244 research outputs found

    “Integrating Iris and Fingerprint Traits for Personal Authentication using Artificial Neural Network”

    Get PDF
    In recent years, biometric based security systems chieved more attention due to continuous terrorism threats around the world. However, a security system comprised of a single form of biometric information cannot fulfil user’s expectations and may suffer from noisy sensor data, intra and inter class variations and continuous spoof attacks. To overcome some of these problems, multimodal biometric aims at increasing the reliability of biometric systems through utilizing more than one biometric in decision-making process. In order to take full advantage of the multimodal approaches, an effective fusion scheme is necessary for combining information from various sources. I present a new methodology based on fusion at the feature level, which is a relatively new approach compared to others, to combine multimodal biometric information from two biometric identifiers (Iris and Fingerprint).The proposed system is for multimodal database comprising of 21 samples. The performance of the system is tested on a database prepared to find accuracy, false acceptance rate and false rejection rate

    Hybrid Fusion for Biometrics: Combining Score-level and Decision-level Fusion

    Get PDF
    A general framework of fusion at decision level, which works on ROCs instead of matching scores, is investigated. Under this framework, we further propose a hybrid fusion method, which combines the score-level and decision-level fusions, taking advantage of both fusion modes. The hybrid fusion adaptively tunes itself between the two levels of fusion, and improves the final performance over the original two levels. The proposed hybrid fusion is simple and effective for combining different biometrics

    Evaluation and performance prediction of multimodal biometric systems

    Get PDF
    Multibiometric systems fuse the evidence presented by different biometric sources in order to improve the matching accuracy of a biometric system. In such systems, information fusion can be performed at different levels; however, integration at the matching score level is the most commonly used approach due to the tradeoff between information content and accessibility. This work develops a tool in order to analyze the impact of various normalization schemes on the matching performance of score-level fusion algorithms. The tool permits the systematic evaluation of different fusion rules after employing normalizing and mapping the match scores of different modalities into a common domain. Furthermore, it provides a method to fit various parametric models to the score distribution and analyze the goodness of fit statistic based on the Chi-Squared and Kolmogorov-Smirnov tests. Experimental results on multiple datasets indicate the benefits of normalization, the role of parametric distributions and the variations in matching performance on different databases

    Comparison Fusion of Iris and Fingerprint Traits for Personal Authentication using Artificial Neural Network with Previous Algorithm

    Get PDF
    Biometrics is the science of determining the identity of a person based on the physiological / behavioral characteristics of the individual. A person can be identified by using biometrics based on ‘what you are’ rather than ‘what you possess’ such as ID card or ‘what you remember’ such as password . Biometrics are incorporated in many different applications because of the need for reliable user authentication techniques has increased in the wake of heightened concerns about security, and rapid advances in communication, networking and mobility . A variety of biometric characteristics including face, fingerprint, palm print, iris, retina, signature, gait, ear, hand vein, voice pattern, odor or DNA are being used in various applications. Each biometric has its merits and demerits. Therefore, the selection of a biometric trait depends on several issues other than matching performance

    Multi-Modal Biometrics: Applications, Strategies and Operations

    Get PDF
    The need for adequate attention to security of lives and properties cannot be over-emphasised. Existing approaches to security management by various agencies and sectors have focused on the use of possession (card, token) and knowledge (password, username)-based strategies which are susceptible to forgetfulness, damage, loss, theft, forgery and other activities of fraudsters. The surest and most appropriate strategy for handling these challenges is the use of naturally endowed biometrics, which are the human physiological and behavioural characteristics. This paper presents an overview of the use of biometrics for human verification and identification. The applications, methodologies, operations, integration, fusion and strategies for multi-modal biometric systems that give more secured and reliable human identity management is also presented

    Generic multimodal biometric fusion

    Get PDF
    Biometric systems utilize physiological or behavioral traits to automatically identify individuals. A unimodal biometric system utilizes only one source of biometric information and suffers from a variety of problems such as noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks and unacceptable error rates. Multimodal biometrics refers to a system which utilizes multiple biometric information sources and can overcome some of the limitation of unimodal system. Biometric information can be combined at 4 different levels: (i) Raw data level; (ii) Feature level; (iii) Match-score level; and (iv) Decision level. Match score fusion and decision fusion have received significant attention due to convenient information representation and raw data fusion is extremely challenging due to large diversity of representation. Feature level fusion provides a good trade-off between fusion complexity and loss of information due to subsequent processing. This work presents generic feature information fusion techniques for fusion of most of the commonly used feature representation schemes. A novel concept of Local Distance Kernels is introduced to transform the available information into an arbitrary common distance space where they can be easily fused together. Also, a new dynamic learnable noise removal scheme based on thresholding is used to remove shot noise in the distance vectors. Finally we propose the use of AdaBoost and Support Vector Machines for learning the fusion rules to obtain highly reliable final matching scores from the transformed local distance vectors. The integration of the proposed methods leads to large performance improvement over match-score or decision level fusion

    Analysis of Score-Level Fusion Rules for Deepfake Detection

    Get PDF
    Deepfake detection is of fundamental importance to preserve the reliability of multimedia communications. Modern deepfake detection systems are often specialized on one or more types of manipulation but are not able to generalize. On the other hand, when properly designed, ensemble learning and fusion techniques can reduce this issue. In this paper, we exploit the complementarity of different individual classifiers and evaluate which fusion rules are best suited to increase the generalization capacity of modern deepfake detection systems. We also give some insights to designers for selecting the most appropriate approach
    corecore