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Abstract

Representation learning methods have received a lot of attention by researchers and practitioners

because of their successful application to complex problems in areas such as computer vision, speech

recognition and text processing [1]. Many of these promising results are due to the development of

methods to automatically learn the representation of complex objects directly from large amounts

of sample data [2]. These efforts have concentrated on data involving one type of information

(images, text, speech, etc.), despite data being naturally multimodal. Multimodality refers to the

fact that the same real-world concept can be described by different views or data types. Address-

ing multimodal automatic analysis faces three main challenges: feature learning and extraction,

modeling of relationships between data modalities and scalability to large multimodal collections

[3, 4].

This research considers the problem of leveraging multiple sources of information or data modali-

ties in neural networks. It defines a novel model called gated multimodal unit (GMU), designed

as an internal unit in a neural network architecture whose purpose is to find an intermediate rep-

resentation based on a combination of data from different modalities. The GMU learns to decide

how modalities influence the activation of the unit using multiplicative gates. The GMU can be

used as a building block for different kinds of neural networks and can be seen as a form of inter-

mediate fusion. The model was evaluated on four supervised learning tasks in conjunction with

fully-connected and convolutional neural networks. We compare the GMU with other early and late

fusion methods, outperforming classification scores in the evaluated datasets. Strategies to under-

stand how the model gives importance to each input were also explored. By measuring correlation

between gate activations and predictions, we were able to associate modalities with classes. It was

found that some classes were more correlated with some particular modality. Interesting findings in

genre prediction show, for instance, that the model associates the visual information with animation

movies while textual information is more associated with drama or romance movies. During the

development of this project, three new benchmark datasets were built and publicly released. The

BCDR-F03 dataset which contains 736 mammography images and serves as benchmark for mass

lesion classification. The MM-IMDb dataset containing around 27000 movie plots, poster along

with 50 metadata annotations and that motivates new research in multimodal analysis. And the

Goodreads dataset, a collection of 1000 books that encourages the research on success prediction

based on the book content. This research also facilitates reproducibility of the present work by

releasing source code implementation of the proposed methods.
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1 Introduction

Recently, machine learning methods have received a lot of attention by researchers and practitioners

because of its successful application to the solution of complex problems in areas such as computer

vision, speech recognition and text processing. Many of these promising results are due to the

development of methods to automatically learn the representation of complex objects directly from

large amounts of sample data [2]. These methods are an evolution of neural networks and are

known as deep learning. Deep learning leads the state-of-the-art in different areas with success

cases in object recognition, scene image labeling, autonomous car driving and speech recognition

among others [2]. The success of deep learning methods has to do with two main reasons: the

development on hardware and software technology that allows to train large models with millions,

and even billions, of parameters; and the availability of huge amounts of data.

Many databases relate different information sources to describe the same real-world concept.

Collaborative encyclopedias (such as Wikipedia) describe a famous person through a mixture of

text, images and, in some cases, audio. Users from social networks comment events like concerts

or sport games with small phrases and multimedia attachments (images/videos/audios). Medical

records are represented by a collection of images, sound, text and signals, among others. The in-

creasing availability of multimodal databases from different sources has motivated the development

of automatic analysis techniques to exploit the potential of these data as a source of knowledge

in the form of patterns and structures that reveal complex relationships [5, 6]. Such automatic

analysis faces three main challenges: feature learning and extraction, modeling of relationships

between data modalities and scalability to large multimodal collections [3, 4].

1.1 Problem statement

The main aim of this research is to devise methods to effectively learn representations of multimodal

data. Recent surveys have shown the feasibility and advantages of learning the representation

automatically from the data [2, 7–10]; however the majority of those works are focused on particular

types of data: images, audio, text and video. The main research question that orientates the

proposed research is: How to automatically learn effective representations from multimodal data

that allow exploiting them better for automatic analysis tasks? The combination of different

information sources to discover relevant patterns and latent concepts leads to a better understanding

of data collections [11]. Such abstract or latent concepts can be better detected by modeling

relationships and correlations from different data sources. Since data comes from different input

channels, modalities, in general, have different statistical properties. This makes harder to design

a fusion strategy that works in all the cases [12]. Even though the number of publications related

to representation learning in multimodal scenarios has grown in the last few years, the problem is

still an open challenge for the research community and has been addressed in a quite standard way
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as detailed in Chapter 2. These approaches do not exploit hierarchical representations, such as the

ones learned by deep learning methods [9]. In addition, the growth of databases demands efficient

algorithms to perform automatic analysis in a feasible way using representation learning strategies

[2]. Thus, in order to address the main research problem of linking heterogeneous representation

modalities to make automatic analysis easier, it is important to answer the following research

questions:

• How to simultaneously learn the representation of data with multiple modalities?

• How to automatically extract multimodal representation correlations and interactions?

• In which learning tasks does multimodal representation learning shows advantages over mono-

modal representation learning?

• How to use the learned representation to improve interpretability and support automatic

analysis of learned models?

• How to scale up the proposed algorithms to deal with large multimodal database collections?

Specifically, this research proposes the following goals:

Main goal To develop a scalable model for automatic representation learning in multimodal data

collections.

Specific goals

• To propose a conceptual framework to combine multimodal information using representation

learning strategies.

• To design an algorithm for combining representations from multimodal data.

• To build scalable implementations of the proposed method that can be extended to large

volumes of data.

• To systematically evaluate the proposed strategies in terms of effectiveness for automatic

analysis tasks.

Research impact domains The impact of this research is twofold: on the one hand, this project

develops new alternative methods to deal with multimodal data, learn useful representations and

improve the performance in automatic data analysis tasks. On the other hand, this research

explores different applications of the developed methods in fields where multimodality is present.

Some examples of potential application fields include:

Medical Analysis: Medical information involves several source modalities that can be exploited

in different scenarios. The training of specialists could be supported by exploration and

understanding of clinical cases documented with images and writing reports. Computer aided

diagnosis systems could support medical decisions based on multimodal clinical data.
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Information Retrieval : Indexing information using features from different modalities to improve

accuracy of results would allow users to explore large collections in a more efficient way.

Recommendation Systems: The use of multimodal sources during training recommendation sys-

tems would yield to suggest more accurate content for users/clients.

Computational Biology : Applying data analysis to understand biological phenomena can be im-

proved by discovering mid-level features from different sources like images and text.

1.2 Main contributions

This research presents novel strategies and systematic evaluations to perform representation and

automatic analysis of multimodal information. The following is the outline of the main contributions

of this work.

• Systematic evaluation of supervised and non-supervised strategies for learning image repre-

sentations. Such representations were evaluated in the medical context for two classification

problems: basal cell carcinoma detection [13] and breast mass lesion classification [14].

• Exploration of different representation learning strategies for text classification.

• Construction of the first multimodal dataset for movie genre classification. The dataset

comprises 27,000 movies along with their plots, posters and more than 50 additional features.

The dataset is publicly available at http://lisi1.unal.edu.co/mmimdb.

• Formulation and evaluation of a novel neural network unit that automatically learns to com-

bine different sources of information. The strategy surpasses standard early and late fusion

models. It was evaluated on four different tasks obtaining the state-of-the-art results.

We contributed the data and code for reproducibility and benchmarking of this research. These

are new resources to facilitate and encourage new research in this direction. As result, we released

the three datasets used in this dissertation:

• The Breast cancer digital repository - BCDR-F03 (http://bcdr.inegi.up.pt/)

• The Multimodal IMDb (MM-IMDb) dataset (http://lisi1.unal.edu.co/mmimdb/)

• The book success prediction dataset (http://ritual.uh.edu/resources/)

The following is a list of papers that have been published during the development of this research:

1. Arevalo, John and Cruz-Roa, Angel and others, “Histopathology image representation for

automatic analysis: A state-of-the-art review”, Revista Med 22, 2 (2014), pp. 79–91. [15]

2. Vanegas, Jorge A and Arevalo, John and Otálora, Sebastian and Páez, Fabián and Pérez-

Rubiano, Santiago A. , “MindLab at ImageCLEF 2014: Scalable Concept Image Annota-

tion”, in CLEF 2014 Evaluation Labs and Workshop, Online Working Notes. Sheffield, UK

(September 15-18 2014) (2014). [16]

http://lisi1.unal.edu.co/mmimdb
http://bcdr.inegi.up.pt/
http://lisi1.unal.edu.co/mmimdb/
http://ritual.uh.edu/resources/
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3. Vanegas, Jorge A and Arevalo, John and Gonzalez, Fabio A, “Unsupervised feature learning

for content-based histopathology image retrieval”, in Content-Based Multimedia Indexing

(CBMI), 2014 12th International Workshop on (2014), pp. 1–6.[17]

4. Arevalo, John and González, Fabio A and Ramos-Pollán, Raúl and Oliveira, Jose L and

Lopez, Miguel Angel Guevara, “Convolutional neural networks for mammography mass lesion

classification”, in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual

International Conference of the IEEE (2015), pp. 797–800. [18]

5. Arevalo, John and Cruz-Roa, Angel and Arias, Viviana and Romero, Eduardo and González,

Fabio A, “An unsupervised feature learning framework for basal cell carcinoma image anal-

ysis”, Artificial intelligence in medicine 64, 2 (2015), pp. 131–145. [13]

6. Cruz-Roa, Angel and Arevalo, John and Basavanhally, Ajay and Madabhushi, Anant and

González, Fabio, “A comparative evaluation of supervised and unsupervised representation

learning approaches for anaplastic medulloblastoma differentiation”, in Proc. SPIE vol. 9287,

(, 2015). [19]

7. Cruz-Roa, Angel and Arévalo, John and Judkins, Alexander and Madabhushi, Anant and

González, Fabio, “A method for medulloblastoma tumor differentiation based on convolu-

tional neural networks and transfer learning”, in 11th International Symposium on Medical

Information Processing and Analysis (SIPAIM 2015) (2015). [20]

8. Otálora, Sebastian and Cruz-Roa, Angel and Arevalo, John and Atzori, Manfredo and Mad-

abhushi, Anant and Judkins, Alexander, “Combining unsupervised feature learning and riesz

wavelets for histopathology image representation”, in International Conference on Medical

Image Computing and Computer-Assisted Intervention (2015), pp. 581–588. [21]

9. Pellegrin, Luis and Vanegas, Jorge A and Arevalo, John and Beltrán, Viviana and Escalante,

Hugo Jair, “INAOE-UNAL at ImageCLEF 2015: Scalable Concept Image Annotation.”, in

CLEF (Working Notes) (2015). [22]

10. Pellegrin, Luis and Vanegas, Jorge A and Arevalo, John and Beltrán, Viviana and Es-

calante, Hugo Jair and Montes-y-Gómez, Manuel, “A Two-Step Retrieval Method for Image

Captioning”, in International Conference of the Cross-Language Evaluation Forum for Euro-

pean Languages (2016), pp. 150–161. [23]

11. Arevalo, John and González, Fabio A and Ramos-Pollán, Raúl and Oliveira, Jose L and

Lopez, Miguel Angel Guevara, “Representation learning for mammography mass lesion classi-

fication with convolutional neural networks”, Computer methods and programs in biomedicine

127 (2016), pp. 248–257. [14]

12. Arevalo, John and Solorio, Thamar and Montes-y-Gómez, Manuel and González, Fabio A,

“Gated Multimodal Units for Information Fusion”, in 5th International conference on learning

representations 2017 workshop (2017). [24]
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13. Maharjan, Suraj and Arevalo, John and Montes, Manuel and González, Fabio A and Solorio,

Thamar, “A Multi-task Approach to Predict Likability of Books”, in Proceedings of the

15th Conference of the European Chapter of the Association for Computational Linguistics:

Volume 1, Long Pap. . . vol. 1, (2017), pp. 1217–1227. [25]

Another collaborations with representation learning methods and scalable implementations were

also published:

1. Arevalo, John and Ramos-Pollan, Raúl and González, Fabio A, “Distributed Cache Strate-

gies for Machine Learning Classification Tasks over Cluster Computing Resources”, in High

Performance Computing (2014), pp. 43–53. [26]

2. Perdomo, Oscar and Otalora, Sebastian and Rodŕıguez, Francisco and Arevalo, John and

González, Fabio A, “A Novel Machine Learning Model Based on Exudate Localization to

Detect Diabetic Macular Edema”, (2016). [27]

3. Perdomo, Oscar and Arevalo, John and González, Fabio A, “Convolutional network to

detect exudates in eye fundus images of diabetic subjects”, in 12th International Symposium

on Medical Information Processing and Analysis (2017). [28]

1.3 Outline

The remainder of this document is organized as follows. Next chapter gives an overall background

of multimodal learning. In Chapter 3 the gated multimodal unit (GMU) is presented and its be-

havior is empirically evaluated in synthetic experiments. In Chapter 4, the GMU is evaluated in

the automatic genre classification task. The model improved the traditional early and late fu-

sion strategies. In Chapter 5, the GMU is integrated with convolutional architectures to address

image segmentation using multimodal information. Then, the model is evaluated for combining

handcrafted and learned features for mass lesion classification in mammography images (Chapter

6). In Chapter 7, the GMU is used to predict the success of books based on their content. This

model learns to combine features obtained with representation learning techniques and a set of

hand-engineering features to outperform previous state-of-the-art results. Finally, Chapter 8 sum-

marizes the main aspects of this research, discuses the conclusions and provides future directions

in multimodal representation learning.



