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Abstract 
 

Evaluation and Performance Prediction of Multimodal Biometric 

Systems 

 

Nevena Samoska 
 
 
Multibiometric systems fuse the evidence presented by different biometric sources in 
order to improve the matching accuracy of a biometric system. In such systems, 
information fusion can be performed at different levels; however, integration at the 
matching score level is the most commonly used approach due to the tradeoff 
between information content and accessibility. This work develops a tool in order to 
analyze the impact of various normalization schemes on the matching performance of 
score-level fusion algorithms. The tool permits the systematic evaluation of different 
fusion rules after employing normalizing and mapping the match scores of different 
modalities into a common domain. Furthermore, it provides a method to fit various 
parametric models to the score distribution and analyze the goodness of fit statistic 
based on the Chi-Squared and Kolmogorov-Smirnov tests. Experimental results on 
multiple datasets indicate the benefits of normalization, the role of parametric 
distributions and the variations in matching performance on different databases. 
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Chapter 1 Introduction 

 

Chapter 1  

Introduction 

 

1.1 Motivation 

 

There are several requirements in current authentication applications, which drive the 

need for multimodal biometrics: universal enrollment requirements, accuracy and 

integrity requirements, risk and viability of spoofing, suitability in usage 

environment. It has been proven [9] that multimodal biometric systems give better 

performance than unimodal biometric systems. As multimodal systems are more 

reliable, a lot of research is conducted to find the best combination of biometric 

modalities and fusion methods. Currently, there are no tools developed that will allow 

testing as well as comparison of different schemes on multimodal biometric systems. 

There is a need to develop standardized biometric testing protocols to provide and 

ensure valid results. To make the evaluation of biometric systems easier, it is 

necessary to develop a user-friendly off-line analysis tool, which will aid in 

evaluating the performance of matching score level fusion methods on multimodal 

biometric systems. 
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1.2 Goal 
 
The goal of this study is to implement an off-line analysis tool, to examine the effect 

of different score normalizations and different fusions on the performance of a 

multimodal biometric system.  

This work consists of four parts:  

i) a verification testing methodology for multimodal biometric systems,  

ii) an evaluation of normalization and fusion algorithms,  

iii) recommendations for designing multimodal biometric systems and  

iv) modular modeling of the software tool that will permit the addition of 

new methods and new approaches for testing. 

 

 

1.3 Organization 

 

The rest of this thesis is organized as follows. Chapter 2 includes an introduction to 

biometrics, unimodal biometrics, different normalization methods and fusion 

techniques, as well as performance measurements. Chapter 3 examines distribution 

fitting approaches using two-statistic tests, Chi-Square and Kolmogorov-Smirnov 

tests. P values and Critical values are explained as a measure for the hypothesis 

testing. Chapter 4 focuses on the implementation of the MultiBiometric (MUBI) tool. 

In Chapter 5, a description of MUBI towards conducting various experiments for 

performance evaluation of a multibiometric system is provided. Also the results for 

the MSU and NIST datasets utilizing the implemented normalization and fusion 

methods are presented. In addition, results from the experiments for the generated 

data are compared using goodness of fit statistic tests. Finally, Chapter 6 describes the 

conclusions derived from this study and the applications of this tool to the related 

fields. 
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Chapter 2 Related work 

 

 

Chapter 2 

Related Work 

 

2.1 Overview of Biometrics 

 

Biometrics refers to the automatic identification or verification of an individual based 

on his/her measurable physical characteristics (e.g. fingerprint, face, etc.) or personal 

behavioral traits (e.g. gait, signature, etc). Increasingly large number of applications 

require user authentication leading to a significant demand for biometric solutions.  

A potential biometric trait is expected to meet the following listed requirements: 

1. Universality - the trait should be possessed by each individual in the given 

population. [6]. 

2. Distinctiveness - the trait should be unique for each person within that population. 

[6] 

3. Permanence - the trait should not change over a period of time with respect to the 

matching algorithm. [6]. 

4. Collectability - the trait should be easy to collect automatically in modern 

biometric systems and must be measurable quantitatively. [6]. 

5. Performance - the biometric trait should lend itself to fast and accurate 

identification. [6]. 
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6. Acceptability - people should be able to accept the use of a certain biometric trait. 

[6]. 

7. Circumvention - reflects how easily the biometric trait can be spoofed using 

fraudulent methods [6]. 

 

Biometric traits can be physical or behavioral. The traits belonging to the first group 

are:  

• DNA 

• Iris 

• Face 

• Fingerprint 

• Hand Geometry 

• Palmprint 

• Vein Pattern 

• Ear 

• Retina 

• Footprint 

• Odor 

The second group consists of: 

• Gait  

• Signature dynamics 

• Keystrokes dynamics  

• Speech / Voice 

 

Each of these biometric characteristics has its own weaknesses and strengths; no 

single biometric is expected to effectively meet all the requirements for varying 

applications. It is obvious that one trait cannot satisfy all the above requirements to 

the greatest degree. Accordingly, the choice of the biometric trait depends on the 

application.  
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The general architecture of a traditional biometric system is shown in Figure 1.  

 

 

Figure 1: Basic architecture of a biometric system. 
 

In this architecture, there are three main parts:  

- the sensor captures the data from the biometric trait and sends raw 

biometric data to the feature extraction module 

- the feature extraction module extracts selected information from the 

raw data and creates a unique feature vector for the biometric sample. 

In the enrollment phase, these features are stored in the database as 

templates. 

- The matcher receives the extracted feature vector from the feature 

extraction module and compares it with the feature vector of one 

specific template (for verification) or multiple templates (for 

identification) which are already stored in the database.  

 

2.2 Performance Measures 

 

There are a number of biometric error types, expressed in error rates or error 

percentages. Usually the performance of biometric systems is measured in terms of 

two error rates, False Accept Rate (FAR) and False Reject Rate (FRR). The FAR 

refers to the errors that the biometric system makes by incorrectly declaring a match 
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between two different individuals and it is called a Type II error. The FRR refers to 

the errors that the biometric system makes when by mistake it does declare a match 

between biometric samples from the same individual and is called a Type I error. 

Some groups also call FAR as False Non-Match Rate (FNMR) and FRR as False 

Match Rate (FMR). To evaluate the performance of a biometric system usually a 

graph of FAR vs. FRR is plotted, recognized as a Receiver Operating Characteristic 

(ROC) curve. ROC curve presents a non-dimensional, basic technical performance 

measure for comparing two or more biometric systems.  

Figure 2 indicates that for different biometric applications different operating points 

should be chosen which would result in different FRR and FAR. Sometimes the ROC 

curve is plotted as GAR (Genuine Accept Rate) vs. FAR. The complement of FRR is 

GAR (GAR = 1 – FRR). The ROC curve is a precise and complete specification of 

the performance of a biometric system, and it is very beneficial in comparing the 

performance of two or more biometric systems. It also displays the trade-offs between 

FAR and FRR over a wide range of thresholds.  

 

 

Figure 2: FAR vs. FRR ROC Curve. [11] 
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Besides the above-mentioned errors, Equal Error Rate (EER) and d-prime are also 

used to summarize the accuracy of a biometric system. EER is the point on the ROC 

curve where the FAR equals the FRR or it is the error rate occurring when the 

decision threshold of a system is set so that the proportion of false rejections are 

approximately equal to the proportion of false acceptances. For example in Figure 2, 

the EER is around 18%.  The EER can inform us if one system performs better than 

other but only in narrow range of points FAR = (EEa, EEb) and FRR = (EEa, EEb). 

Beyond that range, the ROC curves may cross over each other and the EER would be 

invalid as displayed on Figure 3. That is why the EER is an unreliable summary of 

system accuracy.  

