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ABSTRACT OF THE DISSERTATION

Improving Thermodynamic Models of Transcription by Combining ChIP and Expression 

Measurements of Synthetic Promoters

By Robert Zeigler

Doctor of Philosophy in Biology and Biomedical Sciences

Computational Biology

Washington University in St. Louis, 2012

Associate Professor Barak A. Cohen, Chairperson

 Regulation of gene expression is a fundamental process in biology.  Accurate 

mathematical models of the relationship between regulatory sequence and observed expression 

would advance our understanding of biology. 

 I developed ReLoS, a regulatory logic simulator, to explore mathematical frameworks for 

describing the relationship between regulatory sequence and observed expression and to explore 

methods of learning combinatorial regulatory rules from expression data.  ReLoS is a flexible 

simulator allowing a variety of formalisms to be applied.  ReLoS was used to explore the 

question of how complex rules of combinatorial transcriptional regulation must be to explain the 

complexity of transcriptional regulation observed in biology.  A previously published dataset was 

analyzed for regulatory elements that explained the behavior of regulatory modules for 254 

genes in 255 conditions.  I found that ReLoS was able to recapitulate a reasonable fraction of the 

variation (mean gene-wise correlation of 0.7) with only twelve combinatorial rules comprising 
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13 cis-regulatory elements.  This result suggested that learning the combinatorial rules of 

transcriptional regulation should be possible.

 State ensemble statistical thermodynamic models are a class of models used to describe 

combinatorial transcriptional regulation.  One way to parameterize these models is measuring the 

expression of a reporter gene driven by many similar promoters .  Models parameterized in this 

fashion do better at explaining the sequence to expression relationship, but fail to distinguish 

between multiple biological mechanisms that give rise to equivalent expression results in the 

synthetic promoters, thus limiting the generalizability of the models.  I developed a ChIP-based 

strategy for quantitatively measuring the relative occupancy of transcription factors on synthetic 

promoters.  This data complements existing methods for obtaining expression data from the same 

promoters.  Comparison of models parameterized with only expression, only occupancy, or 

expression and occupancy reveals specific biological details that are missed when considering 

only expression data. In particular, the occupancy data suggests that differential regulatory 

effects of Cbf1 in glucose versus amino acid are a function of how it interacts with polymerase 

rather than changes in concentration or binding affinity. Additionally, the occupancy data 

suggests that Gcn4 binds in a cooperative manner and that Gcn4 occupancy is adversely affected 

by the presence of a nearby Nrg1 site. Finally, the occupancy data and expression data taken 

together suggest that Gcn4 binds in competition with another transcription factor.  

 Synthesizing disparate sources of information resulted in an improved understanding of 

the mechanics of transcriptional regulation of the synthetic promoters and was ultimately largely 

successful in decoupling the DNA binding energies from the TF interactions with polymerase.  

However, it suggests that more sophisticated models of the relationship between occupancy and 
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expression may be required in at least some cases.   Incorporating different sources of data into 

models of regulation will continue to be important for learning the biological specifics that drive 

expression changes.
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CHAPTER 1: Introduction

Transcriptional regulation is an important biological process

 Every organism must respond to changes in the environment to survive.  One way these 

responses occur is through changes in the complement and level of genes being expressed

(Gardner and Barald, 1991; Matikainen, et al., 2001; Radinsky, 1995; Owuor and Kong, 2002; 

Driscoll-Penn, Galgoli and Greer, 1983). The level at which a gene is expressed can be regulated 

at several points, but one of the major points where regulation occurs is transcription (Giniger, 

Varnum, and Ptashne, 1985). Transcription is regulated by the coordinated action of DNA-

binding proteins called transcription factors (TFs) (Guarente, et al., 1982).  These proteins 

recognize specific DNA sequences and recruit additional factors such as protein complexes 

associated with RNA Polymerase II (Brent and Ptashne, 1981 and Brent and Ptashne,1985), 

repressive complexes (Schuller, 2003; Zhou and Winston, 2001), and chromatin remodeling 

complexes (Morillon A, et al., 2003; Moreau, et al., 2003) to ultimately increase or decrease the 

number of mRNA transcripts being produced for a particular gene.  The process of multiple TFs 

binding to the DNA and causing a change in expression is collectively referred to herein as 

combinatorial cis-regulation. 

 Although the general features of this process have long been known (Giniger, Varnum, 

and Ptashne, 1985 and Anderson, Ptashne, and Harrison, 1985), the ability to quantitatively 

model the phenomenon remains elusive.  However, the need for such models has never been 

greater.  With the advent of next generation sequencing, the genomes of many more organisms 

are available (Mikkelsen, et al., 2005; Warren, et al. 2008; Hellsten, 2010).  A complete 

understanding of the information in any genome will require the ability to parse the sequence and 
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determine which pieces of DNA function in a regulatory capacity, and what that capacity is.  

Such a mapping of regulatory elements has many potential applications beyond annotation, 

including engineering novel biological circuits and personalized medicine. 

Many good models of TF site-specificity now exist

 The first step to map the the regulatory landscape is to determine the location of the 

regulatory elements.  The advent of genome-wide technologies such as ChIP-chip (Harbison, et 

al., 2004 and Lee, Johnstone and Young, 2006), and ChIP-seq (Johnson and Mortazavi et al., 

2007; Jothi, et al., 2008) for mapping in vivo binding events has uncovered the binding site 

preferences of many TFs in vivo.  These approaches have been complemented by in vitro 

methods for learning TF binding site preferences such as protein binding microarrays (Berger, et 

al. 2006 and Mukherjee and Berger, et al., 2004), and SELEX (Liu and Stormo, 2005 and Tuerk 

and Gold, 1990).  These techniques have led to rapid growth in our knowledge of the TF-specific 

binding preferences for many TFs.  This information  is extremely useful, but it does not tell us 

about the strength or direction of regulation of the transcription factors.  For that, models which 

relate the TF binding site information to expression must be used.

Modeling the sequence to expression relationship is difficult using native genomic 

sequences

 To date, attempts at modeling the sequence to expression relationship have been 

attempted in several organisms (Beer and Tavazoie, 2004, Segal, et al., 2008; Bussemaker, Li, 

and Siggia, 2001; Das, Banerjee, and Zhang, 2004; Vilar, 2010).  These attempts have used a 
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variety of mathematical formalisms, from regression models (Bussemaker, Li, and Siggia, 2001; 

Das, Banerjee, and Zhang, 2004) to Bayesian networks (Beer and Tavazoie, 2004), to differential 

equations (Vu and Vohradsky, 2007).  In particular, models of regulation wherein the level of 

gene expression driven by a particular piece of DNA is predicted directly from the DNA have 

generally performed poorly at a genome-wide scale (Bussemaker, Li, and Siggia, 2001; Das, 

Banerjee, and Zhang, 2004; Irie, et al., 2011 and Xiao, Segal, 2009).  There are several issues 

that complicate the study of combinatorial cis-regulation in the genome.  

 The first issue is the presence of additional confounding variables.  In the genome, each 

gene is subject to a different set of kinetic parameters following transcription initiation. Each 

gene can have its own transcription rate (Pelechano, Chávez, and Pérez-Ortín, 2010) and 

translation rate (Reuveni, et al., 2011 and Gingold and Pilpel, 2011), and genes can be regulated 

post-transcriptionally(Filipowicz, Bhattacharyya, Sonenberg, 2008) and post-translationally 

(Kuras, et al., 2002).  Additionally, each gene is surrounded by a different genomic context that 

incorporates information such as the genomic coordinates and the natural nucleosome content of 

the region, each of which has been shown to have an influence on the level of gene expression 

(Bernstein, B.E., et al., 2004 and Woo and Li, 2011). All of these factors make it difficult to 

distinguish between changes that occur as a result of differences in the composition of TF 

binding sites of the sequence and changes that occur for sequence-independent reasons.  

Ultimately, these confounding factors will need to be accounted for in a complete model of 

regulation, but for the purpose of understanding combinatorial cis-regulation, these variables 

complicate the problem.
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 The second complicating issue is the sheer size of combinatorics available to the genome 

relative to the available observations.  For instance, Saccharomyces cerevisiae has approximately  

200 transcription factors (Beskow and Wright, 2006). Considering every possible pairwise 

interaction but without regard to complications such as spacing and orientation, there are over 

20,000 possible combinations of binding sites, with only about 5,800 genes.  The problem is 

worse when considering more combinations or organisms with more transcription factors. The 

use of multiple related genomes may help mitigate this problem somewhat (FitzGerald, et al., 

2006) but rapid binding site turnover (Bradley, et al. 2010 and Moses,  et al. 2006) and different 

sets of regulators across genomes complicate the comparison.

 With so many possible combinations, it is fair to ask whether it is even possible to create 

general-purpose models of regulation, or whether every sequence will be its own special case, 

requiring functional dissection by experimental methods. In addition, there are many possible 

mathematical formalisms for describing cis-regulatory interactions.  Which of these formalisms 

is best-suited for learning the rules of regulation remains an open question.  This leads directly to 

hypothesis one: 

 (H1) It will be possible to explain the complexity of biology with relatively simple,  

generalizable  mathematical rules.

We may also pose a related question:

 (Q1) Which formalism is best-suited for learning the rules of regulation?
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State ensemble models of transcriptional control provide biophysically motivated 

parameters

 State ensemble statistical thermodynamic models have been increasingly used to describe 

transcriptional regulation (Buchler, Gerland and Hwa, 2003; Granek and Clarke, 2005; Raveh-

Sadka, Levo and Segal, 2009; Segal, et al., 2008; Shea and Ackers, 1985; and Wasson and 

Hartemink, 2009).  In these models, a promoter is modeled as a series of distinct states. Each 

state consists of the DNA and the proteins bound to the DNA in that state. Each state is 

associated with a statistical mechanical weight (the Boltzmann weight), which is the exponent of 

the sum of the binding energies in play in the state times the concentrations of the factors bound 

in the state:

W = e-Σ∆G/RT*Π[TF]

where the product is over each bound transcription factor in the state and the the sum is over all 

binding energies in the state.  These binding energies include the affinity of TFs for the DNA as 

well as protein-protein interactions.  The sum of the weights of all states is the partition function:

Z = ΣW

The probability that RNA Polymerase II is bound is then computed as the sum of all states in 

which polymerase is bound to the DNA divided by the partition function:

ΣW*δ(Pol) / Z

where δ(Pol) is one if Polymerase is bound in the state and zero otherwise.  Expression is then 

modeled as a function of the probability of polymerase bound.  A common assumption is that the 
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relationship is linear (Gertz and Cohen, 2009), but other means of mapping have also been used 

(Segal, et al, 2008 and He, et al., 2010).

 The advantage of the thermodynamic model is its focus on the biophysical properties of 

the system.  Since the parameters are a set of binding energies, the relative values of those 

parameters provide information on the relative binding strengths of the TFs to the DNA and the 

relative importance of interaction with RNAP and other recruited factors.  Given the set of 

parameters, it is possible to rewrite the thermodynamic function to calculate any related quantity 

of interest, such as how many copies of a particular transcription factor are expected to be bound 

to the DNA.  In contrast, models such as regression use arbitrary coefficients to describe the 

contribution of each sequence element to expression. These coefficients may produce a 

predictive model, but the parameters are agnostic as to the mechanism.  The biophysical and 

biochemical information provided by the thermodynamic model makes it attractive, but 

parameterizing these models remains difficult due to computational complexity and the 

difficulties with genomic promoters discussed above. 

Statistical thermodynamic models of transcriptional regulation can be parameterized using 

synthetic promoters

  An alternative approach to using genomic data is the use of synthetic promoters (Cox, 

Surette, and Elowitz, 2007; Gertz and Cohen, 2009; Gertz, Siggia and Cohen, 2009; Kwasnieski 

and Mogno, et al., 2012; Ligr, et al., 2006; Melnikov, et al., 2012; Murphy, Balazsi, and Collins, 

2007; Patwardhan, 2012; and Sharon et. al., 2012).  Synthetic promoters consist of many 

promoter variants of a common promoter backbone.  Each variant drives the expression of a 
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reporter gene.  The reporter gene activity is assayed quantitatively through methods such as flow 

cytometry.  Synthetic promoters simplify the parameter estimation problem by reducing the 

number of confounding variables and increasing the number of direct observations of closely  

related sequences and their effects on expression.  Previously, synthetic promoters were 

combined with the thermodynamic description of regulation to great effect  (Gertz and Cohen, 

2009; Gertz, Siggia, and Cohen, 2009), explaining up to sixty percent of the total variation in 

expression across multiple environmental conditions. The parameters recovered were predictive 

of fold-changes in transcription factor concentrations in most cases (Gertz and Cohen, 2009), 

illustrating the benefit of using a biophysically motivated model.  

 The main problem with parameterizing thermodynamic models of transcriptional 

regulation with only expression data is that without information about the binding of proteins, 

the model may be missing important mechanistic details.  These details matter because they 

determine the generalizability of the model.  The point of synthetic promoters is to study the 

sequence to expression relationship in a simplified system so that the information can be applied 

to more complex problems.  But if the mechanistic relationship so-derived is incorrect, then the 

model will fail to generalize to sequences outside of the synthetic promoters.

 For example, Gertz and Cohen (2009) built predictive models of condition-specific TF 

effects by assuming that changes in regulation occur due to changes in TF concentrations.  

However, equally predictive models can be built by assuming regulatory changes are caused by 

differences in the interaction between the TF and RNAP.  Without additional data, these two 

models cannot be distinguished, but they make different predictions concerning the rest of the 

genome.  The model that assumes a change in TF concentration predicts lower TF occupancy 
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across the genome, leading to global regulatory changes.  A model that assumes a change in TF-

RNAP changes will predict the same occupancy across the genome.  Moreover, the change in 

TF-RNAP interaction could be local, due to other interacting factors.  A good example of this is 

Cbf1, where Cbf1-dependent  activation of  MET genes is mediated by the coordinated binding 

of Met28 and depends on the presence of an upstream RYAAT motif  (Siggers, et al. 2011; 

Kuras, et al., 1996).  In other genes, Cbf1 acts to recruit other factors (Moreau, J.L., et al.  2003).  

Thus, for Cbf1, modeling the change in regulatory affect as a change in the Cbf1-RNAP 

interaction is more appropriate, and would  lead to a model which can be better applied to 

sequences other than the synthetic promoters.  In order to separate these two models, we need 

additional information. 

 Although there are several possible sources of additional information, an especially 

appealing source is in vivo binding data.  This data is particularly useful because it synthesizes 

both changes in TF concentration and changes in TF affinity and would provide a direct 

comparison of changes in how much TF is bound to the promoter versus how much change in 

regulatory potential occurred.  This leads to hypothesis 2:

 (H2) Given in vivo protein binding data, it will be possible to distinguish between models 

of transcriptional regulation that yield similar expression results but represent distinct 

biophysical mechanisms

 My work in this thesis aimed to test the above hypotheses and to address the related 

question to hypothesis 1.
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ReLos is a cis-Regulatory Logic Simulator for exploring cis-regulatory questions

 In chapter two of this thesis, I present my work on ReLos, a cis-Regulatory Logic 

Simulator.  Other simulators available at the time ReLos was published (Mendes, Sha, and Ye, 

2003; Michaud, Marsh, and Dhurjati, 2003; Van den Bulcke, et al, 2006) were primarily 

designed to model the overall network of regulatory interactions and rarely considered the 

underlying sequence that connects regulators to genes being regulated. ReLos attempted to 

address that discrepancy.  

 With ReLos, a user is able to apply a variety of formalisms for converting sequence to 

expression.  This directly addresses Q1 by allowing a user to simultaneously explore a particular 

formalism of transcriptional regulation and the effects of specific combinatorial rules on 

expression driven by any given sequence.  By exploring different formalisms and rules, a user 

can gain a better appreciation for which descriptions are most appropriate for their problem.  

Similarly, by having a benchmark of sequence-driven regulatory rules, a user can evaluate the 

ability of various learning algorithms to recover the original rules. 

 One way to test the ability of ReLos to generate useable data was to compare the ability 

of the simulator to approximate biology.  This was done by crafting a set of rules to mimic the 

behavior of 11 previously published expression modules comprising 254 genes across 255 

conditions (Beer and Tavazoie, 2004).  This work provided a direct test of  hypothesis H1 by 

exploring the complexity of the regulatory rules required to reasonably approximate the 

underlying biology.  I found that ReLos could generate data in reasonable agreement with the 
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expression modules (mean gene-wise correlation of 0.7) with relatively simple rules, suggesting 

that the underlying biology can be explained by simple, generalizable rules.

Occupancy data combined with expression data helps to deconvolve the parameters of the 

thermodynamic model

 In chapter three of this work, I addressed hypothesis H2 by developing a ChIP-based 

protocol for acquiring quantitative occupancy data specific to synthetic promoters.  I built 

libraries containing binding sites for Cbf1, Gcn4, Met31/Met32, and Nrg1.  Each of these factors 

is known to be active in one or both of two conditions (glucose and amino acid starvation) used 

to test the libraries (Zhou and Winston 2001; Kuras, L, et al. 1996; Blaiseu, et al 1997; 

Natarajan, et al.  2001). I obtained occupancy data for Cbf1 and Gcn4 and expression data for the 

libraries in both conditions.  I used the occupancy data to explore thermodynamic models of TF 

binding for Cbf1 and Gcn4, and the expression data to examine models of sequence to 

expression without regard to the occupancy data.  Comparing these models revealed interesting 

differences, such as Gcn4 cooperativity in the binding data.  Finally, I combined the occupancy 

and expression data to build a model that simultaneously relates sequence to expression and 

sequence to TF occupancy.  The results of this model indicate that the occupancy data does help 

deconvolve the parameters and helps distinguish between different regulatory models.  However, 

the results also indicate that improvements in the integration of the two data sources can be 

made, possibly by incorporating more sophisticated descriptions of the TF-RNAP interactions 

into the model.
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Abstract
Background 

 A major goal of computational studies of gene regulation is to accurately predict the 

expression of genes based on the cis-regulatory content of their promoters.  The development of 

computational methods to decode the interactions among cis-regulatory elements has been slow, 

in part, because it is difficult to know, without extensive experimental validation, whether a 

particular method identifies the correct cis-regulatory interactions that underlie a given set of 

expression data. There is an urgent need for test expression data in which the interactions among 

cis-regulatory sites that produce the data are known. The ability to rapidly generate such data sets 

would facilitate the development and comparison of computational methods that predict gene 

expression patterns from promoter sequence.

Results

 We developed a gene expression simulator which generates expression data using user-

defined interactions between cis-regulatory sites.  The simulator can incorporate additive, 

cooperative, competitive, and synergistic interactions between regulatory elements.  Constraints 

on the spacing, distance, and orientation of regulatory elements and their interactions may also 

be defined and Gaussian noise can be added to the expression values.  The simulator allows for a 

data transformation that simulates the sigmoid shape of expression levels from real promoters.  

We found good agreement between sets of simulated promoters and predicted regulatory 

modules from real expression data. We present several data sets that may be useful for testing 

new methodologies for predicting gene expression from promoter sequence.
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Conclusions 

 We developed a flexible gene expression simulator that rapidly generates large numbers 

of simulated promoters and their corresponding transcriptional output based on specified 

interactions between cis-regulatory sites.  When appropriate rule sets are used, the data generated 

by our simulator faithfully reproduces experimentally derived data sets.  We anticipate that using 

simulated gene expression data sets will facilitate the direct comparison of computational 

strategies to predict gene expression from promoter sequence.  The source code is available 

online from http://www.genetics.wustl.edu/bclab/relos/ and as supplementary material.  The test 

sets are available as supplementary material.  
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Background

 Transcriptional regulation of genes is controlled largely through the concerted action of 

combinations of cis-regulatory sites in the promoters and surrounding regulatory DNA of genes.  

The interactions between cis-regulatory sites can be complex and may include synergistic [1], 

competitive [2], and amplifying [3] interactions, and are often influenced by the spacing and 

orientation of the sites relative to each other and to the transcriptional start site[4, 5].  The 

complexity of the “cis-regulatory code” makes predicting gene expression from promoter 

sequence a challenging problem.

 Computational approaches for determining the cis-regulatory code include multiple 

regression models [6], Bayesian networks [7], logic operators [8], and machine learning methods 

[9].  Though their mathematical frameworks differ, all of these approaches use large-scale 

transcriptional data (usually microarray-based expression profiling data) and attempt to correlate 

expression patterns with the presence or absence of computationally predicted cis-regulatory 

motifs. Currently, we do not have good ways to compare the performance of these different 

approaches to each other or to new approaches being developed.  A serious problem in 

comparing these methods is the lack of robust test data in which the cis-regulatory interactions 

underlying the expression data are accurately known.  We need data in which the “true” answer 

is known if we are to compare methodologies.  To address this limitation, we built a rule based 

simulator to create test data sets.

 Simulators are playing a useful role in reconstructing gene regulatory networks (GRN).  

A GRN models the regulatory connections between genes, as opposed to the interactions 

between cis-regulatory sites in a promoter.  Because the true GRN of a cell is not known, 
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artificially created GRNs are used to evaluate the accuracy of algorithms that attempt to 

determine network architecture and dynamics[10].  GRN simulators provide test datasets [11, 

12], which in turn are used to assess the performance of network reconstruction techniques [13].  

We anticipate that gene expression simulators will play a similar role in the development of 

computational approaches to decipher the interactions between cis-regulatory sites.

 We present a regulatory rule simulator that generates random promoters and produces 

expression data based on user-defined interactions between cis-elements.  Whereas a GRN 

simulator attempts to create a web of genes connected in a biologically relevant manner, our 

simulator generates promoter regions and predicts the expression from those promoters.  We also 

present test datasets, created by the simulator, which can be used to assess the performance of 

algorithms that attempt to determine underlying regulatory rules.  The promoter generator and 

simulator, named ReLoS (cis-Regulatory Logic Simulator), are available for download at http://

www.genetics.wustl.edu/bclab/relos/relos-dist.zip. A web interface is also available and can be 

accessed from http://www.genetics.wustl.edu/bclab/relos/.  The test data sets are available in 

supplementary file 1.
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Results and Discussion

Simulating Regulatory Rules

 Gene expression simulations using Relos are divided into discrete steps (Figure 2.1). The 

user first specifies the number of cis-regulatory sites that will be part of the simulation. Next, the 

user creates a rule set that defines the interactions between cis-regulatory sites and their effects 

on gene expression. Relos then generates a set of promoters consisting of random combinations 

of these cis-regulatory sites. Finally, the expression of each promoter is determined by applying 

the rule set to each promoter sequence. The simulator outputs a list of promoter sequences with 

their corresponding expression values.  At every step, the user may specify parameters to 

customize the simulations.  

 With Relos a user can encode a wide variety of cis-regulatory rules.  The rules are defined 

in an XML simulation file to make the attributes of the simulation, including the rules, legible to 

the user. A single rule in a rule-set is defined by the cis-regulatory sites involved, the conditions 

required by the rule, conditions excluded by the rule, context dependencies for each condition, 

and the output expression generated by that rule.   Logical relationships such as OR, NOT and 

AND can be expressed in describing interactions between sites. Constraints on the spacing, 

orientation, and distance of sites from each other can be incorporated into any rule.  Rule outputs 

may be combined in linear and non-linear ways (see Methods).  A rule may simply specify the 

additive contribution of a particular regulatory element, or it may determine the parameters of an 

epistatic (eg: cooperative, competitive, synergistic, etc.) interaction between elements.  