2 Background and related work

The proposed approach in this document is based on three main areas: representation learning,

multimodality and large scale machine learning. This chapter present a review of previous works

reported in such areas and their open challenges.

2.1 Representation learning

When applying machine learning strategies for automatic analysis tasks, the representation of the

data is a fundamental stage. The main goal of the representation is to transform the original

data to extract features that facilitate the automatic analysis task of the learning algorithm (SVM,

K-means, GMM, etc.). Traditional approaches involve the guidance of experts in the task to

design specific feature extractors; e.g. texture and intensity features are frequently used for image

analysis. An alternative for the design of such representation strategies at hand, is to include

the representation stage in the learning procedure. Representation learning seeks to automatically

learn transformations of the data that make easier automatic analysis tasks. These strategies

include supervised dictionary learning [29], matrix factorization [30], different forms of clustering

and deep learning among others. In particular, deep learning has shown to be one of the most

effective approaches to learn useful transformations for automatic analysis tasks. The dominance

of deep learning, in comparison with the other methods is mainly alluded to three factors: massive

amount of data to train the models, increase of the complexity of the models and scalability to

deal with large datasets and large models. These factors also limit the scenarios where deep

learning can be applied. On the one hand, The computational cost is higher with respect to the

other representation models. On the other hand, deep learning models can to easily overfit small

datasets and low-dimensional input data.

Inspired by how the brain works, deep learning has been a very successful strategy to learn

representations from data. Bengio, Courville, and Vincent [2] defines deep learning methods as

those that are formed by the composition of multiple linear and non-linear transformations of the

data, with the goal of yielding more abstract and ultimately more useful representations. A recent

state-of-the-art review in representation learning and deep learning [10] describes how these meth-

ods have increased rapidly in popularity and research activity due a remarkable string of empirical

successes both in academy and industry, beating traditional approaches in each application domain

with breakthrough results. Microsoft released in 2012 a new version of their MAVIS (Microsoft

Audio Video Indexing Service) speech recognition system based on deep learning [31], where they

reduced the word error rate on four major benchmarks by about 30% compared to state-of-the-art

models based on Gaussian mixtures for the acoustic modeling. In object recognition, first deep

learning approaches were addressed over MNIST digit image classification task [32, 33], breaking

the predominance of Support Vector Machines ( 1.4% error), whereas in natural images the lat-
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est breakthrough has been achieved on the Imagenet dataset for object classification claiming the

state-of-the-art with 4.94% error rate [34] surpassing the human level performance (5.1%), also

using deep learning models to classify a dataset of 1.2 million of images and 1000 classes.

In summary, representation learning strategies have proved to be efficient finding functions that

map from one modality to relatively small set of categorical variables. For some of these partic-

ular tasks, the machine learning performance have surpassed the human performance [34]. These

advances do not mark the frontier in this area, but the beginning of a set of new challenges and ap-

plications that can help to both improving quality of life and boost human knowledge. In computer

vision area, for instance, image captioning task has recently received a lot of attention [35–39]. The

goal is to generate a syntactically and semantically correct phrase that explains the content of the

image. This kind of tasks, by definition, requires the interaction of two modalities: images and

text.

2.2 Learning with multimodal representations

In recent years, Internet has given rise to complex end-user interactions by describing a single

concept in different ways. As an example consider a youtube video; It is composed by the video

itself, which in turn contains not only its audio streaming, but also user comments, rating, user

profile, among other information that explain, in some way or another, the content of the video.

A similar phenomenon is presented in Wikipedia or News websites, where the articles content is

supported and linked with multimedia resources. Like these, there are plenty of scenarios where

people and other system interact with complex information. These interactions as well as other

technological advances has increased the amount of these kind of multimodal information [5]. Such

growth is resulting in widespread attention to find automatic analysis techniques that allow to

exploit those multimodal databases.

Different reviews [5–8] have summarized strategies that addressed multimodal analysis. Most of

the collected works claimed the superiority of multimodal over unimodal approaches for automatic

analysis tasks. Figure 2.1 shows the standard workflow of a model and their components reported

in the literature to perform automatic analysis tasks in multimodal scenarios using representation

learning strategies. A conventional multimodal analysis system receives as input two or more

modalities that describe a particular concept. The most common multimodal sources are video,

audio, images and text. The first step (Section 2.2.1) is to transform the raw data into a set of useful

features such that they can explain the content of the data in a compact way. The second step

(Section 2.2.2) fusions extracted features to find correlations and patterns that links both modalities

into a single concept. Loss functions formulations, neural networks and probabilistic models are

the standard approaches used to fuse the information. Finally, in the third step (Section 2.2.3) a

supervised model is trained to perform the automatic analysis task.

2.2.1 Representation

Representation is a fundamental process for machine learning. Its goal is to extract useful features

from training data which are later fed to a learning algorithm. In computer vision, representation

corresponds to calculate values from input images. In audio signal processing, representation
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Learned

Image[3, 4,

34, 36, 38–

44]

Video[12, 45]

Audio[12, 45]

Text[3, 4, 36,

38–43, 46,

47]

Handcrafted

Image[44,

48–55]

Video[56–58]

Audio[56–59]

Text[42, 48,

52–55]

Fusion

Concatenation

[41, 60, 61]

Siamese net-

work[38, 40,

44, 51, 53,

54, 57, 62]

Loss func-

tion[4, 36,

38, 39, 42,

43, 55]

DBM[11, 12,

63, 64]

DBN[48, 50,

56, 58, 65–

67]

Application

Annotation[3,

4, 11, 40, 43,

45, 50, 52,

55, 58, 64,

66, 67]

Retrieval[11,

39, 41, 44,

48–51, 54]

Few shot[3,

4, 42, 43, 68,

69]

Captioning[35–

39]

Multimodal

Information

Figure 2.1: Standard workflow reported in the literature. Feature extraction stage aims to represent

in an efficient way each modality separately. Fusion stage combines representations

trying to find correlations between them. Finally, the combined representation is used

to solve the automatic analysis task.
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corresponds to compute numerical values that characterizes the complex nature of audio signals.

These values (features) represent particular characteristics of the original data and are calculated

from the raw values. The functions used to compute such features are called feature detectors.

Traditional approaches are based on standard or hand-crafted feature detectors which are man-

ually selected to fit the problem at hand using expert knowledge in the domain. SIFT variants [11,

44, 52, 53] and MPEG-based [11, 53, 58] for images; Bag of words [52, 53] for textual; and Mel

frequency cepstral coefficients (MFCCs) [56, 59, 70] for audio are the traditional feature detectors

in multimodal environments. A main drawback in hand-crafted features is the high cost of such

expert intervention. Experts usually have to design a different set of features for each problem.

Many efforts have focused on improving the performance of automatic analysis tasks or enhancing

the representation using domain knowledge. Representation learning tackle this problem from a

different perspective. Instead of designing custom feature detectors, representation learning learns

them from data. There are two seminal works that applied representation learning models to

fusion different modalities. Firstly, Ngiam et al. [12] tried several strategies to combine audio and

visual data to perform speech recognition discovering useful multimodal features, however they

couldn’t outperform state-of-the-art based on hand engineering features. Secondly, Srivastava and

Salakhutdinov [11] applied a generative model to learn features from the joint space of images

and text to perform image classification and retrieval. Here, images were represented by 3857

hand-engineering features. Despite other works has been developed extending both works [11,

12], two main challenges remain open: modeling of mid-level relationships between modalities and

generalization of feature extraction. These challenges, among others, has been also discussed in the

Bengio’s foresight [2].

In multimodal scenarios, representations learning strategies have been reasonably standard for

each modality. Probabilistic models such as Deep Boltzmann Machines (DBMs) [11, 12, 45, 65]

have been successfully applied to learn representations from video and audio. Conventional text

representations based on count vectors, such as bag of words, has been gradually replaced by neural

language models: Models learned by huge amount of documents that exploit context information

to get a word embedding space using neural networks [3, 4, 36, 38–43, 46, 47]. Analogously, im-

age representation has been replaced by Convolutional Neural Networks (CNN), in particular, the

architecture proposed by Krizhevsky, Sutskever, and Hinton [71] which achieved a remarkable mile-

stone on the ImageNet Challenge. Due to its popularity, CNNs have become the de facto standard

to represent natural images. Recent works have used pretrained network [3, 4, 36, 38, 41, 42] as

black-box representation methods. Other multimodal models use precomputed representations as

an initialization strategy, or set as fixed. To the best of our knowledge there are not attempts to

model relationships in the very low level feature representation, but only in higher ones.

2.2.2 Multimodal fusion

Previous section details strategies to find useful representations for each modality. Fusion stage

seeks one single representation such that makes easier automatic analysis tasks when building clas-

sifiers or other predictors. A naive approach is to concatenate features to get a final representation

[41, 60, 61]. Although it is a straightforward strategy, it ignores inherent correlations between

different modalities.
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More complex fusion strategies includes Restricted Boltzmann Machines and autoencoders. Ngiam

et al. [12] concatenated higher level representations and train two RBMs to reconstruct the original

audio and video representations respectively. Additionally, they trained a model to reconstruct

both modalities given only one of them as input. In an interesting result, Ngiam et al. [12] were

able to mimic a perceptual phenomenon that demonstrates an interaction between hearing and vi-

sion in speech perception known as McGurk effect. A similar approach was proposed by Srivastava

and Salakhutdinov [11] modifying feature learning and reconstruction phases by Deep Boltzmann

Machines. Authors claimed that such strategy is able to exploit large amounts of unlabeled data

by improving the performance in retrieval and annotation tasks. Other similar strategies propose

to fusion modalities using neural network architectures [38, 40, 44, 51, 53, 54, 57, 62] with two

input layers separately and including a final supervised layer such as softmax regression classifier.

An alternative approach involves an objective or loss function suited for the target task [4, 36,

38, 39, 42, 43, 55]. These strategies usually assume that there exists a common latent space where

modalities can express the same semantic concept through a set of transformations of the raw data.

The semantic embedding representations are such that two concepts are similar if and only if their

semantic embeddings are close [3]. In [43] a multimodal strategy to perform zero-shot classification

was proposed. They trained a word-based neural network model [46] to represent textual informa-

tion, whilst use unsupervised feature learning models proposed in [72] to get image representation.

The fusion was done by learning an image linear mapping to project images into the semantic word

space learned in the neural network model. Additionally a Bayesian framework was included to

decide whether an image is of a seen or unseen class. Frome et al. [4] learn the image representation

using a CNN trained with the Imagenet dataset and a word-based neural language model [47] to

represent the textual modality. To perform the fusion they re-train CNN using text representation

as targets. This work outperform scalability with respect to [43] from 2 to 20,000 unknown classes

in the zero-shot learning task. A modified strategy of [4] was presented by [3]. Instead of re-train

the CNN network, they built a convex combination with probabilities estimated by the classifier

and semantic embedding vector of the unseen label. This simple strategy outperforms state-of-the-

art results. However it should notice that the success of such approach relies totally in the power

of the pre-trained models to disentangle latent concepts in large collections.

2.2.3 Applications

A set of comprehensive reviews regarding to representation learning applications has been recently

published [6, 8, 10, 73] highlighting works related with multimodality. Particularly, they have

encompassed such works in 3 broad group: Transfer learning, multi-task learning and zero-shot

learning. Table 2-1 shows a summary of published papers related to multimodal representation

learning, detailing used modalities as well as their application tasks.