D–Prime is a statistical measure of how well a biometric system can discriminate 

between different individuals. The larger the d-prime value, the better a biometric 

system can discriminate between individuals. This measure is most relevant if there is 

a significant difference in performance between the two biometric systems.  

Figure 4 shows that the relative performance of the biometric system with identical d-

prime depends on the chosen operating point. 

 

 

Figure 3: EER example. [10] 
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There are two more types of errors, namely Failure to Enroll (FTE) and Failure to 

Acquire (FTA) rates. The FTE rate measures the percentage of individuals who 

cannot be enrolled in the system. The FTA rate measures the percentage of time in 

which the biometric system cannot obtain the raw biometric data during enrollment or 

authentication. 

It is obvious that every biometric system makes mistakes, and the true value of these 

errors cannot be computed or theoretically established. It is only possible to calculate 

statistical estimates of the errors once we have the database of biometric samples. 

 

 

Figure 4: Different ROC curves for two matchers with same d-prime. [10] 
 

2.3 Multimodal biometrics 

 

Multimodal biometric systems combine two or more modalities (biometric traits). 

These traits include fingerprints, hand-geometry, face, voice, iris, retina, gait, 

signature, palm-print, ear, etc. Some of the limitations of unimodal system are 

overcome by using multiple biometric modalities. A multimodal system offers 

increased performance, anti-spoofing, acceptable error rates, and the ability to operate 

on a large user population. Multimodal biometric systems offer an increase in anti-
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spoofing by making it more difficult for an imposter to fool the system. It is more 

difficult because one has to forge multiple biometric traits and probably within a 

certain time limit. No biometric system can properly work for every user because of 

various factors, e.g. a mute person cannot use a voice recognition system; a person 

with missing fingers cannot use the fingerprint identification system. In addition, 

people may have similar traits that can be difficult to differentiate, e.g., twins will 

have the same DNA profile. 

Another very important advantage in using multimodal biometric systems over 

unimodal biometric systems is the increase in performance. These systems are more 

reliable and provide higher verification rates and improved accuracy due to the 

presence of multiple and independent pieces of evidence. Figure 5 displays the results 

of a study conducted at Michigan State University evaluating the ROC curves of 

fingerprint, facial, and hand geometry systems. None of the three individual 

modalities are as accurate as compared to the combination of all three modalities. 

Many factors need to be considered when designing a multi-biometric system. These 

include the choice and number of biometric traits; the level in the biometric system at 

which information provided by multiple traits should be integrated; the methodology 

adopted to integrate the information; and the cost versus matching performance trade-

off.  

 

Figure 5: ROC Curve for a system utilizing multiple biometric traits. [4] 
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2.3.1 Fusion in Biometrics 

 

Information fusion is the key component in multimodal biometrics [1]. Information 

fusion in multimodal biometrics is the integration of data pertaining to multiple 

independent biometric devices. This can take place at various levels: feature 

extraction level, matching score level, decision level, sensor level, and rank level. 

Figure 6 shows three types of fusion methods. 

Fusion in multi-modal biometrics systems can be implemented in five ways: 

• Multiple sensors may be used to capture the same biometric; 

• Multiple biometrics may be captured; 

• Multiple readings of the same biometric may be combined to achieve an 

optimal reading; 

• Readings of two or more units of the same biometric may be taken (e.g., 

two different fingerprints or both irises) or 

• Different matching and/or feature extraction algorithms may be used on the 

same biometric reading to give separate results. 

 
Figure 6: Biometric fusion options in the verification mode of operation. [15] 
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Fusion of uncorrelated modalities (face and fingerprint) is expected to give better 

performance than the fusion of correlated modalities (multiple matching algorithms) 

[6]. Fusion can take place at various levels: 

 

Feature Extraction level: The raw data captured from each sensor is used to build a 

feature vector, which uniquely identifies a given person in the feature space. 

Combining more feature vectors results in one vector with higher dimensionality and 

may increase the probability of correctly identifying a person. However, fusion at this 

level is difficult due to the following listed problems: curse of dimensionality, 

removing features that are highly correlated between different biometric modalities, 

inaccessible feature vectors for most of the biometric systems.  

 

Matching score level: Fusion at the match score level is much more effective than 

fusion at the decision level. Each unimodal biometric system measures and calculates 

its own matching score. Matching score is a measure of the similarity between 

features derived from a presented sample and a stored template.  A match / non-match 

decision is made based on a certain decision threshold. 

There are two approaches for consolidating the scores obtained from different 

matchers. One approach is to pose it as a classification problem where for each 

biometric modality a feature vector is constructed using the matching scores. A 

trained classifier will decide one of two classes: "Accept" (genuine user) or "Reject" 

(imposter user), based on the feature vector. The second approach is a combination 

problem where the individual matching scores are combined to generate a single 

scalar score, which is then used to make the final decision (see Figure 6). Since the 

matching scores are heterogeneous, normalization is required to transform these 

scores into a common domain. 

 
Decision level: Fusion on this level is the least informative, each biometric system 

makes a decision and then those decisions are combined usually based on majority 

voting scheme. Methods to weight the decisions from each biometric system are also 

used, for example iris over hand geometry.  
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2.3.2 Combining the modalities at matching score level - Normalization 

methods 

 

Each of the biometric modalities will output a matching score. Currently, there is not 

a standard as to what this number represents. It could represent a similarity or a 

dissimilarity (distance) score. The matching scores at the output of the matcher may 

be distinguished as genuine or imposter scores. The sets of the genuine and imposter 

scores may follow different statistical distributions. There is no guarantee that the 

score belongs to specific probability distribution. The scores could also be on 

different numerical scales. Various scores need to be converted into a common 

domain so that they can be combined. It is highly desirable to use a score 

normalization technique that has high robustness and is efficient. Robustness refers to 

insensitivity to outliers in the data and efficiency refers to the proximity of the 

obtained estimate to the optimal estimate when the distribution of the data is known. 

 

 
Figure 7: Normalization methods window in the MUBI tool. 
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The following is a list of normalization techniques that are available and 

implemented in the MUBI. If the matching score set is {sk}, normalized scores are 

denoted as {s’k}: 

• Min max normalization is best suited for the case where the bounds 

(maximum and minimum values) of the scores produced by the 

matcher are known. This method is not robust; therefore, it is highly 

sensitive to outliers. [5] 

 

Figure 8: Face normalized with Min/Max – plot from MUBI tool. 
 

• Decimal scaling can be applied when the scores of different matchers 

are on a logarithmic scale (lack of robustness and assumption that the 

scores of different matchers vary by a logarithmic factor) [5] 

 

 

Figure 9: Face normalized with Decimal Scaling – plot from MUBI tool. 
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• Ζ−score normalization − is calculated using the arithmetic mean and 

standard deviation of the given data. Sensitive to outliers and does not 

guarantee a common numerical range for the normalized scores from 

different matchers. [5] 

 

 

Figure 10: Face normalized with Z-score – plot from MUBI tool. 
 

• Median and median absolute deviation (MAD) method is insensitive to 

outliers and the points in the extreme tails of the distribution, but has 

low efficiency compared with Z-scores. [5] 

 

  |)(| medianksmedianMAD −=  

Figure 11: Face normalized with Median and MAD – plot from MUBI tool. 
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• TanH estimators are robust and highly efficient. They use the Hampel 

estimators, based on the influence ψ - function below, to reduce the 

influence of outliers in the distribution. The mean and standard 

deviation estimates of genuine scores are represented with GHµ  and 

GHσ , respectively[5] 

 

Figure 12: Face normalized with Tanh normalization– plot from MUBI tool. 
 

2.3.3 Combining the modalities at matching score level – Fusion methods 

 

A list of fusion techniques that can be used to combine multiple normalized scores 

into a single score are provided in this section. 

If si is the matching score from ith modality, s represents the resulting fused score. 
 

• The Simple Product Rule combines the scores by multiplying all of the 

individual scores. 