Promoters are parsed by each rule in the order in which the rules are specified.  When a rule 
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matches a promoter, however, that rule may specify a set of rules which should be skipped in the 

analysis of the matched promoter.

 Promoter processing by rules is delegated to the “analyzer”.  The analyzer is responsible 

for determining whether a rule will affect a promoter, based on the constraints specified for the 

rule.  The analyzer is also responsible for specifying the effect of a rule on the expression of a 

promoter.  Analyzers serve as the central point of extensibility in Relos.  For each rule, it is 

possible to specify a custom analyzer.  Relos comes with a regular expression analyzer, which 

modifies promoter expression if the regular expression is matched.  Another analyzer allows 

user-defined mathematical functions to be used to determine rule outputs.  For example, a Hill 

function [14, 15] might be used to describe cooperativity between sites.  The flexibility inherent 

in the design of Relos allows users to simulate virtually any mode of regulation among cis-

regulatory sites.  

 Real expression data are bounded.  At the lower bound, a cell cannot express less than 

zero copies of a gene.  There is also an upper limit of detection in any experimental setup and to 

the levels of RNA that can be produced when a promoter is fully occupied by the transcriptional 

machinery and transcribing at the maximum rate.  These constraints produce sigmoid expression 

patterns.  For this reason, Relos allows users to sigmoidally transform the output data.  Users 

may explicitly tell Relos to transform the data. In this case, Relos uses a sigmoid transformation 

centered on the average expression for the simulation (see methods).  Using the simulation 

expression mean to center the transformation allows rule-sets to be compared in terms of the 

variation present in the parsed promoters.  Simulations with large variance will show a spread of 

values between zero and one.  Simulations with little variance will, when transformed, cluster 
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around the value of 0.5.  One consequence of the mean-dependent transformation is that it is 

impossible to generate a transformed dataset in which all expression is either “on” or “off” since 

datasets with very little variation will result in midline expression when transformed.  Users may 

therefore specify a rule at the end of the pipeline employing a custom analyzer to transform the 

data.  Relos comes with a SigmoidalTransform analyzer (see Methods) that can be used for this 

purpose, but users may also provide their own transformations.   The SigmoidalTransform 

analyzer uses four parameters (see Methods) to adjust the shape and scale of the transformation.  

These parameters are independent of the simulation dataset and determine an absolute scale of 

expression onto which all rule-sets are mapped.  By using a consistent set of parameters, users 

can compare rule-sets with regard to their strength of expression and compare variances 

according to where the mean lies in the absolute expression scale.  Since this transformation does 

not depend on the dataset, the absolute scale is arbitrarily determined by the choice of parameters 

and users should be careful to use rules consistent with the scale determined by the parameters.

 In addition to rules, their analyzers and constraints, and transformation parameters, the 

XML simulation file contains other adjustable attributes for the simulation.  For example, after 

the promoters have been interpreted using the current rule set, Gaussian noise is added by the 

simulator with a user defined standard deviation.  Relos is also capable of generating random 

promoters based on user-defined properties, such as promoter length, cis-regulatory elements and 

their frequencies and outputting promoters in either fasta or Relos format.  These synthetic 

promoters can be used directly by the simulator.  For more details, see Methods. 
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Examples of simulated datasets are shown in Figure 2.2.  As a visual aid to interpret the output of 

the simulations, histograms illustrating the distribution of expression values are shown.  Figure 

2.2a shows the distribution of expression values for 5000 fixed-length random promoters 

consisting of variable numbers of a single type of cis-regulatory activator site and neutral spacer 

elements, where all elements are equally probable.  The expression is therefore a reflection of the 

distribution of the activator element.  Relos outputs the expected Poisson distribution for 

expression.  Figure 2.2b shows the results from an activator-repressor combination.  Because 

expression is now a function of two inputs, it follows the expected Gaussian distribution.  Figure 

2.2c shows the results from a synergistic rule set, with noise at 5% of the expression level.  In 

this simulation, each element has a small additive effect on expression individually, but when 

both regulatory elements are present in the same promoter, a large expression effect is observed.  

As expected, the result of the simulation is a bimodal distribution, where the second peak 

represents promoters containing both regulatory elements.  Figure 2.2d shows the output of a 

cooperative interaction, modeled by a Hill function.   A Hill function is a transition function of 

the form:

Where x is the input and φ and n are parameters used to adjust the location and steepness of the 

transition.  Hill functions have been used to model biological cooperativity in proteins such as 

Hemoglobin [14] and in cis-regulatory interactions [15].  In Figure 2.2d, x is the number of 

cooperative elements, n is 3, and φ is 5.  Since the expression is a function of the number of A-

elements, and the number of A-elements is distributed according to the Poisson distribution, the 
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expression pattern should be a function of a Poisson distribution.  As expected, the simulator 

output in Figure 2.2d follows a Poisson distribution with an elongated right tail.  This tail 

represents the high expression of promoters with multiple cooperative sites.  See supplementary 

file 2 for the rule-sets used to create figure 2.2.

Test Datasets

 The main motivation for creating the simulator was to synthesize expression datasets for 

which we know the underlying regulatory rules.  These datasets will be necessary to compare the 

accuracy of different methods that infer cis-regulatory rules because there are no experimental 

datasets for which the true underlying relationships between cis-regulatory sites are known.  We 

therefore created ten test datasets using different rule-sets.  The test datasets vary in the number 

and types of rules and in the complexity of the rule-set.   We have made the datasets and rule sets 

used to generate them (see supplementary file 1) available in both Relos format and fasta format.  

We anticipate that the availability of test datasets will allow researchers to evaluate their own 

methods and compare their methods against commonly used algorithms that deduce regulatory 

rules from expression data.  While the test data we provide will be useful for researchers who 

want to get started right away testing their rule-finding algorithms, we emphasize that the real 

power of Relos is the capability it provides to quickly produce custom data sets for algorithm 

testing.  Researchers can now rapidly create their own test datasets to compare the dependency of 

any method on any particular parameter (number or sites, types of interactions, noisy data).
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Comparison to Experimental Data

 We simulated the expression of five different regulatory modules comprised of 254 yeast 

genes described in Beer and Tavazoie [7].  A classification tree was constructed to place each 

gene into its correct module based on the presence or absence of different regulatory elements.  

Overall, 80% (204/254) of the promoters were placed into their original module. We then created 

a rule set based on the classification tree which incorporated “AND”, “OR”, and “NOT” logic.  

This rule set was used to simulate expression values for each gene in each of the 255 conditions 

reported in Beer and Tavazoie (see Methods).  The results of the simulation and the observed 

expression values are shown in figure 2.3.  The median gene-wise correlation coefficient 

between the simulated and experimental expression was 0.78, illustrating that simulated data 

closely matching observed data can be produced with Relos.  These results show that Relos can 

discriminate between promoters and create biologically relevant data sets.    

 One noticeable discrepancy between the Relos data and the Beer and Tavazoie data was 

the noise function.  Relos uses Gaussian noise, scaled by the noise-less expression value.  This 

results in a smaller absolute level of noise around expression values close to zero.  The Beer and 

Tavazoie data does not appear to follow this trend; the absolute level of noise around zero is still 

quite large.  Accordingly, we wrote an unscaled noise analyzer that applies unscaled Gaussian 

noise to simulated data.  

 We also used the same rule sets defined above to analyze Relos-generated promoters.  

Completely synthetic promoters were created based on the frequency distributions of the cis-

regulatory sites that comprised the five modules we simulated.  When the rule set was applied to 

these computationally derived promoters the five expression patterns from Beer and Tavazoie 
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were again recapitulated. (see additional file 6) Randomly generated promoters, filtered through 

Relos, faithfully replicate the observed expression patterns in real data
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Conclusions

 We sought to create a tool that simulates expression from promoters based on cis-

regulatory logic.  Because there are examples of additivity, synergism, cooperativity, and 

competition between regulatory sites we created ways to simulate these interactions in a 

straightforward manner. The full spectrum of interactions between regulatory sites is not known.  

We recognize that our knowledge of cellular regulation is still relatively limited and that new 

types of interactions may appear.  We therefore did not want to be limited by preconceived 

models.  With its rule-pipeline and analyzer plug-in architecture, Relos allows for virtually any 

regulatory model to be implemented.  

 The ease of specifying regulatory models and the speed with which data can be generated 

will allow algorithms that predict gene expression from promoter sequence to be 

comprehensively tested.   Algorithms that attempt to determine regulatory logic rules from 

expression and sequence data can be analyzed for their performance with respect to noise, the 

number of underlying rules, and the complexity of the interactions between the rules.  

Furthermore, researchers can study the size of the dataset required for an algorithm to 

recapitulate the rules and the ability of the algorithm to recapitulate the specified rules, as 

opposed to alternate rule sets which also correlate with the data.  We have used Relos to generate 

a test dataset for use in such studies.  We anticipate that the ability to rapidly generate unlimited 

quantities of simulated expression data will speed the design and comparison of algorithms to 

decode the cis-regulatory logic that underlies real patterns of gene expression. 

 The final arbiter of the performance of cis-regulatory rule-finding algorithms will be how 

well they capture the trends in real data. Algorithms that perform well on synthetic data sets, 
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such as those produced by Relos, will not necessarily perform well on biological data.  Because 

experimentally derived data is still of limited quantity and variable quality, extensive testing on 

synthetic data is the best way to understand the strengths and limitations of specific rule-finding 

methods. Testing and training on synthetic data avoids over fitting rule finders on the limited 

quantities of real data that are now available. Testing rule-finding methods on synthetic data sets 

will clearly be one of the paths forward on the way to decoding the interactions between cis-

regulatory sites.
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Methods

Promoter Generation

 Relos generates a promoter as a set of elements. Each promoter element is associated 

with a “cis-element” and an orientation.  Each cis-element has an identifier (eg: A, Oct4, etc), a 

sequence, and a frequency (expected occurrence).  The sequence is only used for output 

purposes; all built-in rule processing is done on promoter elements.

 Relos supports two modes of promoter generation: exact length and expected length.  In 

exact length mode, a cis-element is selected from the user-specified list of elements by a roulette 

wheel selection process.  The selected element is added to the promoter starting from the position 

furthest upstream of the transcription start site.  The element is added in a sense or anti-sense 

orientation with equal probability.  Element selection and addition continues until the number of 

elements added equals the user-specified length.  Relos does not insert spacer elements between 

cis-elements.  Rather, all cis-elements are treated as spacer elements unless a rule is defined 

which uses the cis-element in a manner inconsistent with a spacer element (see Rule 

Specification below).

 In expected-length mode, the element frequencies are transformed by:

 

Where Di is the transformed frequency of the i-th element, di is the non-transformed frequency 

for i-th element, E is the expected promoter length, and n is the number of elements.  This results 

in a distribution of cis-elements that includes a “stop” pseudo-element with probably 1/E.  The 
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distribution sums to one and preserves the relative probabilities of the user-specified elements.  

Promoter elements are added as in the exact length procedure until the stop element is selected.

Rule Specification
 Rules are specified in an XML-based format defined by the expression_rules.dtd 

document type definition file.  Each rule is defined in terms of the cis-elements the rule uses, an 

optional custom analyzer to use in place of the default Relos analyzer, the “output” (the amount 

by which the rule will affect the current expression level for the promoter), and the 

“operation” (the way in which the output will affect the current expression).  Rules may also 

define precluded rules.  Precluded rules are those that are prevented from operating on a 

promoter should the precluding rule match.  Rules using the default analyzer, or custom 

analyzers that rely on the default analyzer, may specify one or more conditions that determine 

whether a particular element on the promoter “matches” the rule.  Conversely, these conditions 

may “exclude” elements on the promoter that should not match the rule.   

 Conditions are comprised of the cis-element(s) to consider, the allowed position(s) and 

required orientation of the element(s), and zero or more contexts.  Each context defines a cis-

element that must appear in the promoter with the element under consideration in the condition.  

Contexts may include specification of the spacing between the two elements and the orientation 

of the “context” element. 

More details on rule specification can be found in supplementary file 3.

Promoter Analysis
 Relos uses a pipeline to perform rule by rule analysis of the promoters.  Typically, 

promoters are moved through the pipeline in the order in which the rules appear in the simulation 
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XML file.  However, when a precluding rule matches a promoter, Relos prevents the precluded 

rules from operating on the matched promoter.  Rules which define a custom analyzer delegate 

promoter analysis to the custom module.  All other rules delegate promoter analysis to the default  

analyzer.  The default analyzer determines the number of elements in a promoter that match the 

rule and multiplies the number of matches by the output amount to determine the magnitude of 

the effect on the current promoter expression. Promoter expression is then affected by this 

amount according to the operation defined for the current rule.  Valid operations include add 

(new expression equals the current expression plus the output); multiply (new expression equals 

the current expression times the output); exponentiate (new expression equals the old expression 

raised to the power of the output); and replace (new expression equals the output).  Matching is 

performed on a promoter element-wise basis.  If the attributes and contexts of at least one 

condition and no exclusions match, an element will be considered a match.  When no conditions 

or exclusions are specified, the element only needs to match one of the cis-elements specified by 

the rule.

 Once all promoters have been through the rule pipeline, a user-specified amount of noise 

is added to each promoter by replacing the current expression value with a random value X, 

where the probability of replacing the current expression value with X is given by the Gaussian 

distribution,

Where µ is the current expression value, σ = µ*η, and η is the user defined level of noise. The 

Relos default sets the noise to be 5% of the current expression level.
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 Relos will also transform the data to fit a sigmoidal curve if specified by the user.  For 

each promoter, the transformed expression value is given by:

Where VT is the transformed expression value of a particular promoter, V0 is the original 

expression for that promoter, and µT is the mean of the untransformed expression of all promoters 

in the simulation.  An alternative method of transformation is provided by adding a 

transformation rule with a custom analyzer to the end of the pipeline.  Relos provides an example 

of a transforming analyzer in the SigmoidalTransformAnalyzer, which transforms the data 

according to:

Where VT is the transformed expression value, V0 is the original expression, α adjusts the slope of 

the curve at the inflection point, β adjusts the position of the inflection point, γ determines the 

expected midline expression, and φ scales the resulting transformation.  

More details on promoter analysis can be found in supplementary file 3. 

Creating Test Dataset

 Ten test-set simulations were run.  Two hundred promoters, comprised of eight cis-

elements selected from a pool of four possible elements (A-D), were generated for each 

simulation, except for test-set simulation ten.  A noise level of 5% of the expression level was 

used.  None of the datasets were subjected to upper or lower bound constraints.  The first nine 

test-set simulation rule sets were comprised of: an additive activator, an activator with spacing 

and ordering constraints, two synergistic rule sets with spacing constraints, two cooperative rule 
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sets, a dominant-negative competitive rule set, a dominant positive rule set, and a rule set with 

constraints on many elements and an enhancer.  In the final test-set simulation, two hundred 

promoters were generated, each comprised of eight cis-elements selected from a pool of eight 

possible elements (A-H).  The final simulation rule set consisted of multiple additive and non-

additive effects, incorporating many of the non-additive effects encountered separately in other 

rule sets.  For more details, see supplementary file 1.

Comparison to Experimental Data

 Beer and Tavazoie [7] classified 49 transcriptional modules in S. cerevisiae.  We 

simulated modules 1, 11, 41, 45, and 49.  These modules were chosen because they vary in size, 

expression outputs, and regulatory complexity.  Promoters with no regulatory motifs were 

removed from the dataset, leaving 254 promoters.  Tree regression [16] was performed to 

determine the best classification tree for separating the promoters into the five transcriptional 

modules.  Input to the classification for each promoter was the presence or absence of each of the 

666 proposed motifs and their assigned module.  Based on the structure of the classification tree, 

a general rule set was constructed (additional file 7).  The ruleset was then duplicated for each 

microarray experiment, except the output for each rule was changed to match the average 

expression for that module.  All 254 promoters were used as input sequences for each of the 255 

simulations.  Tree regression and statistical calculations were performed in R.  

 We used Relos to generate synthetic promoters based on the frequency of the motifs used 

in the above rule set. The frequency of each motif was determined in the 254 biological 

promoters as the number of times each motif occurred divided by the total number of motifs in 

these promoters.  The frequencies of the remaining biological motifs not considered by the 
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ruleset were conglomerated into a single “Spacer” motif (see additional file 8).  Relos was used 

to generate 1000 promoters which were then analyzed by the same rule set described above, with 

the addition of an “all spacer” rule.  
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Figures
Figure 2.1: Flow of Relos.

Users supply Relos with cis-elements to use, the number and size of promoters to generate, and 

the rules used to analyze the promoters. Relos generates the promoters then analyzes the rules by 

passing the promoters through a rule-pipeline of the user-defined rules.  Noise is then added, and 

the data is optionally transformed via a sigmoidal transform to ensure upper and lower limits of 

expression.
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Figure 2.2: Sample Relos outputs

Relos was used to generate and analyze promoters using four different models. Five thousand 

promoters were generated in all Figure 2.2 simulations.   A. A simulation that depicts a single 

activator, modeled as an additive rule.  B. A simulation that depicts an activator and a repressor 

modeled as additive rules.  C. A simulation that depicts a synergistic rule between two regulatory 

elements. Each element has a small additive contribution to expression, but promoters with at 

least one of each element have enhanced expression. Gaussian noise was added to the output of 

the simulation at 5% of the level of expression of individual promoters. D.  A simulation that 

depicts a cooperative interaction between two regulatory elements modeled with a hill function. 

Noise was added to the simulation as in C.
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Figure 2.3: Comparison of Relos vs. Biologically Generated Data

Tree regression was performed on five modules (1,11,41,45,49) from Beer and Tavazoie[7].  The 

tree was converted to a ruleset and the ruleset used to generate expression values for each 

promoter in the modules.  The median gene-wise correlation is 0.78.  The real microarray 

expression values are depicted on the left and the Relos-generated expression values are on the 

right.
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Additional Files 
(Available at http://www.biomedcentral.com/1471-2105/8/272/additional )

Additional File 1 – Supplementary File 1
File name: testsets.zip
File format: compressed archive (ZIP)/ASCII text/PNG
Title: Test Datasets
Description:  A compressed archive (zip) containing: the rulesets used to generate the test-set 
datasets (ASCII/xml); the datasets in both Relos and fasta format (ASCII); and histograms of 
each test-set to provide an overview of the data (PNG). 

Additional File 2 – Supplementary File 2
File name: figure2_rulesets.zip
File format: compressed archive (zip)/ASCII text
Title: Figure 2 Rule-sets
Description: A compressed archive (zip) file containing the simulation files (ASCII/xml). used in 
the generation of figure 2.

Additional File 3 – Supplementary File 3
File name: rulespecification_and_promoteranalysis.txt
File format: ASCII text
Title: Rule Specification and Promoter Analysis
Description: Detailed information on how to specify rules and how promoters are analyzed.

Additional File 4 – Supplementary Table 1: Relos Dependencies
File name: relos_dependencies.pdf
Fil format: PDF
Title: Supplementary Table 1: Relos Dependencies
Description: A listing of modules needed for Relos to run and where they can be obtained.

Additional File 5 –  Relos Source
File name: relos-src.zip
File format: compressed archive (ZIP)/ASCII text
Title: Relos Source Code
Description: A compressed archive (zip) containing the perl source for running Relos, the xml 
document-type definitions (DTD) which define simulation files, example simulation files, the 
README, and the source license (GPL). 

Additional File 6 –  Generated Promoter Modules
File name: microarray_generatedpromoters.png
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File format: Portable Network Graphics (PNG)
Title: Image of modules from generated promoters
Description: A “heat map” image showing the expression from the generated promoters. 
Promoters with only “Spacer” elements are not depicted.

Additional File 7 –  Sample Ruleset for Biological Expression Comparison
File name: rules1.xml
File format: XML/ASCII text
Title: Sample Ruleset for Biological Comparison
Description: Ruleset used in one of the 255 “microarray” simulations. 

Additional File 8 –  Ruleset For Promoter Generation
File name: genprom.xml
File format: Title: Ruleset Used for Promoter Generation
Description: The ruleset used to generate the 1000 promoters used in testing the biological 
relevance of Relos-generated promoters.
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Abstract

 Transcription factor-mediated differential gene expression is important for many 

biological processes.  Although many studies have identified binding preferences for 

transcription factors, few have studied how combinations of sites give rise to specific gene 

expression levels.  Synthetic promoters have emerged as a means to simplify the combinatorial 

problem presented by the genome and parameterize models of expression based on promoter 

binding site composition. We sought to improve the biological accuracy of statistical 

thermodynamics models of transcription by developing a ChIP-based assay to quantitatively 

measure the occupancy of transcription factors on synthetic promoters in vivo and incorporating 

these data into the model.  We applied our ChIP assay to Gcn4 and Cbf1 using libraries with 

binding sites for Gcn4, Cbf1, Met31/Met32, and Cbf1 in SC-Ura + 2% glucose and amino acid 

starvation (AAS) conditions. We found that the expression-only approach, despite being 

predictive of expression, misses several biological phenomenon, including a negative interaction 

between Gcn4 and Nrg1, and Gcn4 self-cooperativity.  We also found that the ChIP data allow us 

to distinguish between competing mechanisms of regulatory change for the factor Cbf1.
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Introduction

 Differential gene expression lies at the heart of many biological processes including 

development (Istrail, De-Leon and Davidson, 2007; Prud’homme, Gompel and Carroll, 2007), 

differentiation (Gardner and Barald, 1991),  and environmental response (Matikainen, et al., 

2001; Radinsky, 1995; Owuor and Kong, 2002).  Often, changes in gene expression occur by one 

or more transcription factors (TFs) binding to specific DNA sequences (TFBS) and recruiting or 

inhibiting recruitment of RNA polymerase II (Johnson et al., 2007; Manke, Roider and Vingron,

2008; Matys, V. et al., 2003; Morozov, 2005). The ability to quantitatively and accurately model 

changes in gene expression as a function of changes in TFBS composition is desirable to increase 

our understanding of and ability to engineer biology. 

 To date, many studies have been conducted attempting to learn the binding site 

specificities of TFs through a variety of methods, including analysis of promoters of suspected 

targets (Bussemaker, Li, and Siggia, 2001; Hughes, et al., 2000; Hertz, Hartzell, and Stormo, 

1990; Wang and Stormo, 2003), analysis of sequences bound by the TF in ChIP-ChIP, ChIP-seq, 

or differential expression studies experiments (Foat, et al. 2006; Harbison, et al. 2004; Lee, 

Johnstone, and Young, 2006; MacIsaac, et al., 2006; Ren, et al., 2000; Roider, 2007; Valouev, et 

al., 2008), and through in vitro binding studies (Liu and Stormo, 2005; Berger, 2006 and 

Mukherjee and Berger, 2004). These studies contribute the important first step of predicting 

which sequences in vivo are likely to be bound by a particular transcription factor.  However, 

they fail to predict the transcriptional effect of binding and typically do not consider 

combinatorial binding effects such as multiple factors competing for the same site.
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 Recently, attempts have been made to correlate whole-genome expression profiles and 

ChIP occupancy data to the DNA content of regulatory sequences using models based on 

statistical thermodynamic models (Buchler, Gerland and Hwa, 2003; Granek and Clarke, 2005; 

Raveh-Sadka, Levo and Segal, 2009; Segal, E., et al., 2008; Shea and Ackers, 1985;  and Wasson 

and Hartemink, 2009).  Although these efforts are hampered by data insufficiency, the results 

have been promising and show that statistical thermodynamic models of transcription are a 

reasonable solution for producing predictive models that also help explain the underlying 

mechanism.  The main difficulty is parameterizing the models given genomic data.  The number 

of possible molecular events is immense compared to the number of gene expression 

observations available.  An alternative approach to parameterizing the models is the use of 

synthetic promoters (Cox, Surette, and Elowitz, 2007; Gertz and Cohen, 2009; Gertz, Siggia and 

Cohen, 2009; Kwasnieski and Mogno, et al., 2012; Ligr, et al., 2006; Melnikov, et al., 2012; 

Murphy, Balazsi, and Collins, 2007; Patwardhan, 2012; and Sharon et. al., 2012.)  In this 

approach, multiple promoter variants in the same promoter backbone are used to drive the 

expression of a single reporter gene, such as YFP.  The reporter gene’s expression level is 

assayed and used to estimate model parameters.  This approach has the advantage of simplifying 

the system to focus on the effect on expression of various combinations of binding sites 

independent of other regulatory parameters.