Bengio, Courville, and Vincent [2] defines transfer learning as “the ability of a learning algorithm

to exploit commonalities between different learning tasks to share statistical strength and transfer

knowledge across tasks”. This ability can be exploited in a multimodal scenario if the algorithm

can discover those statistical relationships that exists in different sources and that are explaining

the same abstracted concept. Under this setup, a competition was organized [77] to motivate how

unsupervised strategies can be exploited in the transfer learning scenario. Such competition was
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Modality 1 Modality 2 Application

[12, 56, 70, 74] audio video speech-recognition

[45, 58] audio video annotation

[59] audio images cross-modal

[3, 11, 40, 43, 50, 52, 53, 55, 67] images text annotation

[35–39] images text image captioning

[11, 39, 41, 44, 48–51, 54] images text retrieval

[75] images text clustering

[60] images depth segmentation

[66] text stats-info annotation

[76] images depth object detection

Table 2-1: Summary of modalities and applications reported in multimodal learning representation

strategies

won by [78] where a mix of different autoencoders architectures were assembled. Under the zero-

shot learning scenario the goal is to build a strategy to learn from a labeled dataset, and in test

stage, the target labels are not in training set. A natural way to address this task is to find a

set of transformations for input data and target labels such that in a semantic space both, inputs

and targets, are close together. Interesting works has been reported using representation learning

strategies. Frome et al. [4] used text information to improve an image recognition system. An

independent system to classify images using only visual information was pre-trained using a CNN

architecture, then a semantic embedding model was trained to find transformations of input data

such that labels and visual information fall close together, under a particular similarity metric,

in the new space. A modified version of the previous strategy was proposed in [3]. They do not

modify model learned by the CNN, instead, they defined a deterministic transformation from the

outputs of the classifier to the semantic space. This approach avoids the re-training of the CNN,

which is a computationally expensive process. A last recent work was published in [43]. Herein,

standard image classification and zero-shot learning tasks were addressed jointly by merging visual

and textual information in a semantic space.

2.3 Scalable representation learning

The power of representation learning models comes from their capabilities to scale up in terms of

both, large architectures and large amounts of data. On the one hand, a large enough architecture

allows to model complex patterns and relationships inherent in the data. On the other hand, when

the model learns from large datasets, it is seeing many different scenarios that help to deal with

variability and to prevent overfitting.

However, these two characteristics include the scalability challenge. In order to train such models,

one would be able to both, store the model in memory and do computations in short time. With

large amounts of data also comes the challenge to find efficient strategies that make possible to

exploit them.
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The first explorations that addressed the scalability were supported on cloud computing. One

of the first works that scales representation learning models was done by Dean et al. [79]. They

obtained specialized neurons to detect pedestrians, faces and cats by learning a 9-layered sparse

autoencoder with 1 billion connections from a set of 10 million of 200× 200 unlabeled images on a

cluster of 1000 machines (16.000 cores). Despite the outstanding obtained results, such models are

easily reproducible, because of both, complexity and hardware architecture cost.

Nowadays, high performance computing strategies such as GPUs has made possible to train such

large models in a reasonable way. Xu et al. [35] combined neural networks with visual attention

model to automatically caption images. The dataset used contains around 87.000 images with 5

sentences per image. The training took 3 days with a GPU. Socher et al. [39] trained a neural

network using 14M images with 22000 categories; and a neural language model to address image

captioning problem. The whole training took 8 days on a large cluster of machines (not specified).

Karpathy et al. [80] trained a neural network for video classification with 1 million of youtube

videos for 487 classes. They start from raw pixels in frames, ignoring audio signal. Its training

took 1 month.

Despite their interesting results, the amount of time required to train these models, usually days,

makes unfeasible to explore different ideas. Other works have tried to perform parallel computing

on GPUs [81], obtaining promising results. However these strategies are tightly coupled to the

target problem, and thus, new implementations to adapt them to other domains are required.



3 Gated multimodal unit

This chapter presents a neural-network-based strategy for addressing supervised tasks with mul-

timodal data. The key component is a novel type of hidden unit, the Gated Multimodal Unit

(GMU) that learns to weight how the modalities influence to the output activation using multi-

plicative gates. The first part of this chapter defines the model. The second part presents a formal

definition of the GMU, their components along with its bi-modal and multi-modal variants. The

final part analyzes the GMU behavior in a synthetic task for denoising a multimodal input. Part

of this work was published in the International conference on learning representations [24] and

submitted to the Transactions in neural newtworks and learning systems journal [82].

3.1 Introduction

Representation learning methods have received a lot of attention by researchers and practition-

ers because of their successful application to complex problems in areas such as computer vision,

speech recognition and text processing [1]. Most of these efforts have concentrated on data involv-

ing one type of information (images, text, speech, etc.), despite data being naturally multimodal.

Multimodality refers to the fact that the same real-world concept can be described by different

views or data types. Collaborative encyclopedias (such as Wikipedia) describe a famous person

through a mixture of text, images and, in some cases, audio. Users from social networks com-

ment about events like concerts or sport games with small phrases and multimedia attachments

(images/videos/audios). Patient’s medical records are represented by a collection of images, text,

sound and other signals. The increasing availability of multimodal databases from different sources

has motivated the development of automatic analysis techniques to exploit the potential of these

data as a source of knowledge in the form of patterns and structures that reveal complex rela-

tionships [5, 6]. In recent years, multimodal tasks have received attention by the representation

learning community. Strategies for visual question answering [83], or image captioning [35, 37, 84]

have developed interesting ways of combining different representation learning architectures.

Different reviews [5–8] have summarized strategies that addressed multimodal analysis. Most of

the reviewed works claimed the superiority of multimodal over unimodal approaches for automatic

analysis tasks. A conventional multimodal analysis system receives as input two or more modalities

that describe a particular object. The most common multimodal sources are video, audio, images

and text. In recent years there has been a consensus with respect to the use of representation

learning models to characterize the information of this kind of sources [1]. However, the way that

such extracted features are combined is still in exploration.

Multimodal combination seeks to generate a single representation that eases automatic analysis

tasks when building classifiers or other predictors. A basic approach is to concatenate features

to get a final representation [41, 60, 61]. Although it is a straightforward strategy, given that the
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nature of data for each modality is different, their statistical properties usually are not shared across

modalities [11], and thus the predictor needs to model complex interactions between them. Instead,

more elaborated combination strategies has been proposed, in which prior knowledge is exploited,

additional information is included or multimodal interactions are explicitly modeled. Some of

those strategies include Restricted Boltzmann Machines (RBMs) and autoencoders. Ngiam et al.

[12] concatenated higher level representations and trained two RBMs to reconstruct the original

audio and video representations respectively. A similar approach was proposed by Srivastava and

Salakhutdinov [11]. They modified feature learning and reconstruction phases with Deep Boltzmann

Machines. An alternative approach involves an objective or loss function suited for the target task

[4, 36, 38, 39, 42, 43, 55]. Because the cost function involves both multimodal combination and

supervision, these family of models are tied to the task of interest. Thus, if the domain or task

conditions change, an adaptation of the model is required.

Also, most of these models are focused on mapping from one modality to another or solving an

auxiliary task to create a common representation with the information of all modalities. In this

work, we design a novel module that combines multiple sources of information, which is optimized

with respect to the end goal objective function. Our proposed module is based on the idea of using

gates for combining input modalities giving a higher importance to the ones that are more likely

to contribute for correctly generating the desired output. We use multiplicative gates that assign

importance to various features simultaneously, creating a rich multimodal representation that does

not require manual tuning, but instead it learns directly from the training data. We show in the

experimental evaluation that our gated model can be reused in different network architectures for

solving different tasks, and can be optimized end-to-end with other modules in the architecture using

standard gradient-based optimization algorithms. Such behavior was evidenced in the experimental

analysis that suggested that the gain is based on giving more weight to specific modalities for specific

problems.

We initially explored two application use cases: genre movie prediction, and image segmentation.

On the one hand, genre prediction has several application areas like document categorization [85],

recommendation systems [86], and information retrieval systems, among others. On the other

hand, image segmentation is heavily used in autonomous drive systems [87], medical imaging [88]

and other computer vision tasks. The main hypothesis of this work is that a model using GMU,

in contrast to conventional multimodal late and early fusion architectures, will be able to learn

an input-dependent gate-activation pattern that determines how each modality contributes to the

output of hidden units. The motivations to chose the above tasks are twofold: 1) to evaluate

the model in different and unrelated scenarios in order to support that the model is suitable for

different multimodal learning tasks, and 2) to integrate the proposed unit in the most popular

network architectures: convolutional and fully connected.

The proposed model is closely related to the mixture of experts (MoE) approach [89]. However,

the common usage of MoE is focused on performing decision fusion, i.e. combining predictors

to address a supervised learning problem [90]. Similar late-fusion models have been extended

to deep architectures with bagging methods [91]. Our model is devised as a new component in

the representation learning scheme, making it independent from the final task (e.g. classification,

regression, unsupervised learning, etc) provided that the defined cost function be differentiable.

On the other hand, It is noteworthy that extending current models to deal with more than two
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modalities is a complex challenge [92]. Our proposed method addressed this multimodal challenge

by generalizing the gate approach with independent parameters per modality.

3.2 Gated multimodal unit

Multimodal learning is closely related to data fusion. Data fusion looks for optimal ways of combin-

ing different information sources into an integrated representation that provides more information

than the individual sources [5]. This fusion can be performed at different levels and can be cat-

egorized into two broad categories: feature fusion and decision fusion. Feature fusion, also called

early fusion, looks for a subset of features from different modalities, or combinations of them, that

better represent the information needed to solve a particular problem. On the other hand, decision

fusion, or late fusion, combines decisions from different systems, e.g. classifiers, to produce con-

sensus. This consensus may be reached by a simple average, a voting system or a more complex

Bayesian framework.

In this work we present a model, based on gated neural networks, for data fusion that combines

ideas from both feature and decision fusion. The model, called Gated Multimodal Unit (GMU),

is inspired by the control flow in recurrent architectures like gated recurrent units [93] or the

long short-term memory unit Hochreiter and Schmidhuber [94]. A GMU is intended to be used

as an internal unit in a neural network architecture whose purpose is to find an intermediate

representation based on a combination of data from different modalities. Figure 3.1.a depicts the

structure of a GMU. Each xi corresponds to a feature vector associated with modality i. Each

feature vector feeds a neuron with a tanh activation function, which is intended to encode an

internal representation feature based on the particular modality. For each input modality, xi, there

is a gate neuron (represented by σ nodes in the diagram), which controls the contribution of the

feature calculated from xi to the overall output of the unit. When a new sample is fed to the

network, a gate neuron associated to modality i receives as input the feature vectors from all the

modalities and uses them to decide whether the modality i may contribute, or not, to the internal

encoding of the particular input sample.

Figure 3.1.b shows a simplified version of the GMU for two input modalities, xv (visual modality)

and xt (textual modality). It should be noted that models from Figure 3.1.a and 3.1.b are not

completely equivalent, since in the bimodal case the gates are tied. Such weight tying constraints

the model, so that the units control the trade off between both modalities while they use less

parameters than the multimodal case. The equations governing this GMU are as follows:

hv = tanh (Wv · xv)

ht = tanh (Wt · xt)
z = σ (Wz · [xv, xt])
h = z ∗ hv + (1− z) ∗ ht
Θ = {Wv,Wt,Wz}

with Θ the parameters to be learned and [·, ·] the concatenation operator. Since all are differentiable

operations, this model can be easily coupled with other neural network architectures and trained

with stochastic gradient descent.
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Figure 3.1: Illustration of gated units
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Figure 3.2: Noisy channel model. The switch determines which signal will carry the information.

3.2.1 Noisy channel model

In order to analyze the behavior of the GMU, we built a synthetic scenario to determine which

modality carries the most relevant information. Consider the channel model illustrated in Figure

3.2. There is an original source signal that is transformed by two independent components T1 and

T2. The signals from T1 and T2 are transmitted by two channels, C1 and C2 respectively, that

have two operation modes. In mode one, the channel transmits the original signal, in mode two, it

transmits noise. A switch controls which channel will carry the signal. In one position, C1 carries

the signal and C2 carries noise, in the other position, the situation is inverted. The switch may

change its position at any time. The goal is to get the information of the original signal from the

combination of the signals C1 and C2 without knowing which one is carrying the information and

which one is carrying noise at a given time.

We implemented the noisy channel scenario through the generative model depicted in Figure 3.3.