 

• The Simple Sum Rule combines the scores as a linear transformation. 

 

 

ai and bi represents the weights and biases, respectively, which can be entered 

by the user. 
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Figure 13: Fusion methods implemented in the MUBI tool. 

 
• The Simple Max Rule is the maximum score from the different modalities. 

.)....max( 2,1 nssss =  

• The Simple Min Rule is the minimum score from the different modalities. 

.)....min( 2,1 nssss =  

• Biometric Gain against Imposter (BGI) is the likelihood ratio of genuine to 

imposter scores.  

 

  Probability of being an imposter, given the biometric evidence too 

BGI =  ------------------------------------------------------------------------------- 

      Probability of being an imposter, given only prior knowledge 

 

A very good approximation of BGI is Likelihood Ration of Genuine to 

Imposter (LRGI) 

 

Probability of seeing the evidence from an imposter 

BGI~LRGI =  ---------------------------------------------------------------------------

        Probability of seeing it from expected genuine subject  
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Each score is normalized by transforming it into the LRGI scale, which 

represents a normalization process. Then the various scores are combined by 

multiplication or by addition of the log likelihood ratios [20]. 

 

Information fusion at the matching score level is advantageous as it allows the 

possibility to adjust user specific parameters. For example, to compensate for a 

genuine user who has dry skin, a user specific weighting scheme can be implemented 

so that more weight will be placed on the user's other biometric traits. It has been 

shown [2] that the use of user-specific weights and thresholds can improve the 

performance by approximately 3% and 2%, respectively. 

 

2.2.3 Data Partitioning 
 
When testing the performance of the selected combination of normalization and 

fusion method, the input data can be partitioned. In this way, we can test the chosen 

combination of normalization and fusion methods on a new data that has not been 

used while choosing the methods. One way to do this is not to use the entire dataset 

during the training phase. Some of the data is removed before training begins. Then 

when the training is over, the data that was removed can be used to test the 

performance of the normalization and fusion methods on the “new” data. This is the 

basic idea for a whole class of model evaluation methods called cross validation. 

The datasets can be divided into training and test set in three different ways in MUBI: 

a) re-substitution method where all the available data is used for training as 

well as testing, training and test sets are the same (special case of hold-out 

method) 

b) hold-out method – input value for the percentage can be entered and data 

will be divided into independent training and test sets according to the 

specified percentages. 
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Figure 14: Partition Data methods in the MUBI tool. 
 

The holdout method is the simplest kind of cross validation. The dataset is 

separated into two sets, called the training set and the testing set. 

Normalization parameters are estimated using only the training set. Then 

the test set representing the part of dataset that has never been seen before 

in the system is normalized using these parameters and the fusion method 

is executed. The advantage of this method is that it takes less time to 

perform fusion on a large dataset. However, its evaluation can have a high 

variance. The evaluation depends heavily on the selected data points in the 

training set and the test set, and thus the evaluation may be significantly 

different depending on the partitioning the dataset. 

c) leave one out method - In this method the dataset is divided to n-1 

different training samples and 1 test sample, N different times. This means 

that N separate times, normalization parameters are estimated from all 

data points except one score and then normalization and fusion are 

performed to test scores from each modality. 

By using the training set we can compare parameters for normalization and then test 

the performance of the fusion method on the test set. 
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Chapter 3 Analysis of the score distributions 

 

 

 

 

 

Chapter 3  

Analysis of the score distributions 

 

3.1 Goodness of Fit Statistics  

 

By analyzing the match scores, conclusions about the performance of the biometric 

system can be derived. The distributions of the scores are very important for 

describing the data. One way to examine the data is to fit a parametric  probability 

distribution. There are statistics, which measure how good the distribution fits the 

input data and how confident we can be that the data was produced by the distribution 

function. For each of these statistics the smaller the value, the better the fit. We used 

two different fit statistics: Chi-squared and Kolmogorov-Smirnov. When more than 

one fit statistic is available, there is no hard rule to decide which test will give you the 

"best" result. Each test has its own strengths and weaknesses. The decision is up to 

the user and the user must decide which information is more important when 

considering which test to use. 

3.1.1 Maximum Likelihood Estimation 
 
The Maximum likelihood Estimates (MLE) of a distribution are the parameters of the 

distribution function that maximize the probability of obtaining the given dataset. 
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This method is robust and generates estimators with good statistical properties. The 

implementation can be mathematically intense. 

For any density distribution f(x) with one parameter �, and a corresponding set of n 

sampled values Xi, an expression called the likelihood is defined as: 

∏
=

=
n
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1

),( α  

To find the MLE, simply maximize L with respect to �: 

0=
∂
∂
α
L

, 

and solve for �. The method described above can be easily generalized to 

distributions with more than one parameter. 

 

For example, an exponential function with a fixed lower bound of zero has only one 

adjustable parameter, and its MLE is easily calculated. The distribution’s density 

function is: 
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To simplify, we can use the natural log of the likelihood function: 
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To maximize the log of the likelihood, simply set its derivative with respect to b to 
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Therefore, MUBI tries to fit the data to the best Exponential function with a fixed 

lower bound of zero. It first finds the mean of the input data and uses it as the MLE 

for �. 

 

3.1.2 Chi-Squared statistics  
 
The chi-squared statistic is the best-known goodness-of-fit statistic. It can be used 

with both continuous and discrete sample data. To calculate the chi-squared statistic 

first the x-axis domain must be broken into several “bins”. The chi-squared statistic is 

defined as:  

( )
�
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−
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i i

ii

E
EN

1

2
2χ  

where: 

        K is the number of bins; 

iN  is the observed number of samples in the ith bin; 

iE  is the expected number of samples in the ith bin. 

 

The chi-squared statistic is calculated directly from the difference between the 

observed and expected values and a characteristic called the degrees of freedom. 

Whether the observed and expected values are similar enough to be able to claim no 

association is measured by the P-value, which is calculated from the chi-squared 

statistic and its degrees of freedom. A commonly adopted convention is to reject the 

hypothesis of no association between the two variables if the P-value is less than 0.05 

(P < 0.05). 

The chi-squared statistic has a weakness, as there are no clear rules regarding the 

selection criteria for the number and location of the bins. Different conclusions for the 

same data can be derived depending on the specified bins. Some unpredictability can 

be removed by choosing equiprobable bins. 
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3.1.3 Kolmogorov–Smirnov statistic 
 

This test is implemented in MUBI and is used to decide if the match score dataset 

comes from a population with a specific distribution. 

Kolmogorv-Smirnov statistic is described by: 

	



�
�


� −=
∧

)()(max xFxFD nn  

where  

n = total number of data points 

)(xF
∧

 = the fitted cumulative distribution function 

n
N

xF x
n =)(  

xN  = the number of iX ’s less than x. 

 

Since the Kolmogorov-Smirnov statistic does not require binning, it is less arbitrary 

than the chi-squared statistic. A weakness of the Kolmogorov-Smirnov statistic is its 

inability to detect tail discrepancies. 

 

 

 

3.1.4 P-values and Critical values  
 

The goodness-of-fit statistic reports a measure of the deviation of the fitted 

distribution from the input data. As mentioned earlier, the smaller the fit statistic is 

the better is the fit. However, how small a value is needed for a “good” fit? This 

section explains how P-values and critical values can be used to analyze the 

“goodness” of a fit. 
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Figure 15: Goodness of fit tests in the MUBI tool. 

 
Suppose we have a distribution fitted to a set of N sampled values, and a 

corresponding fit statistic - t. How likely is it that a new set N samples drawn from 

the fitted distribution would generate a fit statistic greater than or equal to t? This 

probability is referred to as the P-value. As the P-value decreases to zero, we are less 

and less confident that the fitted distribution could possibly have generated our 

original data set. On the other hand, as the P-value approaches one, we have no basis 

to reject the hypothesis that the fitted distribution actually generated our data set. 