 Previous synthetic promoter approaches used only the sequence and expression data to 

infer relationships between the sequence content and the gene expression.   The model from 

Gertz and Cohen (2009) performs well on the given data, explaining approximately 60% of the 

gene expression variable.  However, the degree to which the model accurately describes the 

45



underlying biophysical mechanisms responsible for the observed remains an open question. This 

is an important question since the degree to which the model can be confidently applied to 

contexts outside of the synthetic promoter system is directly related to the degree to which the 

model reflects the actual biophysical mechanism of the system.

 I sought to extend the synthetic promoter approach by developing a ChIP-based metric of 

transcription factor occupancy on synthetic promoters.  I applied this approach to a library of 

binding sites for transcription factors responsive to amino acid starvation (Blaiseau, et al., 1997;  

Blaiseau and Thomas, 1998; Arndt and Fink, 1986) or glucose (Park, et al., 1999) and tested the 

behavior of the sites in both glucose and amino acid starvation conditions.  I used both the 

occupancy and expression data to attempt to separate the TF-DNA binding energy from the 

protein-protein interactions and to determine how different combinations of binding sites alter 

naive TF-DNA sequence binding preferences.  This knowledge will help us better understand 

and model the relationship between TF occupancy and gene expression.
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Methods

Construction of strains

 Strain BC905 (Mat alpha, his3∆1 leu2∆0 lys2∆::BirA ura3∆0) was created by integrating 

BirA into the genome of strain BY4742 (Mat alpha, his3∆1 leu2∆0 lys∆ ura3∆0) at the lys2 locus 

via PCORE (Storici and Resnick, 2006). Briefly, a cassette containing KAN and URA3 (PCORE) 

was inserted into the lys2 locus using primers RZ131 and RZ132 (Table 3.6) and standard 

transformation protocols (Gietz and Woods, 2002) with selection on G418.  BirA was inserted 

into this strain by transforming with BirA plus homology to the lys2 region generated by primers 

RZ133 and RZ134 (Table 3.6) amplifying from plasmid prs313-BirA-NLS (van Werven and 

Timmers, 2006) with counter-selection on 5-FOA.  Insertion was verified by PCR around the 

upstream and downstream regions of integration (primers RZ147-RZ149, Table 3.6) and by 

sequencing. 

 CBF1, GCN4, MET31, and NRG1 were C-terminally tagged with the myc-C-avi tag by 

amplifying myc-C-avi with KAN from plasmid PUG6-myc-C-avi (van Werven and Timmers, 

2006) using primer pairs referred to in Table 3.6 RZ129 and RZ130 (CBF1), RZ137 and RZ138 

(GCN4), RZ135 and RZ136 (MET31), and RZ127 and RZ128 (NRG1) and transforming the 

resulting PCR product into BC905 using G418 selection to create strains BC906 (BC905 + 

CBF1::myc-C-Avitag, BC907 (BC905 + GCN4::myc-C-Avitag), BC908 (BC905 + MET31::myc-

C-Avitag, and BC909(BC905 + NRG1::myc-C-Avitag. Insertion was verified by PCR (Table 3.6, 

primers RZ92-RZ99, RZ143, RZ144) and by Sanger sequencing.  The resulting strains were 

backcrossed to BY4741, sporulated, and offspring selected which matched the appropriate 
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genotype (MAT alpha his3∆1 leu2∆0 lys2∆::BirA ura3∆0 CBF1::myc-C-avi KAN). Retention of 

the tag and BirA was verified by PCR post-mating.

Media

 All strain growth was done in YPD; synthetic complete with 2% glucose (SC); synthetic 

complete lacking uracil with 2% glucose (SC-Ura); synthetic complete lacking Trp with 2% 

glucose (SC-Trp); minimal media + 2% glucose with 300 uM his, 1 mM lys, 2 mM leu, 400 uM 

Trp (Min); minimal media + 2% glucose with 300 uM his, 1 mM lys, 2 mM leo, 200 uM Ura 

(Min+Ura-Trp); or in the same media with 0.9 uM biotin (YPDB, SCB, SCB-Ura (glucose), 

MinB, MinB+Ura-Trp).  

Synthetic Promoter Library Creation

 Libraries of synthetic promoters were created as described previously (Gertz, Siggia, and 

Cohen, 2009; Gertz and Cohen, 2009). Briefly, oligos with recognition sites for Cbf1 (Table 3.6 

RZ84 and RZ85), Gcn4 (Table 3.6 RZ86 and RZ87), Met31 (Table 3.6 RZ88 and RZ89), and 

Nrg1 (Table 3.6 RZ90 and RZ91) were annealed, then mixed in ratios equal to the Tms of the 

annealed products, and ligated together.  The ligation products were size selected with YM100 

Microcon columns and cloned into plasmid pJG102 (Gertz, Siggia, and Cohen, 2009) and 

maxiprepped. The resulting plasmid was digested to produce a linear product with flanking 

homology to TRP1. The linear product was integrated into the avi-tagged strains following 

standard large-scale transformation protocols (Gietz and Schiestl, 2007).  Ten 96-well plates of 

colonies were picked for each tagged strain, which were subjected to three rounds of dilution 
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purification consisting of growing the strains overnight in SC-URA, then pinning them onto SC-

URA agar plates and allowing them to grow for two days. The final strains were replica-plated 

onto SC-Trp and the strains which grew were noted and excluded from the expression analysis.  

Library Sequencing

 Synthetic promoters were sequenced on the Illumina MiSeq platform using a double 

barcoding strategy. One of 96-well-specific barcoded primers was used with one of forty plate-

specific barcoded primers to colony PCR the synthetic promoters such that each promoter was 

amplified with a unique combination of well and plate primers. The well primers included a SalI 

restriction site and the plate primers included an Mfe1 restriction site at the 3’ end. Five uL of 

each PCR reaction was pooled together and ethanol precipitated, resuspended in 10 mLs of 

water, phenol/chloroform extracted, then ethanol precipitated and resuspended in 1 mL of H2O. 

About one third of this material was run on a 1.5% TAE agarose gel and a band from ~150 bp to 

800 bp was purified (Qiagen #28704) to remove primer-dimers and the remaining material 

frozen down as stock.  Approximately 500 ng of gel-purified material was combined in each of 

four tubes with 5 uL of 1 uM pre-annealed custom sequencing adapters RZ231 and RZ233 

(Table 3.6), 1 uL each of EcoR1-HF (NEB R3101) and Mfe1 (NEB R0589S), 4 uL of 10 mM 

ATP, 4 uL of NEB Buffer 4 (NEB B7004S) and water to 39 uL. This mix was digested for 20’ at 

37C, at which point 1 uL of T4 DNA Ligase (NEB M0202S) was added to the mix, which was 

cycled three times between 16C and 25C for 10 minutes at each temperature, followed by 10 

minutes at 16C, 10 minutes at 65C, then 20 minutes at 37C accompanied by 1 uL fresh EcoR1-

HF and Mfe1. The resulting material was PCR-cleaned (Qiagen #28014) using a single column 
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for all four tubes. Ten uL of the eluted material was combined in each of three tubes with 1 uL 

each of Xho1 (NEB R0146S)  and Sal1-HF (NEB R3138), 2 uL of NEB Buffer 4, 2 uL of 10 

mM ATP, 2 uL of 10X BSA (B9001S), and 2 uL of 1uM pre-annealed custom sequencing 

adapters RZ230 and RZ232 (Table 3.6). The mix was digested/ligated as for the other adapters. 

The final solution was run on a 1.5% TAE Agarose gel and size selected for 150-700 bp then run 

with 25% PhiX on the MiSeq platform using the 2x150 bp chemistry, but run for 250 cycles 

forward and 50 cycles reverse. The resulting sequence data was analyzed by custom python 

scripts that used a minimum hamming distance approach to determine the TFBS composition of 

the promoters allowing for up to one mismatch per binding site.

Growth Conditions

 For expression measurements, strains were grown in glucose and amino acid starvation 

(AAS) conditions as described previously (Gertz and Cohen, 2009) with the addition of 0.9 uM 

Biotin to all media.  For the ChIP measurements, strains were grown as for expression in 96-well 

format overnight. For the glucose condition, 30 uL of overnight culture from each well for a 

given tagged factor was pooled together, and 20 mLs of this pooled culture was added to 980 

mLs of SCB-Ura (see media) and grown for approximately four and a half hours to a final 

optical density (OD660) of 0.6-1.0. For the AAS condition, growth was carried out as for 

expression measurements except that after growth to mid-log phase in glucose, 30 uL of each 

strain for a given tagged factor was pooled together and 20 mLs of the pooled culture was spun 

down briefly (two minutes at 1000G) and the supernatant decanted.  The pellet was resuspended 
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in 10 mLs of MinB (see media) and added to 990 mLs of MinB media. Final OD660 after six 

hours of growth was between 0.8 and 1.2.

YFP Expression Measurements

 Strains were grown as described then fixed by adding 4% paraformaldehyde solution (4% 

formaldehyde, 100 mM sucrose) to a final concentration of 1%.  YFP intensities were measured 

by flow cytometry on a Beckman Coulter Cell Lab Quanta SC. The final expression 

measurement was the ratio of raw fluorescence to volume of the cell, as reported as the 

“electronic volume” by the instrument, normalized to the mean expression of three to four no-

insert control promoters on the same plate. Samples with fewer than 80% of counts with a 

fluorescence intensity between 10 and 900 raw fluorescence units were discarded from further 

analysis.

Biotin-ChIP

 Pooled strains grown in 1 L of glucose or AAS media for ChIP were crosslinked with a 

final concentration of 1% formaldehyde for 15 minutes at room temperature. Crosslinking was 

quenched by adding 150 mLs of 2.5 M glycine and mixing at room temperature for five minutes 

followed by centrifugation and three 50 mL chilled TBS washes. The final cell pellet was 

transferred to three microcentrifuge tubes using the supernatant remaining after decanting and 

spun in a microcentrifuge for three minutes at 3000rcf and 4C. Each tube represents a single 

ChIP technical replicate. The supernatant was removed and the pellets frozen at least overnight at 

-80C. Frozen pellets were thawed on ice and resuspended in 2 mLs of Lysis Buffer (50 mM 
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HEPES, 150 mM NaCl, 1 mM EDTA, 1% v/v Triton X-100, 0.1% w/v sodium deoxycholate, 

0.1% w/v SDS) and protease inhibitor (Roche #11836170001). Each replicate was distributed 

into two 2 mL tubes pre-filled three-quarters full with zirconium silicate beads.  The tubes were 

bead beat six times on the highest setting for three minutes each time with a one minute pause in 

an ice bath between each beating using a Biospec Products Mini Bead Beater.  The lysed cell 

matter was extracted by centrifugation, and the pellets resuspended in a final volume of 5 mLs of 

Lysis Buffer in a 15 mL centrifuge tube. The resuspended pellet was sonicated two times for 30 

seconds each time with a Branson Sonifier 250 tip sonicator at power level six, duty 75% 

followed by four times for 30 seconds at power level five, duty 75%, with at least two minutes 

on ice between each sonication. The conical tubes were spun for two minutes at 3200G at 4C in a 

benchtop centrifuge. The supernatant was transferred to microcentrifuge tubes and centrifuged 

for 30 minutes at 4C at >16,000rcf.  During the spin, 500 uL (per technical replicate) of Dynal 

M280 streptavidin-coated magnetic beads (Life Technologies, 112-05D) were washed three 

times with PBS and distributed into two 2 mL tubes per replicate. Four mLs of the supernatant 

was added to washed beads, 2 mLs per each 2 mL tube and incubated at room temperature for 

one hour. After incubation, the beads were bound to magnets and the supernatant removed and 

set aside for use as “input” (IN) material. The two tubes of beads per replicate (IP) were 

combined and washed were washed with 1.8 mL of solution for two by five minutes in each of 

Lysis Buffer, High Salt Lysis Buffer (50 mM HEPES, 0.5M NaCl, 1 mM EDTA, 1% v/v Triton 

X-100, 0.1% w/v sodium deoxycholate), LiCl Wash Buffer (500 mM LiCl, 1% NP-40 

alternative, 10 mM Tris pH 8.0, 1 mM EDTA), SDS Wash Buffer (10 mM Tris pH 8.0, 1 mM 

EDTA, 3% SDS), and TE (10 mM Tris pH 8.0, 1 mM EDTA). The beads were resuspended in 
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250 uL TE + 0.5% SDS + 10 uL of 20 mg/mL Proteinase-K (NEB P8102S) and distributed into 

three 250 uL PCR tubes per replicate. Then 72.5 uL of IN material was combined with 72.5 uL of 

TE + 1% SDS to which 10 uL of 20 mg/mL Proteinase-K was added and distributed into three 

250 uL PCR tubes per replicate. The tubes were incubated for four hours at 42C followed by two 

hours at 72C followed by six hours at 65C.  The material from each replicate was recombined 

and purified via ChIP cleanup columns (Zymo D5205), eluting in 35 uL of elution buffer.

qPCR of ChIP Samples

 Factor-specific qPCR primers were chosen by selecting the most highly enriched probes 

for the factor from Harbison, et al. (2004), scanning the probe sequence with Patser (Hertz and 

Stormo, 1999) for motif matches using motifs from Zhao and Stormo (2011) for Cbf1 and from 

Spivak and Stormo (2012) for the remaining factors, then using Primer3 to design qPCR primers 

that flanked the best motif matches.  Three independent dilutions of two ChIP replicates were 

diluted to approximately 0.01-0.1 ng/uL final concentration for both the IN and IP.  For each 

dilution of each sample, 3 uL of each dilution were added to 30 uL of water. Eleven uL from 

each 33 uL of water were added to each of two wells of a 96-well plate. To half the wells, 12.5 

uL of SYBR Green QPCR Master Mix (Thermo Scientific AB-1158/A) and 0.75 uL each of 10 

uM primers (Table 3.6 RZ169 and RZ170), amplifying a region in the SUC2 promoter were 

added.  To the other half, 0.75 uL each of factor-specific target primers from Table 3.6 RZ158 

and RZ159 (Cfb1), RZ177 and RZ178 (Gcn4),  RZ183 and RZ184 (Met31), RZ193 and RZ194 

(Nrg1) were added along with 12.5 uL of SYBR Green QPCR Master Mix. The resulting plate 
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was sealed and run on a Stratagene Mx3000p qPCR thermocycler.  The replicates were averaged 

and analyzed using the delta-delta Ct method.  

Sequencing of ChIP Synthetic Promoters

 Sequencing of the ChIPed synthetic promoters was done by adding adapter sequences to 

synthetic promoters in the IN and IP samples via PCR amplification using 23 uL of IP material 

with 1 uL each of 10 uM primers which were barcoded in the forward read based on sample 

identity and in the reverse read based on the identity of the tagged transcription factor  (see Table 

3.5 for the list of barcoded primers used) and three different starting concentration of input 

material. The resulting products were gel-purified on a 1.5% TAE agarose gel, size selecting for 

approximately 150bp to 600bp. Input samples were retained on the basis of similar gel-intensities 

to the corresponding IP sample as an approximate concentration measure. The resulting samples 

were combined, ethanol precipitated and reconstituted in 30 uL of water. The forward sequencing 

adapter was added by digestion/ligation exactly as for library sequencing. The final concentration 

of sequence-able fragments was determined by qPCR using SYBR Green QPCR master mix, 

primers RZ259 and RZ260, and eight synthetic promoter standards, diluted across five orders of 

magnitude.  The material was sequenced on the Illumina HiSeq 2000 platform using one lane of 

a paired-end 101bp run.

Occupancy of Synthetic Promoters

 The relative occupancy of synthetic promoters was determined by mapping each 

sequencing read back to the promoter of origin. First, the read was parsed to determine which 

binding sites were present. This information was used to map the read back to the originating 
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promoter.  The read counts were normalized by the total number of reads that mapped to a given 

sample type and avi-tagged transcription factor.  The ratio of normalized IP counts to normalized 

input counts for a particular promoter was divided by the median normalized IP/input ratio of all 

promoters lacking a binding site for the ChIPed factor to give the normalized relative occupancy.  

Scaling to the median background occupancy effectively scales the occupancy values relative to 

the non-specific binding of the factor.  This places all occupancy values from all factors and 

conditions on the same relative scale, assuming that the non-specific binding distribution is the 

same for all factors.  For demonstrating technical replicate variance, the occupancy was 

calculated separately for each replicate. For modeling purposes, the replicates were generally 

combined by summing the promoter coverage across replicates and computing occupancy from 

the summed values. The exception was Gcn4 in AAS where a single ChIP replicate was used due 

to substantial depletion of promoters with four or more binding sites in the input of two of the 

replicates.  Promoters with fewer than fifty reads in the inputs were excluded from the analysis.

Thermodynamic Model of Transcription

 Modeling of expression and occupancy used the thermodyamic model of transcription 

described previously (Gertz, Siggia, and Cohen, 2009; Gertz and Cohen, 2009, Buchler, Gerland, 

and Hwa, 2003).  The model considers unbound DNA as a reference state and computes the 

statistical weight of each possible configuration k of transcription factors and proteins bound to 

the DNA as:

Where ∆Gk is given as:
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where L is the number of TF binding sites in the synthetic promoter, ∆Gtf i DNA is the binding 

energy of the TF at site i, reflecting its concentration and affinity for the site, ∆Gtf i RNAP is the 

binding energy between the TF at site i and RNAP, δ(RNAP) is one if RNAP is bound in the 

current state and zero otherwise, ∆Gixn tf i,j is the binding energy between the TF at site i and the 

TF at site j, δ(TFi) is one if the TF at site i is bound in the current state and zero otherwise, and ε

(i,j) is one if there are no other TFs bound between sites i and j in the current state, and zero 

otherwise.  The probability of polymerase bound is then given as:

Where N is the total number of states (typically 2L for non-competitive binding), and δk(RNAP) 

is one if RNAP is bound in state k and zero otherwise. The probability of occupancy for a 

particular TF is computed as:

Where N is the total number of states (2L for non-competitive binding), and δk(TF) is one if the 

TF is bound to one or more of its sites in the state and zero otherwise. The observed occupancy 

and expression values were assumed to linearly related to the predicted probabilities, 

respectively:
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and

Where α and β are the least-squares estimates.  The current model does not account for non-

specific TF-DNA interactions and always predicts an occupancy of zero for promoters with no 

specific binding site for the factor of interest. Therefore, promoters lacking a specific binding site 

for the factor whose occupancy was being calculated were excluded from model estimation and 

validation. Model parameters were recovered in several ways.  First, by performing simultaneous 

optimization with only expression data.  Second by fitting with all useable occupancy data.  

Third, by fitting to occupancy and expression data.  When fitting only to occupancy data, TF-

DNA and TF-TF binding energies were explored with a simultaneous fit to all environments. 

When fitting to expression data, the optimization was carried out simultaneously for multiple 

environments and factors largely as previously described (Gertz and Cohen, 2009) with 

modifications as follows.  First, expression values for multiple biological replicates within a 

particular strain background were collapsed into a single promoter using the median expression 

of all biological replicates.  Second, no down-weighting of short-promoter residuals was used. 

Finally, the optimization was done in R using nlminb with default parameters.  When fitting with 

both expression and occupancy data, the occupancy data was first re-scaled by the ratio of the 

means of the occupancy and expression data to put it on a similar quantitative scale to the 

expression data to ensure that neither the occupancy nor the expression would dominate the 

residual sum of squares for fitting.  Optimization was performed as for fitting with expression 
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data, with the probability of both occupancy and expression scaled to the mean of all observed 

values.

Competitive Binding Model

 The competitive binding model functioned exactly as the standard model except that each 

Gcn4 site had three possible states: unbound, bound by Gcn4, and bound by the unidentified 

competitor.  No direct interaction between Gcn4 and the competitor was modeled. The 

competitor was assumed to have the same concentration and the same effect on polymerase in 

both conditions. The Gcn4 effect on polymerase was held constant in both conditions, but its 

concentration in both conditions was allowed to vary. All other parameters were fit as for the 

non-competitive model. 

Cross Validation of Models

 All models were subjected to 5-fold cross validation.  The promoters and associated 

expression or occupancy values were randomly partitioned into five equally sized sets.  In each 

round of cross validation, training was performed on four out of the five sets of data and 

validation was performed on the left-out set of data.  Each partition was used once and only once 

for validation. 
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Results

Promoter Libraries with tagged TFs show similar expression behavior

 Four libraries were constructed as detailed in Gertz and Cohen (2009) using previously 

published TF binding sites of Cbf1, Gcn4, Met31/Met32, and Nrg1.  (See Table 3.6, oligos 

RZ84-RZ91).  The libraries were built in strains where the bacterial biotin ligase BirA was 

integrated into the yeast genome at the LYS2 locus and in each library one of the four 

transcription factors thought to bind the sites was tagged with the myc-C-Avi tag (van Werven 

and Timmers, 2006). The number of total and unique promoters for each library is reported in 

Table 3.1.  The strains were grown as outlined in methods for either ChIP or expression analysis 

in both the glucose and AAS conditions. 

 Expression driven by the synthetic promoters was measured by flow cytometry as 

detailed in the methods.  In general, the libraries showed similar expression distributions to each 

other in both conditions (Figures 3.1 and 3.2), indicating the tag does not alter protein function.  