In this model we define the random binary variable C as the target and xv, xt ∈ R as the input

features. M is a random binary variable that decides which modality will contain the relevant

information that determines the class. The input features of each modality can be generated by a
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Figure 3.3: Generative model for the synthetic task. Grayed nodes represent visible variables, the

other nodes represent hidden variables.

random source, ŷv and ŷt, or by an informed source, yv and yt. The generative model is specified

as follows:

C ∼ Bernoulli(pC)

M ∼ Bernoulli(pM )

yv ∼ N (γCv )

ŷv ∼ N (γ̂v)

xv = Myv + (1−M)ŷv

yt ∼ N (γCt )

ŷt ∼ N (γ̂t)

xt = Mŷt + (1−M)yt

We trained a model with a single GMU and applied a sigmoid function over h, then the binary

cross entropy was used as loss function. Using the generative model, 200 samples per class were

generated for each experiment. 1000 synthetic experiments with different random seeds were run

and the GMU outperformed a logistic regression classifier in 370 of them, while obtaining equal

results in the remainder ones. Our goal in these simulations was to show that the model was able

to learn a latent variable that determines which modality carries the useful information for the

classification. An interesting result is that between M and the activations of the gate z there is

a correlation of 1. This means the model was capable of learning such latent variable by only

observing the xv and xt input features.

We also wanted to project back the z activations to the feature space in order to visualize regions

depending on the modality. Figure 3.4 shows the activations in a synthetic experiment generated

by the setup of Figure 3.3 for xv, xt ∈ R. Each axis represents a modality, red and blue dots are the

samples generated for the two classes and black Gaussian curves represent the γ̂v and γ̂t noises. The

gray (white) regions of the left figure represent the activation of z. Notice that in the white region

(z = 1), the model gives more importance to the xv modality while in gray regions (z = 0) the

xt modality is more relevant; i.e. the z gate is isolating the noise. The contour of the right figure

(blue-red) represents the model prediction. It is noteworthy that the boundary defined by the gates

still holds when the model solves the task. This also encourages the inclusion of non-linearities to

the z gate so that it is able to discriminate more complex interactions between modalities.
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Figure 3.4: Activations of z (left) and prediction (right) for a synthetic experiment with xv, xt ∈ R.

Each axis represents a modality.

3.3 Conclusions

This chapter presented a strategy to learn fusion transformations from multimodal sources. Sim-

ilarly to the way recurrent models control the information flow, the proposed model is based on

multiplicative gates. The Gated Multimodal Unit (GMU) receives two or more input sources and

learns to determine how much each input modality affects the unit activation. This contrasts the

traditional fusion methods that adjust weights for each modality and are fixed for all instances,

while the GMU weights are determined by the input. In synthetic experiments the GMU was

able to learn hidden latent variables. A key property of the GMU is that, being a differentiable

operation, it is easily coupled in different neural network architectures and trained with standard

gradient-based optimization algorithms.



4 GMU for genre classification

This chapter explores the movie genre prediction task in a multimodal scenario. This is a multilabel

task since most of the movies belong to more than one genre, (e.g. Matrix (2000) is a Sci-fi/Action

movie). In this setup, Anand [95] explores the efficiency of using keywords and users’ tags to

perform multilabeling using the movies from MovieLens 1M dataset which contains 1, 700 movies.

Also Ivasic-Kos, Pobar, and Mikec [96] and Ivasic-Kos, Pobar, and Ipsic [97] performed multilabel

classification using handcrafted features from posters, with 1, 500 samples for 6 genres. Makita and

Lenskiy [86, 98] use movie ratings matrix and genre correlation matrix to predict the genre. It used

a smaller version of the Movielens dataset with 18 movie genres. Most of the above works have

used the publicly available MovieLens datasets. However, there is not a single experimental setup

defined so that all methods can be systematically compared. Also, to the best of our knowledge,

none of the previous works contain more than 10, 000 samples. With this work we released a

dataset created with the movies of the MovieLens 20M dataset. We included not only genre, poster

and plot information used in this work, but also the poster of the movie as well as more than 50

characteristics taken from the IMDb website. Part of this work was published in the International

conference on learning representations [24] and submitted to the Transactions in neural newtworks

and learning systems journal [82].

4.1 Multimodal IMDb dataset

With this work we make publicly available the Multimodal IMDb (MM-IMDb)1 dataset. MM-

IMDb dataset is built with the IMDb id’s provided by the Movielens 20M dataset 2 that contains

ratings of 27, 000 movies. Using the IMDbPY 3 library, movies which do not contain their poster

image were filtered out. As the final result, the MM-IMDb dataset comprises 25, 959 movies along

with their plot, poster, genres and other 50 additional metadata fields such as year, language,

writer, director, aspect ratio, etc.

Notice that one movie may belong to more than one genre. Figure 4.1 shows the co-occurrence

matrix, where the color bar indicates the representative co-occurrence per row, while Figure 4.2 and

Figure 4.3 depict the distribution of the movie poster sizes and length of movie plots respectively.

Each plot contains on average 92.5 words, while the longest one contains 1, 431 words and the

average of genres per movie is 2.48. In this work, we defined the task of movie genre prediction

based on its plot and image poster. Nevertheless, the additional metadata information encourages

other interesting tasks such as rating prediction and content-based retrieval, among others.

1http://lisi1.unal.edu.co/mmimdb/
2http://grouplens.org/datasets/movielens/
3http://imdbpy.sourceforge.net/

http://lisi1.unal.edu.co/mmimdb/
http://grouplens.org/datasets/movielens/
http://imdbpy.sourceforge.net/
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Figure 4.1: Co-ocurrence matrix of genre tags
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∑WordVectors

In this film, Cobra is at it 
again. This time, they 
have a device called the 
weather dominator 
which can control the 
world's weather and ...

ActionAnimation

VGG Network

...

Figure 4.4: Integration of the GMU in a multilayer perceptron for genre classification

4.2 GMU for genre classification

The proposed model for genre classification is presented in Figure 4.4. Both modalities are rep-

resented with pretrained models. Then the feature vectors are fused using the GMU. Finally a

multilayer perceptron (MLP) with maxout units is stacked on top. The maxout activation function

hi : Rn → R is a defined as:

hi (s) = max
j∈[1,k]

zi,j (4-1)

where s ∈ Rn is the input vector, zi,j = sTW···ij + bij is the output of the j-th linear transfor-

mation of the i-th hidden unit, and W ∈ Rd×m×k and b ∈ Rm×k are learned parameters. It has

been shown that maxout models with 2 hidden units behave as universal approximators, while are

less prone to saturate units [99]. Since our intention is to measure how the network’s depth affects

the model performance, we evaluate the architecture with one and two fully connected layers.

4.3 Data representation

Given that the nature of data for each modality is different, their statistical properties usually are

not shared across modalities [11]. Thus, an evaluation of different strategies for representing visual

and textual content are required. For text information we evaluated word2vec models, n-grams

models and RNN models. For processing visual data we evaluated two different convolutional

neural networks. The details of each representation are discussed below.
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4.3.1 Text representation

Text representation is a critical step when classification tasks are addressed using machine learning

methods. Traditional approaches are based on counting frequencies of n-gram occurrences such

as words or sequences of characters (e.g. bag-of-words models). The main drawback of such

approaches is the difficulty to model relationships between words and their context. An alternative

approach was initially proposed by Bengio et al. [100], by building a neural network language model

(NNLM). The NNLM was able to learn distributed representations of words that capture contextual

information. Later, this model was simplified to deal with large corpora by removing hidden layers

in the neural network architecture (word2vec) [101]. This is a fully unsupervised model that takes

advantage of large sets of unlabeled documents. Herein, three text representations were evaluated:

n-gram Following the strategy proposed by Kanaris and Stamatatos [85], we used the character

n-gram strategy for representing text. Despite their simplicity, n-gram models have shown to be a

competitive baseline.

Word2Vec Word2vec is an unsupervised learning algorithm that finds a vector representation for

each word based on its context [101]. It has been shown that this model is able to find semantic and

syntactic relationships using arithmetic operations between the vectors. Based on this property, we

represent a movie as the average of the vectors of words in the plot outline. The main motivation

to aggregate word2vec vectors is the property of additive compositionality that this representation

has exposed over different sets of tasks such as word analogies. The usual way to aggregate the

word vectors to represent a document is to perform arithmetic operations over the vectors. We

take the average to avoid large input values to the neural network.

We used The pretrained Google Word2vec 4 embedding space. There were 41, 612 words from

the MM-IMDb plots that are in the Google word2vec vocabulary. Other than lowercase, no text

preprocessing was applied. This textual representation obtained comparable state-of-the-art results

[85] in two publicly available datasets: 7genre dataset that comprises 1, 400 web pages with 7

disjoint genres and ki-04 dataset that comprises 1, 239 samples classified under 8 genres. Notice

that the state-of-the-art model [85] used character n-grams with structured information from the

HTML tags to predict the genre of web pages while ours only used the plain text.

Recurrent neural network This model takes as input a sequence of words to train a supervised

recurrent neural network. Two variants were evaluated: 1) RNN w2v, a transfer learning model

that takes as input the word vectors of word2vec as representations; 2) RNN end2end, which learns

the word vectors from scratch.

4.3.2 Visual representation

In computer vision tasks, Convolutional neural networks have become the de facto standard. It

has been shown that CNN models trained with a huge amount of data are able to learn common

features shared across different domains. This characteristic is usually exploited by transfer learning

4https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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approaches. For visual representation we explored 2 strategies: transfer learning and end-to-end

training.

VGG Transfer In this approach images are propagated through the VGG Network [102], a CNN

trained with the ImageNet dataset, and the last hidden layer activations are used as the visual

representation.

End2End CNN Here, a CNN with 5 convolutional layers and an MLP (see Section 4.2) on top

was trained from scratch.

The first visual approach, VGG Transfer, uses VGG network as feature extractor. The second

approach takes as input the raw RGB images to a CNN. Since all the images do not have the

same size, all images were scaled, and cropped when required, to 160 × 256 pixels keeping the

aspect ratio. This CNN comprises 5 CNN layers of 5, 3, 3, 3, 3 squared filters and 2× 2 pool sizes.

Each convolutional layer has 16 hidden units. The convolutional layers are connected with the

MaxoutMLP classifier on top.

4.3.3 Multimodal fusion baselines

We evaluate 4 different ways to combine both modalities as baselines.

average probability This can be seen as a late-fusion strategy. The probabilities obtained by the

best model of each modality are averaged and thresholded.

concatenation Different works have found that a simple concatenation of representations of dif-

ferent modalities are good for combining the information [41, 60, 61]. Herein, we concatenated

both representations to train the MaxoutMLP architecture.

linear sum Following the way Vinyals et al. [37] combine text and images representation into a

single space, this model adds a linear transformation for each modality so that both outputs have

the same size to be summed up and then followed by the MaxoutMLP architecture.

MoE The mixture of experts (MoE) [89] model was adapted for multilabel classification. two

gating strategies were explored: tied, where a single gate multiplies all the logistics outputs, and

untied where every logistic output has its own gate. Logistic regression and MaxoutMLP were

evaluated as experts.

4.4 Experimental setup

The MM-IMDb dataset has three subsets: Train, development and test subsets contain 15552, 2608

and 7799 respectively. The sample was stratified so that training, dev and test sets comprises 60%,

10%, 30% samples of each genre respectively.

In the multilabel classification the performance evaluation can be more complex than traditional

multi-class classification and the differences can be significant among several measures [103]. Herein,
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four averages of the f-score (f1) are reported: samples computes the f-score per sample and then

averages the results, micro computes the f-score using all predictions at once, macro computes the

f-score per genre and then averages the results. weighted is the same as macro with a weighted

average based on the number of positive samples per genre. F-scores are calculated as follows [103]:

pmicro =

∑Q
j=1 tpj∑Q

j=1 tpj +
∑Q

j=1 fpj
rmicro =

∑Q
j=1 tpj∑Q

j=1 tpj+
∑Q

j=1 fnj

fmicro
1 =

2× pmicro × rmicro

pmicro + rmicro

fmacro
1 =

1

Q

Q∑
j=1

2× pj × rj

pj + rj

fsample
1 =

1

N

N∑
i=1

2× |ŷi ∩ yi|
|ŷi|+ |yi|

fweighted
1 = 1

Q2

∑Q
j=1Qj

2×pj×rj
pj+rj

With N the number of examples; Q the number of labels; Qj the number of true instances for

the j-th label; p the precision, r the recall; ŷi, yi ∈ (0, 1)Q the prediction and ground truth binary

tuples respectively; tpj , fpjandfnj the number of true positives, false positives and false negatives

for the j-th label respectively.

