496 research outputs found

    A Primer on Regression Methods for Decoding cis-Regulatory Logic

    Get PDF
    The rapidly emerging field of systems biology is helping us to understand the molecular determinants of phenotype on a genomic scale [1]. Cis-regulatory elements are major sequence-based determinants of biological processes in cells and tissues [2]. For instance, during transcriptional regulation, transcription factors (TFs) bind to very specific regions on the promoter DNA [2,3] and recruit the basal transcriptional machinery, which ultimately initiates mRNA transcription (Figure 1A). Learning cis-Regulatory Elements from Omics Data A vast amount of work over the past decade has shown that omics data can be used to learn cis-regulatory logic on a genome-wide scale [4-6]--in particular, by integrating sequence data with mRNA expression profiles. The most popular approach has been to identify over-represented motifs in promoters of genes that are coexpressed [4,7,8]. Though widely used, such an approach can be limiting for a variety of reasons. First, the combinatorial nature of gene regulation is difficult to explicitly model in this framework. Moreover, in many applications of this approach, expression data from multiple conditions are necessary to obtain reliable predictions. This can potentially limit the use of this method to only large data sets [9]. Although these methods can be adapted to analyze mRNA expression data from a pair of biological conditions, such comparisons are often confounded by the fact that primary and secondary response genes are clustered together--whereas only the primary response genes are expected to contain the functional motifs [10]. A set of approaches based on regression has been developed to overcome the above limitations [11-32]. These approaches have their foundations in certain biophysical aspects of gene regulation [26,33-35]. That is, the models are motivated by the expected transcriptional response of genes due to the binding of TFs to their promoters. While such methods have gathered popularity in the computational domain, they remain largely obscure to the broader biology community. The purpose of this tutorial is to bridge this gap. We will focus on transcriptional regulation to introduce the concepts. However, these techniques may be applied to other regulatory processes. We will consider only eukaryotes in this tutorial

    Improving Thermodynamic Models of Transcription by Combining ChIP and Expression Measurements of Synthetic Promoters

    Get PDF
    Regulation of gene expression is a fundamental process in biology. Accurate mathematical models of the relationship between regulatory sequence and observed expression would advance our understanding of biology. I developed ReLoS, a regulatory logic simulator, to explore mathematical frameworks for describing the relationship between regulatory sequence and observed expression and to explore methods of learning combinatorial regulatory rules from expression data. ReLoS is a flexible simulator allowing a variety of formalisms to be applied. ReLoS was used to explore the question of how complex rules of combinatorial transcriptional regulation must be to explain the complexity of transcriptional regulation observed in biology. A previously published dataset was analyzed for regulatory elements that explained the behavior of regulatory modules for 254 genes in 255 conditions. I found that ReLoS was able to recapitulate a reasonable fraction of the variation: mean gene-wise correlation of 0.7) with only twelve combinatorial rules comprising 13 cis-regulatory elements. This result suggested that learning the combinatorial rules of transcriptional regulation should be possible. State ensemble statistical thermodynamic models are a class of models used to describe combinatorial transcriptional regulation. One way to parameterize these models is measuring the expression of a reporter gene driven by many similar promoters . Models parameterized in this fashion do better at explaining the sequence to expression relationship, but fail to distinguish between multiple biological mechanisms that give rise to equivalent expression results in the synthetic promoters, thus limiting the generalizability of the models. I developed a ChIP-based strategy for quantitatively measuring the relative occupancy of transcription factors on synthetic promoters. This data complements existing methods for obtaining expression data from the same promoters. Comparison of models parameterized with only expression, only occupancy, or expression and occupancy reveals specific biological details that are missed when considering only expression data. In particular, the occupancy data suggests that differential regulatory effects of Cbf1 in glucose versus amino acid are a function of how it interacts with polymerase rather than changes in concentration or binding affinity. Additionally, the occupancy data suggests that Gcn4 binds in a cooperative manner and that Gcn4 occupancy is adversely affected by the presence of a nearby Nrg1 site. Finally, the occupancy data and expression data taken together suggest that Gcn4 binds in competition with another transcription factor. Synthesizing disparate sources of information resulted in an improved understanding of the mechanics of transcriptional regulation of the synthetic promoters and was ultimately largely successful in decoupling the DNA binding energies from the TF interactions with polymerase. However, it suggests that more sophisticated models of the relationship between occupancy and expression may be required in at least some cases. Incorporating different sources of data into models of regulation will continue to be important for learning the biological specifics that drive expression changes