The exception was the library in the Cbf1-tagged strain which showed a bimodal distribution of 

expression in glucose compared to the unimodal distribution observed for the other tagged-

strains (Figure 3.1). The difference in expression can be accounted for entirely by the tag on 

Cbf1 as indicated in Figure 3.3 which shows the mean expression for matched promoters in the 

Cbf1-tagged vs. Gcn4-tagged backgrounds. Promoters with Cbf1 sites in the Cbf1-tagged strain 

are universally expressed higher than in the other strains, whereas promoters with no Cbf1 sites 

are expressed the same between the libraries. A list of all promoters and their expression data is 

available in Table 3.7.
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Library ChIP shows enrichment for Cbf1 and Gcn4 but not Met31 or Nrg1

 Strains were grown and ChIPed in triplicate as detailed in the methods. The resulting 

samples of enriched (IP) and unenriched (IN) material were used for qPCR-based validation of 

the ChIP. QPCR was carried out by diluting the IP and input for two of three ChIP replicates per 

strain to between 0.01-0.1ng/uL and setting up triplicate qPCR reactions for each sample, 

amplifying both an unbound control region and a bound target region.  In general, Cbf1 is 

expected to be actively transcribed in both conditions, whereas Gcn4 is predominantly active in 

the AAS condition. The ChIP for Cbf1 and Gcn4 showed significant enrichment of the bound 

region relative to the unbound regions (Figure 3.4).  As expected, Cbf1 binding is similar in both 

conditions, whereas Gcn4 binding is much higher in AAS.  Nrg1 should be active in glucose, and 

Met31 should be active in AAS.  However, ChIP of these factors showed little if any enrichment 

or even depletion (Figure 3.5), suggesting that these factors cannot be ChIPed in these conditions 

or that the target regions are not bound in vivo.

ChIP of synthetic promoters is highly reproducible

 The IP and IN samples were also used for PCR-selected sequencing of the ChIPed 

synthetic promoters.  The ratio of normalized reads in the IP to normalized reads in the IN was 

used as a measure of relative occupancy. The occupancy replicates were first examined for 

technical reproducibility.  Figure 3.6 compares ChIP replicates for ChIP of Cbf1 in both glucose 

and AAS conditions and clearly shows that the ChIP results are very consistent across multiple 

technical replicates, with an average R2 of 0.94. 
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ChIP of synthetic promoters shows quantitative differences driven by the TFBS

 For Cbf1 and Gcn4, there is clear signal in the ChIP in both conditions (Figures 3.7 and 

3.8). The signal is similar for Cbf1 in both glucose and AAS conditions and shows a nearly linear 

increase in the mean relative occupancy with respect to the number of Cbf1 sites that are present 

in the promoter.  Variation around the mean is a combination of assay noise and real biological 

variation, where different combinations of binding sites serve to increase or decrease the 

occupancy of the factor.  In the case of Cbf1, the relatively tight peaks around the mean 

occupancy for one, two, and three Cbf1 sites suggests that Cbf1 occupancy is dependent 

primarily on the number of Cbf1 sites.

 Gcn4 occupancy also increases with the number of Gcn4 sites.  However, in glucose, the 

total occupancy is much lower than in AAS and the increase in occupancy appears to be a non- 

linear response to the number of Gcn4 binding sites.  In AAS, Gcn4 occupancy responds more 

strongly to the number of Gcn4 binding sites.  However, there is much wider dispersion of 

occupancy for Gcn4 in AAS than for Cbf1 in either condition.  This suggests that in the context 

of the binding sites used for the libraries, Gcn4 occupancy is affected by other transcription 

factor binding events to a greater extent than Cbf1.

No occupancy information for Met31 or Nrg1 

 Consistent with the qPCR results, Met31 and Nrg1 ChIP showed no signal in the 

synthetic promoters (Figures 3.9 and 3.10). Met31 and Met32 both recognize the same binding 

motif, but previous in vivo studies have shown that Met32 binds in preference to Met31 (Carrillo, 
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et al., 2012). Thus the lack of ChIP signal on the synthetic promoters is likely all or partly due to 

the preferential binding of Met32.  

 The Nrg1 site used contains the Nrg1 consensus motif GGACCCTT (Spivak and Stormo, 

2012) and functions as a repressor even in the Nrg1-tagged strain (Figure 3.11 and Table 3.3).  

Thus, Nrg1 appears to be functional even when tagged, but there is no observable ChIP signal.  

This may be due to epitope masking. Nrg1 is known to recruit the ssn6-tup1 repressive complex 

(Park, et al., 1999) and this complex may render the biotin tag inaccessible for pull down after 

crosslinking.  Due to lack of ChIP signal, promoters in the avi-tagged Met31 and avi-tagged 

Nrg1 strains were excluded from all remaining analyses.  Therefore, no attempt was made at 

separating the TF-DNA binding energy from the interaction with RNAP for these factors.

Thermodynamic modeling of expression shows good agreement between predicted and 

observed expression

 All expression data from both conditions were used to fit a model of sequence and 

expression without regard to occupancy.  The initial model fit the TF-RNAP interactions and the 

TF-DNA binding energy in glucose relative to AAS. Additional parameters were attempted to 

test their improvement to the fit, including allowing for orientation-specific effects for the TF-

RNAP interactions and testing all pairwise TF-TF interactions in turn.  Five-fold cross validation 

was performed on the final model (Table 3.4). The final model parameters and values are listed 

in Table 3.3.  The overall fit had an R2 of 0.53 (Figure 3.12).  This is comparable to the 

previously obtained fit of 0.6 (Gertz and Cohen, 2009),  despite using two fewer parameters to 

model the data, having two different tagged transcription factors, and having a greater diversity 
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of promoters (212 unique promoter in glucose versus 131 unique promoters published 

previously.)  Modeling the interaction between Cbf1 and RNAP separately for the tagged  and 

untagged versions of Cbf1 resulted in a significant improvement to the fit of the model (R2 0.53 

vs. 0.34, P<10-16, F-test). This is consistent with the bulk analysis showing that of Cbf1-

containing promoters in the Cbf1-tagged background express higher than the same promoter in 

the other strains.  Notably, when fitting solely with expression data, no TF-TF interactions were 

found to significantly improve the fit.

Thermodynamic modeling of occupancy predicts occupancy and interactions not observed 

in expression modeling

 The normalized relative occupancy data in glucose and AAS conditions from the Cbf1 

and Gcn4-tagged strains were used to fit a model relating sequence to occupancy of Cbf1 and 

Gcn4 on the synthetic promoters.  The current implementation of the model does not consider 

non-specific DNA interactions, so promoters with no specific binding sites for the ChIPed factor 

were excluded from the fit.  The initial model consisted only of the DNA-binding energy of  

Cbf1 and Gcn4 in glucose and AAS (R2 0.54).  Each transcription factor interaction between 

Cbf1 and all other factors and Gcn4 and all other factors was added to the model, one at a time,  

to determine if any interactions had a significant impact on the model performance.  All p-values 

were corrected to account for the number of tests being performed. 

 Surprisingly, two interactions were significant by themselves despite no interactions 

being found significant in the expression-only model. The ∆GGcn4-Gcn4 and the ∆GGcn4-Nrg1 

interactions made significant improvements to the fit of the model (R2 0.56, P=1.11e-04 and R2 

63



0.56, P=5.20e-05 respectively, F-test with Bonferroni correction). Adding the ∆GGcn4-Gcn4 

interaction to a model that includes the ∆GGcn4-Nrg1 interaction also led to a significant 

improvement in the performance and stability of the model (R2 0.57, P=1.43e-05, F-test with 

Bonferroni correction).  The final model, which includes the DNA binding energies, the ∆GGcn4-

Nrg1 and the ∆GGcn4-Gcn4, predicts virtually no change in the DNA binding energy of Cbf1 between 

the two conditions (∆∆G: -0.08), versus a large change in the DNA binding energy of Gcn4 when 

moving from glucose to AAS (∆∆G: -2.74).  The final model resulted in a fit with explanatory 

power on par with the thermodynamic modeling of expression (R2 0.57 for occupancy versus R2 

0.53 for expression), suggesting that the model can describe the variation in both data sets 

equally well (Figure 3.13).

Overall, thermodynamic model simultaneously fits occupancy and expression data well, but 

suggests specific model improvements

 All expression and occupancy data were combined to fit both the TF-DNA binding 

energy and the polymerase interaction terms simultaneously.  The parameters to include were 

chosen based on the expression-only and occupancy-only fits (Table 3.3).  In general, the fit-

model was able to converge on reasonable predictions of both expression and occupancy (Figure 

3.14). In particular, the model overall did better on predicting both categories of data than the 

model fit separately to either source of data.  Whereas the model fit only on occupancy was 

incapable of predicting expression and the model fit only on expression predicted occupancy 

with an R2 of 0.36, the model fit on both data sets predicted expression with an R2 of 0.425 and 

occupancy with an R2 of 0.556 (Table 3.4).  Thus, the model fit on both data sets has good 
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predictive power across a broader range of biological questions of interest than models fit with 

either data set alone.  However, the question of why the model fit on both sets of data performs 

significantly worse when predicting expression than the model fit on only expression deserves 

exploration.

 One possibility is that the scales of the data may not be equivalent, despite effort to avoid 

that issue.  This could be addressed by weighted regression or allowing the occupancy and 

expression data to scale separately from each other. Alternatively, the occupancy data may be 

noisier than the expression data.  This is somewhat difficult to resolve with the good correlations 

observed between ChIP technical replicates (Figure 3.6), but it is formally possible that the ChIP 

assay is giving consistently incorrect results for some promoters.  Here, the appropriate solution 

is to down-weight the residuals of the occupancy data relative to the expression data.  Finally, 

there may be a mismatch between the model description of direct interaction between a TF and 

RNAP and the actual mode of effect. The model currently assumes a direct recruitment/inhibition 

model for how TFs interact with polymerase.  This seems reasonable in many cases, but may not 

always be appropriate.  There is some support for this idea. Gcn4, known to directly recruit the 

Mediator complex which directly associates with RNAP, was well-modeled across a variety of 

model architectures as long as they included competitive binding (see below) whereas Cbf1, 

which can affect expression indirectly (Moreau, et al. 2003), tended to be more problematic, as 

though the tight binding implied by the occupancy did not correlate well with overall effect on 

expression caused by Cbf1.  This would require a more sophisticated description of the 

interaction between Cbf1 and RNAP to resolve.  This may be an interesting avenue to explore in 

future work.
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 Due to the discrepancy in the two data sets regarding the behavior of the Gcn4 site in 

glucose (activation versus repression), the Gcn4-RNAP term behaved poorly in models which 

used both expression and occupancy and did not incorporate competitive binding.  The fitting 

procedure consistently drove the Gcn4-glucose interaction to a highly unfavorable value which 

resulted in numerical instabilities in the fit.  This occurred every time a fit was attempted with 

this model (>10). This suggests that the two data sets provide conflicting information regarding 

the effect of Gcn4 in glucose which can only be resolved with a more sophisticated model.

 

Occupancy distinguishes between distinct hypotheses of mechanism of Cbf1 effect on 

expression

 The expression data suggest a change in the effect on expression due to Cbf1 in the AAS 

versus glucose conditions.  This change can be modeled by allowing the binding energy of Cbf1 

to change between the conditions, or by allowing the Cbf1-RNAP interaction to change between 

the two conditions.  When fitting with only expression data, these two models produce equally 

good fits (R2 of 0.53 in both cases), despite representing distinct biophysical mechanisms.  The 

occupancy model distinguishes between the two mechanisms, suggesting that there is virtually 

no change in the binding energy of Cbf1.  This is consistent with previous results using GFP-

fused Cbf1 that showed no concentration difference between the two conditions (Gertz and 

Cohen, 2009).   At that time, the condition-specific effect of Cbf1 was assumed to be the result of 

differential binding due to protein-protein interactions.  The occupancy data clearly shows, 

however, that any Cbf1 binding differences between the conditions are negligible.  This argues 

for a shift in the activating potential of Cbf1 rather than a change in the binding energy. 
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Gcn4 Binds Cooperatively

 Since the ∆GGcn4-Gcn4 term made a significant improvement in the fit of the occupancy 

data, I sought to explore the cooperativity further by applying a Hill function to the Gcn4 AAS 

binding data.  The function fit was:

Occupancy = a + nsitesn/(xn + nsitesn)

which is the standard Hill function with an intercept to model non-specific binding.  The function 

was fit twice, once with n constrained to 1 (no cooperativity) and once with n allowed to vary. 

Figure 3.15 shows the mean fractional occupancy (normalized occupancy / max occupancy) of 

Gcn4 by number of Gcn4 binding sites present in the promoter and the standard error of the 

mean together with the two fits (red: n=1, x=3.23, a=0.011; blue: n=2.56, x=2.27, a=0.051).  All 

parameters of the cooperative hill function were deemed significant by t-test, with the hill 

coefficient deemed highly significant (P<2e-16). This suggests that Gcn4 binds the promoters in a 

cooperative manner.  This is consistent with recent results showing that Gcn4 binds to multiple 

sites in the mediator complex (Jedidi, et al. 2010; Brzovic, et al. 2011).  Although there is no 

allostery in the binding of Gcn4 to mediator, the effect of Gcn4 making multiple contacts with 

mediator could result in cooperativity of the sort previously postulated for transcription factors 

generally (Tanaka, 1996) and observed for Mig1 (Gertz, Siggia, and Cohen, 2009).  

Gcn4 occupancy is negatively impacted by Nrg1

 Modeling of only binding data revealed a negative interaction between Gcn4 and Nrg1.  

Although the interaction was significant, it had a small effect on the overall fit (R2 0.54 without, 

R2 0.56 with, P=5.20e-05).  To investigate whether the parameter was meaningful or simply fitting 
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noise, the interaction was examined outside the thermodynamic model through a linear model.  If 

the interaction is truly meaningful, it should should show up in both models.  Figure 3.16  shows 

a clear effect of adding the Gcn4:Nrg1 interaction term to the model.  The top graph is the model 

without the interaction (adjusted R2 0.49) and the bottom is the model with the interaction 

(adjusted R2 of 0.57, P<2e-16, F-test).  This strongly suggests that the effect of the Nrg1-Gcn4 

interaction in the model is real, and not just modeling noise. Nrg1 is known to recruit the ssn6-

tup1 repressive complex (Park et al., 1999), and it is plausible that this recruitment interferes 

with the ability of Gcn4 to bind and recruit mediator.   

 One question that arises is why the Gcn4 cooperativity and the Nrg1-Gcn4 interaction are 

observed only in the binding data and not in the expression data.  There are two non-exclusive 

possibilities. One is that the expression-only model already incorporates a form of synergism in 

the interaction terms between the TFs and polymerase which may mask the cooperative binding 

by Gcn4 and competition between Nrg1 and Gcn4 in the fitting procedure.  The second 

possibility is data insufficiency.  In AAS conditions,  promoters with many Gcn4 binding sites 

are highly active.  However, there is a limit in the dynamic range of the flow cytometer and 

many of the highly active Gcn4-containing promoters exceed the upper limit of the dynamic 

range so their expression measurements have to be discarded.  In AAS, comparing the total set of 

promoters versus those for which there are reliable expression measurements in AAS, there is a 

significant depletion of promoters with more than one Gcn4 binding site (P<2e-16, 

hypergeometric test), so observing cooperativity in the expression data is difficult.  Unlike the 

expression data, the dynamic range of the occupancy data is largely limited only by sequencing 

depth, allowing a larger variety of Gcn4-containing promoters to be sampled (145 Gcn4-
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containing promoters in AAS occupancy vs. 54 Gcn4-containing promoters in AAS expression).  

This suggests that expression measurements with larger dynamic ranges might be better able to 

capture TF-TF interactions, but doesn’t rule out the possibility that the Gcn4 cooperativity and 

Gcn4-Nrg1 interactions are masked in the model by the TF-polymerase interactions. 

Gcn4 site shows switching behavior

 Contrary to prior results (Gertz and Cohen, 2009), the Gcn4 binding site showed different 

behavior between glucose and AAS conditions. In AAS, it was a strong activating sequence 

(Figure 3.17A), consistent with the known role of Gcn4 in recruiting mediator and other 

transcriptional complexes (Jedidi, et al. 2010; Herbig, et, al. 2010) whereas in glucose, it 

functioned as a weak repressor (Figure 3.17B).  The switching behavior occurred regardless of 

which factor was tagged (data not shown), indicating that the repressive effect is independent of 

the tagging.  When modeling only expression,  allowing the Gcn4-RNAP interaction to differ 

between conditions revealed the same trend: the site activates in AAS conditions but represses 

weakly in Glucose (Table 3.3). Forcing the model to use same polymerase interaction term for 

the Gcn4 site in both conditions resulted in a significantly worse fit (R2  of 0.53 vs. 0.43, P < 

10-16, F-test). Attempting to fit the model by constraining the ∆GGcn4-RNAP term while allowing 

the binding energy of Gcn4 in glucose to vary as was done previously (Gertz and Cohen, 2009) 

resulted in a good fit (R2 0.50) but the resulting change in binding energy equates to 8.12x10-14--

fold lower apparent Ka.   This drastic of a change in binding energy is not biologically 

reasonable and is an artifact of fitting the data to an inappropriate model.  
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 There are two possibilities for why the Gcn4 site switches behavior in different contexts. 

The first is that Gcn4 somehow changes from an activator to a repressor, presumably through a 

postranslational modification or interactions with other proteins.  The second is that Gcn4 

competes with another factor for the same binding site.  The occupancy data can distinguish 

between these two hypothesis.  If expression is negatively correlated with Gcn4 occupancy in 

glucose, it strongly suggests that Gcn4 is switching behavior. However, if expression is 

positively correlated with occupancy, it suggests that another repressive factor is competing with 

Gcn4. Figure 3.18 shows expression vs. occupancy in both glucose and AAS.  As expected, there 

is a strong positive correlation between Gcn4 occupancy and expression in AAS.  However, there 

is also a positive correlation between Gcn4 occupancy and expression in glucose.  This argues 

that Gcn4 is not switching behavior in glucose, but that another factor is binding in competition 

to the Gcn4 site.  In fact, competitive binding with Gcn4 competition with at least one other 

factor (Bas1) has been previously reported (Arndt and Fink, 1986; Springer, et al., 1996).  Thus, 

both the data and the literature support the idea of competitive binding occurring in the synthetic 

promoters.

Competitive model of binding better explains Gcn4 expression and occupancy

 The thermodynamic model was extended to incorporate competitive binding with Gcn4 

by the addition of promoter states where the competing protein is bound to the site instead of 

Gcn4.   The model assumed that the effect on polymerase of the two competitors was consistent 

across conditions.  The TF-DNA binding energy of one competitor was fixed in both conditions 

and the other (Gcn4) was allowed to vary between conditions.  When this model was fit only 
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with expression data, it performed exactly the same as the model fit without competition where 

Gcn4 is assumed to switch behavior in the two conditions.  With only expression data, 

competitive binding cannot be distinguished from Gcn4 having different effects on RNAP in the 

two conditions.  Without additional data to constrain the fit, these two mechanisms cannot be 

separated.

 The combined expression and occupancy data were also fit with the competitive model.  

Both models resulted in similar fits (see Table 3.4, Figure 3.14, and Figure 3.19), although the 

competitive model is marginally better at predicting expression.  However, the non-competitive 

model consistently set the glucose Gcn4-RNAP term as highly unfavorable and resulted in 

numerically questionable fits, whereas the competitive model resulted in the same numerically 

stable fit 40% of the time.  In this best fit, the difference in Gcn4-DNA binding energies between 

the two conditions equates to fold change in the apparent Ka of approximately 25-fold, This 

seems large given previously published data (Albrecht, et al. 1998) but is still within the realm of 

possibility.  Thus, incorporating competition in the model resulted in a more stable, biologically 

accurate fit.
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Discussion

 I sought to improve our quantitative understanding of the biophysical mechanisms 

underlying transcriptional regulation.  In particular, I incorporated ChIP data into existing 

statistical thermodynamic models of regulation and compared models parameterized with only 

expression, only ChIP data, and with both. Comparing the results of these modeling procedures 

revealed several interesting features.

 First, Gcn4 occupancy seems to be more sensitive to the particular configuration of 

binding sites present in the promoter, whereas no context-dependent binding of Cbf1 was 

captured by the model.   This suggests that some transcription factors are more sensitive to 

binding site context than others.  It is interesting to note that Cbf1 is known to recruit chromatin 

remodeling complexes (Moreau, et al., 2003; Kent, et al., 2004), whereas Gcn4 directly recruits 

the mediator complex (Herbig, et al., 2010 ; Jedidi, et al., 2010).  It may be necessary for proper 

Cbf1 function for it to be able to bind to DNA regardless of what other factors are binding 

nearby, including nucleosomes.  On the other hand, it may be desirable for Gcn4 occupancy to be 

more easily influenced by the presence of other TF binding sites to guard against inappropriate 

activation.  This line of reasoning suggests the hypothesis that transcription factors which 

directly recruit polymerase and related subunits will be more heavily influenced by binding site 

context than factors which are involved in earlier processes such as chromatin remodeling.

 Second, the occupancy data reveals additional information that is masked by having just 

the expression data. In the expression data, the Gcn4 site activates in AAS and represses in 

Glucose.  With only the expression data, this effect can be reasonably modeled as a switch in the 

Gcn4-RNAP interaction. However, the occupancy data suggest that Gcn4 still activates in 
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glucose but is being largely outcompeted by another factor. Gcn4 competition with other factors 

has been previously documented (Springer, et al., 1996; Arndt and Fink, 1986), and the 

incorporation of both occupancy data with expression data allows that process to be both 

discovered and better modeled.

 Finally, combining occupancy and expression data for parameterizing thermodynamic 

models of transcription eliminates alternative hypothesis that cannot be be discarded with only 

expression data.  In the case of Cbf1, two of three competing hypotheses for explaining 

differential regulation by Cbf1 in AAS versus glucose were eliminated.  The binding of Cbf1 is 

the same in both conditions, strongly suggesting that the differential regulation occurs by altering 

the activation potential of Cbf1, possibly through Cbf1-dependent Met4 (Blaiseau and Thomas, 

1998; Thomas, et al., 1992).  In all, we find that incorporating protein binding information in the 

form of ChIP data provides the ability to quantitatively reason about the biophysical mechanisms 

that underly observed expression data and to distinguish between different biological 

mechanisms that give rise to the same expression data.
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Figures 

Figure 3.1: Expression distributions in glucose similar across all libraries except Cbf1
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Libraries were grown to mid-log phase in SCB-Ura, fixed with a final concentration of 1% 

formaldehyde, and the fluorescence intensities measured by flow cytometry. The distribution of 

all libraries is similar except for Cbf1 (after multiple hypothesis correction, P < 10-16 for Cbf1-

Gcn4, Cbf1-Met31, Cbf1-Nrg1; P=0.18, Gcn4-Met31; P=0.06, Gcn4-Nrg1; P=0.45, Met31-

Nrg1, Kolmogorov-Smirnov test).
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Figure 3.2: Expression distributions in AAS similar across all libraries
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Libraries were grown to mid-log phase in SCB-Ura, fixed with a final concentration of 1% 

formaldehyde, and the fluorescence intensities measured by flow cytometry. The distribution of 

all libraries is similar but with some significant differences by Kolmogorov-Smirnov testing, 

suggesting some strain-specific effects in AAS, probably due to the protein tag (after multiple 

hypothesis correction, P = 0.0096, Cbf1-Gcn4; P=0.20, Cbf1-Met31; P=0.00017, Cbf1-Nrg1; 

P=0.41 Gcn4-Met31; P=6.3e-10, Gcn4-Nrg1; P=1.3e-5 Met31-Nrg1).
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Figure 3.3: Avi-tagging increases Cbf1 activation potential, but not Gcn4
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Mean expression of identical promoters in the Cbf1-tagged background and Gcn4-tagged 

background were compared. Promoters without cbf1 in them (red) generally show good 

agreement between the two libraries, falling along the black line. Promoters with Cbf1 sites in 

them (blue) consistently show higher expression in the Cbf1-tagged background than in the 

Gcn4-tagged background. Promoters with Gcn4 sites in them (triangles) do not appear to differ 

between the two libraries, indicating that the tag on Gcn4 has little if any effect on expression.
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Figure 3.4: Specific enrichment of bound regions for Cbf1 and Gcn4 in glucose and AAS
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ChIP was performed on synthetic promoter-bearing strains with Avi-tagged Cbf1 and avi-tagged 

Gcn4 as outlined in methods. Enrichment was gauged by qPCR of a control (Ctl) region (SUC2) 

versus a target (Tgt) region (Ade 3 for Cbf1, CPA2 for Gcn4). Gluc is in Glucose, AAS is in 

Amino Acid Starvation. The target region is differentially bound with respect to the control 

region for both factors in all conditions, though only marginally so for Gcn4 in Glucose.
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Figure 3.5: Limited or no specific enrichment of Met31 and Nrg1 ChIP

ChIP was performed on synthetic promoter-bearing strains with Avi-tagged Met31 and avi-

tagged Nrg1 as outlined in methods. Enrichment was gauged by qPCR of a control (Ctl) region 

(SUC2) versus a target (Tgt) region (CAF120 for Met31, NRG1 for Nrg1). Gluc is in Glucose, 

AAS is in Amino Acid Starvation. The target region is not differentially bound with respect to 

the control region for Met31. Although Nrg1 looks significantly enriched, the level of enrichment 

is similar to levels obtained from ChIP done in strains with only BirA (data not shown).
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Figure 3.6 ChIP with synthetic-promoter sequencing shows good technical replication
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ChIP was performed in triplicate on synthetic promoter-bearing strains with an avi-tagged 

transcription factor, followed by specific sequencing of the ChIPed synthetic promoters.  The 

relative occupancy for one replicate is plotted against the relative occupancy for another replicate 

for avi-tagged Cbf1 in both glucose and AAS conditions. The replicates show very good 

agreement, indicating that the relative occupancy values are highly reproducible from replicate-

to-replicate.