4.4.1 Neural network training

Neural network models were trained using batch normalization scheme [104]. This strategy applies

a normalization step across samples that belong to the same batch, so that each hidden unit in the

network receives a zero-mean and unit variance. Stochastic gradient descent with ADAM optimiza-

tion [105] was used to learn the weights of the neural network. Dropout and max-norm regulariza-

tion were used to control overfitting. Hidden size ({64, 128, 256, 512}), learning rate (
[
10−3, 10−1

]
),

dropout ([0.3, 0.7]), max-norm ([5, 20]) and initialization ranges (
[
10−3, 10−1

]
) parameters were ex-

plored by training 25 models with random (uniform) hyperparameter initializations and the best

was chosen according to validation performance. It has been reported that this strategy is prefer-

able over grid search when training deep models [106]. All the implementation was carried on with

the Blocks framework [107] 5.

During the training process, we noticed that batch normalization considerably helped in terms of

training time and convergence, resulting in less sensitivity to hyperparameters such as initialization

ranges or learning rate. Also, dropout and max-norm regularization strategies helped to increase

the performance at test time.

For classification stage, two methods to map from feature vectors to genre classification were

explored: 1) Logistic regression and 2) a multilayer perceptron (MLP) with fully connected layers

and maxout activation function.

Experiments are supported by the McNemar statistical test to determine whether the differences

have statistical evidence (p < 0.01).

5https://github.com/johnarevalo/gmu-mmimdb

https://github.com/johnarevalo/gmu-mmimdb
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Table 4-1: Summary of classification task on the MM-IMDb dataset

Modality Representation
F-Score

weighted samples micro macro

Multimodal GMU 0.624 0.634 0.636 0.549

Linear sum 0.606 0.617 0.617 0.520

Concatenate 0.599 0.607 0.609 0.520

AVG probs 0.604 0.616 0.615 0.491

MoE MaxoutMLP 0.592 0.593 0.601 0.516

MoE MaxoutMLP (tied) 0.579 0.579 0.587 0.489

MoE Logistic 0.541 0.557 0.565 0.456

MoE Logistic (tied) 0.483 0.507 0.518 0.358

Text

MaxoutMLP w2v 0.604 0.607 0.612 0.528

RNN transfer 0.570 0.580 0.580 0.480

MaxoutMLP w2v 1 hidden 0.540 0.540 0.550 0.440

Logistic w2v 0.530 0.540 0.550 0.420

MaxoutMLP 3grams 0.510 0.510 0.520 0.420

Logistic 3grams 0.510 0.520 0.530 0.400

RNN end2end 0.490 0.490 0.490 0.370

Visual
VGG Transfer 0.416 0.436 0.449 0.284

CNN end2end 0.370 0.350 0.340 0.210

4.5 Results

Table 4-1 shows the results in the proposed dataset. For the textual modality, the best performance

is obtained by the combination of word2vec representation with an MLP classifier. The behavior of

all representation methods are consistent across the performance measures. Learning from scratch

the RNN model performed the worst. We hypothesize this has to do with the lack of data to learn

meaningful relations among words. It has been shown that millions of words are required to train a

model such as word2vec that is able to exploit common regularities between word co-occurrences.

For the visual modality, the usage of pretrained models works better than training the model

from scratch. It seems it is still a small dataset to learn all the complexities of the posters. Now,

comparing the performance independently per genre, as in Table 4-2, it is interesting to notice that

in Animation the visual modality outperforms the textual one.

In the multimodal scenario, by adding the GMU as building block to learn the fusion we obtained

the best performance, improving independent modalities in the averaged measures and in 16 of out

23 genres and outperforming all other evaluated fusion strategies. The concatenation or the linear

combination approaches were not enough to model the correlation between the modalities and MoE

models did not perform better than simpler approaches. This is an expected behavior for MoE in a

relatively small dataset because the data is fractionated over different experts, and thus it doesn’t
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Table 4-2: Macro F-Score reported per genre for single and multimodal approaches.

Genre Textual Visual GMU Genre Textual Visual GMU

Drama 0.75 0.68 0.77 Family 0.51 0.47 0.58

Comedy 0.63 0.59 0.67 Biography 0.40 0.01 0.25

Romance 0.52 0.32 0.52 War 0.65 0.16 0.66

Thriller 0.58 0.41 0.61 History 0.41 0.06 0.37

Crime 0.63 0.27 0.65 Music 0.57 0.04 0.57

Action 0.58 0.38 0.62 Animation 0.43 0.61 0.65

Adventure 0.53 0.32 0.51 Musical 0.22 0.19 0.27

Horror 0.65 0.43 0.70 Western 0.64 0.33 0.68

Documentary 0.75 0.18 0.76 Sport 0.69 0.14 0.68

Mystery 0.39 0.12 0.39 Short 0.29 0.20 0.30

Sci-Fi 0.66 0.31 0.67 Film-Noir 0.20 0.09 0.30

Fantasy 0.45 0.22 0.44

cat w2v sum vgg
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Figure 4.5: Distribution of the p-values for comparison per genre between the GMU and other

models. Each point represents a genre.

make an efficient use of the training samples.

We applied the McNemar test for GMU model vs the rest in two scenarios. First, we built the

contingency table using the 179377 values from the confusion matrix (7799 test samples for 23

genres). The p-values were less than 0.01 showing that the differences are significant. We also

performed the comparison per genre. The distribution of p-values is shown in figure 4.5. In this

scenario, the statistical evidence showed that there is a significant difference between the GMU and

the second best model for Action, Horror, Drama, Thriller and Crime genres. The GMU shares

the first place with other method in the remainder genres.

In order to evaluate which modality influences more the model when assigning a particular label,

we averaged the activations of a subset of z gates of the test samples to which the model assigned

them such label. We counted the number of samples that pays more attention to the textual

modality (z <= 0.5) or to the visual modality (z > 0.5). The units were chosen taking into account

the mutual information between the predictions and the z activations. The result of this analysis
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Drama 88.7% 11.3%

Comedy 80.6% 19.4%

Romance 83.9% 16.1%

Thriller 88.2% 11.8%

Crime 90.3% 9.7%

Action 87.9% 12.1%

Adventure 70.3% 29.7%

Horror 87.8% 12.2%

Documentary 91.1% 8.9%

Mystery 89.7% 10.3%

Sci-Fi 84.6% 15.4%

Fantasy 67.8% 32.2%

Family 36.3% 63.7%

Biography 93.6% 6.4%

War 93.1% 6.9%

History 92.8% 7.2%

Music 94.6% 5.4%

Animation 23.0% 77.0%

Musical 55.5% 44.5%

Western 96.8% 3.2%

Sport 91.8% 8.2%

Short 53.7% 46.3%

Film-Noir 98.4% 1.6%

Textual Visual

Figure 4.6: Percentage of gates activations (z > 0.5: Visual; z <= 0.5: textual) for each genre in

the test set.

is depicted in Figure 4.6. As expected, the model is generally more influenced by the textual

modality. But, in some specific genres such as Animation or Family, the visual modality affects

more the model. This is also consistent with results of Table 4-2 which reports better performances

for visual modality.

We wanted to qualitative explore test examples in which performance was improved by a relative

large margin. Table 4-3 illustrates cases where the model takes advantage of the most accurate

modality, and in some cases removes false positives. It is noteworthy that some of these examples

can be confusing for a human if one modality is missing, or additional context information is not

given.

4.6 Conclusions

The gated multimodal network involved a fully connected architecture taking as input the plot
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Table 4-3: Examples of predictions in test set. Red and blue genres are false positives and true

positives respectively.

The World According to Sesame Street

a documentary which examines the creation and co - production of the popu-

lar children ’ s television program in three developing countries: bangladesh ,

kosovo and south africa .

Ground Truth Documentary

Textual Documentary, History

Visual Comedy, Adventure, Family, Animation

GMU Documentary

Babar: the movie

in his spectacular film debut , young babar , king of the elephants , must save his

homeland from certain destruction by rataxes and his band of invading rhinos

.

Ground Truth
Adventure, Fantasy, Family, Animation,

Music

Textual Adventure, Documentary, War, Music

Visual Comedy, Adventure, Family, Animation

GMU Adventure, Family, Animation

Letters from Iwo Jima

the island of iwo jima stands between the american military force and the home

islands of japan . (...) when the american invasion begins , both kuribayashi

and saigo find strength , honor , courage , and horrors beyond imagination .

Ground Truth Drama, War, History

Textual Drama, Action, War, History

Visual Thriller, Action, Adventure, Sci-Fi

GMU Drama, War, History
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of the movie and the image poster to annotate (multi-label) 23 genres. Experimental evaluation

showed the model learned to weight the modalities based on the input features, and outperformed

early and late fusion approaches by 3% in terms of F-score



5 GMU for image segmentation

The proposed unit is easily adaptable to other architectures different from the traditional “Fully

connected”. Since the GMU is a differentiable operator, it can be applied to part of the input and

still be optimized with gradient-based methods. This is the basic idea of convolutional architectures.

This chapter adapts the GMU to convolutional neural networks for addressing image segmentation.

The model learns to fuse RGB and depth information to outperform standard early and late fusion

strategies. An analysis to the learned model highlights correlations between modalities and semantic

concepts. Part of this work was submitted to the Transactions in neural newtworks and learning

systems journal [82].

5.1 Introduction

Multimodal image segmentation has been addressed with representation learning techniques using

RGB and depth images. Pei et al. [60] learned a dictionary from concatenated patches from

RGB and depth images to extract features from small regions, then those features are used to

trained a pixel-based classifier. In a similar setup, Valada, Dhall, and Burgard [108] integrated

a mixture of experts model in a convolutional neural network to segment 6 concepts in outdoor

images. They explored different modalities, obtaining their best results when RGB and depth

images were combined. Our work is similar because it is also an end-to-end convolutional neural

network, trained with gradient-based algorithms, but differs in the way the modalities are fused.

While [108] used two predictors to combine the information, we instead used gates to combine

intermediate representations. This allows our model to be applied also in unsupervised tasks such

as image generation or feature learning, provided that the model can be trained with gradient-based

approaches.

Convolutional architectures are widely used in image processing scenarios. Shortly after the

Imagenet success [71], CNN became the de-facto standard architecture when using neural networks

for image representation. In CNN, there are convolution and pooling transformations to the input

image. Consider the input image M ∈ Rp×p, the first transformation applies a convolution with a

filter K ∈ Rk×k to obtain a feature map S ∈ R(p−k+1)×(p−k+1), followed by a non-linearity activation

function a : R ⇒ R applied in an element-wise fashion. The second transformation reduces the

dimension of the feature map by applying a local subsampling function over the output feature

map a (S).
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RGB NIR NDVI

NRG EVI DEPTH

Figure 5.1: Left: Robot used to capture the images. Right: sample from the Deep scene dataset

with the available modalities (taken from Valada et al. [109]).

5.2 Deep scene dataset

The convolutional architecture is evaluated in the DeepScene dataset 1 [109]. The dataset was

collected using an autonomous mobile robot platform equipped with a stereo vision camera and a

modified dashcam for acquiring RGB and Near-InfraRed (NIR) data respectively. Both cameras

were time synchronized and frames were captured at 20Hz. Additional image post-processing was

applied to match both images. Figure 5.1 shows the autonomous robot platform and one example

with the available modalities.

The data was collected on three different days to have variability in lighting conditions as shadows

and sun angles play a crucial role in the quality of acquired images. The DeepScene dataset

comprises 366 images with pixel-level groundtruth annotations which were manually annotated

with 1 out of the 6 concepts: {grass, obstacle, tree, vegetation, road and sky}. It also provides train

and test sets with 230 and 135 scenes respectively 2.

Global-based vegetation indices such as Normalized Difference Vegetation Index (NDVI) and

Enhanced Vegetation Index (EVI) to extract consistent spatial and global information were com-

puted as shown by Huete, Justice, and Van Leeuwen [110]. Depth images were obtained using

the approach from Liu, Shen, and Lin [111] that employs a deep convolutional neural field model

for depth estimation by constructing unary and pairwise potentials of conditional random fields.

the Multispectrum channel fusion NRG (Near-Infrared, Red, Green) image was also computed and

included as another modality. We choose RGB and Depth images as input to the proposed multi-

modal approach because these are the most common and general modalities. The remainder ones

are specific for environments with abundant presence of vegetation.

