domingo-Ferrer. A provably secure additive and multiplicative privacy homomor-
phism. Information Security, pages 471–483, 2002.

[29] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure k-nearest neighbor query over
encrypted data in outsourced environments. In Data Engineering (ICDE), 2014 IEEE
30th International Conference on, pages 664–675. IEEE, 2014.

[30] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-
preserving face recognition. In Privacy Enhancing Technologies, pages 235–253.
Springer, 2009.

[31] T. Ermakova, B. Fabian, and R. Zarnekow. Security and privacy system requirements
for adopting cloud computing in healthcare data sharing scenarios. 2013.

103

[32] D. Evans, Y. Huang, J. Katz, and L. Malka. Efficient privacy-preserving biometric
identification. In Proceedings of the 17th conference Network and Distributed System
Security Symposium, NDSS, 2011.

[33] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of
association rules. Information Systems, 29(4):343–364, 2004.

[34] S. Fienberg and J. McIntyre. Data swapping: Variations on a theme by dalenius and
reiss. In Privacy in statistical databases, pages 519–519. Springer, 2004.

[35] J. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solutions for integer
comparison. In Proceedings of the 10th international conference on Practice and theory
in public-key cryptography, pages 330–342. Springer-Verlag, 2007.

[36] C. Gentry. Fully homomorphic encryption using ideal lattices. In Annual ACM Sym-
posium on Theory of Computing, pages 169–178, Bethesda, MD, USA, 2009.

[37] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In EUROCRYPT, pages 129–148. Springer-Verlag, 2011.

[38] C. Gentry, S. Halevi, and N. Smart. Fully homomorphic encryption with polylog
overhead. In Advances in Cryptology - EUROCRYPT’2012, 2012.

[39] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan. Private queries in
location based services: anonymizers are not necessary. In SIGMOD, pages 121–132.
ACM, 2008.

[40] O. Goldreich. The Foundations of Cryptography, volume 2, chapter General Crypto-
graphic Protocols, pages 599–746. Cambridge, University Press, Cambridge, England,
2004.

[41] O. Goldreich. The Foundations of Cryptography, volume 2, chapter Encryption
Schemes, pages 373–470. Cambridge University Press, Cambridge, England, 2004.

[42] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Pro-
ceedings of the nineteenth annual ACM symposium on Theory of computing, pages
218–229. ACM, 1987.

[43] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM,
38:690–728, 1991.

[44] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal of Computing, 18:186–208, February 1989.

[45] T. Graepel, K. Lauter, and M. Naehrig. Ml confidential: Machine learning on en-
crypted data. In Information Security and Cryptology–ICISC 2012, pages 1–21.
Springer, 2013.

[46] H. Hacıgümüş, B. Iyer, and S. Mehrotra. Efficient execution of aggregation queries
over encrypted relational databases. In Database systems for Advanced Applications,
pages 633–650. Springer, 2004.

104

[47] K. Hashizume, D. G. Rosado, E. Fernández-Medina, and E. B. Fernandez. An analysis
of security issues for cloud computing. Journal of Internet Services and Applications,
4(1):1–13, 2013.

[48] W. Henecka, S. K ögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Tasty: tool
for automating secure two-party computations. In ACM CCS, pages 451–462. ACM,
2010.

[49] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu. Secure multidimensional range
queries over outsourced data. The VLDB Journal, 21(3):333–358, 2012.

[50] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In
Proceedings of the Thirtieth international conference on Very large data bases-Volume
30, pages 720–731. VLDB Endowment, 2004.

[51] H. Hu, J. Xu, C. Ren, and B. Choi. Processing private queries over untrusted data
cloud through privacy homomorphism. In IEEE ICDE, pages 601–612, 2011.

[52] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better
than custom protocols? In NDSS, 2012.

[53] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation
using garbled circuits. In Proceedings of the 20th USENIX conference on Security
(SEC ’11), pages 35–35, 2011.

[54] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In Proceedings of the 19th Annual
Network & Distributed System Security Symposium (NDSS), February 2012.

[55] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti. Filterbank-based fingerprint
matching. Image Processing, IEEE Transactions on, 9(5):846–859, 2000.

[56] A. Janosi, W. Steinbrunn, M. Pfisterer, and R. Detrano. Heart disease data set. The
UCI KDD Archive, 1988. http://archive.ics.uci.edu/ml/datasets/Heart+Disease.

[57] M. Kantarcioglu and C. Clifton. Privately computing a distributed k-nn classifier. In
PKDD, pages 279–290, 2004.

[58] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall, CRC
Press, 2007.

[59] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Advances in Cryptology–EUROCRYPT
2008, pages 146–162. Springer, 2008.

[60] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can offloading compu-
tation save energy? Computer, 43(4):51 –56, april 2010.

[61] M. Li, S. Yu, W. Lou, and Y. T. Hou. Toward privacy-assured cloud data services
with flexible search functionalities. In 32nd International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 466–470. IEEE, 2012.