79

# Gcn4 Sites

# Gcn4 Sites



Figure 3.7: Cbf1 enrichment is specific to Cbf1 sites
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ChIP was performed on synthetic promoter-bearing strains with Avi-tagged Cbf1, followed by 

specific sequencing of the ChIPed synthetic promoters. The relative occupancy of Cbf1 is plotted 

here according to the number of Cbf1 sites in the promoter. There is a clear and nearly linear 

shift in the mean occupancy according to the number of Cbf1 sites present in both glucose and 

AAS conditions.
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Figure 3.8: Gcn4 enrichment is specific to Gcn4 sites
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ChIP with synthetic promoter sequencing was performed in the Avi-tagged Gcn4 strain. The 

distribution of the relative occupancy of Gcn4 by the number of Gcn4 sites in the promoter is 

shown.  The y-axis for the AAS has been truncated to 2.  There is a clear shift in the mean 

occupancy with increasing Gcn4 site content, but the distribution does not shift linearly with the 

number of sites in Gcn4, and is much broader than the Cbf1 occupancy distributions, suggesting 

that other TF binding events have a larger impact on Gcn4 occupancy than for Cbf1.

81



Figure 3.9: Met31 ChIP shows no Met31/Met32 site-specific enrichment
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ChIP with synthetic promoter sequencing was performed in the avi-tagged Met31 strain. The 

distribution of the relative occupancy of Met31 by the number of Met31/Met32 sites in the 

promoter is shown.  On average, there is no site-specific enrichment for either condition.
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Figure 3.10: Nrg1 ChIP shows no Nrg1 site-specific enrichment

0

1

2

3

4

5

0 2 4 6 8 10

Nrg1 Occupancy in Glucose

Relative Occupancy

D
en
si
ty

# Nrg1 Sites
0

1

2

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10

Nrg1 Occupancy in AAS

Relative Occupancy

D
en
si
ty

# Nrg1 Sites
0

1

2

ChIP with synthetic promoter sequencing was performed in the avi-tagged Nrg1 strain. The 

distribution of the relative occupancy of Nrg1 by the number of Nrg1/Nrg1 sites in the promoter 

is shown.  On average, there is no site-specific enrichment for either condition.
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Figure 3.11: The Nrg1 site functions as a repressor in the tagged-Nrg1 strain

1

2

3

4

5

0 1 2 3
# of Nrg1 Sites

E
xp

re
ss

io
n 

in
 G

lu
co

se

Strains bearing synthetic promoters with avi-tagged Nrg1 were grown to mid-log phase in 

glucose then fixed with formaldehyde (1% final concentration). Expression was measured via 

flow cytometry.  The expression of promoters is plotted versus the total number of Nrg1 sites in 

the promoter. There is a clear decreasing trend in expression as a function of the number of Nrg1 

sites showing that the site functions as a repressor.
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Figure 3.12: Fit of expression by thermodynamic model
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Synthetic bearing promoters with myc-C-avi-tagged Cbf1 or myc-C-avi-tagged Gcn4 were 

grown in glucose and AAS conditions and formaldehyde-fixed.  YFP levels were measured via 

flow cytometry and normalized by cell volume and plate controls.  The resulting data was used 

with the synthetic promoter sequence to parameterize a thermodynamic model of expression 

(Table 3.3). x-axis: the observed expression. y-axis: predicted expression. Green line: best fit 

line.
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Figure 3.13: Fit of occupancy by thermodynamic model
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Synthetic bearing promoters with myc-C-avi-tagged Cbf1 or myc-C-avi-tagged Gcn4 were 

grown in glucose and AAS conditions and ChIPed as describe in Methods.  The synthetic 

promoters in the IN and IP samples were sequenced and the normalized ratio of IP to IN counts 

used as the relative occupancy.  A thermodynamic model was fit to the data (Table 3.3).  x-axis: 

the observed relative occupancy. y-axis: the occupancy predicted by the model. Green line: the 

best-fit line.
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Figure 3.14: Fit of occupancy and expression by thermodynamic model, no competitive 

binding
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Synthetic bearing promoters with myc-C-avi-tagged Cbf1 or myc-C-avi-tagged Gcn4 were 

grown in glucose and AAS conditions and assayed for occupancy and expression as described in 

Methods. Both sets of data were used to fit a thermodynamic model of transcriptional regulation. 

x-axis: Observed values, either expression (left) or relative occupancy (right). y-axis: values 

predicted by the thermodynamic model. 
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Figure 3.15: Gcn4 binding in AAS acts cooperatively
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Synthetic promoters in a yeast strain bearing avi-tagged Gcn4 were grown in AAS conditions, 

ChIPed, and specifically sequenced. The resulting occupancy scores were normalized to the max 

of the mean occupancy by number of Gcn4 sites and fit with a Hill function with the Hill 

coefficient constrained to 1 (red) or allowed to vary (blue, Hill coefficient = 2.56; P<e-16, t-test).
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Figure 3.16: Nrg1-Gcn4 interaction negatively affects Gcn4 occupancy
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Avi-tagged Gcn4 strains carrying synthetic promoters were grown in AAS media and ChIPed as 

per methods. Top: a linear model built only using the number of Gcn4 sites as a predictor. 

Bottom: a linear model built using the number of Gcn4 sites and the interaction between the 

number of Gcn4 sites and the number of Nrg1 sites.  All parameters are significant by t-test (P< 

10-6).
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Figure 3.17: The Gcn4 site functions as a weak repressor in glucose and a strong activator 

in AAS
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Strains bearing synthetic promoters with avi-tagged Gcn4 were grown to mid-log phase in 

glucose and formaldehyde-fixed or switched to AAS media, grown for six hours and 

formaldehyde-fixed. Expression was measured via flow cytometry.  The expression of promoters 

is plotted versus the total number of Gcn4 sites. The blue line is a regression of expression on the 

number of Gcn4 sties. In glucose (A), the Gcn4 site is weakly repressing but in AAS (B) it is 

strongly activating.
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Figure 3.18: Occupancy of Gcn4 is positively correlated with expression
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Expression is plotted as a function of relative occupancy for synthetic promoters in strains 

bearing avi-tagged Gcn4. There is a clear positive correlation between occupancy and expression 

in AAS.  There is also a positive correlation in glucose, despite the Gcn4 site behaving like a 

repressor in that condition. This suggests that another factor is competing with Gcn4 for binding 

in glucose.
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Figure 3.19:  Fit of occupancy and expression by thermodynamic model, with competitive 

binding
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Synthetic bearing promoters with myc-C-avi-tagged Cbf1 or myc-C-avi-tagged Gcn4 were 

grown in glucose and AAS conditions and assayed for occupancy and expression as described in 

Methods. Both sets of data were used to fit a thermodynamic model of transcriptional regulation 

that incorporated competitive binding with Gcn4. x-axis: Observed values, either expression 

(left) or relative occupancy (right). y-axis: values predicted by the thermodynamic model.
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Tables

Table 3.1: Summary of usable promoters for expression analysis

Tagged TF Total, Glucose Unique, 
Glucose

Total, AAS Unique, AAS

Cbf1 529 218 374 125

Gcn4 614 213 396 114

Met31a 643 271 475 170

Nrg1a 634 271 393 139

aOmitted from expression analysis due to lack of ChIP signal for occupancy analysis.

Cbf1, Gcn4, Met31, and Nrg1 were tagged with the myc-C-avi tag (van Werven and Timmers, 

2006) in a strain harboring the bacterial biotin ligase BirA.  Synthetic promoters containing sites 

for all four factors were constructed in each strain.  960 colonies were picked for each library, 

purified, sequenced, then grown in glucose and AAS.  The library members were crosslinked, 

then run on a Beckman Coulter Cell Lab Quanta SC flow cytometer.  The numbers shown are the 

number of strains for which sequence information was determined and for which a reliable 

fluorescence value was obtained.  
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Table 3.2: Summary of usable promoters for occupancy analysis

Tagged TF Glucose AAS

Cbf1 290 291

Gcn4 199 229

Met31a 0 0

Nrg1a 0 0

aNo observable ChIP signal.

ChIP was performed on the libraries of synthetic promoters and the promoters specifically 

sequenced as described in Methods. Promoters with fewer than 50 reads in the input replicates 

were discarded.  Met31 and Nrg1 showed no specific enrichment, so all promoters were 

discarded. The table summarizes the total number of promoters used for analysis for each factor 

and condition.

94



Table 3.3: Parameter values from thermodynamic model fitting to be finished

Fit Type Parameter Value (+/- 95% CI)

Expression only ∆GCbf1-DNA,glucose 1.32±0.71

Expression only ∆GMet31/Met32-DNA,glucose 0.53±0.78

Expression only ∆GNrg1-DNA,glucose 0.41±0.47

Expression only ΔGCbf1,tagged−RNAP -3.84±0.71

Expression only ΔGCbf1,untagged−RNAP -1.14±0.72

Expression only ΔGGcn4,aas−RNAP -1.55±0.32

Expression only ΔGGcn4,gluc−RNAP 0.48±0.33

Expression only ΔGMet31/Met32−RNAP -1.11±0.32

Expression only ΔGNrg1−RNAP 5.08±35.7

Expression only ∆GRNAP-DNA -0.53±.28

Occupancy only ∆GCbf1-DNA,glucose 3.00±1.86

Occupancy only ∆GCbf1-DNA,AAS 2.91±1.87

Occupancy only ∆GGcn4-DNA,glucose 5.80± 2.17

Occupancy only ∆GGcn4-DNA,AAS 3.06± 1.82

Occupancy only ∆GGcn4-Gcn4 -2.62±1.24

Occupancy only ∆GGcn4-Nrg1 1.02±0.65

Expression and Occupancy ∆GCbf1-DNA,glucose 4.87*

Expression and Occupancy ∆GGcn4-DNA,glucose 2.92*

Expression and Occupancy ∆GMet31/Met32-DNA,glucose 0.6*

Expression and Occupancy ∆GNrg1-DNA,glucose -1.26*

Expression and Occupancy ∆GCbf1-DNA,AAS 4.95*

Expression and Occupancy ∆GGcn4-DNA,AAS 1.23*

Expression and Occupancy ∆GRNAP 1.00*
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Fit Type Parameter Value (+/- 95% CI)

Expression and Occupancy ∆GCbf1,tagged-RNAP -5.36*

Expression and Occupancy ∆GGcn4-RNAP,glucose 17.65*

Expression and Occupancy ∆GMet31/32-RNAP -0.42*

Expression and Occupancy ∆GNrg1-RNAP 0.49*

Expression and Occupancy ∆GCbf1,untagged-RNAP -3.15*

Expression and Occupancy ∆GGcn4-RNAP, AAS -0.60*

Expression and Occupancy ∆GGcn4-Gcn4 -2.01*

Expression and Occupancy ∆GGcn4-Nrg1 -3.00*

Expression and Occupancy, 
Competitive

∆GCbf1-DNA,Glucose 5.04±9.89    

Expression and Occupancy, 
Competitive

∆GGcn4,Glucose 3.82±1.77  

Expression and Occupancy, 
Competitive

∆GMet31/Met32-DNA,glucose -1.30±-0.41    

Expression and Occupancy, 
Competitive

∆GNrg1-DNA,glucose -0.93±1.49

Expression and Occupancy, 
Competitive

∆GCbf1-DNA,AAS 5.13±9.89

Expression and Occupancy, 
Competitive

∆GGcn4-DNA,AAS 0.64±0.34

Expression and Occupancy, 
Competitive

∆GRNAP 0.92±0.22

Expression and Occupancy, 
Competitive

∆GCbf1,tagged-RNAP -5.54±10.0

Expression and Occupancy, 
Competitive

∆GGcn4-RNAP,glucose -0.82±0.34

Expression and Occupancy, 
Competitive

∆GMet31/32-RNAP -0.38±0.21

Expression and Occupancy, 
Competitive

∆GNrg1-RNAP 0.52±0.29

Expression and Occupancy, 
Competitive

∆GCbf1,untagged-RNAP -3.3±9.63
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Fit Type Parameter Value (+/- 95% CI)

Expression and Occupancy, 
Competitive

∆GGcn4-RNAP, AAS 0.31±0.22

Expression and Occupancy, 
Competitive

∆GGcn4-Gcn4 -1.78±0.56

Expression and Occupancy, 
Competitive

∆GGcn4-Nrg1 3.6±12.90

* Confidence interval estimates could not be calculated due to numerical instabilities introduced 

by the ∆GGcn4-RNAP, glucose parameter.
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Table 3.4: Overall fits and cross validation results

Data Used # Parameters Expression R2 Occupancy R2 Cross Validation

Expression-only 10 0.53 0.36 0.53

Occupancy-only 6 NA 0.57 0.57

Expression and 
Occupancy, 
noncompetitive 

15 0.425 0.556 0.42 (expression)
0.56(occupancy)

Expression and 
Occupancy, 
competitive

15 0.431 0.554 0.43 (expression)
0.56 (occupancy)

Expression, occupancy, or expression and occupancy were modeled using the thermodynamic 

model described in Methods.  Each model was fit with the number of parameters indicated (see 

Table 3.3 for specific parameter details).  The model fit with only expression was also used to 

predict occupancy.  The occupancy-only model cannot be used to predict expression since fitting 

of RNAP interaction terms was not attempted with only occupancy data.  When fitting with 

expression and occupancy, the Gcn4 site was modeled without and with competitive binding 

(noncompetitive and competitive, respectively).  Five-fold cross validation was performed on all 

models and and the mean R2 across the validations is reported in the Cross Validation column.
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Table 3.5: Barcoded “well” and “plate” PCR primers used for library sequencing.

Sequence Barcode Use

CTACGTCGACACACACTTAATCGTTCTTCCACACGGATC ACACACT WA1a

CTACGTCGACACACTACTAATCGTTCTTCCACACGGATC ACACTAC WA2a

CTACGTCGACACAGATGTAATCGTTCTTCCACACGGATC ACAGATG WA3a

CTACGTCGACACATCGTTAATCGTTCTTCCACACGGATC ACATCGT WA4a,
CLP1b

CTACGTCGACACATGAGTAATCGTTCTTCCACACGGATC ACATGAG WA5a,
CLP2b

CTACGTCGACACGAGACTAATCGTTCTTCCACACGGATC ACGAGAC WA6a,
CLP3b

CTACGTCGACACGTCTGTAATCGTTCTTCCACACGGATC ACGTCTG WA7a,
CAP1b

CTACGTCGACACTACTATAATCGTTCTTCCACACGGATC ACTACTA WA8a,
CAP2b

CTACGTCGACACTAGCTTAATCGTTCTTCCACACGGATC ACTAGCT WA9a,
CAP3b

CTACGTCGACACTATGCTAATCGTTCTTCCACACGGATC ACTATGC WA10a,
GLP1b

CTACGTCGACACTGAGATAATCGTTCTTCCACACGGATC ACTGAGA WA11a,
GLP2b

CTACGTCGACACTGCATTAATCGTTCTTCCACACGGATC ACTGCAT WA12a

CTACGTCGACAGACAGCTAATCGTTCTTCCACACGGATC AGACAGC WB1a

CTACGTCGACAGAGCACTAATCGTTCTTCCACACGGATC AGAGCAC WB2a

CTACGTCGACAGATGCATAATCGTTCTTCCACACGGATC AGATGCA WB3a

CTACGTCGACAGCAGCGTAATCGTTCTTCCACACGGATC AGCAGCG WB4a,
GLP3b

CTACGTCGACAGCATGATAATCGTTCTTCCACACGGATC AGCATGA WB5a,
GAP1
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Sequence Barcode Use

CTACGTCGACAGCGAGTTAATCGTTCTTCCACACGGATC AGCGAGT WB6a,
GAP2b

CTACGTCGACAGCTATCTAATCGTTCTTCCACACGGATC AGCTATC WB7a,
GAP3b

CTACGTCGACAGCTCATTAATCGTTCTTCCACACGGATC AGCTCAT WB8a,
MLP1b

CTACGTCGACAGTACAGTAATCGTTCTTCCACACGGATC AGTACAG WB9a,
MLP2b

CTACGTCGACATAGCGATAATCGTTCTTCCACACGGATC ATAGCGA WB10a,
MLP3b

CTACGTCGACATCACACTAATCGTTCTTCCACACGGATC ATCACAC WB11a, 
MAP1b

CTACGTCGACATCTACATAATCGTTCTTCCACACGGATC ATCTACA WB12a,
MAP2b

CTACGTCGACATGCAGACTAATCGTTCTTCCACACGGATC ATGCAGAC WC1a

CTACGTCGACATGCTCGCTAATCGTTCTTCCACACGGATC ATGCTCGC WC2a

CTACGTCGACCACACATCTAATCGTTCTTCCACACGGATC CACACATC WC3a

CTACGTCGACCACTACGCTAATCGTTCTTCCACACGGATC CACTACGC WC4a,
GAK3b

CTACGTCGACCACTCTCCTAATCGTTCTTCCACACGGATC CACTCTCC WC5a

CTACGTCGACCAGATAGCTAATCGTTCTTCCACACGGATC CAGATAGC WC6a

CTACGTCGACCAGCGCTCTAATCGTTCTTCCACACGGATC CAGCGCTC WC7a

CTACGTCGACCATATCACTAATCGTTCTTCCACACGGATC CATATCAC WC8a

CTACGTCGACCATGATCCTAATCGTTCTTCCACACGGATC CATGATCC WC9a

CTACGTCGACCGACGAGCTAATCGTTCTTCCACACGGATC CGACGAGC WC10a,
MAP3b

CTACGTCGACCGAGACGCTAATCGTTCTTCCACACGGATC CGAGACGC WC11a,
NLP1b
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Sequence Barcode Use

CTACGTCGACCGATAGACTAATCGTTCTTCCACACGGATC CGATAGAC WC12a

CTACGTCGACCGCGCTGCTAATCGTTCTTCCACACGGATC CGCGCTGC WD1a

CTACGTCGACCGCTGACCTAATCGTTCTTCCACACGGATC CGCTGACC WD2a

CTACGTCGACCGTCACACTAATCGTTCTTCCACACGGATC CGTCACAC WD3a

CTACGTCGACCGTGTATCTAATCGTTCTTCCACACGGATC CGTGTATC WD4a

CTACGTCGACCTACAGTCTAATCGTTCTTCCACACGGATC CTACAGTC WD5a

CTACGTCGACCTAGCATCTAATCGTTCTTCCACACGGATC CTAGCATC WD6a

CTACGTCGACCTATATGCTAATCGTTCTTCCACACGGATC CTATATGC WD7a

CTACGTCGACCTCAGCACTAATCGTTCTTCCACACGGATC CTCAGCAC WD8a

CTACGTCGACCTCGAGCCTAATCGTTCTTCCACACGGATC CTCGAGCC WD9a

CTACGTCGACCTCGTAGCTAATCGTTCTTCCACACGGATC CTCGTAGC WD10a,
NLP2b

CTACGTCGACCTCTCGTCTAATCGTTCTTCCACACGGATC CTCTCGTC WD11a,
NLP3b

CTACGTCGACCTGACGCCTAATCGTTCTTCCACACGGATC CTGACGCC WD12a,
NAP1b

CTACGTCGACCTGCGACGCTAATCGTTCTTCCACACGGATC CTGCGACGC WE1a

CTACGTCGACCTGTCAGGCTAATCGTTCTTCCACACGGATC CTGTCAGGC WE2a

CTACGTCGACGACATCTGCTAATCGTTCTTCCACACGGATC GACATCTGC WE3a

CTACGTCGACGACGCGAGCTAATCGTTCTTCCACACGGATC GACGCGAGC WE4a,
NAP2b

CTACGTCGACGAGACACGCTAATCGTTCTTCCACACGGATC GAGACACGC WE5a

CTACGTCGACGAGCACGGCTAATCGTTCTTCCACACGGATC GAGCACGGC WE6a

CTACGTCGACGAGTAGCGCTAATCGTTCTTCCACACGGATC GAGTAGCGC WE7a,
NAP3b

CTACGTCGACGAGTGTAGCTAATCGTTCTTCCACACGGATC GAGTGTAGC WE8a
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Sequence Barcode Use

CTACGTCGACGATAGATGCTAATCGTTCTTCCACACGGATC GATAGATGC WE9a

CTACGTCGACGATCAGAGCTAATCGTTCTTCCACACGGATC GATCAGAGC WE10a,
CLK1b

CTACGTCGACGATGTAGGCTAATCGTTCTTCCACACGGATC GATGTAGGC WE11a,
CLK2b

CTACGTCGACGCACTCAGCTAATCGTTCTTCCACACGGATC GCACTCAGC WE12a,
CLK3b

CTACGTCGACGCAGAGTGCTAATCGTTCTTCCACACGGATC GCAGAGTGC WF1a

CTACGTCGACGCAGCAGGCTAATCGTTCTTCCACACGGATC GCAGCAGGC WF2a

CTACGTCGACGCGACGAGCTAATCGTTCTTCCACACGGATC GCGACGAGC WF3a,
CAK1b

CTACGTCGACGCTCATGGCTAATCGTTCTTCCACACGGATC GCTCATGGC WF4a,
CAK2b

CTACGTCGACGCTCGACGCTAATCGTTCTTCCACACGGATC GCTCGACGC WF5a,
CAK3b

CTACGTCGACGTACATCGCTAATCGTTCTTCCACACGGATC GTACATCGC WF6a

CTACGTCGACGTAGACAGCTAATCGTTCTTCCACACGGATC GTAGACAGC WF7a

CTACGTCGACGTATCACGCTAATCGTTCTTCCACACGGATC GTATCACGC WF8a

CTACGTCGACGTCACTGGCTAATCGTTCTTCCACACGGATC GTCACTGGC WF9a,
GLK1b

CTACGTCGACGTCTGATGCTAATCGTTCTTCCACACGGATC GTCTGATGC WF10a

CTACGTCGACGTGAGCGGCTAATCGTTCTTCCACACGGATC GTGAGCGGC WF11a,
GLK2b

CTACGTCGACGTGCTATGCTAATCGTTCTTCCACACGGATC GTGCTATGC WF12a,
GLK3b

CTACGTCGACGTGTACTAGCTAATCGTTCTTCCACACGGATC GTGTACTAGC WG1a

CTACGTCGACTACACTAAGCTAATCGTTCTTCCACACGGATC TACACTAAGC WG2a
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CTACGTCGACTACAGAGAGCTAATCGTTCTTCCACACGGATC TACAGAGAGC WG3a,
GAK1b