5.3 Convolutional GMU for segmentation

Some tasks involve multimodal sources that are suitable to be represented by a convolutional

architecture. This is the case of image segmentation using RGB and depth images. Both of them

represent the same scene, but using different information. Also, both of them can be naturally

represented by a CNN. This is a convenient scenario to apply the GMU to let the model learn

which parts of the image are more relevant to the classification. Concretely, this work integrated

1http://deepscene.cs.uni-freiburg.de/
2We discarded the image with ID b275-311 from test set because it is incorrectly annotated.

http://deepscene.cs.uni-freiburg.de/
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Figure 5.2: Integration of the proposed GMU in convolutional architectures. Light gray, dark gray

and cyan represent convolutional, deconvolutional and pooling layers respectively. Out-

put dimensions are denoted inside each layer. Convolutional kernels are 3 × 3 with

padding of 1, except the last convolutional layer which has a kernel size 4 × 4 with

zero-padding. Parameters of both convolutional networks are shared.

the GMU in a convolutional architecture as depicted in Figure 5.2, where the GMU layer takes

Srgb and Sdepth feature maps as inputs and outputs a combined feature map.

5.4 Experimental setup

We took 46 scenes from train as our validation set to tune hyperparameters of the model. Hyperpa-

rameters were explored by training 25 models with random (uniform) hyperparameter initializations

and the best was chosen according to validation performance.

Following the dataset authors’ approach [109], images were preprocessed by resizing the origi-

nal image to 300× 300 pixels keeping the aspect ratio and cropping them when necessary. During

training, images were oversampled by applying random rotations between [−30, 30] degrees, random

flipping and random cropping the images. Previous works [71] have reported this as a convenient

way to artificially increase the number of training samples, which in turn helps to better general-

ization during the model training.

The convolutional architecture used in these experiments is detailed in Figure 5.2. The pixel-

based classification layer after this deep model varies depending on the model used. For single-

modality approaches, the last layer is a convolution with 6 kernels of 3× 3 with border of 1 to keep

the 300×300 size followed by a Softmax activation function. For the multimodal approach there is

an additional layer with 32 kernels for each modality, then the ConvGMU layer that merges those

32 pairs of feature maps, followed by a Softmax activation layer.

Experiments are supported by the McNemar statistical test to determine whether the differences

have statistical evidence (p < 0.01).
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Table 5-1: Summary of image segmentation results using single and multimodal approaches.

Method IoU ACC FPR FNR

RGB 0.840 0.964 0.029 0.083

Depth 0.630 0.914 0.064 0.239

AvgProb 0.818 0.964 0.028 0.097

Concatenate 0.851 0.969 0.025 0.084

LinearSum 0.855 0.970 0.025 0.082

ConvGMU 0.861 0.971 0.022 0.077

Table 5-2: Intersection-over-union per class for unimodal and multimodal approaches.

Method Road Grass Vegetation Sky

RGB 0.784 0.822 0.891 0.863

Depth 0.392 0.574 0.774 0.780

ConvGMU 0.828 0.842 0.893 0.880

5.5 Results

Firstly, It is noteworthy that some inconsistencies in the original annotations were highlighted

when visualizing the predictions. Figure 5.3 depicted that obstacle and tree concepts are correctly

annotated in training set, but are missing in the test set. Due to such inconsistencies, in this

experimentation those two concepts were discarded when methods were compared.

Following the original paper, Intersection over union (IoU), accuracy (ACC), false positive rate

(FPR) and false negative rate (FNR) are used as performance measures. Table 5-1 summarizes the

results for unimodal and multimodal approaches. Results showed RGB outperformed the depth

modality for all classes. Also, the behavior of other multimodal approaches is consistent with the

results for the MM-IMDb dataset. Here, again the GMU approach outperformed both unimodal

and multimodal methods. We applied the McNemar statistical test for paired data in a pixel-wise

manner. The statistical evidence showed that the differences between GMU and the remainder

models are significant (p < 0.01) for all the classes.

As noted in Table 5-2, IoU of road and sky concepts increased the most with the convolutional

GMU model. This is consistent with the nature of the data, since closest and farthest concepts are

closely related with the kind of information that depth images provide.

Likewise in the MM-IMDb task, an analysis of z activations with respect to the predictions is

reported in Figure 5.4. For road, grass and vegetation the RGB modality is more dominant. In

contrast, for tree, sky and obstacle the depth modality gives more information for the classifier.

We believe this is consistent with the nature of the data, since concepts such as sky and obstacle

would be easier to detect when additional information like distance to camera is provided.

5.6 Conclusions

The GMU has been integrated with convolutional and fully connected networks for two real su-
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Ground truth RGB Depth Prediction

Train

Test

Figure 5.3: Segmentation results for the convolutional network with GMU. Concepts for the

first(ground truth) and fourth (prediction) columns are colored as follows: sky : blue,

grass: light green, vegetation: olive, road : light gray, obstacle: black, tree: dark green.

Note that obstacle and tree concepts are correctly annotated in the training set, but at

test set are absent.
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Road 61.0% 39.0%

Grass 74.1% 25.9%

Vegetation 62.4% 37.6%

Tree 34.5% 65.5%

Sky 26.4% 73.6%

Obstacle 43.3% 56.7%

RGB Depth

Figure 5.4: Percentage of gates activations in the image segmentation task (z > 0.5: RGB; z <=

0.5: Depth) for each concept in the test set.

pervised scenarios where it outperformed the single-modality, early and late fusion approaches. In

the image segmentation task, the gated multimodal network involved an end-to-end convolutional

architecture taking as input the RGB and depth images and output the segmented image with

6 semantic concepts. Likewise, the model outperformed other single and multimodal approaches

measuring the Intersection-over-union score. The activations of the GMU layer were mapped to

the output concepts finding correlations between input modalities and output concepts, e.g. depth

information was more correlated with “sky” and “tree” while RGB is more correlated with “grass”

and “vegetation”. It should be noted that even though the model is capable of combining informa-

tion, the content representation is critical to correctly take advantage of the different modalities.

Including more complex transformations in the gate, an untied version of the bimodal case and

dealing with missing modalities are interesting directions for future work.



6 GMU for medical imaging

This chapter explores the application of representation learning models for classification of mass

lesions in mammography images. Different Convolutional neural network architectures were ex-

plored. Finally, the combination of learned and hand-crafted features obtained the best results.

The GMU was used to weight the importance of each set of features for each sample. Part of this

work was published in the ISBI conference [18] and the CMPB journal [14].

6.1 Introduction

Breast cancer is the most common cancer in women worldwide, with nearly 1.7 million new cases

diagnosed in 2012 (second most common cancer overall); this represents about 12% of all new cancer

cases and 25% of all cancers in women 1. Breast cancer has a known asymptomatic phase that can

be detected with mammography, and therefore, mammography is the primary imaging modality

for screening. Double-reading (two radiologists independently read the same mammograms) has

been advocated to reduce the proportion of missed cancers and it is currently included in most

screening programs [112]. However, double-reading incurs in additional workload and costs. Al-

ternatively, computer-aided diagnosis (CADx) systems can assist a single radiologist when reading

mammograms providing support for their decisions. These systems can be used as second opinion

criteria by radiologists, playing a key role in the early detection of breast cancer and helping to

reduce the death rate among women with breast cancer in a cost-effective manner [113].

A successful approach to build CADx systems is to use machine learning classifiers (MLC). MLC

are learned from a set of labeled data samples capturing complex relationships in the data [114–

116]. In order to train a MLC for breast cancer diagnosis, a set of features describing the image

is required. Ideally, features should have high discriminant power that allows inferring whether

a given image is from a malignant finding or not. This is, however, a challenging topic that has

gathered the focus of research in several sciences, from medicine to computer vision. Thus, several

types of features may be used to infer the diagnosis. Many CADx systems use hand-crafted features

based on prior knowledge and expert guidance. In particular, strategies based on feature selection

[117] and hand-crafted features that characterize geometry and textures [118] has been proposed

for mass classifications. As an alternative, the use of machine learning strategies to learn good

features directly from the data is a new paradigm that has shown successful results in different

computer vision tasks. One such paradigm is deep learning.

Deep learning methods have been widely applied in recent years to address several computer

perception tasks [2]. Their main advantage lies in avoiding the design of specific feature detectors.

In turn, deep learning models look for a set of transformations directly from the data. This

1World Cancer Research Fund International http://www.wcrf.org/int/cancer-facts-figures/

data-specific-cancers/breast-cancer-statistics, Accessed May 20, 2015

http://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/breast-cancer-statistics
http://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/breast-cancer-statistics
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approach has had remarkable results, particularly in computer vision problems such as natural

scene classification and object detection [10]. Deep learning models have also been adapted to

different medical tasks such as tissue classification in histology and histopathology images [119,

120], Alzheimer disease diagnosis [61, 64, 121, 122], and knee cartilage segmentation [123] among

others.

However, only few works have explored deep learning methods to address the automatic classi-

fication of identified lesions in mammography images [124]. In [125] stacked deep auto-encoders

were used to estimate breast density score using multiscale features. Lately, this has been extended

by including breast tissue segmentation and scoring of mammographic texture [126] with a convo-

lutional neural network (CNN) model. CNN model is the most successful deep learning strategy

applied to image understanding [10]. In [127, 128] CNNs are used as representation strategy to

characterize microcalcifications. Finally, the most recent work developed in this area was done in

[129] which uses Adaptive Deconvolutional Networks to learn the representation in order to classify

malign/benign breast lesions. Such strategy was evaluated on 245 lesions in a bootstrap fashion,

reporting the area under the ROC curve (AUC) AUC = 0.71. In this work, we also use convo-

lutional architectures, however the features are learned in a supervised way during CNN training,

taking advantage of expert knowledge represented by previously identified lesions in breast imaging,

manually segmented by expert radiologists in both mammographic views (mediolateral oblique and

craniocaudal).

The remainder of the chapter is organized as follows: Section 6.2 describes the dataset used in

this exploration. Section 6.4 Details different representation strategies for visual content. Section

6.5 details the experimental setup used to evaluate the proposed approach. Finally, Sections 6.6

and 6.7 show results and present the main conclusions of this work.

6.2 Breast cancer digital repository

The benchmarking dataset used in this study is available on the Breast Cancer Digital Repository

(BCDR) 2. BCDR is a wide-ranging annotated public repository composed of Breast Cancer patient’

cases in the northern region of Portugal. The BCDR is subdivided in two different repositories: (1)

a Film Mammography-based Repository (BCDR-FM) and (2) a Full Field Digital Mammography-

based Repository (BCDR-DM). Both repositories were created with anonymous cases from medical

archives (complying with current privacy regulations as they are also used to teach regular and

postgraduate medical students) supplied by the Faculty of Medicine – Centro Hospitalar São João,

at University of Porto (FMUP–HSJ). BCDR provides normal and annotated patient cases of breast

cancer including mammography lesions outlines, anomalies observed by radiologists, pre-computed

image-based descriptors and related clinical data. The BCDR-FM is composed by 1010 patient

cases (998 female and 12 male, with ages between 20 and 90 years old), including 1125 studies, 3703

mediolateral oblique (MLO) and craniocaudal (CC) mammography incidences and 1044 identified

lesions clinically described (820 already identified in MLO and/or CC views). With this, 1517

segmentations were manually made and BI-RADS classified by specialized radiologists. MLO and

CC images are grey-level digitized mammograms with a resolution of 720 (width) by 1168 (height)

2http://bcdr.inegi.up.pt

http://bcdr.inegi.up.pt
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(a) (b) (c) (d)

Figure 6.1: Samples of lesions presented in the dataset. Malignant lesion in a) oblique view and b)

craneo-caudal view. Benign lesion in c) oblique view and d) craneo-caudal view.

pixels and a bit depth of 8 bits per pixel, saved in the TIFF format. The BCDR-DM, still in

construction, at the time of writing is composed by 724 Portuguese patient cases (723 female and

1 male, with ages between 27 and 92 years old), including 1042 studies, 3612 MLO and/or CC

mammography incidences and 452 lesions clinically described (already identified in MLO and CC

views). With this, 818 segmentations were manually made and BI-RADS classified by specialized

radiologists. The MLO and CC images are grey-level mammograms with a resolution of 3328

(width) by 4084 (height) or 2560 (width) by 3328 (height) pixels, depending on the compression

plate used in the acquisition (according to the breast size of the patient). The bit depth is 14 bits

per pixel and the images are saved in TIFF format. As described below, this work is focused on

the BCDR-FM Repository.

