327 research outputs found

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Impact and Mitigation of Cyberattacks on IoT devices: A Lens on Smart Home

    Get PDF
    This Master's thesis, undertaken at the University of Turku in conjunction with an internship at Alten France, delves into the escalating issue of cyberattacks on IoT devices. This burgeoning area has begun to permeate various sectors of society, most notably through consumer products in smart homes. The primary motivations behind this chosen topic are the increased prevalence of IoT devices in our everyday lives and the corresponding surge in cyber threats, alongside the topic's real-world applicability to my work at Alten France, which is heavily invested in digital technology and innovation. The thesis begins with a comprehensive exploration of the current landscape of IoT cyber threats, including various attack vectors and their impact on different types of IoT devices. The challenges of securing IoT devices are then examined, highlighting the limitations and vulnerabilities of the IoT infrastructure. The research analyzes the impacts of cyberattacks on individual users, organizations, and society at large. It covers a wide range of consequences, such as privacy violations, financial losses, disruptions to critical infrastructure, and effects such as eroded trust in digital systems. The latter segment of the thesis addresses potential solutions and preventive measures to mitigate these impacts. The research does not aim to propose new strategies but seeks to inform future mitigation efforts based on its thorough analysis. On the whole, this thesis presents a meticulous and extensive examination of the impacts of cyberattacks on IoT devices, with an emphasis on smart homes. It underscores the urgent requirement for bolstered cybersecurity measures in our increasingly interconnected world, highlighting the severe repercussions of neglecting this need. By deepening the understanding of the extensive impacts of these cyberattacks, this research contributes valuable insights to academic discussions and supplies essential information for policymakers and industry professionals to develop more secure and resilient IoT systems

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Cyber risk at the edge: Current and future trends on cyber risk analytics and artificial intelligence in the industrial internet of things and industry 4.0 supply chains

    Get PDF
    Digital technologies have changed the way supply chain operations are structured. In this article, we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks. A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0, with a specific focus on the mitigation of cyber risks. An analytical framework is presented, based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies. This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning (AI/ML) and real-time intelligence for predictive cyber risk analytics. The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge. This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when AI/ML technologies are migrated to the periphery of IoT networks

    A managerial review and guidelines for Industry 4.0 factories on cybersecurity

    Get PDF
    The Fourth Industrial Revolution (Industry 4.0) has created a rebellion in traditional factories by introducing the Internet of Things (IoT) and Cyber-Physical Systems (CPS). This revolution has caused increased automation and customized production, which has occurred through a synergy between customer demands, stocks, and supply chains. This synergy has also exposed factories to potential cyber-attack threats. Although there is extensive literature available on the topic of cyber security, however, business owners still assume cyber security as business preservation. This study sheds light on a step-by-step cyber security aspect of manufacturing factories with Industry 4.0. The study presented possible vulnerabilities and threats to the networks and devices used in a factory by dividing them into various common parameters. We reviewed the proposed literature and provided solutions to Industry 4.0 factories regarding cybersecurity challenges. The reviewed articles are divided into four segments, starting from the purpose of the proposal, the adopted methodology, the proposed cyber security solution, and finally the author’s evaluation. The study reports on a state-of-the-art cyber security solution for Industry 4.0 factories. The characterization of cybersecurity is also proposed concerning management aspects, by showing that every level of organization has its role. The study also highlighted that cybersecurity could play a crucial role in the creation of value for businesses. It is suggested that despite adding an expert system paradigm for cyber security solutions, factories should also adopt new innovative ways, such as machine learning, digital twins, and honeypots. This review highlights that cyber security is not only a technical concern, but it also needs support from multiple actors of the organization to add it to the comprehensive strategy of an Industry 4.0 factory, and every user must be trained and aware of the cybersecurity risks. © 2022 Curran Associates Inc.. All rights reserved

    ICSrank: A Security Assessment Framework for Industrial Control Systems (ICS)