Often a particular level of significance needs to be specified, usually denoted by �. 

The value t of the fit statistic at � level of significance is known as the “critical 

value”. This value of � is the probability that we will incorrectly reject a distribution 

because it generated, due to statistical fluctuations, a value of t that was very large. 

Then we need to know, given this significance level, what is the largest value of t that 

would be accepted as a valid fit. Any fit that has a value of t above the critical value is 

rejected, while fits with values of t below the critical value are accepted. Typically, 

critical values depend on the type of distribution fit, the particular fit statistic being 

used, the number of data points, and the significance level. 
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Skewness and Kurtosis are measures of the shape of the distribution. Skewness 

characterizes the degree of asymmetry of a distribution around its mean. A positive 

value of skewness signifies a distribution with asymmetric tail extending out towards 

more positive x. A negative value signifies a distribution whose tail extends out 

towards more negative x. If the skew value is then it suggests that the distribution 

may be symmetric.  
3
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where: 

(x1…xN) represents the scores; 

N – is the total number of scores; 

µ  -is the mean of the scores; 

σ  - is the standard deviation of the scores. 

 

Kurtosis measures the relative peakness or flatness of a distribution (relative to 

normal distribution). If the value of the kurtosis is positive then the distribution is 

leptokurtic (leptokurtic distribution has a more sharp "peak" around the mean- it 

means higher probability than a normally distributed scores near the mean) and 

negative value suggests platykurtic (a platykurtic distribution has a smaller "peak" 

around the mean  -it means a lower probability than a normally distributed scores near 

the mean). 
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where: 

(x1…xN) represents the scores 

N – is the total number of scores 

µ  -is the mean of the scores 

σ  - is the standard deviation of the scores 

 



 

 

25 

25 

The shift parameter is calculated for each distribution. It indicates any x-value that is 

applied if the input data exceeds the range of the fitted distribution. A shifted 

distribution is expressed in the form Distribution (arg1, arg2… argn) ± Shift, where a 

sample drawn from the shifted distribution will have the shift amount added to or 

subtracted from it. 
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Chapter 4 Implementation 
 

Chapter 4  

Implementation 

 

4.1 MUBI offline analysis tool  

 

With the MUBI off-line analysis tool we can empower biometric system designers to 

chose “the best” integration techniques in the context of their application. It allows 

the evaluation of different normalization and fusion methods as multimodal biometric 

system design alternatives. The tool is implemented in Java 5 and it is portable to any 

operating system containing JAVA installation. For the goodness of fit evaluations, a 

Matlab installation is also required on the operating system. 

The MUBI is an application for analyzing biometric systems. Only one biometric 

system can be analyzed at a time. Each system contains a number of biometric 

modalities. The inputs for each modality are the genuine and the imposter scores. The 

tool combines similarity as well as distance scores. When a modality to the project 

(biometric system), needs to be added, two text files or comma-delimited files 

containing the genuine and imposter scores are required.  
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Figure 16: MUBI tool – MSU Dataset. 
 

After modalities are added to the project (Figure 17), the project, including 

information about the modalities can be saved into a single binary file.  For each 

modality, we can plot the estimated density curves for its genuine and imposter 

scores, create partitioning with some of the methods, normalize and then fuse all the 

modalities with one of the fusion methods. A ROC curve can be plotted to see the 

performance of the selected combination and it can be exported into jpg or bmp 

image file (Figure 18). When moving the mouse above the graph the FAR and GAR 

for that specific point on the graph are indicated. In addition, all normalized and fused 

scores can be exported into text files for performing extra analysis. 

Testing different strategy rules can be developed for a specific database. The 

distribution fit method helps in guessing the underlying distribution. Partitioning data 

aids in evaluating the performance of the specific model on the test set which is 

completely separate from the training set. Results of this tool can be used to identify 

the combinations of biometric traits that give significantly improved performance. 
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Figure 17: Add modality in the system from MUBI tool. 
 
The performance of the multimodal biometric system with MUBI can be studied with 

fusion techniques like: the simple sum of scores, the simple max score, the simple 

min-score, simple product score and BGI fusion methods can be applied on the 

normalized scores. The scores are transformed into similarity scores with simple 

distance-to-similarity transformation and with no scale change. Then one of the 

following normalization techniques can be used: simple Min-Max, Z-score, Median-

MAD, and Tanh. For BGI fusion normalization methods are not required since the 

method itself normalizes the scores. 

 

 
Figure 18: ROC curve plot for one biometric system from MUBI tool. 
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Chapter 5 Experiments and results 

 

Chapter 5  

Experiments and results  

 

5.1. MSU dataset 

 

The MSU multimodal database used in our experiments contains genuine scores and 

the other with 12,250 imposter scores. The data was collected from 50 users using 

different sensors, over different time periods. Five face images and five fingerprints 

of the same finger were obtained from each user. Five hand-geometry images were 

taken from 50 different users (some of the users were present in both sets). For the 

biometric traits, it is assumed mutual independence. This assumption permit to 

randomly pair users from the two sets. Thus, a database of 50 users was constructed, 

each user having five biometric templates for each modality. Fingerprint matching 

using minutiae features was used and the scores are similarity scores. For face, 

eigenface coefficients were used as a representation of the face image. Euclidean 

distance was calculated between the eigenface coefficients of the template and that of 

the input face image.  For the hand geometry, also Euclidean distance was used to 

calculate the matching score between the 14-dimensional feature vectors representing 

hand images [5]. 
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5.1.1 Experiments with normalization and fusion methods on MSU dataset 

 

First, the distributions of the score density plots of genuine and imposter scores for 

each modality are presented below. Analyzing the shape of the genuine and imposter 

scores, one can see overlapping region between the two distributions. Accordingly, 

we can predict the impact of that modality on the performance of the system. In 

Figure 19, the genuine and imposter density functions of the fingerprint system are 

plotted using MUBI. We can observe that the imposter scores are very close to zero, 

and the genuine scores are spread over a wide range of values [5]. Density plots of the 

face genuine and imposter scores are displayed in Figure 20 and the density plots of 

hand genuine and imposter scores in Figure 21.  

The density plots of genuine and imposter scores indicate that the overlapping area 

for finger is the smallest and for hand geometry is the largest.  

Before discussing the fusion methods, it should be noted that if there are modalities 

with different kind of scores, for example, similarity scores from finger and distance 

scores from face and hand, MUBI transforms all the scores to similarity scores before 

performing normalization and fusion. Thus the raw scores from all three modalities 

are made comparable. The scores produced in these experiments are unbounded and 

can, in theory, produce any value. 

Figure 22 displays the ROC curves generated by utilizing different normalization 

methods followed by the Simple Sum Rule. In addition, the ROC curves of each 

modality are shown for comparison purposes. Tanh normalization followed by the 

Simple Sum Rule gave the best ROC curve for these three modalities from the MSU 

dataset. 
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Figure 19: Density plot of finger genuine and imposter scores. 
 
 
 

 

Figure 20: Density plot of face genuine and imposter scores. 
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Figure 21: Density plot of hand genuine and imposter scores. 
 

 

Figure 22: Different normalization methods followed by the Simple Sum Rule on 
three modalities from MSU dataset. 
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Figure 23 shows the ROC curves of the three modalities from the MSU dataset. 

Scores were normalized with the Min-Max normalization method and then combined 

with the Simple Sum Rule, Simple Product Rule, Minimum Rule, Maximum Rule 

and BGI fusion method. The Simple Sum Rule after Min-Max normalization gives 

the best performance in this experiment. 

For this dataset, it can be observed from the experiments that Min-Max, Z-Score and 

Tanh normalization methods outperform the other normalization methods. It should 

be noted that if the scores from the modalities are significantly different there is no 

guarantee that these methods will work. 