CTACGTCGACTACGACTAGCTAATCGTTCTTCCACACGGATC TACGACTAGC WG4a,
GAK2b

CTACGTCGACTAGAGCAAGCTAATCGTTCTTCCACACGGATC TAGAGCAAGC WG5a

CTACGTCGACTAGCTACAGCTAATCGTTCTTCCACACGGATC TAGCTACAGC WG6a,
CAK3b

CTACGTCGACTAGTCGTAGCTAATCGTTCTTCCACACGGATC TAGTCGTAGC WG7a

CTACGTCGACTATATGTAGCTAATCGTTCTTCCACACGGATC TATATGTAGC WG8a

CTACGTCGACTATCGCGAGCTAATCGTTCTTCCACACGGATC TATCGCGAGC WG9a,
MLK1b

CTACGTCGACTATGCACAGCTAATCGTTCTTCCACACGGATC TATGCACAGC WG10a,
MLK2b

CTACGTCGACTCACGATAGCTAATCGTTCTTCCACACGGATC TCACGATAGC WG11a,
MLK3b

CTACGTCGACTCATAGCAGCTAATCGTTCTTCCACACGGATC TCATAGCAGC WG12a,
MAK1

CTACGTCGACTCATGTAAGCTAATCGTTCTTCCACACGGATC TCATGTAAGC WH1a

CTACGTCGACTCGACATAGCTAATCGTTCTTCCACACGGATC TCGACATAGC WH2a

CTACGTCGACTCGCACAAGCTAATCGTTCTTCCACACGGATC TCGCACAAGC WH3a

CTACGTCGACTCTATAGAGCTAATCGTTCTTCCACACGGATC TCTATAGAGC WH4a,
MAK2b

CTACGTCGACTCTGACGAGCTAATCGTTCTTCCACACGGATC TCTGACGAGC WH5a,
MAK3b

CTACGTCGACTGAGTAGAGCTAATCGTTCTTCCACACGGATC TGAGTAGAGC WH6a,
NLK1b

CTACGTCGACTGCATACAGCTAATCGTTCTTCCACACGGATC TGCATACAGC WH7a,
NLK2b
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Sequence Barcode Use

CTACGTCGACTGCGTCAAGCTAATCGTTCTTCCACACGGATC TGCGTCAAGC WH8a,
NLK3b

CTACGTCGACTGCTCGAAGCTAATCGTTCTTCCACACGGATC TGCTCGAAGC WH9a,
NAK1b

CTACGTCGACTGCTGTGAGCTAATCGTTCTTCCACACGGATC TGCTGTGAGC WH10a,
NAK2b

CTACGTCGACTGTAGTCAGCTAATCGTTCTTCCACACGGATC TGTAGTCAGC WH11a,
NAK3b

CTACGTCGACTGTCAGTAGCTAATCGTTCTTCCACACGGATC TGTCAGTAGC WH12a

ACGTACAATTGACGATGTTGAGAACGGTTCGGCATTG ACGAT Cbf1 P1a

ACGTACAATTGACGCAGTTGAGAACGGTTCGGCATTG ACGCA Cbf1 P2a

ACGTACAATTGACGTGGTTGAGAACGGTTCGGCATTG ACGTG Cbf1 P3a

ACGTACAATTGAGCGCGTTGAGAACGGTTCGGCATTG AGCGC Cbf1 P4a

ACGTACAATTGAGCTGGTTGAGAACGGTTCGGCATTG AGCTG Cbf1 P5a

ACGTACAATTGAGTCGGTTGAGAACGGTTCGGCATTG AGTCG Cbf1 P6a

ACGTACAATTGATATGGTTGAGAACGGTTCGGCATTG ATATG Cbf1 P7a

ACGTACAATTGATGACGTTGAGAACGGTTCGGCATTG ATGAC Cbf1 P8a

ACGTACAATTGATGTAGTTGAGAACGGTTCGGCATTG ATGTA Cbf1 P9a

ACGTACAATTGCACGAGTTGAGAACGGTTCGGCATTG CACGA Cbf1 P10a

ACGTACAATTGCAGATTGTTGAGAACGGTTCGGCATTG CAGATT Met31 P1a

ACGTACAATTGCAGTGTGTTGAGAACGGTTCGGCATTG CAGTGT Met31 P2a

ACGTACAATTGCGACATGTTGAGAACGGTTCGGCATTG CGACAT Met31 P3a

ACGTACAATTGCGAGCTGTTGAGAACGGTTCGGCATTG CGAGCT Met31 P4a

ACGTACAATTGCGTAGTGTTGAGAACGGTTCGGCATTG CGTAGT Met31 P5a

ACGTACAATTGCGTCTTGTTGAGAACGGTTCGGCATTG CGTCTT Met31 P6a

ACGTACAATTGCGTGATGTTGAGAACGGTTCGGCATTG CGTGAT Met31 P7a
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ACGTACAATTGCTCTATGTTGAGAACGGTTCGGCATTG CTCTAT Met31 P8a

ACGTACAATTGCTGAGTGTTGAGAACGGTTCGGCATTG CTGAGT Met31 P9a

ACGTACAATTGCTGTCTGTTGAGAACGGTTCGGCATTG CTGTCT Met31 
P10a

ACGTACAATTGGACATACGTTGAGAACGGTTCGGCATTG GACATAC Nrg1 P1a

ACGTACAATTGGACTGACGTTGAGAACGGTTCGGCATTG GACTGAC Nrg1 P2a

ACGTACAATTGGATCGACGTTGAGAACGGTTCGGCATTG GATCGAC Nrg1 P3a

ACGTACAATTGGATGTACGTTGAGAACGGTTCGGCATTG GATGTAC Nrg1 P4a

ACGTACAATTGGCACAACGTTGAGAACGGTTCGGCATTG GCACAAC Nrg1 P5a

ACGTACAATTGGCGACACGTTGAGAACGGTTCGGCATTG GCGACAC Nrg1 P6a

ACGTACAATTGGCGCGACGTTGAGAACGGTTCGGCATTG GCGCGAC Nrg1 P7a

ACGTACAATTGGCGTAACGTTGAGAACGGTTCGGCATTG GCGTAAC Nrg1 P8a

ACGTACAATTGGTACGACGTTGAGAACGGTTCGGCATTG GTACGAC Nrg1 P9a

ACGTACAATTGGTGATACGTTGAGAACGGTTCGGCATTG GTGATAC Nrg1 P10a

ACGTACAATTGGTGTGCACGTTGAGAACGGTTCGGCATTG GTGTGCAC Gcn4 P1a

ACGTACAATTGTAGCGCACGTTGAGAACGGTTCGGCATTG TAGCGCAC Gcn4 P2a

ACGTACAATTGTATAGCACGTTGAGAACGGTTCGGCATTG TATAGCAC Gcn4 P3a

ACGTACAATTGTATCTCACGTTGAGAACGGTTCGGCATTG TATCTCAC Gcn4 P4a

ACGTACAATTGTATGACACGTTGAGAACGGTTCGGCATTG TATGACAC Gcn4 P5a

ACGTACAATTGTCGAGCACGTTGAGAACGGTTCGGCATTG TCGAGCAC Gcn4 P6a

ACGTACAATTGTCTATCACGTTGAGAACGGTTCGGCATTG TCTATCAC Gcn4 P7a

ACGTACAATTGTCTGCCACGTTGAGAACGGTTCGGCATTG TCTGCCAC Gcn4 P8a

ACGTACAATTGTGACGCACGTTGAGAACGGTTCGGCATTG TGACGCAC Gcn4 P9a

ACGTACAATTGTGAGTCACGTTGAGAACGGTTCGGCATTG TGAGTCAC Gcn4 P10a
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aW = Well and P = Plate, so WA1 is Well A1 and P1 is Plate 1. 
bChIPed sample barcode: C=Cbf1-tagged; G=Gcn4-tagged; A=AAS; L=Glucose; K=Input; P=IP; 1-3=Sample 
replicate. So CLP1=Cbf1-tagged IP in glucose, replicate 1.

Synthetic promoters were amplified by using one well-specific PCR primer and one plate-

specific PCR primer. Custom adapters were ligated on to the products and sequenced on an 

Illumina MiSEQ machine. A subset of well-specific primers were reused to barcode CHiP 

samples for multiplexing on an Illumina HiSEQ 2000. All primers are listed in 5’-3’ order.
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Table 3.6: Oligonucleotides used for strain manipulation, validation, PCR, and sequencing

Name Sequence Purpose

RZ84 5’-GATCGTATCACGTGCTTTAC-3’ Cbf1 site, forward

RZ85 3’-CATAGTGCACGAAATGCTAG-5’ Cbf1 site, reverse

RZ86 5’-GATCGTAATGACTCATTTAC-3’ Gcn4 site, forward

RZ87 3’-CATTACTGAGTAAATGCTAG-5’ Gcn4 site, reverse

RZ88 5’-GATCGTAGCCACAGTTTTAC-3’ Met 31/32 site, 
forward

RZ89 3’-CATCGGTGTCAAAATGCTAG-5’ Met 31/32 site, 
reverse

RZ90 5’-GATCGTATGAGGACCCTTAC-3’ Nrg1 site, forward

RZ91 3’-CATACTCCTGGGAATGCTAG-5’ Nrg1 site, reverse

RZ92 5’-CATTCTTACCCACTCCTGTTCTAG -3’ Gcn4 Avi-tagging 
check, upstream 
PCR primer

RZ93 5’-CGCGTCTGACTTCTAATCAGAAG-3’ Gcn4 Avi-tagging 
check, downstream 
PCR primer

RZ94 5’-CCGATGAAGCAAACATCGAAAAG -3’ Cbf1 Avi-tagging 
check, upstream 
PCR primer

RZ95 5’-TCCGTCCCGTCCTCTTTTAC -3’ Cbf1 Avi-tagging 
check, downstream 
PCR primer

RZ96 5-’CCGGAAAATATGGCTAGAGGTC -3’ Met31 Avi-tagging 
check, upstream 
PCR primer

RZ97 5’-GTACGTCACCACTTTGTGCG -3’ Met31 Avi-tagging 
check, downstream 
PCR primer
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Name Sequence Purpose

RZ98 5’-CGGAAGCAAAGAACAGATCCA -3’ Nrg1 Avi-tagging 
check, upstream 
PCR primer

RZ99 5’-CCAGACATGATCTTAAGCGGAAG -3’ Nrg1 Avi-tagging 
check, downstream 
PCR primer

RZ127 5’-
GACATGATAATTGCTTGCAACACTATAGAACACATT
TGAAAAAGGGACAAGGGATCGAGCAGAAGCTGAT 
-3’

myc-C-Avi tagging 
primer, Nrg1, 
upstream

RZ128 5’-
AGTGCGGAATAGTAGTACTGCTAATGAGAAAAACA
CGGGTATACCGTCAACTGCAGGTCGACAACCCTTA
AT -3’

myc-C-Avi tagging 
primer, Nrg1, 
downstream

RZ129 5’-
AACAAGAGAACGAAAGAAAAAGCACTAGGAGCG
ATAATCCACATGAGGCTGGGATCGAGCAGAAGCTG
AT -3’

myc-C-Avi tagging 
primer, Cbf1, 
upstream

RZ130 5’-
GTGCTATGGGGCAGAGACGCAGATACATAGGGAGA
CTCGAAATACATTTACTGCAGGTCGACAACCCTTA
AT -3’

myc-C-Avi tagging 
primer, Cbf1, 
downstream

RZ131 5’-
CTTTTTTGTGCCTTTGTTACGTCTATATTCTATTGAA
ACTGGAGCTCGTTTTCGACACTGG -3’

Insert PCORE into 
lys-2, upstream 
PCR primer

RZ132 5’-
TATTATATATTATTCTCGGAGTTTTTAAGTGACATCA
CCCTCCTTACCATTAAGTTGATC -3’

Insert PCORE into 
lys-2, downstream 
PCR primer

RZ133 5’-
CTTTTTTGTGCCTTTCTTACGTCTATATTCATTGAAA
CTGGACTGGGTCATGGCTGCG -3’

Insert BirA into 
lys-2, upstream 
PCR primer

RZ134 5’-
TATTATATATTATTCTCGGAGTTTTTAAGTGACATCA
CCCAAGCTTGCAAATTAAAGCCTTCGAG -3’

Insert BirA into 
lys-2, downstream 
PCR primer
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RZ135 5’-
GCTCATCAAGGATGCGATAAAGAATGGTACCGGCC
TGTTGGGGATCGAGCAGAAGCTGAT -3’

myc-C-Avi tagging 
primer, Met31, 
upstream

RZ136 5’-
ATTCTACTTATCTCAATGGCTAAAGTATATATCTATCT
ATCTGCAGGTCGACAACCCTTAAT -3’

myc-C-Avi tagging 
primer, Met31, 
downstream

RZ137 5’-
AAATGAGGTTGCCAGATTAAAGAAATTAGTTGGCG
AACGCGGGATCGAGCAGAAGCTGAT -3’

myc-C-Avi tagging 
primer, Gcn4, 
upstream

RZ138 5’-
GCGTGGTGTAAAATTCTACTTAAGAAAATTGGCATA
AAAACTGCAGGTCGACAACCCTTAAT -3’

myc-C-Avi tagging 
primer, Gcn4, 
downstream

RZ143 5’-CGACCTCATGCTATACCTGAGAAAG -3’ myc-C-avi 
integration check 
PCR primer, 
upstream, internal 
to tag

RZ144 5’-TGGGGATGTATGGGCTAAATGTAC -3’ myc-C-Avi 
integration check 
PCR primer, 
downstream, 
internal to Kan

RZ147 5’-GCAGTTGCTTTCTCCTATGGGAAG -3’ PCORE and BirA 
integration check 
PCR primer, 
upstream

RZ148 5’-GAATTGGTCAGTATCGACCTGTGAA -3’ PCORE and Bira 
integration check 
PCR primer, 
downstream

RZ149 5’-GTTAGAAGAAAAGAGTCGGGATCTCTG -3’ BirA integration 
check PCR primer, 
upstream, internal 
to BirA
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RZ150 5’-CTGTACAGACGCGTGTACGC -3’ BirA integration 
check PCR primer, 
downstream, 
internal to BirA

RZ151 5’-TTAAGTCCGGGGATCCCCAG -3’ Universal myc-C-
Avi-tag sequencing 
primer, internal to 
Avi tag. 

RZ158 5’-GGGAGGAGTCATGGCAAATA -3’ Cbf1 ChIP check 
qPCR primer: 
ADE765.

RZ159 5’-CGTATACGGTGACGACGAGA -3’ 5’ PRIMER 
AROUND ADE756 
SET 2 SET 4

RZ169 5’-TAGGGGCTTAGCATCCACAC -3’ SUC2 qPCR 
Primer

RZ170 5’-TGGATACCTTCGACAGCTCA -3’ SUC2 qPCR 
Primer

RZ177 5’-CCCCTAAACATTCAGATTGTAAAC -3’ Gcn4 ChIP check 
qPCR primer 
(YJR109C)

RZ178 5’-TCTCGATGCTTACTCAAGGTG -3’ Gcn4 ChiP check 
qPCR primer 
(YJR109C)

RZ183 5’-GCCGCCACAGAAAACTTAC -3’ Met31 ChIP check 
qPCR primer 
(YNL278W)

RZ184 5’-GAGCTATGGGCAATTGTACG -3’ Met31 ChiP check 
qPCR primer 
(YNL278W)

RZ193 5’-CCGGAAAAGAAGGGAAAAAT -3’ Nrg1 ChIP check 
qPCR primer 
(YDR043C)
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RZ194 5’-CCTGCAGCCAGACTGTAGAA -3’ Nrg1 ChIP check 
qPCR primer 
(YDR043C)

RZ226 5’-CCCTCGTTCAATTGCTCACCTCGAC -3’ Custom read 1 
sequencing primer 
for sequencing 
synthetic 
promoters.

RZ227 5’-GCTCCCCATTTCACGAATTG-3’ Custom read 2 
sequencing primer 
for synthetic 
promoters

RZ230 /5Phos/
TCGAGGTGAGCAATTGAACGAGGGGTGTAGATCTC
GGTGGTCGCCGTATCATT -3’

Read 1 flow cell 
adapter and 
sequencing primer

RZ231 /5Phos/
AATTCGTGAAATGGGGAGCATCTCGTATGCCGTCTT
CTGCTTG -3’

Read 2 flow cell 
adapter and 
sequencing primer

RZ232 5’- 
AATGATACGGCGACCACCGAGATCTACACCCCTCG
TTCAATTGCTCACC -3’

Read 1 flow cell 
adapter and 
sequencing primer 
(reverse 
complement)

RZ233 5’- 
CAAGCAGAAGACGGCATACGAGATGCTCCCCATTT
CACG -3’

Read 2 flow cell 
adapter and 
sequencing primer 
(reverse 
complement)

RZ257.1 5’- 
CAAGCAGAAGACGGCATACGAGATCGGTCTCGGC
ATTCCTGCTGAACCGCTCTTCCGATCTGTTGAGAAC
GGTTCGGCATTG -3’

Downstream pcr 
primer for synthetic 
promoter 
amplification for 
sequencing post-
ChIP (1/4)
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RZ257.2 5’- 
CAAGCAGAAGACGGCATACGACGATCGGTCTCGG
CATTCCTGCTGAACCGCTCTTCCGATCTCGTTGAGA
ACGGTTCGGCATTG -3’

Downstream pcr 
primer for synthetic 
promoter 
amplification for 
sequencing post-
ChIP (2/4)

RZ257.3 5’- 
CAAGCAGAAGACGGCATACGAGATCGGTCTCGGC
ATTCCTGCTGAACCGCTCTTCCGATCTTAGTTGAGA
ACGGTTCGGCATTG -3’

Downstream pcr 
primer for synthetic 
promoter 
amplification for 
sequencing post-
ChIP (3/4)

RZ257.4 5’- 
CAAGCAGAAGACGGCATACGAGATCGGTCTCGGC
ATTCCTGCTGAACCGCTCTTCCGATCTACAGTTGAG
AACGGTTCGGCATTG -3’

Downstream pcr 
primer for synthetic 
promoter 
amplification for 
sequencing post-
ChIP (4/4)

RZ259 5’- TGTAATCGTTCTTCCACACGGATC -3’ qPCR Primer for 
library 
concentration 
check, post prep.

RZ260 5’- TTCCTGCTGAACCGCTCTTC-3’ qPCR Primer for 
library 
concentration 
check, post prep.
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Table 3.7: List of all promoters and condition-specific expression and occupancy values 

Promoter Expression Glucose 
Expression

Glucose 
Occupancy

AAS 
Expression

AAS 
Occupancy

c 4.48 1.96 4.48 1.92 Cbf1

C 4.87 2.15 4.51 2.11 Cbf1

cC 6.50 4.71 NA 4.27 Cbf1

cCcNC 6.84 8.60 NA 7.40 Cbf1

cCnGGn 3.34 3.04 5.89 4.04 Cbf1

cCNm 6.19 4.07 NA 4.09 Cbf1

cg 2.82 1.69 3.16 1.96 Cbf1

Cg 6.28 1.85 NA 2.14 Cbf1

cgg 2.06 0.03 5.04 0.03 Cbf1

cgGm 3.21 1.28 NA 1.63 Cbf1

CGGn 2.03 1.34 NA 1.70 Cbf1

cgm 6.62 1.57 NA 1.87 Cbf1

CgM 3.77 0.05 NA 0.05 Cbf1

cGN 3.96 1.30 NA 1.65 Cbf1

CgnM 4.04 NA NA NA Cbf1

cGnmM 5.47 1.58 NA 2.14 Cbf1

cgnN 1.80 0.85 4.34 1.38 Cbf1

cm 4.13 3.50 NA 2.68 Cbf1

CMcC 2.70 0.05 5.18 0.05 Cbf1

cmG 6.48 1.85 NA 2.18 Cbf1

cMgN 1.00 0.04 NA 0.05 Cbf1

cmM 6.05 2.28 NA 2.55 Cbf1
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Promoter Expression Glucose 
Expression

Glucose 
Occupancy

AAS 
Expression

AAS 
Occupancy

cmn 3.77 1.64 5.20 2.01 Cbf1

CMn 4.40 2.00 5.62 2.38 Cbf1

CMNgC 2.22 0.05 NA 0.05 Cbf1

CMnmg 5.88 1.78 NA 2.31 Cbf1

CMNMn 3.80 1.84 4.51 2.30 Cbf1

cN 3.94 1.66 4.20 1.91 Cbf1

Cn 2.91 1.97 3.13 2.08 Cbf1

CN 3.96 1.89 4.17 2.09 Cbf1

cNCCM 4.28 0.04 NA 0.04 Cbf1

Cng 4.68 1.48 NA 1.83 Cbf1

cngCnG 4.77 3.52 NA 3.63 Cbf1

cnGN 1.66 0.70 3.49 1.17 Cbf1

CNGNmn 0.89 0.72 1.77 1.01 Cbf1

cnm 6.83 NA NA NA Cbf1

cNM 4.00 1.68 NA 2.09 Cbf1

cnNm 2.45 1.06 3.54 1.34 Cbf1

g 1.73 0.10 3.16 0.10 Cbf1

G 1.60 0.10 3.06 0.09 Cbf1

gc 3.00 0.05 6.67 0.05 Cbf1

Gc 6.25 2.08 NA 2.26 Cbf1

GcgG 3.60 1.58 NA 1.61 Cbf1

GCgggn 2.41 1.78 NA 1.52 Cbf1

gcmm 7.61 1.96 NA 2.30 Cbf1
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Glucose 
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AAS 
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gCN 4.57 1.76 6.52 1.98 Cbf1