    Functional Identification and Characterization of cis-Regulatory Elements

    Get PDF
    Transcription is regulated through interactions between regulatory proteins, such as transcription factors (TFs), and DNA sequence. It is known that TFs act combinatorially in some cases to regulate transcription, but in which situations and to what degree is unclear. I first studied the contribution of TF binding sites to expression in mouse embryonic stem (ES) cells by using synthetic cis-regulatory elements (CREs). The synthetic CREs were comprised of combinations of binding sites for the pluripotency TFs Oct4, Sox2, Klf4, and Esrrb. A statistical thermodynamic model explained 72% of the variation in expression driven by these CREs. The high predictive power of this model depended on five TF interaction parameters, including favorable heterotypic interactions between Oct4 and Sox2, Klf4 and Sox2, and Klf4 and Esrrb. The model also included two unfavorable homotypic interaction parameters. These homotypic parameters help to explain the fact that synthetic CREs with mixtures of binding sites for various TFs drive much higher expression than multiple binding sites for the same TF. I then found that the expression of these synthetic CREs largely changes as ES cells differentiate down the neural lineage. However, CREs with no repeat binding sites drove similar levels of expression, suggesting that heterotypic interactions may be similar in the two conditions. In a separate set of experiments I interrogated the determinants of expression driven by genomic sequences previously segmented into classes based on chromatin features. A set of these sequences was assayed in K562 cells. As expected, we found that Enhancers and Weak Enhancers drove expression over background, while Repressed elements and Enhancers from another cell type did not. Unexpectedly, we found that Weak Enhancers drove higher expression than Enhancers, possibly based on their lower H3K36me3 and H3K27ac, which we found to be weakly associated with lower expression. Using a logistic regression model, we showed that matches to TF binding motifs were best able to predict active sequences, but chromatin features contributed significantly as well. These results demonstrate that interactions between certain combinations of pluripotency TFs, but not all combinations, are important to transcriptional regulation. Furthermore, chromatin modifications can still contribute to predictions of expression even after accounting for binding site motifs. Better understanding of the process of cis-regulation will allow us to predict which sequences can drive expression and how perturbations affect this expression

    Discovery of protein–DNA interactions by penalized multivariate regression

    Get PDF
    Discovering which regulatory proteins, especially transcription factors (TFs), are active under certain experimental conditions and identifying the corresponding binding motifs is essential for understanding the regulatory circuits that control cellular programs. The experimental methods used for this purpose are laborious. Computational methods have been proven extremely effective in identifying TF-binding motifs (TFBMs). In this article, we propose a novel computational method called MotifExpress for discovering active TFBMs. Unlike existing methods, which either use only DNA sequence information or integrate sequence information with a single-sample measurement of gene expression, MotifExpress integrates DNA sequence information with gene expression measured in multiple samples. By selecting TFBMs that are significantly associated with gene expression, we can identify active TFBMs under specific experimental conditions and thus provide clues for the construction of regulatory networks. Compared with existing methods, MotifExpress substantially reduces the number of spurious results. Statistically, MotifExpress uses a penalized multivariate regression approach with a composite absolute penalty, which is highly stable and can effectively find the globally optimal set of active motifs. We demonstrate the excellent performance of MotifExpress by applying it to synthetic data and real examples of Saccharomyces cerevisiae. MotifExpress is available at http://www.stat.illinois.edu/~pingma/MotifExpress.htm

    An experimentally validated network of nine haematopoietic transcription factors reveals mechanisms of cell state stability.

    Get PDF
    Transcription factor (TF) networks determine cell-type identity by establishing and maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory network models has been hampered by a lack of comprehensive functional validation of regulatory interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental data that have allowed us to construct an experimentally validated regulatory network model for haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent experimental validation using single cell expression profiling revealed potential mechanisms for cell state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators. The approach presented here should help to improve our understanding of both normal physiological and disease processes.Research in the authors’ laboratories was supported by Bloodwise, The Wellcome Trust, Cancer Research UK, the Biotechnology and Biological Sciences Research Council, the National Institute of Health Research, the Medical Research Council, the MRC Molecular Haematology Unit (Oxford) core award, a Weizmann-UK “Making Connections” grant (Oxford) and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research (100140) and Wellcome Trust–MRC Cambridge Stem Cell Institute (097922).This is the final version of the article. It first appeared from eLife via http://dx.doi.org/10.7554/eLife.1146

    PeakRegressor Identifies Composite Sequence Motifs Responsible for STAT1 Binding Sites and Their Potential rSNPs