Figure 24 shows the overall winner for the MSU dataset which is the Tanh 

normalization method followed by the Simple Sum Rule fusion. 

Table 1 summarizes the Genuine Acceptance Rate (GAR) of the multimodal system 

for different normalization techniques followed by the Simple Sum Rule fusion 

method and BGI fusion at a False Acceptance Rate (FAR) of 0.1%. For the BGI 

method half of the scores are used for density estimation based on the Parzen 

Window method [24]. The user can specify the kernel function and the window size. 

It should be noted that the training set is randomly chosen and hence the results even 

for the same fusion rule may not be similar. In Table 1 the average GAR value is 

presented for five BGI fusions. 

 

Fusion techniques Normalization techniques Simple Sum Rule BGI (average value) 
Min-Max 99.548 
Z-Score 99.699 

Tanh 99.825 
Median 84.036 
Decimal 99.328 

98.3726 

Table 1: Genuine Acceptance Rate (GAR) (%) of different normalization 
techniques followed by the Simple Sum Rule fusion method and the BGI method 

at 0.1% False Acceptance Rate (FAR). 
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Figure 23: Different fusion methods after Min-Max normalization on three 

modalities from MSU dataset. 
 

 

Figure 24: Overall winner for the MSU dataset – Tanh normalzition with Simple 
Sum Rule fusion method. 
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5.2 NIST dataset 

 

Biometric Scores Set - Release 1 (BSSR1) is a set of raw output similarity scores 

from two face recognition systems and one fingerprint system, operating on frontal 

faces, and left and right index live-scan fingerprints, respectively.  

 

 

Figure 25: NIST (BSSR1) dataset [8]. 
 

The release includes true multimodal score data, i.e. similarity scores from the 

comparisons of faces and fingerprints of the same people. The dataset is comprised of 

face and fingerprint scores from the same set of 517 individuals. For each individual, 

the set contains one score from the comparison of two right index fingerprints, one 

score from the comparison of two left index fingerprints, and two scores (from two 

separate matchers) from the comparison of two frontal faces. These scores were 

computed from the fingerprint images and the face images of the same person 

collected at the same time. NIST database consists of four modalities Face C 

Matcher, Face G Matcher, Left Index Finger and Right Index Finger each with 517 

genuine scores and 266,772 imposter scores. 
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5.2.1 Experiments with normalization and fusion methods on NIST dataset 

 

For analyzing the genuine and imposter distributions of the scores, density plots of 

these scores for the finger left index are displayed in Figure 26. Figure 27 presents 

density plots of the genuine and imposter scores for the right finger index. Density 

plots for the genuine and imposter distributions of the face C matcher and face G 

matcher are displayed in Figure 28 and Figure 29, respectively. The overlap area is 

the smallest for the right finger index compared to the other modalities. Accordingly, 

the ROC curve for the right finger index in Figure 30 is the best among the four 

modalities. Figure 30 shows the performance for each biometric from the NIST 

dataset. Scores are fused with the Simple Sum Rule using Min-Max normalization 

method on system with two modalities, three modalities and four modalities. It is 

obvious that the ROC curve when two modalities are fused is much better than the 

ROC curve of each individual biometric trait. In addition, it can be observed that 

adding more modalities to the system improves the performance of the multimodal 

biometric system (for this dataset).  

Figure 31 shows ROC curves from the experiments with different fusion methods. 

BGI and the combination with MinMax Normalization and Simple Sum Rule fusion 

perform the best from all combinations.  

 

Figure 26: Density plot of the genuine and imposter scores of the finger left 
index. 
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Figure 27: Density plot of genuine and imposter scores of the finger right index. 
 

 

 
Figure 28: Density plot of the genuine and imposter scores of the face C matcher. 
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Figure 29: Density plot of the genuine and imposter scores of the face G 
matcher. 

 

 
Figure 30: Fusion Simple Sum Rule with Min-Max normalization method on 

NIST dataset. 
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Figure 31: Different fusion methods after Min-Max normalization on NIST 
dataset. 

Figure 32: Different normalization methods followed by Simple Sum Rule on 
NIST dataset. 
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Obviously, the Simple Sum Rule after Min-Max normalization gives the best 

performance. The BGI fusion method gives almost as good a performance as the 

Simple Sum Rule after Min-Max normalization method. This method is convenient 

because it does not require prior normalization of the scores. However, the 

performance of this method is highly dependable on the type of the kernel function 

and the window size used for density estimation. In addition, it should be noted here 

that this method might require higher computational time because it requires the 

calculation of the density functions (pdfs) for each modality. This could be 

significant, especially, if the number of scores is large as is the case with this dataset 

(for each modality 517 genuine + 266772 imposter scores). 

To observe the performance of the normalization methods - Min-Max, Z-Score, Tanh, 

Median normalization methods the Simple Sum Rule fusion was used and the results 

are presented in Figure 32. Min-Max normalization followed by the Simple Sum Rule 

gave the best ROC curve on the NIST dataset. 

The overall conclusion is that Min-Max, Tanh and Z-Score normalization methods 

followed by the Simple Sum Rule give significant improvement in the performance of 

the multimodal biometric system. 

Table 2 summarizes the Genuine Acceptance Rate (GAR) of the multimodal system 

for different normalization techniques followed by the Simple Sum Rule fusion 

method and BGI fusion at a False Acceptance Rate (FAR) of 0.1% on the NIST 

dataset. 

Fusion techniques Normalization techniques 
Simple Sum Rule BGI (average value) 

Min-Max 99.398 
Z-Score 98.343 

Tanh 98.795 
Median 99.398 
Decimal 99.548 

99.525 

Table 2: Genuine Acceptance Rate (GAR) (%) of different normalization 
techniques followed by the Simple Sum Rule fusion method and the BGI method 

at 0.1% False Acceptance Rate (FAR). 
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5.3. Experiments with synthetically generated scores using the MSU 

and NIST datasets 

Using goodness of fit statistic tests, we tried to guess the best distribution that 

describes the scores. Chi-Square and Kolomogorov-Smirnov tests were implemented 

in MUBI and the results are summarized in Table 3 for the MSU dataset and Table 4 

for the NIST dataset. Four parametric distributions were considered Exponential, 

Normal, Gamma and Weibull. MUBI calculates the parameters for each distribution 

using MLE. The test statistic value and the p-value for each test has been imported in 

the fore mentioned tables. 

 

MSU dataset 
Exponential 

Distribution 

Normal 

Distribution 

Gamma 

Distribution 

Weibull 

Distribution 

Critical 

values at 

0.05 and 

0.01 

Best 

Distribut

ion 

Chi-Square test 

value / p value 
157.888 / 0 93.472 / 0 136.24 / 0 114.856 / 0 Finger 

Genuine 

Scores 
K-s test value/ 

p value 
0.143 / 0 0.066 / 0.025 0.129 / 0 0.093 / 0 

32.671 

29.615 
normal 

Chi-Square test 

value / p value 

162523.531 / 

0 
163223.598/0 

161687.765 / 

0 

162724.764 / 

0 
Finger 

Imposter 

Scores 
K-s test value/ 

p value 
0.212 / 0 0.328 / 0 0.283 / 0 0.251 / 0 

568.902 

556.534 

exponent

ial 

Chi-Square test 

value / p value 
104.384 / 0 230.224 / 0 50.44 / 0 60.12 / 0 Face 

Genuine 

Scores 
K-s test value/ 

p value 
0.149 / 0 0.164 / 0 0.074 / 0.007 0.078 / 0.005 

32.671 

29.615 
gamma 

Chi-Square test 

value / p value 

11110.067 / 

0 
318.184 / 0 822.58 / 0 2557.149 / 0 Face 

Imposter 

Scores 
K-s test value/ 

p value 
0.285 / 0 0.021 / 0 0.051 / 0 0.176 / 0 

568.902 

556.534 
normal 

Chi-Square test 

value / p value 
123.48 / 0 228.552 / 0 72.704 / 0 66.554 / 0 Hand 

Genuine 

Scores 
K-s test value/ 

p value 
0.174 / 0 0.147 / 0 0.07 / 0.013 0.076 / 0.006 

32.671 

29.615 
weibull 

Chi-Square test 

value / p value 
3938.947 / 0 5468 .279/ 0 837.252 / 0 2825.19 / 0 Hand 

Imposter 

Scores 
K-s test value/ 

p value 
0.186 / 0 0.116 / 0 0.035 / 0 0.145 / 0 

568.902 

556.534 
gamma 

Table 3: Results from the Chi-Square and Kolomogorov-Smirnov test on MSU 
dataset. 
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The results according to the selected best distributions are marked with red in Table 3 

and Table 4. 

