1,159 research outputs found

    Towards global flood mapping onboard low cost satellites with machine learning

    Get PDF
    Spaceborne Earth observation is a key technology for flood response, offering valuable information to decision makers on the ground. Very large constellations of small, nano satellites— ’CubeSats’ are a promising solution to reduce revisit time in disaster areas from days to hours. However, data transmission to ground receivers is limited by constraints on power and bandwidth of CubeSats. Onboard processing offers a solution to decrease the amount of data to transmit by reducing large sensor images to smaller data products. The ESA’s recent PhiSat-1 mission aims to facilitate the demonstration of this concept, providing the hardware capability to perform onboard processing by including a power-constrained machine learning accelerator and the software to run custom applications. This work demonstrates a flood segmentation algorithm that produces flood masks to be transmitted instead of the raw images, while running efficiently on the accelerator aboard the PhiSat-1. Our models are trained on WorldFloods: a newly compiled dataset of 119 globally verified flooding events from disaster response organizations, which we make available in a common format. We test the system on independent locations, demonstrating that it produces fast and accurate segmentation masks on the hardware accelerator, acting as a proof of concept for this approach

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    Multi-Objective Genetic Algorithm for Multi-View Feature Selection

    Full text link
    Multi-view datasets offer diverse forms of data that can enhance prediction models by providing complementary information. However, the use of multi-view data leads to an increase in high-dimensional data, which poses significant challenges for the prediction models that can lead to poor generalization. Therefore, relevant feature selection from multi-view datasets is important as it not only addresses the poor generalization but also enhances the interpretability of the models. Despite the success of traditional feature selection methods, they have limitations in leveraging intrinsic information across modalities, lacking generalizability, and being tailored to specific classification tasks. We propose a novel genetic algorithm strategy to overcome these limitations of traditional feature selection methods for multi-view data. Our proposed approach, called the multi-view multi-objective feature selection genetic algorithm (MMFS-GA), simultaneously selects the optimal subset of features within a view and between views under a unified framework. The MMFS-GA framework demonstrates superior performance and interpretability for feature selection on multi-view datasets in both binary and multiclass classification tasks. The results of our evaluations on three benchmark datasets, including synthetic and real data, show improvement over the best baseline methods. This work provides a promising solution for multi-view feature selection and opens up new possibilities for further research in multi-view datasets

    A Framework for the Objective Assessment of Registration Accuracy

    Get PDF
    Validation and accuracy assessment are themain bottlenecks preventing the adoption of image processing algorithms in the clinical practice. In the classical approach, a posteriori analysis is performed through objective metrics. In this work, a different approach based on Petri nets is proposed.The basic idea consists in predicting the accuracy of a given pipeline based on the identification and characterization of the sources of inaccuracy. The concept is demonstrated on a case study: the intrasubject rigid and affine registration of magnetic resonance images. A choice of possible sources of inaccuracies that can affect the registration process is accounted for, and an estimation of the overall inaccuracy is provided through Petri nets. Both synthetic and real data are considered. While synthetic data allow the benchmarking of the performance with respect to the ground truth, real data enable to assess the robustness of the methodology in real contexts as well as to determine the suitability of the use of synthetic data in the training phase. Results revealed a higher correlation and a lower dispersion among the metrics for simulated data, while the opposite trend was observed for pathologic ones. Results show that the proposedmodel not only provides a good prediction performance but also leads to the optimization of the end-to-end chain in terms of accuracy and robustness, setting the ground for its generalization to different and more complex scenarios