Gcn 4.41 1.61 NA 1.82 Cbf1

gg 2.80 0.99 NA 0.79 Cbf1

Gg 2.72 0.29 3.88 0.66 Cbf1

GG 2.23 0.10 4.88 0.10 Cbf1

gGCm 4.91 NA NA NA Cbf1

gGCn 5.02 1.89 8.19 2.27 Cbf1

gGm 2.50 0.08 4.75 0.09 Cbf1

gGM 2.04 0.05 NA 0.05 Cbf1

ggMMM 5.15 0.14 NA 0.15 Cbf1

GGmn 1.57 0.09 2.55 0.08 Cbf1

ggNm 1.17 0.04 3.82 0.03 Cbf1

gGnm 1.12 0.10 2.03 0.10 Cbf1

GGNmc 5.27 2.59 NA 3.10 Cbf1

ggnN 0.72 0.07 1.80 0.08 Cbf1

gM 4.55 0.07 NA 0.07 Cbf1

Gm 2.03 0.09 3.39 0.08 Cbf1

GM 2.42 0.45 4.19 0.23 Cbf1

GMC 8.63 2.14 NA 2.35 Cbf1

gMG 2.32 0.33 5.23 0.86 Cbf1

GmGg 2.57 NA 4.88 NA Cbf1

GmGggN 2.74 NA 4.95 NA Cbf1

Gmgm 1.95 NA NA NA Cbf1
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GmgmGG 2.33 NA NA NA Cbf1

gMgn 1.66 0.08 3.32 0.09 Cbf1

gMGn 1.59 0.10 3.20 0.13 Cbf1

Gmgnm 1.39 0.13 2.80 0.08 Cbf1

gmMc 5.72 NA NA NA Cbf1

GmmgC 7.54 3.92 NA 4.15 Cbf1

gn 3.37 1.15 NA 1.65 Cbf1

GN 1.26 0.08 2.47 0.09 Cbf1

gNC 6.22 1.90 NA 2.04 Cbf1

gng 2.04 0.07 3.04 0.09 Cbf1

gNGGNn 1.04 0.10 1.96 0.07 Cbf1

gNM 1.59 0.08 3.98 0.06 Cbf1

GNm 1.20 0.08 2.34 0.08 Cbf1

GNM 1.74 0.09 2.72 0.08 Cbf1

gnmG 6.21 NA NA NA Cbf1

GNmN 3.98 NA NA NA Cbf1

GnnCn 2.79 1.57 3.42 1.87 Cbf1

GnnMCn 4.18 1.95 NA 2.50 Cbf1

m 1.04 0.09 1.30 0.06 Cbf1

M 1.25 0.13 1.42 0.12 Cbf1

mc 5.38 2.28 NA 2.61 Cbf1

mC 6.72 2.27 3.85 2.52 Cbf1

MCG 5.94 2.04 NA 2.32 Cbf1
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Mcggg 3.90 1.43 NA 1.82 Cbf1

mcm 8.11 2.08 NA 2.31 Cbf1

mCm 5.66 2.36 NA 2.64 Cbf1

MCMgMg 5.41 1.93 NA 2.18 Cbf1

mcn 4.14 1.83 NA 2.32 Cbf1

MCN 5.11 1.88 NA 2.12 Cbf1

MCnCn 1.91 0.04 2.59 0.04 Cbf1

MCnn 3.12 1.68 4.10 2.13 Cbf1

MCNN 1.18 0.05 1.92 0.03 Cbf1

mG 6.85 1.96 NA 2.14 Cbf1

Mg 2.25 0.27 3.86 0.13 Cbf1

MG 2.14 0.16 3.89 0.13 Cbf1

mgc 6.52 2.22 NA 2.44 Cbf1

Mgc 5.96 2.30 NA 2.42 Cbf1

MGCG 4.58 3.22 NA 3.27 Cbf1

MgcM 4.09 0.15 NA 0.65 Cbf1

MGCn 5.74 1.69 NA 2.04 Cbf1

MgG 2.13 0.13 NA 0.10 Cbf1

MGg 2.23 0.10 4.27 0.11 Cbf1

MggCNM 4.83 NA NA NA Cbf1

mggN 1.43 0.09 2.81 0.09 Cbf1

MGGNm 2.14 NA NA NA Cbf1

MGm 3.15 NA 5.13 NA Cbf1
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mGmC 3.54 0.06 NA 0.05 Cbf1

MGmCc 2.86 0.08 NA 0.08 Cbf1

MGmM 5.39 0.13 NA 0.11 Cbf1

mgMNc 2.94 0.06 NA 0.01 Cbf1

mGn 0.88 0.04 3.41 0.03 Cbf1

mGNc 5.60 2.20 NA 2.37 Cbf1

MGnGC 5.61 1.99 NA 2.27 Cbf1

mGNNG 1.17 0.09 2.90 0.09 Cbf1

mm 3.70 0.09 4.09 0.08 Cbf1

mM 3.34 0.20 4.94 NA Cbf1

MM 3.65 0.10 4.51 0.09 Cbf1

MMgc 4.43 0.06 NA 0.04 Cbf1

MMGN 1.56 0.09 3.79 0.10 Cbf1

mmm 4.32 0.10 NA 0.10 Cbf1

mmn 7.73 2.35 NA 2.70 Cbf1

MmnCMN 7.32 2.06 NA 2.05 Cbf1

MmNm 2.78 0.06 4.63 NA Cbf1

mn 0.63 0.08 0.87 0.07 Cbf1

Mn 0.76 0.09 0.87 0.07 Cbf1

MN 0.95 0.30 1.25 0.21 Cbf1

MNcg 3.92 4.41 NA 5.25 Cbf1

mnCn 1.47 0.03 2.83 0.04 Cbf1

MnG 0.80 0.06 1.33 0.08 Cbf1
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MngG 1.20 0.04 5.00 0.03 Cbf1

mNGmm 3.31 0.09 NA 0.11 Cbf1

MNm 1.60 NA 2.22 NA Cbf1

MnMG 1.97 0.49 4.33 0.19 Cbf1

MNMG 1.32 0.12 NA 0.10 Cbf1

mnMGG 2.20 0.10 4.10 0.09 Cbf1

mNnc 1.48 0.04 2.18 0.03 Cbf1

MNnc 4.00 2.11 4.55 2.34 Cbf1

mnng 0.79 0.07 1.36 0.07 Cbf1

MnNgnG 1.02 0.08 1.61 0.09 Cbf1

n 0.61 0.11 0.59 0.06 Cbf1

N 0.84 0.10 0.89 0.07 Cbf1

nc 4.39 2.01 3.98 2.22 Cbf1

nC 4.63 1.90 3.96 2.14 Cbf1

Nc 2.36 0.19 NA 0.31 Cbf1

NC 1.96 0.47 2.13 0.63 Cbf1

NcG 5.31 1.81 NA 2.08 Cbf1

NCg 5.77 1.75 NA 1.92 Cbf1

NcGnGN 1.43 0.69 4.07 1.11 Cbf1

ncGNNm 1.36 0.72 3.43 0.99 Cbf1

ncM 4.80 1.88 NA 2.30 Cbf1

Ncm 5.31 1.81 7.46 2.17 Cbf1

NCmn 1.53 NA 4.29 NA Cbf1
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nCmnGm 5.59 1.14 NA 2.16 Cbf1

ncN 3.29 5.89 3.67 9.60 Cbf1

NCngG 2.19 1.13 4.98 1.51 Cbf1

nCnGm 3.22 1.08 6.55 1.77 Cbf1

nCNGNG 0.86 0.03 4.05 0.04 Cbf1

nCnm 3.98 1.42 5.49 1.87 Cbf1

nCNMCn 6.45 3.89 NA 4.19 Cbf1

ng 1.12 0.08 2.79 0.07 Cbf1

nG 1.14 0.08 2.66 0.07 Cbf1

Ng 1.52 0.11 3.01 0.11 Cbf1

NG 1.21 0.16 2.63 0.21 Cbf1

ngc 5.78 2.02 8.40 2.15 Cbf1

NGc 5.42 2.18 NA 2.50 Cbf1

NgCgg 5.14 NA NA NA Cbf1

nGcM 2.89 0.05 NA 0.05 Cbf1

nGcNm 4.86 1.20 NA 2.00 Cbf1

ngg 1.34 0.05 4.43 0.03 Cbf1

Ngg 1.52 0.16 2.64 0.18 Cbf1

nGgCNn 1.13 0.07 3.39 0.03 Cbf1

ngGm 6.60 0.09 NA 0.07 Cbf1

ngM 1.56 0.09 3.43 0.08 Cbf1

nGm 1.38 0.08 2.83 0.09 Cbf1

nGMGMC 7.00 2.46 NA 2.88 Cbf1
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NGn 0.69 NA 1.30 NA Cbf1

NGnc 7.09 NA NA NA Cbf1

NgNGG 1.26 0.08 4.15 0.08 Cbf1

nm 0.83 0.11 1.10 0.11 Cbf1

Nm 0.96 0.08 1.20 0.08 Cbf1

NM 1.51 0.14 NA 0.12 Cbf1

nMC 6.31 2.15 8.06 2.36 Cbf1

nMcm 6.16 2.25 NA 2.71 Cbf1

nmg 1.37 0.09 2.44 0.11 Cbf1

nMG 1.23 0.03 5.17 0.03 Cbf1

nMgm 1.83 0.09 2.99 0.09 Cbf1

nmGN 0.92 0.16 1.46 0.50 Cbf1

nmM 4.04 0.06 NA 0.04 Cbf1

nMm 2.57 0.09 3.54 0.09 Cbf1

NMM 5.12 1.62 NA 1.70 Cbf1

NMMgn 4.82 NA NA NA Cbf1

nmn 0.49 0.07 0.58 0.07 Cbf1

Nmn 8.41 NA NA NA Cbf1

nmnM 1.38 0.11 2.08 0.06 Cbf1

nN 0.63 0.42 0.69 0.38 Cbf1

NN 0.70 0.08 0.98 0.07 Cbf1

nnC 3.98 1.95 4.41 2.14 Cbf1

nNC 9.86 2.60 6.35 2.80 Cbf1
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NNc 4.12 2.11 3.88 2.47 Cbf1

NNC 4.29 2.03 3.64 2.15 Cbf1

NNcc 6.53 4.81 NA 4.59 Cbf1

NncgN 3.22 0.98 5.88 1.51 Cbf1

NNCN 3.42 1.71 3.25 2.01 Cbf1

NNG 1.21 0.13 2.46 0.10 Cbf1

Nngc 4.16 2.13 NA 2.40 Cbf1

nnGGg 1.61 0.13 4.91 0.15 Cbf1

NnM 0.86 0.08 1.08 0.06 Cbf1

NNm 0.71 0.07 0.86 0.07 Cbf1

NNn 0.38 NA 0.39 0.31 Cbf1

Basal NA 0.17 0.98 0.07 Cbf1

cc NA 4.50 NA 4.33 Cbf1

CC NA 4.89 NA 4.51 Cbf1

Cccgcn NA 8.11 NA 7.22 Cbf1

CccMM NA 6.04 NA 5.92 Cbf1

ccm NA 4.28 NA 4.41 Cbf1

ccNgc NA 6.63 NA 6.51 Cbf1

ccnGM NA 3.85 1.38 3.63 Cbf1

cGcGmm NA 4.65 NA 4.56 Cbf1

cgcM NA 4.40 NA 4.21 Cbf1

cGmCCg NA 6.25 NA 5.44 Cbf1

cM NA 5.70 NA 6.34 Cbf1
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CMCGCM NA 7.28 NA 8.04 Cbf1

CMCm NA 4.79 NA 4.82 Cbf1

CMCn NA 4.47 NA 4.52 Cbf1

cMgM NA 2.10 NA 2.47 Cbf1

CMMm NA 0.09 NA 0.05 Cbf1

cmNc NA 4.51 NA 4.80 Cbf1

cnCC NA 7.20 NA 9.34 Cbf1

cncg NA 3.92 NA 4.17 Cbf1

cNcG NA 4.17 NA 4.32 Cbf1

CNCN NA 4.34 NA 4.39 Cbf1

CNm NA 2.19 NA 2.20 Cbf1

GC NA 5.65 NA 5.64 Cbf1

GcC NA 4.38 NA 4.51 Cbf1

gcgcN NA 4.11 NA 4.10 Cbf1

gCGGN NA 0.94 NA 1.30 Cbf1

gcgmGn NA 1.16 NA 1.62 Cbf1

GCM NA 7.04 NA 6.61 Cbf1

GcMNc NA 5.01 NA 4.85 Cbf1

gCnGc NA 4.41 NA 4.55 Cbf1

gCNnn NA 0.93 NA 1.42 Cbf1

ggCMc NA 4.91 NA 4.62 Cbf1

gGMGN NA 1.93 NA 3.63 Cbf1

gGnccm NA 4.67 NA 4.29 Cbf1
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GMCn NA 2.17 NA 1.95 Cbf1

GmGcCN NA 4.47 NA 4.64 Cbf1

gmN NA 0.95 NA 2.07 Cbf1

GmN NA 2.01 NA 2.03 Cbf1

GNCC NA 6.89 NA 6.77 Cbf1

GNNc NA 2.14 NA 2.23 Cbf1

mcC NA 4.83 NA 4.94 Cbf1

MCcG NA 3.39 NA 3.26 Cbf1

MCCG NA 4.56 NA 4.08 Cbf1

MccN NA 4.52 NA 4.34 Cbf1

McG NA 1.87 NA 2.34 Cbf1

mCmC NA 5.48 NA 5.53 Cbf1

MCMC NA 4.74 NA 4.58 Cbf1

MCMccg NA 6.75 NA 6.18 Cbf1

MCMMNc NA 5.30 NA 5.23 Cbf1

MGc NA 7.50 NA 7.33 Cbf1

MGCCcN NA 6.50 NA 5.65 Cbf1

MGccnc NA 6.80 NA 6.32 Cbf1

mgcmC NA 5.07 NA 5.06 Cbf1

mGCN NA 7.95 NA 7.21 Cbf1

mGggC NA 2.09 NA 2.36 Cbf1

mGMn NA 0.07 NA 0.11 Cbf1

MgN NA 8.37 NA 5.80 Cbf1
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MGnnNM NA 0.09 NA 0.08 Cbf1

Mm NA 0.46 NA NA Cbf1

MMgC NA 0.07 NA 0.06 Cbf1

mmnmC NA 2.58 NA 2.77 Cbf1

MnccMM NA 4.79 NA 4.55 Cbf1

MNgMmn NA 0.08 NA 0.07 Cbf1

mNm NA 0.17 NA 0.16 Cbf1

mnmC NA 2.76 NA 2.95 Cbf1

MNmmCN NA 2.52 NA 2.44 Cbf1

ncc NA 4.47 NA 4.43 Cbf1

nCCGnm NA 4.15 NA 3.93 Cbf1

NCcmg NA 4.26 NA 4.28 Cbf1

ncg NA 1.38 NA 1.68 Cbf1

NCgGg NA 1.55 NA 1.76 Cbf1

ncGgm NA 1.10 NA 1.61 Cbf1

ncGmm NA 1.83 NA 2.07 Cbf1

ngC NA 2.56 NA 2.85 Cbf1

ngCc NA 4.75 NA 4.60 Cbf1

Ngm NA 0.06 NA 0.09 Cbf1

nGMC NA 7.20 NA 8.63 Cbf1

NgNm NA 3.94 NA 5.05 Cbf1

NMcc NA 4.73 NA 4.83 Cbf1

nmCGC NA 10.81 NA 10.28 Cbf1
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Nmg NA 4.27 NA 5.18 Cbf1

nmgG NA 0.20 NA 0.14 Cbf1

NmmgMC NA 2.64 NA 2.88 Cbf1

nMNMm NA 0.10 NA 0.13 Cbf1

nn NA 0.29 NA 0.10 Cbf1

Nn NA 0.27 NA NA Cbf1

NNgCgM NA 4.56 NA 4.41 Cbf1

NNGn NA 0.10 NA 0.07 Cbf1

cCCC NA NA NA 11.18 Cbf1

mGCM NA NA NA 4.44 Cbf1

NccmN NA NA NA 4.73 Cbf1

NGccmN NA NA NA 6.80 Cbf1

c 2.18 0.86 1.94 0.15 Gcn4

C 2.15 0.85 1.78 0.20 Gcn4

cc 2.67 0.69 2.21 0.19 Gcn4

CC 2.30 1.05 2.19 0.19 Gcn4

Ccc 3.02 NA 2.01 NA Gcn4

Cccgcn 2.72 NA 4.67 1.80 Gcn4

cCcNC 1.13 NA NA NA Gcn4

CcG 3.07 NA NA 3.11 Gcn4

CCG 2.20 NA NA 10.36 Gcn4

ccgC 2.37 NA NA NA Gcn4

Ccm 3.10 0.73 4.40 0.17 Gcn4
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ccN 2.59 0.65 2.47 0.07 Gcn4

cCN 2.45 0.91 1.69 0.14 Gcn4

cCnGGn 0.59 NA NA 4.11 Gcn4

cCNm 2.83 0.78 5.00 0.11 Gcn4

cg 1.05 NA NA NA Gcn4

Cg 2.52 1.40 NA 2.27 Gcn4

Cgcm 2.78 1.80 NA 2.16 Gcn4

cGmCCg 2.47 2.44 NA 6.14 Gcn4

cGN 1.30 1.02 5.05 1.48 Gcn4

cGnmM 4.28 1.21 NA 2.29 Gcn4

cm 2.79 0.63 3.99 0.16 Gcn4

cM 0.79 3.20 5.60 6.27 Gcn4

CM 3.16 0.75 NA 0.39 Gcn4

CMCGCM 2.74 2.15 NA 3.13 Gcn4

CMCm 4.48 0.54 NA 0.13 Gcn4

CMCn 2.47 0.64 3.92 0.11 Gcn4

cmG 2.25 1.27 NA 2.39 Gcn4

cmM 5.79 0.70 NA 0.16 Gcn4

cmn 1.69 0.57 3.45 0.13 Gcn4

cmNc 2.39 0.71 NA 0.16 Gcn4

cmnmc 3.37 0.42 5.17 0.10 Gcn4

CMNn 3.58 NA NA NA Gcn4

cn 1.12 0.66 NA 0.08 Gcn4
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cN 2.45 0.67 3.03 0.13 Gcn4

CN 1.89 0.87 1.78 0.12 Gcn4

CnC 5.70 NA NA NA Gcn4

cNcG 2.90 2.43 NA 2.21 Gcn4

Cncgm 2.65 NA NA 1.94 Gcn4

cng 1.38 0.88 5.13 1.19 Gcn4

Cng 1.26 1.02 NA 1.62 Gcn4

CnG 1.26 1.04 5.21 1.43 Gcn4

cngCnG 1.22 0.85 NA 4.29 Gcn4

cnMc 3.12 0.43 3.40 0.12 Gcn4

CNMgg 1.05 1.08 NA 5.48 Gcn4

cnncMN 2.19 0.55 4.30 0.10 Gcn4

g 1.15 1.10 4.02 1.49 Gcn4

G 1.18 1.24 3.79 1.67 Gcn4

Gc 2.15 1.21 4.57 2.15 Gcn4

GC 2.74 2.64 NA 9.48 Gcn4

GcC 2.56 1.32 4.32 2.01 Gcn4

gcgCM 2.75 1.73 NA 6.28 Gcn4

gcgcN 1.97 1.16 NA 6.67 Gcn4

GcgG 1.25 4.48 NA 14.26 Gcn4

GCgggn 1.03 NA NA 14.77 Gcn4

gCM 3.38 0.79 NA 2.15 Gcn4

Gcm 2.79 0.95 NA 2.14 Gcn4
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GCm 2.49 0.75 NA 2.15 Gcn4

GCM 3.07 NA NA NA Gcn4

Gcn 1.62 0.89 3.98 1.42 Gcn4

gCnGc 2.59 1.53 NA 5.09 Gcn4

gCNnn 0.37 0.70 1.29 0.50 Gcn4

Gg 0.93 NA 5.05 10.26 Gcn4

GG 0.89 1.35 5.43 5.37 Gcn4

gGCn 1.12 3.13 NA 7.13 Gcn4

GggnG 0.71 1.17 NA 11.69 Gcn4

gGm 1.68 2.32 NA 4.54 Gcn4

gGMGN 1.86 NA NA 14.85 Gcn4

ggMMM 5.08 1.98 NA 10.28 Gcn4

GGmn 0.52 0.95 4.41 3.12 Gcn4

gM 1.71 0.88 5.07 1.29 Gcn4

Gm 1.70 1.17 5.53 1.12 Gcn4

GM 1.58 1.27 NA 1.49 Gcn4

gmc 2.81 1.06 NA 2.72 Gcn4

gmC 2.64 0.78 NA 2.47 Gcn4

GMC 2.62 1.13 NA 2.49 Gcn4

gMG 1.60 NA NA NA Gcn4

GmGg 1.73 1.61 NA 7.10 Gcn4

Gmgm 1.94 NA NA NA Gcn4

GmgmGg 1.20 NA NA NA Gcn4
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gMgn 0.81 0.86 4.20 2.44 Gcn4

gMGn 0.85 NA 4.19 3.62 Gcn4

GmM 5.21 NA NA NA Gcn4

GMMg 2.24 NA NA NA Gcn4

GN 0.95 0.90 3.01 0.64 Gcn4

gNC 2.20 0.72 3.87 1.04 Gcn4

gNM 1.13 0.76 3.43 0.65 Gcn4

GNM 1.24 0.66 3.82 0.54 Gcn4

GnMm 3.92 NA NA 1.21 Gcn4

Gnn 0.34 0.66 0.88 0.27 Gcn4

GNNc 1.68 0.79 2.71 0.78 Gcn4

m 1.22 0.92 1.51 0.16 Gcn4

M 1.49 0.95 1.68 0.17 Gcn4

mc 2.44 0.61 3.64 0.14 Gcn4

McG 2.64 1.28 NA 2.06 Gcn4

mCGC 2.89 1.82 NA 2.18 Gcn4

Mcggg 1.01 1.68 NA 12.71 Gcn4

mcgm 3.76 1.46 NA 2.51 Gcn4

mCm 4.78 0.45 NA 0.17 Gcn4

Mcm 4.29 NA NA NA Gcn4

mCmC 3.68 0.56 4.37 0.15 Gcn4

Mcmgn 1.89 NA NA 2.51 Gcn4

MCMMNc 4.09 1.15 NA 0.13 Gcn4
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MCN 2.09 0.63 2.77 0.13 Gcn4

McNcnm 2.88 NA NA NA Gcn4

MCnn 1.83 0.76 1.81 0.16 Gcn4

mg 2.01 NA NA NA Gcn4

mG 1.43 1.08 4.66 3.83 Gcn4

Mg 1.46 0.91 4.73 1.20 Gcn4

MG 1.71 1.06 5.28 1.07 Gcn4

mgc 2.59 1.55 NA 2.42 Gcn4

Mgc 2.95 1.37 NA 2.26 Gcn4

MGc 3.31 0.96 NA 2.22 Gcn4

mgCCnc 2.56 0.99 4.25 2.32 Gcn4

mgcmC 3.46 1.41 NA 3.55 Gcn4

MGg 1.06 1.03 NA 3.30 Gcn4

MggCc 1.78 NA NA NA Gcn4

MGGcG 3.95 2.51 NA 19.41 Gcn4

MggCNM 1.95 NA NA NA Gcn4

mggN 0.58 0.91 3.24 1.91 Gcn4

mgN 0.79 0.80 2.74 0.66 Gcn4

MGnGC 1.68 1.26 NA 5.93 Gcn4

mm 4.66 0.75 NA 0.18 Gcn4

MM 4.52 1.06 NA 0.16 Gcn4

mMccCG 2.82 NA NA 2.78 Gcn4

MMGg 0.68 1.85 NA 10.92 Gcn4
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MMgmN 2.44 0.99 NA 1.40 Gcn4

mmn 2.80 0.62 5.00 0.12 Gcn4

MMNcg 1.18 NA NA NA Gcn4

mmnmC 4.58 1.01 NA 0.20 Gcn4

Mn 0.67 0.72 1.04 0.14 Gcn4

MN 1.07 0.78 1.29 0.20 Gcn4

mNC 2.20 0.82 3.02 0.36 Gcn4

Mng 1.67 NA NA 4.52 Gcn4

MNm 2.16 NA 3.44 NA Gcn4

mNmC 3.17 0.64 NA 0.09 Gcn4

Mnmg 1.13 0.45 NA 0.65 Gcn4

MnMG 1.36 0.77 NA 1.08 Gcn4

MNMG 1.57 0.82 NA 1.01 Gcn4

mnMGG 0.75 NA NA 4.43 Gcn4

MNnc 1.87 0.81 1.68 0.15 Gcn4

mnng 1.62 0.73 1.63 0.28 Gcn4

n 0.55 0.82 0.63 0.15 Gcn4

N 0.83 0.89 0.89 0.18 Gcn4

nc 2.02 0.67 1.79 0.14 Gcn4

nC 2.02 0.66 1.70 0.14 Gcn4

Nc 2.04 0.54 1.67 0.14 Gcn4

ncc 2.61 0.79 2.33 0.12 Gcn4

nCCGnm 1.84 1.41 NA 2.45 Gcn4
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Expression