 

NIST dataset 
Exponential 

Distribution 

Normal 

Distribution 

Gamma 

Distribution 

Weibull 

Distribution 

Critical 

values at 

0.05 and 

0.01 

Best 

Distribut

ion 

Chi-Square test 

value / p value 
97.34 / 0 89 / 0 77.596 / 0 

42.021 / 

0.004 

Finger Left 

Index 

Genuine 

Scores 

K-s test value/ 

p value 
0.112 / 0 0.08 / 0.003 0.088/ 0.001 0.077 / 0.004 

32.671 

29.615 
Weibull 

Chi-Square test 

value / p value 

15686774.70

8 / 0 

15712887.708/

0 

15687478.39

6 / 0 

15699752.03 

/ 0 

Finger Left 

Index 

Imposter 

Scores 

K-s test value/ 

p value 
0.388 / 0 0.162 / 0 0.159 / 0 0.196 / 0 

568.902 

556.534 
Normal 

Chi-Square test 

value / p value 
175.638 / 0 68.064 / 0 69.936 / 0 

21.085 / 

0.454 

Finger Right 

Index 

Genuine 

Scores 

K-s test value/ 

p value 
0.193 / 0 0.068/ 0.017 0.087 / 0.001 0.026 / 0.874 

32.671 

29.615 
Weibull 

Chi-Square test 

value / p value 

15708968.87 

/ 0 

15755990.445 / 

0 

15708992.33

3 / 0 

15721143.87

5 / 0 

Finger Right 

Index 

Imposter 

Scores 

K-s test value/ 

p value 
0.38 / 0 0.161 / 0 0.271 / 0 0.193/ 0 

568.902 

556.534 
Gamma 

Chi-Square test 

value / p value 
5215.553 / 0 101.34 / 0 2393.085 / 0 

10815.043 / 

0 

Face C 

Matcher 

Genuine 

Scores 

K-s test value/ 

p value 
0.586 / 0 0.093 / 0 0.443 / 0 1 / 0 

32.671 

29.615 
Normal 

Chi-Square test 

value / p value 

9757343.81/ 

0 
205280.135 / 0 

3061979.339  

/ 0 

136856615.0

1 / 0 

Face C 

Matcher 

Imposter 

Scores 

K-s test value/ 

p value 
0.609 / 0 0.216 / 0 0.488 / 0 1 / 0 

568.902 

556.534 
Normal 

Chi-Square test 

value / p value 
1381.936 / 0 23.979 / 0.294 49.766 / 0 10857 / 0 

Face G 

Matcher 

Genuine 

Scores 

K-s test value/ 

p value 
0.426 / 0 0.058 / 0.06 0.088 / 0.001 1/ 0 

32.671 

29.615 
Normal 

Chi-Square test 

value / p value 

1293650.557 

/ 0 
242532.293 / 0 

263207.276 / 

0 

137 387 

579.993 / 0 

Face G 

Matcher 

Imposter 

Scores 

K-s test value/ 

p value 
0.456 / 0 0.218 / 0 0.185 / 0 1 / 0 

568.902 

556.534 
gamma 

Table 4 Results from the Chi-Square and Kolomogorov-Smirnov test on NIST 
dataset. 
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For every modality from the MSU and NIST dataset, genuine and imposter 

distributions with parameters are specified in Table 5 and Table 6. For the MSU 

dataset, 500 and 12250 scores were generated for each genuine distribution and each 

imposter distribution, respectively, using the parametric distribution. For the NIST 

dataset contains 517 genuine scores 10000 imposter scores were generated. 

For both datasets MSU and NIST, multiple synthetic datasets were generated. In this 

thesis the results from four such experiments are presented as MSU - case study 1 and 

2 and NIST - case study 1 and 2. The range for the scores is taken from the original 

scores and the shift parameter is calculated according to the domain of the 

distribution tested.  

 

MSU Scores Distribution Parameters Shift Range 

finger genuine 

scores 
Normal normal(307.226, 203,681) 

0 
0 – 966 

finger imposter 

scores 
Exponential exp(6.166) 

0 
0 – 126 

face genuine 

scores 
Gamma gamma(1.426,14.636) 

0 
0.6838 - 105.537 

Face imposter 

scores 
Normal normal(114.066, 39.195) 

0 17.835033 - 

267.889435 

hand genuine 

scores 
Weibull weib(0.003, 1.438) 

0 
0 – 266 

hand imposter 

scores 
Gamma gamma(2.305, 71.205) 

0 
25 – 852 

Table 5: Summary for the selected distributions for MSU dataset. 
 

The density functions of the generated scores compared with density functions of the 

original scores are shown in figures 33, 34 and 35 for case study 1 and figures 39, 40 

and 41 for case study 2. We can observe that the generated distributions are very 

similar to the original distributions. The overlapping area between the genuine and 

imposter distributions of generated scores is almost the same as the overlapping area 

between the genuine and imposter distributions of original scores. For the MSU 

dataset, the finger modality has the smallest overlapping area compared to the area for 
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face and hand geometry in both case studies. In Figure 36, for case study 1 and in 

Figure 42, for case study 2, it can be observed that the performance of the finger 

modality is the best of all the three modalities. It should be noted that the performance 

of generated scores for face and hand in both case studies give worst performance 

than the modalities from the original data, due to the increased overlapping area 

between genuine and imposter distributions. 

 

NIST Scores Distribution Parameters Shift Range 

Finger Right Index 

genuine scores 
Weibull weibull (0.000346, 1.741) 

0 
0 – 257 

Finger Right Index 

imposter scores 
Normal normal(7.003, 3.096) 

0 
0 – 43 

Finger Left Index 

genuine scores 
Weibull weibull (0.003, 1.347) 

-4 
4 - 246 

Finger Left Index 

imposter scores 
Gamma Gamma(3.813, 1.899) 

0 
0 – 45 

Face C Matcher genuine 

scores 
Normal normal(0.715, 0.105) 

0 
-1 – 0.89818 

Face C Matcher imposter 

scores 
Normal normal(0.529, 0.074) 

0 
-1 – 0.73154 

Face G Matcher genuine 

scores 

Normal normal(76.783, 2.883) 0 64.80565 – 

83.49406 

Face G Matcher imposter 

scores 

Gamma gamma(15.323, 0.786) -54.835 54.83538 – 

76.48196 

Table 6: Summary for the selected distributions for NIST dataset. 
 

To evaluate the impact of the normalization method on the generated dataset all 

normalization methods implemented in MUBI were tested and the Simple Sum Rule 

fusion method was applied to combine the scores. Figure 36 the summarizes the 

fusion ROC curves along with the ROC curves from the individual modalities for the 

case study 1 and in Figure 42 for case study 2. All fusion combinations give better 

performance than each individual modality. The best result presented for the case 

study 1 is the BGI fusion method with Gaussian kernel function and window size 10. 

Tanh and Z-Score normalization followed by the Simple Sum Rule fusion method 
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also gave very good performance. The best result for the case study 2 is the Simple 

Sum Rule fusion method with Tanh and Median normalization method.  