[62] Y. Lindell. General composition and universal composability in secure multiparty
computation. Journal of Cryptology, 22(3):395–428, 2009.

105

[63] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Advances in Cryptology
(CRYPTO), pages 36–54. Springer, 2000.

[64] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving data
mining. Journal of Privacy and Confidentiality, 1(1):5, 2009.

[65] W. Melicher, S. Zahur, and D. Evans. An intermediate language for garbled circuits.
In IEEE Symposium on Security and Privacy Poster Abstract. Citeseer, 2012.

[66] P. Mell and T. Grance. The nist definition of cloud computing (draft). NIST special
publication, 800:145, 2011.

[67] D. Micciancio. A first glimpse of cryptography’s holy grail. Communications of the
ACM, 53(3):96–96, 2010.

[68] E. Mykletun and G. Tsudik. Aggregation queries in the database-as-a-service model.
In Data and Applications Security XX, pages 89–103. Springer, 2006.

[69] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In Proceedings
of the Thirty-first Annual ACM Symposium on Theory of Computing, pages 245–254,
Atlanta, Georgia, United States, 1999. ACM Press.

[70] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 448–457. Society
for Industrial and Applied Mathematics, 2001.

[71] A. E. Nergiz, M. E. Nergiz, T. Pedersen, and C. Clifton. Practical and secure inte-
ger comparison and interval check. In Proceedings of the IEEE Second International
Conference on Social Computing, pages 791–799, 2010.

[72] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. Privacy-
preserving ridge regression on hundreds of millions of records. In IEEE Symposium
on Security and Privacy (SP ’13), pages 334–348. IEEE Computer Society, 2013.

[73] S. R. Oliveira and O. R. Zaiane. Privacy preserving clustering by data transformation.
In Proc. of the 18th Brazilian Symposium on Databases, pages 304–318, 2003.

[74] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. Scifi-a system for secure face
identification. In Security and Privacy (SP), 2010 IEEE Symposium on, pages 239–
254. IEEE, 2010.

[75] P. Paillier. Public key cryptosystems based on composite degree residuosity classes.
In Eurocrypt, pages 223–238. Springer-Verlag, 1999.

[76] S. Pearson and A. Benameur. Privacy, security and trust issues arising from cloud
computing. In IEEE CloudCom, pages 693–702, 2010.

[77] S. Pearson, Y. Shen, and M. Mowbray. A privacy manager for cloud computing. Cloud
Computing, pages 90–106, 2009.

[78] M. Prabhakaran and M. Rosulek. Rerandomizable rcca encryption. In Advances in
Cryptology-CRYPTO 2007, pages 517–534. Springer, 2007.

[79] Y. Qi and M. J. Atallah. Efficient privacy-preserving k-nearest neighbor search. In
ICDCS, pages 311–319. IEEE, 2008.

106

[80] S. Ravu, P. Neelakandan, M. Gorai, R. Mukkamala, and P. Baruah. A computationally
efficient and scalable approach for privacy preserving knn classification. In IEEE
International Conference on High Performance Computing (HiPC), 2012.

[81] J. J. Rodrigues, I. de la Torre, G. FernÃąndez, and M. LÃşpez-Coronado. Analysis of
the security and privacy requirements of cloud-based electronic health records systems.
Journal of medical Internet research, 15(5), 2013.

[82] M. D. Ryan. Cloud computing security: The scientific challenge, and a survey of
solutions. Journal of Systems and Software, 2013.

[83] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face
recognition. In Information, Security and Cryptology–ICISC 2009, pages 229–244.
Springer, 2010.

[84] A. Sahai. Computing on encrypted data. Information Systems Security, pages 148–
153, 2008.

[85] B. K. Samanthula, Y. Elmehdwi, and W. Jiang. k-nearest neighbor classification
over semantically secure encrypted relational data. Knowledge and Data Engineering,
IEEE Transactions on, 27(5):1261–1273, 2015.

[86] B. K. Samanthula and W. Jiang. An efficient and probabilistic secure bit-
decomposition. In 8th ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS), pages 541–546, 2013.

[87] B. Schoenmakers and P. Tuyls. Efficient binary conversion for paillier encrypted values.
In EUROCRYPT, pages 522–537. Springer-Verlag, 2006.

[88] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612 – 613,
November 1979.

[89] M. Shaneck, Y. Kim, and V. Kumar. Privacy preserving nearest neighbor search.
Machine Learning in Cyber Trust, pages 247–276, 2009.

[90] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In Theory
of Cryptography, pages 457–473. Springer, 2009.

[91] E. Shi, J. Bethencourt, T.-H. Chan, D. Song, and A. Perrig. Multi-dimensional range
query over encrypted data. In IEEE Symposium on Security and Privacy (SP’07),
pages 350–364. IEEE, 2007.

[92] J. Vaidya and C. Clifton. Privacy-preserving top-k queries. In ICDE, pages 545–546.
IEEE, 2005.

[93] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Proceedings of the 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2010),
volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer, 2010.