6.2.1 Benchmarking Dataset

A new dataset of the BCDR-FM repository has been made publicly available, at http://bcdr.inegi.up.pt,

for comparison and research reproducibility purposes. The 8-bit resolution “Film Mammography

Dataset Number 3” (BCDR-F03) was built as a subset of the BCDR-FM and it is composed of

344 patients with 736 film images containing 426 benign mass lesions and 310 malign mass lesions,

including clinical data and image-based descriptors. Such lesions are associated with masses. The

motivations to choose 8-bit resolution images over 12-bit or 14-bit are twofold: Firstly, in contrast to

the BCDR-DM (currently under construction), almost all lesions in the BCDR-FM repository have

a proven biopsy; and secondly, digital mammography (high resolution images) are not as widely

available as film mammography images since the former are more expensive to acquire [130]. For

all the experimentation clinical data were not included as features. Figure 6.1 shows examples of

both classes with their respective segmentations. The dataset contains MLO and CC views.

http://bcdr.inegi.up.pt
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Figure 6.2: Integration of the proposed GMU for feature fusion. Light gray and cyan represent

convolutional and pooling layers respectively. HCFeats is a set of handcrafted features

and Maxout classifier is a MLP with maxout units and softmax layer on top.

6.3 Gated multimodal networks for feature fusion

For some particular problems, there is empirical evidence that combining hand-crafted features with

learned features improves the performance of predictors. Otálora et al. [21] combined unsupervised

feature learning and Riesz wavelets for histopathology image representation outperforming previous

reported results in the differentiation between anaplastic and non-anaplastic medulloblastoma. This

behavior was also visualized during the development of this research. In previous section some

models took advantage of handcrafted features for mass lesion classification in mammography

images. Notice, however that more complex models such as the deepest convolutional network

didn’t gain performance when other features were concatenated. Herein, it is hypothesized that

the way this features should be combined should also be determined by the inputs, i.e. should be

learned from the data.

Going further, we took out the proposed model from the multimodal scenario to the feature

fusion scenario. In particular, the GMU was evaluated in the mass lesion classification task with

multiple representations of the same modality. In this scenario the model receives two different

representations of the same input, one learned with deep learning architectures and the second

using highly specialized features.

The proposed model is depicted in Figure 6.2. The model extracts two set of features. The set

of handcrafted features, detailed in Section 6.4.1, comprises different morphometric and statistical

measures related to the lesion. The second is a set of features learned with a convolutional network,

detailed in Section 6.4.2.
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Type Features

Intensities Mean, median, maximum, minimum, standard deviation, skewness, kurtosis

Shape Area, perimeter, circularity, elongation, y center mass, x center mass, form

Textures Contrast, correlation, entropy

Table 6-1: Set of hand-crafted features. For details see [114]

6.4 Data representation

6.4.1 Baseline descriptors

Based on the systematic evaluation presented by Moura and Guevara López [114], the histogram of

oriented gradients (HOG) and the histogram of gradient divergence (HGD) were selected as descrip-

tors for our baseline since they showed the best performance against other traditional descriptors.

Additionally, a set of 17 hand-crafted features extracted from the segmented lesions (representative

of shape, texture and intensities of the mammograms) are used for comparative purposes.

Hand-crafted features (HCfeats)

HCfeats is a set comprising 17 features selected from produced sets of high performance features

proposed by Pérez et al. [131] that demonstrated a high impact in characterizing lesions corre-

sponding to masses. Table 6-1 lists the features and their description. HCfeats is composed by

intensity descriptors computed directly from the grey-levels of the pixels inside the lesion’s contour

identified by the radiologists; texture descriptors computed from the grey-level co-occurrence ma-

trix related to the bounding box of the lesion’s contour; and shape descriptors computed from the

lesion’s contour. Notice that computing this set of features requires not only the region of interest

(ROI) detection, but also the manual segmentation provided by the expert.

Histogram of oriented gradients (HOG)

HOG describes images through the distribution of the gradients. Images are divided into a grid of

blocks (e.g. 3 × 3), and each block is described by a histogram of the orientation of the gradient.

Each histogram has a predefined number of bins dividing the range of possible orientations (from

0 to 2π radians, or from 0 to π radians), and the value of each bin is calculated by summing the

magnitude of the gradient of the pixels which have gradient direction within the limits of the bin.

Histogram of gradient divergence (HGD)

Gradient divergence in a point i, j is measured as the angle between the vector of the intensity

gradient on i, j and a vector pointing to the center of the image with origin in i, j. HGD describes

images through the distribution of the gradient divergence. Images are divided into concentric

regions, and each region is described by a histogram of the gradient divergence.
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6.4.2 Supervised feature learning

Image representation is fundamental for automatic classification of lesions in mammography images.

The goal is to describe the content of the image in a compact and discriminative way. Traditional

CADx systems represent images with a carefully selected set of mathematical and heuristic features

aiming to characterize the lesion. Recent studies have replaced this hand-crafted process with a

learning-based approach where a model is trained in an unsupervised way using deep learning, to

transform the raw pixels in a set of features that feeds a classifier algorithm [126, 129]. In contrast

to previous work, we have herewith applied a hybrid approach in which CNNs are used to learn

the representation in a supervised way. That is, we used lesions previously classified (labeled as

benign or malignant) to guide the feature learning process.

The proposed method comprises two main stages: preprocessing and supervised training. The

preprocessing stage aims to prepare the data in better conditions through a set of transformations

so that the next stage takes advantage of relevant characteristics. Supervised learning is the second

stage that involves two processes: feature learning and classification training. Feature learning is

performed by training a CNN. It is noteworthy that feature learning is a supervised stage since the

CNN training is guided by the labeled samples. The final stage is the SVM classifier training with

the penultimate layer of the CNN as features.

Preprocessing

Preprocessing is a common stage in CADx systems. Its main goal is to enhance the characteristics of

the image by applying a set of transformations that could help to improve performance in following

stages. The first step in this work is to extract the ROI from the image. Secondly, an oversampling

strategy is used to both get more samples artificially and help to prevent overfitting during training.

Finally, a normalization process is carried out to prepare data for learning algorithms. It is widely

known that feature learning and deep learning methods usually perform better when the input data

has some properties such as decorrelation and normalization, mainly because such properties help

gradient-based optimization techniques to converge [132].

Cropping CADx systems aim at classifying a previously identified ROI in the whole film image.

This ROI can be obtained by a manual segmentation or automatically detected by a computer

aided detection system. Because of lesions in BCDR-03 dataset are manually segmented, we fixed

the input size to ROIs of r × r pixels. With this, ROIs can be easily extracted by taking the

bounding box of the segmented region. Specifically, images were cropped to the bounding box of

the lesions and rescaled to r×r pixels preserving the aspect ratio when either width or height of the

bounding box are greater than r, otherwise the lesion is centered without scaling and preserving

the surrounding region.

Data augmentation The expressiveness of neural network models, and particularly deep ones,

comes mainly from the large number of parameters to learn. However, more complex models also

increase the chance of overfitting the training data. Data augmentation is a good way to help to

prevent this behavior [71]. Data augmentation is the process of artificially create new samples by

applying transformations to the original data. In a lesion classification problem, data augmentation
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makes sense because a lesion can be presented in any particular orientation. Thus, the model also

should be able to learn from such transformations. In particular, For each training image, we have

artificially generated 7 new label-preserving samples using a combination of flipping and 90, 180

and 270 degrees rotation transformations.

Global contrast normalization Due to the digitalization process, the lighting conditions between

different film images will be different, and all pixel values of the image are affected by that. A

common way to overcome this effect, is to perform a global contrast normalization (GCN) by

subtracting the mean of the intensities in the image to each pixel. Notice that the mean is not

calculated per pixel, but per image, so it is perfectly fine to subtract it without worrying about

whether the current image belongs to train, validation, or test set. Let X ∈ Rr×r be the image,

the element-wise transformation is

X̂i,j = Xi,j − x̄ (6-1)

with x̄ ∈ R; x̄ = 1
r2
∑

i,j Xi,j , the mean of the X image intensities, and Xi,j ∈ R the intensity in

the i, j pixel.

Local contrast normalization Local contrast normalization (LCN) is a transformation inspired

by computational neuroscience models [133]. Its main idea is to mimic the behavior the V1 visual

cortex. It is implemented by defining a G ∈ Rk×k normalized Gaussian window, i.e
∑

p,q Gp,q = 1.

Then, for each pixel in the global contrast normalized image X̂, the mean of its k×k neighborhood

is removed:

Vi,j = X̂i,j −
∑
p,q

Gp,q · X̂i+p,j+q (6-2)

with V ∈ Rk×k as the local normalized patch. Then the norm of each k× k neighborhood is scaled

to 1 when it is greater than 1:

X̃i,j =
Vi,j

max (c, σi,j)
(6-3)

where σi,j ∈ R;σi,j =
√∑

p,q Gp,q · v2i+p.j+q is the norm of the k×k neighborhood, and c ∈ R is a

tolerance parameter to avoid floating point precision problems. It has been empirically shown that

such divisive normalization reduces statistical dependencies [132, 134], which in turn accentuates

differences between input features and accelerates gradient-based learning [135].

Improvement in both performance and training time when using such normalizations has been

reported when the stochastic gradient descent algorithm is used to train deep networks [132]. This

has been explained by the fact that, in the same way as whitening and other decorrelation methods,

all variables end up with similar variances, making the model more likely to discover non-trivial

relationships between spatially near inputs [136]. Also, it has been shown that similar strategies to

locally normalize contrast in mammograms have enhanced performance of automatic analysis [137].

Figure 6.3 shows an original image and its corresponding output after applying the preprocessing

stage. Again, this preprocessing is performed in an image-wise fashion, thus it is not necessary to

store parameters in the training procedure.
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Figure 6.3: Mammography images after the preprocessing step. Images A and B represent malig-

nant and benign lesions respectively. Images a1 and b1 are the bounding box of the

lesions. Images a2 and b2 show the output of global and local contrast normalizations.

Images a3 and b3 show outline of the lesions over the normalized images.
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Figure 6.4: Best convolutional neural network evaluated on mass classification

Convolutional network for mass representation

A CNN is a neural network that shares connections between hidden units yielding low computa-

tional time and translational invariance properties. CNNs have been successfully applied in shape

recognition problems [138] as well as medical diagnosis that involved texture as a discriminant fea-

ture [120]. Because mass characterization is highly correlated with shape and texture features [114,

124], a CNN model becomes a suitable strategy for mass lesion classification. The main components

of the CNN and the applied strategies to train it are detailed below.

Architecture A CNN comprises 3 main components: a convolutional layer, an activation function

and a pooling layer. To improve the capability of the model the three components are stacked

iteratively so that the output of one component is the input for the next one, and the output of one

set of components is the input for the next set, building a deep neural network with many layers.

The convolutional layer is composed of several small matrices or “kernels” that are convolved

throughout the whole input image working as filters. The output of this convolution is called

“feature map”. These feature maps are the input for the activation function which applies a non-

linear transformation in an element-wise fashion. Finally, the pooling layer aggregates contiguous

values to one scalar with functions like mean or max.

The proposed architecture, depicted in Figure 6.4, has 11 × 11 local kernels and the rectifier

linear as activation function in the first convolutional layer followed by a 5× 5 pooling layer with

stride of 4×4 pixels. The second convolutional layer has 4×4 local kernels with the rectifier linear

as activation function, with 4× 4 pooling layer without overlapping. Then a fully connected layer

with 400 units with maxout activation function is stacked to finally add a softmax classifier. In

particular, the maxout activation function hi : Rn → R is a defined as:

hi (s) = max
j∈[1,k]

zi,j (6-4)

where s ∈ Rn is the input vector, zi,j = sTW···ij + bij is the output of the j-th linear transfor-

mation of the i-th hidden unit, and W ∈ Rd×m×k and b ∈ Rm×k are learned parameters. It has

been shown that maxout models with just 2 hidden units behave as universal approximators, while

are less prone to saturate units [99].