In order to see if the fusion combinations on generated data give better performance 

than the same fusion combination on the original data, one of the best fusion 

combinations is selected and compared with the same combination on the original 

data. Figure 37 shows one of the best methods on generated data – BGI compared 

with the BGI on original data from MSU dataset. We can see that BGI on generated 

data outperforms the BGI on original data.  

In addition, to compare the fusion combination with normalization included, Min-

Max normalization method followed by the Simple Sum Rule fusion method is 

compared with the same combination on the original MSU dataset in Figure 38.  We 

can see that the fusion combination on the original data gives better performance.  

 

The performance evaluation of the case study 2 dataset is presented in Figure 43 and 

44. Figure 43 shows BGI fusion method performed on the generated data compared 

with the BGI on the original data from MSU dataset. We can see that BGI on 

generated data outperforms the BGI on original data on some parts of the ROC curve.  

In Figure 44, the Simple Sum Rule fusion method after Z-score normalization is 

compared with the same combination on the original data from the MSU dataset. The 

fusion combination on the original data gives better performance. However, the 

fusion combination from the generated data is very close to the original one and 

provides better performance than each individual modality. 

 

Conclusion 

 

Experiments above show that the best performance fusion combination in the both 

cases for generated data did not necessary gave the same combination for fusion on 

the original dataset. Only BGI fusion method outperformed the BGI from original 

dataset in the both case studies.  

Table 7 summarizes the Genuine Acceptance Rate (GAR) of the multimodal system 

for different normalization techniques followed by the Simple Sum Rule fusion 
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method and BGI fusion at a False Acceptance Rate (FAR) of 0.1% for both case 

studies.  

All normalization methods followed by the Simple Sum Rule gave better 

performance on the original MSU dataset. In addition, interestingly, though the 

datasets in both case studies were generated by the same distributions and same 

parameters, the combination for the overall winner was observed to be different in 

both the cases. In general BGI performs very good for all datasets. Tanh and Z-Score 

normalization  followed by the Simple Sum Rule perform well in the first case study 

where Median normalization followed by the Simple Sum Rule performed well in the 

second.  

 

MSU casa study 1 MSU casa study 2 
Normalization 

Techniques 
Simple Sum 

Rule 
BGI (average value) 

Simple Sum 

Rule 
BGI (average value) 

Z-Score 99.398 97.59 

Min-Max 97.544 96.837 

Tanh 99.398 97.892 

Median 98.343 98.193 

Decimal 97.741 

99.3974 

96.687 

98.291 

Table 7: Genuine Acceptance Rate (GAR) (%) of different normalization 
techniques followed by the Simple Sum Rule fusion method and the BGI method 

at 0.1% False Acceptance Rate (FAR). 
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5.3.1 Case study 1 – MSU dataset 

 
Figure 33: Density plots of the Finger scores for generated data and original 

data. 
 

 
Figure 34: Density plots of the Face scores for generated data and original data. 
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Figure 35: Density plot of the Hand scores for generated data and original data. 

 

 

 

Figure 36: Fusion methods with different normalizations on the generated data. 
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Figure 37: BGI Fusion method on generated data compared with BGI method 

on original data. 

 
Figure 38: Simple Sum Rule Fusion method after Min-Max normalization on 

generated data compared with same method on original data. 
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5.3.2 Case study 2 – MSU dataset  

 

 
Figure 39: Density plots of the Finger scores for generated data and original 

data. 

 
Figure 40: Density plot of the Face scores for generated data and original data. 
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Figure 41: Density plot of the Hand scores for generated data and original data. 
 

 

 
Figure 42: Fusion methods with different normalizations on the generated data. 
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Figure 43: BGI Fusion method on generated data compared with BGI method 
on original data. 

 
Figure 44: Performance of the Simple Sum Rule Fusion method after Z-score 

normalization on generated data compared with the same method on the 
original data. 
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NIST dataset 
 

Similar experiments were conducted for the NIST dataset. According to Table 5 two 

datasets were generated. The density functions of the generated scores compared with 

density functions of original scores are shown in Figure 45 for finger left index, 

Figure 46 for finger right index, Figure 47 for face C matcher and Figure 48 for face 

G matcher for case study 1 and in Figure 51 for finger left index, Figure 52 for finger 

right index, Figure 53 for face C matcher and Figure 54 for face G matcher for case 

study 2. As before, the distributions are very similar to the original ones, and the 

overlapping area is almost the same in both cases. Right Finger Index is the best 

modality in both case studies and the ROC curves for the performance of each 

modality can be seen in Figure 49 and Figure 55. Generated datasets for the finger 

modality give better performance than the original ones, which is not the case with 

the face modality. The density distributions for the face C matcher and face D 

matcher deviate from the original distributions. The overlapping area between the 

genuine and imposter scores for these two, modalities is larger compared with the 

overlapping area for the original scores, and the ROC curves for both modalities in 

the case studies gives inferior performance.  

 

In Figure 49 for case study 1 and in Figure 55 for case study 2, the ROC curves 

generated by testing all normalization methods followed by the Simple Sum Rule 

fusion method is presented. It can be observed that the ROC curve of the fusion 

scenarios gives better performance than each individual modality. The best result in 

both cases was obtained with the Simple Sum Rule fusion method and the Median 

normalization method.  

 

The Simple Sum Rule fusion method after Median normalization is compared with 

the same method of the original data from the NIST dataset. The ROC curve of the 

generated data looks better than the ROC curve of the same combination on original 

data in Figure 50 for case study 1 and in Figure 56 for case study 2.  
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Conclusion  

 

From the experiments on the NIST dataset, it can be observed that again as for the 

MSU dataset, the synthetic data does not result in the same performance as the 

original dataset for the same normalization/fusion combination. For both case studies, 

involving synthetic scores the best combination method is Median and MAD 

normalization combined with the Simple Sum Rule fusion. In both the cases, this 

combination outperformed the same combination from the original NIST dataset. The 

experiments also illustrate that the ROC curves of all normalization techniques in 

combination with the Simple Sum Rule fusion method are very close to each other 

and yield very good performance in both case studies.  

 

Table 8 summarizes the Genuine Acceptance Rate (GAR) of the multimodal system 

for different normalization techniques followed by the Simple Sum Rule fusion 

method and BGI fusion method at a False Acceptance Rate (FAR) of 0.1% for both 

the case studies. 

 

NIST casa study 1 NIST casa study 2 
Normalization 

Techniques 
Simple Sum 

Rule 

BGI (average 

value) 

Simple Sum 

Rule 

BGI (average 

value) 

Z-Score 99.699 99.548 

Min-Max 98.398 98.946 

Tanh 97.59 98.042 

Median 99.849 99.699 

Decimal 99.699 

99.533 

99.247 

99.652 

Table 8 Genuine Acceptance Rate (GAR) (%) of different normalization 
techniques followed by the Simple Sum Rule fusion method and BGI at 0.1% 

False Acceptance Rate (FAR). 
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5.3.3 Case study 1 - NIST dataset 

 

 

Figure 45: Density plots of the Finger Left Index scores for generated data and 
original data. 

 

 

Figure 46: Density plots of the Finger Right Index scores for generated data and 
original data. 
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Figure 47: Density plots of the Face C Matcher scores for generated data and 
original data. 

 

 

Figure 48: Density plots of the Face G Matcher scores for generated data and 
original data. 
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Figure 49: Fusion methods with different normalizations on the generated data. 

 

Figure 50: Simple Sum Rule fusion method after Median normalization on 
generated data compared with same method on original data. 
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5.3.4 Case study 2 – NIST dataset 
 

 
Figure 51: Density plots of the Finger Left Index scores for generated data and 

original data. 