Glucose 
Occupancy

AAS 
Expression

AAS 
Occupancy

ncg 1.33 NA 4.22 NA Gcn4

NcG 2.30 1.26 NA 1.54 Gcn4

ncGgm 1.55 1.69 NA 4.72 Gcn4

nCGm 2.89 1.16 NA 1.78 Gcn4

NcGm 2.51 0.89 NA 1.60 Gcn4

ncGmm 5.22 1.58 NA 2.16 Gcn4

ncm 2.33 0.70 3.11 0.13 Gcn4

Ncm 2.61 0.67 4.48 0.23 Gcn4

ncmN 2.00 NA NA NA Gcn4

nCmnGG 0.76 0.84 NA 6.15 Gcn4

ncN 1.58 NA 1.46 NA Gcn4

nCnGm 1.25 1.03 NA 1.98 Gcn4

nCnm 1.85 0.79 3.00 0.14 Gcn4

nCNMCn 1.92 0.54 2.74 0.18 Gcn4

ng 0.56 0.86 2.48 1.08 Gcn4

Ng 0.71 1.34 3.82 1.30 Gcn4

NG 1.00 0.81 3.08 1.22 Gcn4

ngc 2.01 1.30 4.68 1.43 Gcn4

NGc 1.90 1.13 5.08 1.75 Gcn4

NGC 2.21 0.99 4.89 1.42 Gcn4

ngCMGC 2.70 1.49 NA 5.86 Gcn4

NGcNn 0.76 0.49 1.53 0.71 Gcn4

Ngg 0.76 0.91 3.46 2.46 Gcn4
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Promoter Expression Glucose 
Expression

Glucose 
Occupancy

AAS 
Expression

AAS 
Occupancy

NGg 0.63 1.04 3.96 2.77 Gcn4

NggGc 1.27 1.93 NA 11.09 Gcn4

NgGMCm 2.69 2.99 NA 10.42 Gcn4

ngM 1.13 0.93 3.94 0.96 Gcn4

nGm 1.32 1.02 3.85 0.73 Gcn4

nGM 1.15 0.93 4.28 0.66 Gcn4

ngMc 2.35 1.13 NA 2.07 Gcn4

nGMC 3.00 NA NA 7.94 Gcn4

NgMG 0.98 0.97 NA 3.52 Gcn4

ngMm 3.65 1.00 NA 1.28 Gcn4

ngMMn 1.92 0.60 NA 1.20 Gcn4

NgN 0.50 0.61 1.76 0.37 Gcn4

NgNGG 0.55 0.71 4.33 4.32 Gcn4

nm 0.87 0.97 1.16 0.32 Gcn4

Nm 1.20 0.83 1.37 0.22 Gcn4

NM 1.32 0.69 1.57 0.19 Gcn4

nMC 2.47 0.81 3.75 0.16 Gcn4

NMccNc 2.69 0.44 2.62 0.11 Gcn4

nmCNN 1.10 NA 2.08 NA Gcn4

nmg 0.72 0.80 2.79 0.66 Gcn4

Nmg 1.03 1.18 3.51 1.33 Gcn4

nmGN 0.52 NA 2.12 NA Gcn4

nmGng 0.99 0.64 3.86 1.99 Gcn4
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Promoter Expression Glucose 
Expression

Glucose 
Occupancy

AAS 
Expression

AAS 
Occupancy

nMm 3.75 0.85 3.70 0.11 Gcn4

Nmn 2.74 NA NA NA Gcn4

nmnM 1.79 0.61 3.26 0.19 Gcn4

nn 0.36 0.77 2.26 0.14 Gcn4

nN 0.62 NA 0.68 NA Gcn4

Nn 0.52 NA 0.68 NA Gcn4

NN 1.65 0.87 0.98 0.24 Gcn4

NNccc 2.73 0.52 2.47 0.09 Gcn4

NNCN 1.65 0.68 1.66 0.14 Gcn4

NNG 0.70 1.03 2.39 0.78 Gcn4

Nngc 1.63 1.41 4.85 1.35 Gcn4

nnGg 1.52 0.86 2.01 1.30 Gcn4

NNGn 0.34 0.50 1.37 0.27 Gcn4

Nnm 0.75 0.90 0.84 0.17 Gcn4

NnmG 0.63 0.59 3.10 0.98 Gcn4

nNN 0.65 NA 0.67 NA Gcn4

NNn 0.35 NA 0.43 NA Gcn4

cC NA 0.71 NA 0.11 Gcn4

ccMmM NA 0.83 NA 0.16 Gcn4

ccNgc NA 2.11 NA 8.01 Gcn4

CMM NA 0.65 NA 0.25 Gcn4

CNm NA 0.97 NA 0.16 Gcn4

CNMM NA 0.53 NA 0.09 Gcn4
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Promoter Expression Glucose 
Expression

Glucose 
Occupancy

AAS 
Expression

AAS 
Occupancy

gCGGNN NA 2.19 NA 7.08 Gcn4

gcgmGn NA 1.49 NA 11.32 Gcn4

GGNmc NA 1.07 NA 9.42 Gcn4

gMcNMM NA 1.41 NA 3.48 Gcn4

GMGmn NA 0.88 NA 2.89 Gcn4

gMM NA 1.07 NA 2.64 Gcn4

gn NA 1.56 NA 10.83 Gcn4

McNg NA 1.08 NA 1.57 Gcn4

MGmM NA 1.16 NA 2.46 Gcn4

MNgMmn NA 1.06 NA 1.59 Gcn4

NCcmG NA 1.99 NA 3.06 Gcn4

nG NA 0.93 NA 1.35 Gcn4

NGCGNG NA 1.52 NA 8.35 Gcn4

nGMGMC NA 1.08 NA 6.40 Gcn4

nGMnCM NA 0.68 NA 1.79 Gcn4

nGnm NA 1.54 NA 6.41 Gcn4

NmmgMC NA 1.88 NA 4.83 Gcn4

NNm NA 0.75 0.45 0.13 Gcn4

Cn NA NA NA 10.50 Gcn4

ggn NA NA NA 15.99 Gcn4

GNgcCc NA NA NA 8.89 Gcn4

gNGGNn NA NA NA 3.54 Gcn4

mgmMNm NA NA NA 8.88 Gcn4
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Promoter Expression Glucose 
Expression

Glucose 
Occupancy

AAS 
Expression

AAS 
Occupancy

mmCN NA NA NA 0.44 Gcn4

MmnNC NA NA NA 0.09 Gcn4

MNcg NA NA NA 7.37 Gcn4

mNm NA NA NA 3.12 Gcn4

NcMM NA NA NA 3.29 Gcn4

nMNMm NA NA NA 2.66 Gcn4

NNmCNm NA NA NA 0.08 Gcn4

Synthetic promoters were constructed and expression and occupancy values obtained as detailed 

in Methods. For promoters, C=Cbf1, fwd; c=Cbf1, rev; G=Gcn4, fwd; g=Gcn4, rev; M=Met31/

Met32, fwd; m=Met31/Met32, rev; N=Nrg1, fwd; n=Nrg1, rev, where “fwd” and “rev” refer to 

the corresponding sequences in Table 3.6. Promoter sequences are listed from most distal to most  

proximal to the TSS of YFP.  In the “Glucose Expression”, “Glucose Occupancy”, “AAS 

Expression”, and “AAS Occupancy” columns, NA means the value is not available. For  

Expression columns, this is due to the expression being out of the dynamic range of the 

cytometer.  For Occupancy columns, this is due to their being too few reads in the IN sample to 

reliably estimate the input distribution.
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CHAPTER 4: Discussion

 The ability to accurately model the biology of transcriptional regulation is a challenging 

problem.  The number of moving parts is enormous and the computational complexity rapidly 

increases.  However, this ability is a desirable one since the amount of regulatory sequence is 

much larger than coding sequence(Thurman, et al., 2012 and Neph, 2012).  To make sense of the 

many genomes now available, the ability to examine a sequence and predict its functional 

consequences is critical.  One problem that arises in trying to understand the function of 

regulatory DNA is whether it is possible to capture the complexity of transcriptional regulation 

using relatively simple, generalizable mathematical rules.  If this can be done, then principles 

learned in a simple system or one part of a system can be generalized and applied across the 

system.  If it cannot be done, then all regulatory sequence is a special case requiring time-

consuming and expensive experimental procedures to understand.  This was formally expressed 

as hypothesis H1 of this thesis:

 (H1) It will be possible to explain the complexity of biology with relatively simple,  

generalizable  mathematical rules.

 In chapter two of this thesis, I developed ReLos, a flexible framework for exploring the 

functional consequences of simple mathematical regulatory rules and used the tool to address 

hypothesis 1.  I performed tree regression on a network of eleven expression modules comprising 

254 genes across 255 environmental conditions (Beer and Tavazoie, 2004) to recover a proposed 
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set of combinatorial rules. ReLos was used to determine the functional consequences of those 

rules.  It was shown that the module behavior could be reasonably recapitulated (mean gene-wise 

correlation of 0.7).   Importantly, this level of correlation was achieved by considering only 13 

cis-elements and the mean effects per condition of twelve combinatorial conditions describing 

the interactions of those elements.  These results support hypothesis H1 and  suggest that much 

of cis-regulation can be explained by a reasonably simple set of combinatorial interactions. The 

precise mathematical details of those interactions may be complicated, but the total number and 

type of interactions that must be considered to approximate the biology were surprisingly few.  It 

is also very likely the case that as more genes and regulatory modules are added, more regulatory 

elements and rules would need to be considered.  However, the basic result remains the same: a 

handful of cis-regulatory elements using a small set simple set of rules were all that were 

required to distinguish the various patterns of expression, rather than dozens of elements and 

scores of rules.

 One area where ReLos could be improved is its pre-configured support for additional 

frameworks for modeling cis-regulation.  Since multiple different mathematical formalisms have 

been applied to the problem of mapping sequence to expression (Beer and Tavazoie, 2004; 

Bussemaker, Li and Siggia, 2001; Conlon, 2003; Das, Banerjee and Zhang, 2004; Keles, van der 

Laan and Eisen, 2002; Wang, et al., 2002).  ReLos does not pre-specify any particular 

mathematical framework for determining the functional consequences of a given sequence, but 

allows the user to choose between several sets of pre-defined formalisms and to “plug in” their 

own formalism if the existing abilities were unsuitable to the user’s need.  One notable exception 

to ReLos-supplied frameworks is a statistical thermodynamic description of transcription (Shea 
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and Akers, 1995; Buchler, Gerland and Hwa, 2003).  These models have gained popularity in 

recent years (Cohen, Siggia, and Gertz, 2009; Djordjevic, Sengupta and Shraiman, 2003; He, et 

al, 2009; Roider, et al. 2007; Segal, et al. 2008 and Wasson and Hartemink, 2009) due in large 

part due to their ability to describe complex systems with biophysically motivated parameters.  

Whereas other formalisms predict gene expression, the thermodynamic model provides 

biological hypotheses about the binding of transcription factors and polymerase.  Extending 

ReLos to include this formalism would allow researchers to easily explore the biophysical 

consequences of a variety of parameter choices on both transcription factor binding and gene 

expression, and to compare the results with other mathematical models of expression. 

 One problem with any model that relates sequence to expression is learning the model 

parameters.  Synthetic promoters (Gertz and Cohen, 2009; Gertz, Siggia and Cohen, 2009; Ligr 

et al., 2006;  Kwasnieski, and Mogno et al., 2012; Melnikov, et al., 2012 and Patwarden, et al., 

2012; Sharon, et al., 2012) have emerged as an in vivo method to characterize models of 

expression in a controlled and systematic manner.  To date, all such methods have relied directly 

or indirectly on expression driven by the synthetic promoter.  However, models built with only 

expression data cannot distinguish between multiple biologically distinct hypothesis that produce 

equivalent expression results and risk missing important biological features such as transcription 

factor cooperativity that may be masked in the expression data.  Even in the absence of complex 

interactions, having only expression data means that the model cannot deconvolve the effects of 

TF-RNAP interactions from TF-DNA affinity.  This results in being unable to distinguish 

between models wherein TF-DNA binding is relatively strong and TF-RNAP interactions are 

relatively weak from  models where TF-DNA binding is relatively weak and TF-RNAP 
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interactions are relatively strong.  In theory, an additional independent source of data would 

allow for these parameters to be separated, resulting in more meaningful mechanistic 

descriptions of biology.  This is expressed broadly in hypothesis H2:

 (H2)  Given in vivo protein binding data, it will be possible to distinguish between 

models of transcriptional regulation that yield similar expression results but represent distinct 

biophysical mechanisms

 In chapter three of this thesis, a ChIP-based approach for measuring occupancy on 

synthetic promoters was developed to address this hypothesis.  This approach was used to obtain 

occupancy information for Cbf1 and Gcn4 in libraries of promoters containing sites for Cbf1, 

Gcn4, Met31/Met32, and Nrg1 in glucose and Amino Acid Starvation (AAS) conditions and to 

the best of my knowledge, provides the first data set where quantitative occupancy information 

and accurate expression measurements are available for a large set of synthetic promoters. The 

uniqueness of this dataset is in its ability to directly ask what the effect on expression of binding 

is for a particular transcription factor. This question cannot be readily addressed by genomic 

methods.  The genomic ChIP signal is complicated by many factors, such as different shearing 

efficiencies, that make direct comparison of binding at one location to another difficult. In this 

case,  all promoters were integrated at the same genomic locus and all drive the expression of the 

same gene.  This allows a direct examination of the effect of binding on expression.

 The principal aim of generating occupancy data was to distinguish between different 

biophysical hypotheses in the model that produce the same expression results.  To address this 
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question, the parameters of the thermodynamic model were fit to each data source separately and 

then to both data sources simultaneously.  There were several cases where having both data sets 

made distinguishing between alternative hypotheses possible.  One case was to distinguish 

between a change in the apparent Ka of Cbf1 versus a change in the Cbf1-RNAP interaction 

between Glucose and AAS conditions.  The effect on expression of the two models was 

equivalent, but the occupancy data strongly argue that Cbf1 binding is the same between the two 

conditions (Table 3.3 and Figure 3.7)  The occupancy data also revealed apparent Gcn4 

cooperativity (Figure 3.15), and a negative interaction between Gcn4 and Nrg1 (Figure 3.16). 

One question is why an effect such as the Nrg1 site interaction was not found when fitting only 

to expression data.  There are two non-exclusive possibilities, one technical and one 

mathematical.  

 The expression data for these libraries was obtained via flow cytometry. However, the 

cytometer has an upper limit of detection and many promoters with multiple Gcn4 sites in them 

are gated out due to expressing beyond the limits of detection. This means that the expression 

data is being trained on a subset of data where there are fewer promoters with Gcn4 but no Nrg1.  

Without adequate examples of Gcn4 behavior in the presence and absence of Nrg1, it is difficult 

to fit the interaction terms.  In theory, this limitation could be resolved by adjusting the voltage 

down to allow accurate quantification of highly expressed promoters.  In practice, however, the 

voltage is already low enough that to lower it further would risk losing the ability to normalize 

the expression to the control promoters present on each plate.  An alternative would be a new 

method of quantification.  Recently, Kwasnieski and Mogno, et al. (2012) developed such a 

method using next generation sequencing.  This allows for the quantification of a much larger 
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dynamic range of expression, at the expense of losing information about the population variance.  

It will be interesting to build new libraries using these techniques and to observe whether the 

interactions can be recovered with expression data with a larger dynamic range.  

 The second reason the interactions may not be recovered when fitting to expression data 

is the model formalism.  When fitting to occupancy, there is little to no information regarding 

polymerase binding, so a smaller subset of  the model terms are used.  In particular, the 

interaction term between the factors and RNAP was not modeled when fitting only to occupancy 

data.  It is formally possible for an interaction to be expressed through the polymerase term by 

destabilizing all states in which both interacting proteins are bound to the promoter.  This effect 

is necessarily weaker in impact than a direct interaction, but could be sufficient to mask the 

interaction in the expression data. Indeed, a fit to both data sets that includes the Gcn4-Nrg1 

interaction term results in a substantially weaker Nrg1-RNAP interaction (Table 3.3). Whatever 

the case, the interaction is clearly present in the occupancy data, which argues for a mode of 

direct interaction.

 One of the most interesting phenomenon observed in the data was the switching of the 

Gcn4 site from a repressive role in glucose to an activating role in AAS (Figure 3.17).  With only 

the expression data, this effect can be modeled by Gcn4 switching behavior between conditions. 

Inclusion of the occupancy data results in numeric constraints that are only cleanly resolved by 

accounting for competitive binding, thus suggesting competitive binding by Gcn4 and another 

factor.  This behavior is consistent with earlier reports of Gcn4 competing with other factors such 

as Bas1 (Arndt and Fink, 1986 and Springer, 1996). 
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 Competition between factors, especially between activators and repressors, has emerged 

recently as a recurring theme in transcriptional regulation (Zhou and O’Shea, 2011; White, et al., 

2012 and Wasson and Hartemink, 2009).  In one sense, competition should not be surprising. 

There are many factors being expressed in the cell at the same time, all of which have varying 

affinity for a given sequence of DNA. What does seem surprising is the degree to which 

competitive binding seems to be a feature of transcriptional regulation rather than a side-effect.  

The recurrence of this effect suggests that more theoretical work should be done to fully explore 

the functional consequences of competitive binding. 

  There are several additional points of model improvements that should be considered for 

future research. First, the current version of the model does not take into account non-specific 

binding.  This means that promoters without a pre-identified binding site for a factor are always 

predicted to have an occupancy of zero.  Hence, those promoters were excluded from the fit, 

although they may contain useful information for setting the relative scale of occupancy values. 

 Another area for future research is in directly integrating both sources of data into the 

thermodynamic model, discussed more thoroughly in the chapter three results.  When 

incorporating both sources of data, non-linear fitting routines seemed to prefer parameters sets 

that favored fitting occupancy well over fitting expression well.  While this is most likely due to 

fitting artifacts such as the relative biological noise in the two data sets, the idea that some 

factors such as Cbf1 may require more sophisticated descriptions of their effect on expression 

cannot be entirely ruled out, and should be researched further.

 In modeling the occupancy data, one choice that had to be made was whether to model 

the data as the expected number of proteins bound to the promoter (the average occupancy), or as 
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the probability of at least one transcription factor being bound to the promoter (the probability of 

occupancy).  The average occupancy is expected to increase monotonically with the number of 

binding sites whereas the probability of occupancy is expected to saturate.  For this work, the 

probability of occupancy was chosen as the appropriate model for several reasons.  Empirically, 

using the probability of occupancy resulted in better fits to the data than using the average 

occupancy. Second, the occupancy appeared to start saturating (for instance, see Figure 3.15) 

with increasing number of binding sites.  However, there were not many promoters with more 

than three binding sites for a particular factor, so it is difficult to determine from this data 

whether the observed saturation is real or an artifact of small numbers.  To address this issue, 

another library could be built that focused on binding sites for one or two factors, thus increasing 

the chance of observing many binding sites for a single factor in a single promoter.  

 An interesting corollary to the probability of occupancy question is what the cell actually 

reads out.  Does the cell engage in a molecular form of counting how many proteins are bound to 

a site, or does the cell only care that at least one protein is bound to the site?  This question could 

be addressed by combining the occupancy approach outlined in this work with the next-

generation-sequencing approach to synthetic promoters developed by Kwasnieski and Mogno, et 

al. (2012) to build libraries with fewer types of binding sites, resulting in more promoters with 

many binding sites.  The next-generation-sequencing approach expands the dynamic range of the 

expression assay.  In theory, this would allow us to observe the point at which expression 

saturates and combine the information with the occupancy data to learn whether saturation 

occurs at a point equal to or greater than the probability of at least one TF bound being one.
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 In the absence of the perfect experiment, it is interesting to note the results of Sharon, et 

al. (2012) They systematically varied thousands of promoters, including promoters with multiple 

GCN4 sites (up to seven).  In their hands, they observed a logistic binding curve for GCN4 with 

expression saturating at four binding sites.  This coincidentally agrees well with the binding data 

observed in my work, where the transition point of Gcn4 occurred between two and three 

binding sites, and the probability of binding appears to start saturating at four binding sites.  

Although these data are consistent, a direct measurement using the same promoter backbone and 

promoter construction are necessary to validate this intriguing possibility.

  Tagging a transcription factor, building libraries for each tagged factor, and performing 

ChIP is a time and labor-intensive process and it is worth considering the costs and benefits of 

this approach.  On the one hand, BirA is now integrated into the genome of the yeast strains we 

use for constructing synthetic promoter libraries, so study of additional factors is a one-step 

rather than a multi-step process. Furthermore, recent advances in library construction made by 

Kwasnieski and Mogno, et al. (2012) reduce the cost and effort required to build multiple 

libraries, and the new pooled strategy of library creation works well with the pooled strategy for 

ChIP employed in this study.  On the other hand, each ChIP experiment is costly in terms of 

reagents and there may be alternative sources of information that can be more readily acquired, 

such as the TF concentration through GFP fusions.  With that said, the occupancy does provide 

information that cannot be readily obtained any other way since it is the synthesis of the Ka and 

concentration of the TF and its interactions with other proteins.  For instance, a study of only 

concentration of the TF would not have revealed the Gcn4 cooperativity, and a previous analysis 

of Cbf1 concentration resulted in the erroneous conclusion that the effective Ka of Cbf1 is 
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considerably less in glucose than in AAS.  The key moving forward will be to increase the 

amount of information obtained from any given experiment.  One way to do that would be to 

focus on the binding of a single transcription factor in a variety of different libraries, including 

libraries with different strengths of binding sites.  This would maximize the information learned 

for the effort required to tag and ChIP the factor. 

 In all, the occupancy data complemented the expression data and provided new avenues 

for questioning and model improvement.  Hypothesis (H2) claimed that having occupancy data 

will make it possible to distinguish between different biological models that give rise to the same 

expression results.  This was demonstrated in several cases and provides encouraging results for 

additional study of ways to incorporate multiple sources of data into models of expression.
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