    Get PDF
    This thesis joins a lively dialogue in the technological arena on the issue of cybersecurity and specifically, the issue of infrastructure cybersecurity as related to Industrial Control Systems. Infrastructure cybersecurity is concerned with issues on the security of the critical infrastructure that have significant value to the physical infrastructure of a country, and infrastructure that is heavily reliant on IT and the security of such technology. It is an undeniable fact that key infrastructure such as the electricity grid, gas, air and rail transport control, and even water and sewerage services rely heavily on technology. Threats to such infrastructure have never been as serious as they are today. The most sensitive of them is the reliance on infrastructure that requires cybersecurity in the energy sector. The call to smart technology and automation is happening nowadays. The Internet is witnessing an increase number of connected industrial control system (ICS). Many of which don’t follow security guidelines. Privacy and sensitive data are also an issue. Sensitive leaked information is being manipulated by adversaries to accomplish certain agendas. Open Source intelligence (OSINT) is adopted by defenders to improve protection and safeguard data. This research presented in thesis, proposes “ICSrank” a novel security risk assessment for ICS devices based on OSINT. ICSrank ranks the risk level of online and offline ICS devices. This framework categorizes, assesses and ranks OSINT data using ICSrank framework. ICSrank provides an additional layer of defence and mitigation in ICS security, by identification of risky OSINT and devices. Security best practices always begin with identification of risk as a first step prior to security implementation. Risk is evaluated using mathematical algorithms to assess the OSINT data. The subsequent results achieved during the assessment and ranking process were informative and realistic. ICSrank framework proved that security and risk levels were more accurate and informative than traditional existing methods

    Six-Gear Roadmap Towards the Smart Factory

    Get PDF
    The fourth industrial revolution is the transformation of industrial manufacturing into smart manufacturing. The advancement of digital technologies that make the trend Industry 4.0 are considered as the transforming force that will enable this transformation. However, Industry 4.0 digital technologies need to be connected, integrated and used effectively to create value and to provide insightful information for data driven manufacturing. Smart manufacturing is a journey and requires a roadmap to guide manufacturing organizations for its adoption. The objective of this paper is to review different methodologies and strategies for smart manufacturing implementation to propose a simple and a holistic roadmap that will support the transition into smart factories and achieve resilience, flexibility and sustainability. A comprehensive review of academic and industrial literature was preformed based on multiple stage approach and chosen criteria to establish existing knowledge in the field and to evaluate latest trends and ideas of Industry 4.0 and smart manufacturing technologies, techniques and applications in the manufacturing industry. These criteria are sub-grouped to fit within various stages of the proposed roadmap and attempts to bridge the gap between academia and industry and contributes to a new knowledge in the literature. This paper presents a conceptual approach based on six stages. In each stage, key enabling technologies and strategies are introduced, the common challenges, implementation tips and case studies of industrial applications are discussed to potentially assist in a successful adoption. The significance of the proposed roadmap serve as a strategic practical tool for rapid adoption of Industry 4.0 technologies for smart manufacturing and to bridge the gap between the advanced technologies and their application in manufacturing industry, especially for SMEs

    DNA Feature Selection for Discriminating WirelessHART IIoT Devices

    Get PDF
    This paper summarizes demonstration activity aimed at applying Distinct Native Attribute (DNA) feature selection methods to improve the computational efficiency of time domain fingerprinting methods used to discriminate Wireless Highway Addressable Remote Transducer (WirelessHART) devices being used in Industrial (IIoT) applications. Efficiency is achieved through Dimensional Reduction Analysis (DRA) performed here using both pre-classification analytic (WRS and ReliefF) and post-classification relevance (RndF and GRLVQI) feature selection methods. Comparative assessments are based on statistical fingerprint features extracted from experimentally collected WirelessHART signals, with Multiple Discrimination Analysis, Maximum Likelihood (MDA/ML) estimation showing that pre-classification methods are collectively superior to post-classification methods. Specific DRA results show that an average cross-class percent correct classification differential of 8% ≀ %CD ≀ 1% can be maintained using DRA selected feature sets containing as few as 24 (10%) of the 243 full-dimensional features. Reducing fingerprint dimensionality reduces computational efficiency and improves the potential for operational implementation

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table

    Analyzing the Impacts of Emerging Technologies on Workforce Skills: A Case Study of Industrial Engineering in the Context of the Industrial Internet of Things

    Get PDF
    New technologies can result in major disruptions and change paradigms that were once well established. Methods have been developed to forecast new technologies and to analyze the impacts of them in terms of processes, products, and services. However, the current literature does not provide answers on how to forecast changes in terms of skills and knowledge, given an emerging technology. This thesis aims to fill this literature gap by developing a structured method to forecast the required set of skills for emerging technologies and to compare it with the current skills of the workforce. The method relies on the breakdown of the emerging technology into smaller components, so then skills can be identified for each component. A case study was conducted to implement and test the proposed method. In this case study, the impacts of the Industrial Internet of Things (IIoT) on engineering skills and knowledge were assessed. Text data analytics validated IIoT as an emerging technology, thus justifying the case study based on engineering and manufacturing discussions. The set of skills required for IIoT was compared to the current skills developed by Industrial Engineering students at the University of Windsor. Text data analytics was also used to evaluate the importance of each IIoT component by measuring how associated individual components are to IIoT. Therefore, existing skill gaps between the current Industrial Engineering program and IIoT requirements were not only mapped, but they were also given weights
    • 

    corecore