 
Figure 52: Density plots of the Finger Right Index scores for generated data and 

original data. 
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Figure 53: Density plots of the Face C Matcher scores for generated data and 

original data. 
 

 
Figure 54: Density plots of the Face C Matcher scores for generated data and 

original data. 
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Figure 55: Fusion methods with different normalizations on the generated data. 

 

Figure 56: Simple Sum Rule fusion method after Median normalization on 
generated data compared with same method on original data. 
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Chapter 6 Discussion and Conclusion 

 

Chapter 6 

Discussion and Conclusion 

 

From the experiments and the results it is demonstrated that combining 

multiple sources of evidence at the score level improves the performance of the 

biometric system. Two important aspects of fusion at this level are the normalization 

of the data to obtain values or scores in a common range and the fusion rule used to 

combine the scores. It is demonstrated here and in [5] that the normalization of scores 

prior to combining them improves the recognition performance of a multimodal 

biometric system that uses the face, fingerprint and hand-geometry traits for user 

authentication.  

A methodology for testing multimodal biometric systems introduced in [5] is 

implemented into the MUBI tool. This methodology provides a general framework 

for conducting normalization and fusion evaluations. The basis of this methodology is 

applying fusion schemes after the individual biometric match-scores are determined. 

Fusion at this stage does not affect the existing proprietary biometric systems 

allowing a common middle layer to handle the multimodal application but with a 

small amount of common information. Another advantage of using match scores is 

that the data from prior evaluations of single-modal biometric systems can be reused. 

This avoids live testing or re-running individual biometric algorithms. The advantage 

of fusion at the match-score level is that existing and proprietary single-model 
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biometric systems can easily be integrated into a multimodal biometric environment 

if some basic information is provided by these existing systems. The required 

information does not expose the internal operations of these systems.  

Scores output by individual matchers are non-homogeneous and they can be 

distance or similarity scores. Also, ranges of the scores may be different, for example 

[0,100] or [0,1000] along with their distributions. 

For predictive purposes, it is often desirable to understand the shape of the 

underlying distribution of the matching scores. The tool plots the genuine and 

imposter distribution for each modality. In a perfect system, the genuine distribution 

would be non-overlapping with the imposter distribution. If the users are more 

habituated with the application, it will be easier for the users to give same samples 

and this will have influence on the genuine distribution moving it away from the 

imposter distribution and reducing the overlapping area between them. This 

movement will have direct impact on the imposter distribution because they are in 

tight relationship. At this moment, there is no way how we can predict the translation 

of the distributions under various operational scenarios.  

In addition, the tool can perform distribution fitting. To determine the 

underlying distribution, the tool fits the observed distribution to a theoretical 

distribution by comparing the frequencies observed in the data to the expected 

frequencies of the theoretical distribution.  

The tool searches for the set of parameters that make the closest match 

between the distribution function and each genuine and imposter dataset. It will 

identify a distribution that is most likely to produce a particular match score dataset. 

The results should be evaluated quantitatively and qualitatively, before using it to 

generate synthetic scores. Two methods are used for calculating the best distributions 

for the datasets. For sample data, distribution parameters are estimated using 

Maximum Likelihood Estimators (MLEs). Datasets are compared against four 

distributions: Gamma, Normal, Exponential, and Weibull.  

After determining which distribution fits best, the scores are generated with the 

suggested distribution and compared with the fusion methods of the original datasets. 

In this work, it is shown that even though the scores follow the same distribution the 
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performance of the system for the same normalization/fusion combination is 

different. This suggests that the performance of the multimodal biometric system 

completely depends of the dataset. Even small changes in the scores result in different 

normalization/fusion combinations leading to better performances. It implies that 

general rules that would give best performance on different datasets cannot be 

developed. From the experiments, it can be concluded that in general the Simple Sum 

Rule and BGI perform well over all datasets. However, no inferences can be made to 

predict the performance of the system if it is not tested on the representative data. 

This suggests the importance of a tool that would allow a practitioner to experiment 

with different combinations of normalization and fusion schemes, analyze the data 

and directly compare different fitting techniques. One can choose a normalization and 

fusion scheme after analyzing the genuine and imposter score distributions of the 

individual matchers. It is necessary to develop a strategy to choose the design 

parameters of normalization. With this work, we have addressed some limitations of 

deploying of multimodal systems like the lack of a common testing framework and 

the absence of tools to evaluate and build such systems.  

 

 MSU - overall winners NIST - overall winners 

Original dataset Tanh + Simple Sum Rrule  

BGI 

Min-Max + Simple Sum Rule 

BGI 

Case study 1 Tanh + Simple Sum Rule 

Z-Score + Simple Sum Rule 

 BGI 

Median + Simple Sum Rule 

Z-Score + Simple Sum Rule 

BGI 

Case study 2 Median + Simple Sum Rule 

Tanh + Simple Sum Rule 

BGI 

Median + Simple Sum Rule 

Z-Score + Simple Sum Rule 

BGI 

Table 9: Summary of the experiments on generated data. 
 

Finally, MUBI can be used one to speculate the number of required subjects to get 

statistically significant results for a specific application and to decide the size of the 
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test set. The size of the test size affects the performance accuracy. The larger the test 

the more accurate the results are expected to be.  

Consequently, MUBI is a performance prediction tool under General Public License 

that is available to everyone who wants to evaluate multimodal biometric systems. In 

addition, the source code of MUBI is available and its modular structure will allow 

users to upgrade the tool and to implement more methods if needed. 

 

Future work 

 

Currently, there are thousands of users who successfully use biometric devices in a 

wide variety of applications. The proposed tool provides system integrations with the 

ability to test and explore different fusion schemes on different datasets. Because the 

datasets are fixed, results of technology tests are repeatable. The goal is to provide a 

tool for testing results, which will aid current and prospective users in selecting and 

employing biometric technologies in a secure, user-friendly, and cost-effective 

manner. MUBI allows a system designer to model hypothetical multimodal biometric 

systems that can vary the biometric modalities, matching algorithm, normalization 

and fusion techniques, and sample databases. Given this tool, systems can be built to 

optimally match specific application requirements. 

In this thesis, we tried to model the distributions of the genuine and imposter scores in 

order to generate synthetic datasets that would represent the original ones. From the 

experiments was demonstrated that even small variations in the tail of the modeled 

distribution have a great impact on the fusion performance. Synthetic datasets can 

provide an initial estimation of the matching performance. However, this performance 

may not represent the actual performance if the tails of the distribution are not 

accurately modeled. Thus it is important to model the tails of the distribution of the 

genuine and imposter scores appropriately in order to derive benefits from synthetic 

datasets. 

The idea presented in this thesis can be extended as the science of biometric testing 

becomes more mature. Currently there is no scientific-based general biometric testing 
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protocol that ensures valid results, which may result in partial or sometimes 

misleading results. This tool will aid in developing standard testing and reporting 

protocols for multimodal biometric systems and it will help testers to achieve the best 

possible estimation of the performance while applying minimum effort to perform the 

evaluation, itself. In future, one can include the testing of representative data from 

large populations and expanding MUBI by incorporating novel fusion methods that 

can be evaluated against current fusion schemes.  
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Appendix A 

 

Exponential Distribution 
 

Parameters: � > 0 
 
Domain: 0 �  x < +� 
 

Density and Cumulative functions:  
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Mean:         � 
 
Variance:  2β  
 
Skewness:  2 
 
Kurtosis:    9 
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Normal Distribution 
 

Parameters: �, � > 0 
 
Domain: - � � x � +� 
 

Density and Cumulative functions:  
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Gamma Distribution 
 

Parameters: �>0, � > 0 
 
Domain: 0 < x < +� 
 

Density and Cumulative functions:  βα
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Weibull Distribution 
 

Parameters: �>0, � > 0 
 
Domain: 0 � x < +� 
 

Density and Cumulative functions:  
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