    Get PDF
    How to identify true transcription factor binding sites on the basis of sequence motif information (e.g., motif pattern, location, combination, etc.) is an important question in bioinformatics. We present “PeakRegressor,” a system that identifies binding motifs by combining DNA-sequence data and ChIP-Seq data. PeakRegressor uses L1-norm log linear regression in order to predict peak values from binding motif candidates. Our approach successfully predicts the peak values of STAT1 and RNA Polymerase II with correlation coefficients as high as 0.65 and 0.66, respectively. Using PeakRegressor, we could identify composite motifs for STAT1, as well as potential regulatory SNPs (rSNPs) involved in the regulation of transcription levels of neighboring genes. In addition, we show that among five regression methods, L1-norm log linear regression achieves the best performance with respect to binding motif identification, biological interpretability and computational efficiency

    In silico design of context-responsive mammalian promoters with user-defined functionality

    Get PDF
    Comprehensive de novo-design of complex mammalian promoters is restricted by unpredictable combinatorial interactions between constituent transcription factor regulatory elements (TFREs). In this study, we show that modular binding sites that do not function cooperatively can be identified by analyzing host cell transcription factor expression profiles, and subsequently testing cognate TFRE activities in varying homotypic and heterotypic promoter architectures. TFREs that displayed position-insensitive, additive function within a specific expression context could be rationally combined together in silico to create promoters with highly predictable activities. As TFRE order and spacing did not affect the performance of these TFRE-combinations, compositions could be specifically arranged to preclude the formation of undesirable sequence features. This facilitated simple in silico-design of promoters with context-required, user-defined functionalities. To demonstrate this, we de novo-created promoters for biopharmaceutical production in CHO cells that exhibited precisely designed activity dynamics and long-term expression-stability, without causing observable retroactive effects on cellular performance. The design process described can be utilized for applications requiring context-responsive, customizable promoter function, particularly where co-expression of synthetic TFs is not suitable. Although the synthetic promoter structure utilized does not closely resemble native mammalian architectures, our findings also provide additional support for a flexible billboard model of promoter regulation

    A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods are now also being applied to organisms such as <it>Populus</it>, a woody perennial tree, in order to understand the specific characteristics of these species.</p> <p>Results</p> <p>We present a systems biology model of the regulatory network of <it>Populus </it>leaves. The network is reverse-engineered from promoter information and expression profiles of leaf-specific genes measured over a large set of conditions related to stress and developmental. The network model incorporates interactions between regulators, such as synergistic and competitive relationships, by evaluating increasingly more complex regulatory mechanisms, and is therefore able to identify new regulators of leaf development not found by traditional genomics methods based on pair-wise expression similarity. The approach is shown to explain available gene function information and to provide robust prediction of expression levels in new data. We also use the predictive capability of the model to identify condition-specific regulation as well as conserved regulation between <it>Populus </it>and <it>Arabidopsis</it>.</p> <p>Conclusions</p> <p>We outline a computationally inferred model of the regulatory network of <it>Populus </it>leaves, and show how treating genes as interacting, rather than individual, entities identifies new regulators compared to traditional genomics analysis. Although systems biology models should be used with care considering the complexity of regulatory programs and the limitations of current genomics data, methods describing interactions can provide hypotheses about the underlying cause of emergent properties and are needed if we are to identify target genes other than those constituting the "low hanging fruit" of genomic analysis.</p

    Identification of Yeast Transcriptional Regulation Networks Using Multivariate Random Forests

    Get PDF
    The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays) to sequence features residing in gene promoters (as derived from DNA motif data) and transcription factor binding to gene promoters (as derived from tiling microarrays). We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression measures. An analysis of the multivariate random forest output reveals complex regulatory networks, which consist of cohesive, condition-dependent regulatory cliques. Each regulatory clique features homogeneous gene expression profiles and common motifs or synergistic motif groups. We apply our method to several yeast physiological processes: cell cycle, sporulation, and various stress conditions. Our technique displays excellent performance with regard to identifying known regulatory motifs, including high order interactions. In addition, we present evidence of the existence of an alternative MCB-binding pathway, which we confirm using data from two independent cell cycle studies and two other physioloigical processes. Finally, we have uncovered elaborate transcription regulation refinement mechanisms involving PAC and mRRPE motifs that govern essential rRNA processing. These include intriguing instances of differing motif dosages and differing combinatorial motif control that promote regulatory specificity in rRNA metabolism under differing physiological processes
    corecore