[94] B. Wang, S. S. Chow, M. Li, and H. Li. Storing shared data on the cloud via security-
mediator. In International Conference on Distributed Computing Systems-ICDCS
2013, 2013.

107

[95] J. Wang, H. Ma, Q. Tang, J. Li, H. Zhu, S. Ma, and X. Chen. Efficient verifiable
fuzzy keyword search over encrypted data in cloud computing. Computer Science and
Information Systems, 10(2):667–684, 2013.

[96] J. Wang, H. Ma, Q. Tang, J. Li, H. Zhu, S. Ma, and X. Chen. Efficient verifiable
fuzzy keyword search over encrypted data in cloud computing. Computer Science and
Information Systems, 10(2):667–684, 2013.

[97] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In ACM CCS, pages 139–148,
2008.

[98] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis. Secure knn computation
on encrypted databases. In ACM SIGMOD, pages 139–152, 2009.

[99] X. Xiao, F. Li, and B. Yao. Secure nearest neighbor revisited. In IEEE ICDE, pages
733–744, 2013.

[100] L. Xiong, S. Chitti, and L. Liu. K nearest neighbor classification across multiple
private databases. In CIKM, 2006.

[101] A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pages 160–164, Washington, DC,
USA, 1982. IEEE Computer Society.

[102] A. C. Yao. How to generate and exchange secrets. In Proceedings of the 27th Sym-
posium on Foundations of Computer Science, pages 162–167, Washington, DC, USA,
1986. IEEE Computer Society.

[103] H.-J. Yu, H.-S. Lai, K.-H. Chen, H.-C. Chou, J.-M. Wu, S. Dorjgochoo, A. Mendjar-
gal, E. Altangerel, Y.-W. Tien, C.-W. Hsueh, et al. A sharable cloud-based pancre-
aticoduodenectomy collaborative database for physicians: Emphasis on security and
clinical rule supporting. Computer methods and programs in biomedicine, 2013.

[104] P. Zhang, Y. Tong, S. Tang, and D. Yang. Privacy preserving naive bayes classification.
Advanced Data Mining and Applications, pages 730–730, 2005.

[105] Y. Zhu, R. Xu, and T. Takagi. Secure k-nn computation on encrypted cloud data
without sharing key with query users. In Cloud Computing, pages 55–60. ACM, 2013.

108

VITA

Yousef M. Elmehdwi received the Bachelor degree in computer science from Benghazi

University (formerly known as the University of Garyounis), Libya, in 1993 and the Master

degree in information technology from Mannheim University of Applied Science, Germany,

in 2005. He received the Ph.D. degree in computer science from Missouri University of

Science and Technology, Rolla, Missouri, in December 2015.

	Privacy-preserving query processing over encrypted data in cloud
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	Defining the Problem
	Objectives and Contributions
	Organization

	Related work
	SECURE k-Nearest Neighbor Techniques
	Privacy-Preserving Data Mining
	Privacy-Preserving Biometric Authentication/ Identification

	Security Definitions and Basic Security Primitives
	Secure Multiparty Computation
	Threat Model
	Justification of Use of Semi-Honest Model

	Additive Homomorphic Encryption
	Distance Computation
	Euclidean Distance
	Hamming Distance

	Basic Security Primitives
	SM
	SSED
	RSSED
	RSHD
	SBD
	SBOR
	SMIN
	Secure Minimum out of n Numbers
	SF
	SCOM

	Overview of the Proposed Privacy-Preserving Query Processing Protocols

	k-Nearest Neighbor Query
	Defining the Problem
	Main Contributions
	The Proposed Secure k-nearest neighbor Protocols
	Basic Secure k-Nearest Neighbor Protocol
	Maximally Secure k-Nearest Neighbor Protocol

	Security Analysis
	Complexity Analysis
	Performance Evaluation
	Performance of the Basic Secure k-Nearest Neighbor Protocol
	Performance of the Maximally Secure k-Nearest Neighbor Protocol
	Performance Improvement

	Advanced Analytical Query
	Defining the Problem
	Main Contributions
	The Proposed Privacy-Preserving k-nearest neighbor Classification Protocol
	Stage 1: Secure Retrieval of k-Nearest Neighbors
	Stage 2: Secure Computation of Majority Class

	Security Analysis
	Security Proof for Stage 1
	Security Proof for Stage 2

	Complexity Analysis
	Performance Evaluation
	Performance Improvement

	Correlated Range Query
	Outsourceable and Privacy-Preserving Biometric Authentication
	Defining the Problem
	Main Contributions
	The Proposed Outsourceable and Privacy-Preserving Biometric Authentication Protocol
	Sub-Components of the OPPBA Protocol
	The OPPBA Protocol:

	Security Analysis
	Complexity Analysis
	Performance Evaluation
	Performance Improvement

	Outsourceable and Privacy-Preserving Biometric Identification
	Defining the Problem
	The Proposed Outsourceable and Privacy-Preserving Biometric Identification Protocol
	Security Analysis
	Complexity Analysis

	conclusions and future directions
	BIBLIOGRAPHY
	VITA