    Multimodal representation learning with neural networks

    Get PDF
    Abstract: Representation learning methods have received a lot of attention by researchers and practitioners because of their successful application to complex problems in areas such as computer vision, speech recognition and text processing [1]. Many of these promising results are due to the development of methods to automatically learn the representation of complex objects directly from large amounts of sample data [2]. These efforts have concentrated on data involving one type of information (images, text, speech, etc.), despite data being naturally multimodal. Multimodality refers to the fact that the same real-world concept can be described by different views or data types. Addressing multimodal automatic analysis faces three main challenges: feature learning and extraction, modeling of relationships between data modalities and scalability to large multimodal collections [3, 4]. This research considers the problem of leveraging multiple sources of information or data modalities in neural networks. It defines a novel model called gated multimodal unit (GMU), designed as an internal unit in a neural network architecture whose purpose is to find an intermediate representation based on a combination of data from different modalities. The GMU learns to decide how modalities influence the activation of the unit using multiplicative gates. The GMU can be used as a building block for different kinds of neural networks and can be seen as a form of intermediate fusion. The model was evaluated on four supervised learning tasks in conjunction with fully-connected and convolutional neural networks. We compare the GMU with other early and late fusion methods, outperforming classification scores in the evaluated datasets. Strategies to understand how the model gives importance to each input were also explored. By measuring correlation between gate activations and predictions, we were able to associate modalities with classes. It was found that some classes were more correlated with some particular modality. Interesting findings in genre prediction show, for instance, that the model associates the visual information with animation movies while textual information is more associated with drama or romance movies. During the development of this project, three new benchmark datasets were built and publicly released. The BCDR-F03 dataset which contains 736 mammography images and serves as benchmark for mass lesion classification. The MM-IMDb dataset containing around 27000 movie plots, poster along with 50 metadata annotations and that motivates new research in multimodal analysis. And the Goodreads dataset, a collection of 1000 books that encourages the research on success prediction based on the book content. This research also facilitates reproducibility of the present work by releasing source code implementation of the proposed methods.Doctorad

    Augmented Behavioral Annotation Tools, with Application to Multimodal Datasets and Models: A Systematic Review

    Get PDF
    Annotation tools are an essential component in the creation of datasets for machine learning purposes. Annotation tools have evolved greatly since the turn of the century, and now commonly include collaborative features to divide labor efficiently, as well as automation employed to amplify human efforts. Recent developments in machine learning models, such as Transformers, allow for training upon very large and sophisticated multimodal datasets and enable generalization across domains of knowledge. These models also herald an increasing emphasis on prompt engineering to provide qualitative fine-tuning upon the model itself, adding a novel emerging layer of direct machine learning annotation. These capabilities enable machine intelligence to recognize, predict, and emulate human behavior with much greater accuracy and nuance, a noted shortfall of which have contributed to algorithmic injustice in previous techniques. However, the scale and complexity of training data required for multimodal models presents engineering challenges. Best practices for conducting annotation for large multimodal models in the most safe and ethical, yet efficient, manner have not been established. This paper presents a systematic literature review of crowd and machine learning augmented behavioral annotation methods to distill practices that may have value in multimodal implementations, cross-correlated across disciplines. Research questions were defined to provide an overview of the evolution of augmented behavioral annotation tools in the past, in relation to the present state of the art. (Contains five figures and four tables)

    Bridging generative models and Convolutional Neural Networks for domain-agnostic segmentation of brain MRI

    Get PDF
    Segmentation of brain MRI scans is paramount in neuroimaging, as it is a prerequisite for many subsequent analyses. Although manual segmentation is considered the gold standard, it suffers from severe reproducibility issues, and is extremely tedious, which limits its application to large datasets. Therefore, there is a clear need for automated tools that enable fast and accurate segmentation of brain MRI scans. Recent methods rely on convolutional neural networks (CNNs). While CNNs obtain accurate results on their training domain, they are highly sensitive to changes in resolution and MRI contrast. Although data augmentation and domain adaptation techniques can increase the generalisability of CNNs, these methods still need to be retrained for every new domain, which requires costly labelling of images. Here, we present a learning strategy to make CNNs agnostic to MRI contrast, resolution, and numerous artefacts. Specifically, we train a network with synthetic data sampled from a generative model conditioned on segmentations. Crucially, we adopt a domain randomisation approach where all generation parameters are drawn for each example from uniform priors. As a result, the network is forced to learn domain-agnostic features, and can segment real test scans without retraining. The proposed method almost achieves the accuracy of supervised CNNs on their training domain, and substantially outperforms state-of-the-art domain adaptation methods. Finally, based on this learning strategy, we present a segmentation suite for robust analysis of heterogeneous clinical scans. Overall, our approach unlocks the development of morphometry on millions of clinical scans, which ultimately has the potential to improve the diagnosis and characterisation of neurological disorders
    • 

    corecore