Since it is our intention to measure how the network’s depth affects the performance of the model,

we first evaluate the architecture with a single convolutional layer with a fully connected layer and

called it CNN2 in the experiments. Consequently, the whole architecture, i.e. two convolutional

layers plus a fully connected layer, is referenced as CNN3.
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Regularization The number of parameters in the model is directly related to capability to overfit

the training data. Usually neural networks require different strategies to control this behavior. In

this work dropout and max-norm regularization were used. Dropout randomly set to 0 the input

of a unit, while max-norm regularization forces the norm of each vector of incoming weights in a

unit to a maximum value. In [139] it was empirically shown that these two strategies help prevent

co-adaptation between units, e.g., during error back propagation, a unit should not rely on other

units to correct its mistakes since there is no certainty about their activations.

Optimization The proposed architecture has approximately 4.6 million of parameters. Training

large models has to scale in both, memory requirements and computational time. The strategy used

in this work to train the CNN is stochastic gradient descent with momentum. An early stopping

strategy monitoring the area under the ROC curve (AUC) on the validation set was chosen as

stop criterion. The implementation of the whole framework was carried out with the Pylearn2

framework [140]. This library uses the Theano framework [141], which in turn takes advantage

of GPU technology obtaining up to 140x speedup with respect to CPU implementations, making

feasible the training of architectures with millions of parameters.

Classification

Following the previous work, a linear SVM was selected as classification strategy. Train and valida-

tion sets were used to fine-tune the C parameter. To evaluate the CNN as a representation strategy,

images are propagated through the network, then the penultimate layer activations are extracted

and used as representation. This process is done to reduce processing time because, in terms of

computational cost, training a single SVM is cheaper than training the whole CNN network. This

stage can be seen as a fine-tuning process of the last layer, where a smaller model is adjusted.

6.5 Experimental setup

The dataset was split in training (50%) validation (10%) and test (40%) sets following a stratified

sampling per patient, that is, we make sure all computed instances of a particular patient belongs

to only one of the three subsets. This setup warranties that the model is not tested using patients

seen during the training stage.

In the preprocessing stage, the size of the cropped region was fixed to r = 150 according to the

distribution of the lesion size and computational capability; and the filter size for LCN is k = 11

pixels. Following previous results [114], 5× 5 and 3× 3 blocks sizes for HOG and 4 and 8 regions

for HGD were explored. Histograms for both 8 and 16 bins were evaluated. The best configuration

in train-validation setup was used to report test results.

The CNN parameter exploration was performed by training 25 models with random hyperpa-

rameter initializations and the best was chosen according to validation performance. It has been

reported that this strategy is preferable over grid search when training deep models [106]. Explo-

ration was conducted using the CETA-CIEMAT 3 Research Center infrastructure. Bigger models

that requires more intensive computation were carried out using a NVidia Tesla K40 GPGPU card.

3http://www.ceta-ciemat.es/, accessed on February 17, 2015

http://www.ceta-ciemat.es/
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Figure 6.5: Filters learned in the first layer of the CNN model

Before training the SVM model, a zero-mean unit-variance normalization process is carried out.

Train and validation sets were used to fine-tune the C parameter for the SVM classifier. Final

performance is reported in terms of AUC in the test set.

Comparison of the methods was based on the average AUC of 5 runs using different random

seeds for dataset splitting for each run. Experiments were supported by the Wilcoxon signed rank

test to determine whether differences have statistical evidence (ρ > 0.1).

6.6 Results

6.6.1 Learned features

Recall that the CNN weights in the first layer are equivalent to local kernels that work as filters over

the image. Thus, visualizing them would allow to describe the patterns that the model is looking

for. Figure 6.5 shows the weights of the best learned model. This image exposes a set of edges in

different orientations as well as some texture patterns. It seems the learned filters are affected by

noise, probably because it is still few data for this kind of models. We experimentally found that

normalization preprocessing was fundamental to obtain good-looking features and ultimately, good

performances in the classification. Without normalization the models were not able to surpasses

0.7 of AUC.

6.6.2 Classification results

Figure 6.6 shows ROC curves for all the evaluated representations for the best run. The HCfeats

set, which uses segmentation information, performs slightly better than HOG-based descriptors.

This confirms the importance of shape information for mass characterization. Interestingly, CNN

models, which use only the raw pixels, outperform the state-of-the-art features [114]. The training

of CNN3 model took 1.4 hours on the Tesla K40 GPGPU card. It is also worthwhile noting that

adding a second hidden layer to the CNN model improves the representation capability producing

better results. Such behavior is consistent with theoretical foundations to choose deep architectures

over shallow ones [142].

For comparative purposes, we included the evaluation of DeCAF [143], a pre-trained model

with the Imagenet dataset [144]. DeCAF is a model with greater complexity than all the other
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Figure 6.6: ROC curve for evaluated representations in test set for the best run.
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Figure 6.7: Boxplots of different runs for each representation method

representations evaluated on this work. Thus, it is expected to perform better than using hand-

crafted features. However, a smaller CNN model trained with the images of the domain performs

the best. This behavior, similarly reported when CNNs are trained with small datasets [145], leads

to the two main conclusions of this work: On one hand, CNN models outperform state-of-the-art

representations for automatic lesion classification in mammography image analysis. On the other

hand, such automatic mammography image analysis is a problem with its own particularities, and

thus it is not enough to learn the representation using a large CNN model. The learning process

should also be guided by a training set with a wide visual variability to show the model texture and

shape features presented in mass lesions. Figure 6.7 shows boxplots results in terms of AUC for

each representation. According to the Wilcoxon test hypothesis, the CNN3 model performs best

as compared to other evaluated representations (ρ < 0.1).

In order to combine the image-based features with additional information given in the segmen-

tation, HCfeats, described in section 6.4.1, were concatenated to each CNN representation and

baseline descriptors (HOG, HGD and DeCAF). The resultant vector feature of each image has 417

elements, 400 from the last fully connected layer in the CNN plus 17 features from the HCfeats

set. Table 6-2 shows a summary of these experiments. In general, this combination improves

the results. It specially helps to augment the performance of the hand-crafted representations,

while CNN models are not very affected. This suggests that CNN models are already capable of
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Representation Standalone Combined with HCfeats

CNN3 0.82+/-0.03 0.82+/-0.03 (*)

CNN2 0.76+/-0.05 0.78+/-0.04

HGD 0.78+/-0.04 0.83+/-0.04

HOG 0.77+/-0.03 0.81+/-0.03 (*)

DeCAF 0.79+/-0.05 0.82+/-0.03 (*)

HCfeats 0.77+/-0.02 –

Table 6-2: Summary of results in terms of AUC in the test set. Best results are shown in bold

typeface and (*) signals scores with no evidence of differences from the highest (ρ < 0.1).

GMU CNN3 CNN2 HGD HOG DeCAF
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Model AUC

GMU 0.875± 0.038

CNN3 0.826± 0.030

CNN2 0.780± 0.040

HGD 0.831± 0.040

HOG 0.815± 0.023

DeCAF 0.820± 0.026

Figure 6.8: Results of the GMU model used to classify mass lesions in mammography images.

capturing shape information, which is consistent with the learned filters depicted in Figure 6.5,

and thus giving such information explicitly could be redundant. Again, this experimentation was

supported by the Wilcoxon test, which showed no significant statistical evidence in the differences

between representations combined with HCfeats. However, comparing standalone vs combined

with HCfeats, all representations except CNN3, obtained evidence for a statistically significant

improvement(ρ < 0.05).

Finally, we evaluated the GMU as alternative to fuse handcrafted features with features learned

from the CNN. Results are shown in Figure 6.8. The GMU boost the performance of the CNN

obtaining the state-of-the-art results for this dataset. Notice that all of them use the same input in-

formation: raw image and morphometric measures from the segmented lesion, but the combination

is done differently. GMU learns to combine while other models concatenate both representations.
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Kruskal and Wilcoxon statistical test between all the possible pairs were performed. Each clas-

sifier was trained 5 times and the results are presented in Table 6-3. GMU and CNN3 show

bigger significance with respect to the remainder models. The GMU presents p-values < 0.1 for all

comparisons with the Wilcoxon test.

Method 1 Method 2
Kruskal

p-value

Wilcoxon

p-value

GMU CNN3 0.117185 0.079616

GMU CNN2 0.028280 0.043114

GMU HGD 0.075800 0.043114

GMU HOG 0.047202 0.043114

GMU DeCAF 0.075800 0.043114

CNN3 CNN2 0.117185 0.043114

CNN3 HGD 0.916815 0.892738

CNN3 HOG 0.601508 0.685830

CNN3 DeCAF 0.601508 0.685830

CNN2 HGD 0.174525 0.043114

CNN2 HOG 0.250592 0.079616

CNN2 DeCAF 0.075800 0.043114

HGD HOG 0.601508 0.079616

HGD DeCAF 0.916815 0.685830

HOG DeCAF 0.754023 0.500184

Table 6-3: P-values for two statistical tests on 5 runs for each classifier.

An open question regarding these results is how this method would perform in high resolution

images (12 or 14-bit images). Based on preliminary experimentation, we hypothesize that the model

would obtain superior performance using higher resolution images, since the learning model will

have more available information. However, we still do not have enough data to report statistically

significant results. On the other hand, it is noteworthy that the neural network design would face

new challenges such as higher dimensional input, fewer number of examples and different primitive

patterns, among others. Thus, we believe new network architectures should be explored to address

high resolution images.

6.7 Conclusions

This chapter presented a framework to address classification of mass lesions in mammography film

images. Instead of designing particular descriptors to explain the content of mammography images,

the proposed approach learns them directly from data in a supervised way. CNNs were used as the

representation learning strategy. The proposed neural network architecture takes the raw pixels of

the image as input, to learn in a hierarchical way a set of nonlinear transformations to represent

the visual content of an image. The model is composed of a set of local filters with a rectified linear

unit activation function, maxpooling layers, a fully-connected layer with maxout activation function
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and a softmax layer. Our approach outperformed the state-of-the-art image features, HOG and

HGD descriptors [114], increasing the performance from 0.787 to 0.822 in terms of AUC. The GMU

was also used to combine handcrafted with learned features. Interestingly, this model also took

advantage of the additional information of segmentation given by the radiologist. The combination

of both representations, learned and hand-crafted, resulted in the best descriptor for mass lesion

classification, obtaining 0.875 in the AUC score.

Our future work includes larger architectures as well as the inclusion of other image modalities to

enhance the representation. It also would be worth to evaluate the proposed strategy on BCDR-DM

images since this suppose a new challenge due to the high resolution images.



7 GMU for book analysis

This chapter explores the combination of feature engineering and neural network models for pre-

dicting successful writing. Similar to previous work, it is addressed as a binary classification task.

New strategies to automatically learn representations from book contents were explored. Using the

GMU as combination strategy for hand-crafted and learned representations we obtained the best

performance of 76.10% weighted F1-score. Part of this work was published in the EACL conference

[25].

7.1 Introduction

Every year millions of new books are published, but only a few of them turn into commercial

successes, and even fewer achieve critical praise in the form of prestigious awards or meaningful

sales. Editors have the difficult task of making the go/no-go decision for all manuscripts they

receive, and the revenue for their publishing house depends on the accuracy of that judgment. The

website www.litrejections.com documents some of the biggest mistakes in the history of the

publishing industry, including Agatha Christie, J.K. Rowling, and Dr. Seuss, all of whom received

many rejection letters before landing their first publishing deal.

Many factors contribute to the eventual success of a given book. Internal factors such as plot,

story line, and character development all have a role in the likability of a book. External factors

such as author reputation and marketing strategy are arguably equally relevant. Some factors

might even be out of the control of an author or publishing house, such as the current trends, the

competition from books released simultaneously, and the historical and contextual factors inherent

to society.

Previous work by Ganjigunte Ashok, Feng, and Choi [146] demonstrated relevant results using

stylistic features to predict the success of books. Their definition of success was a function of

the number of downloads from Project Gutenberg. However downloading a book is not by itself

an indicator of a highly liked or a commercially successful book. We instead propose to use the

rating from reviewers collected from Goodreads as a measure of success. We also propose features

and deep learning techniques that have not been used before on this problem, and validate their

usefulness in two different tasks: success prediction and genre classification.

Predicting the success of books is a difficult task, even for an experienced editor. Researchers

have studied related tasks, for example predicting the quality of text from lexical features, syntactic

features and different measures of density. Pitler and Nenkova [147] found a strong correlation

between user-perceived text quality and the likelihood measures of the vocabulary as computed

by a language model, as well as the likelihood measures of discourse relations, as determined by a

language model trained on discourse relations. Louis and Nenkova [148] proposed a combination of

genre-specific and readability features with topic-interest metrics for the prediction of great writing

www.litrejections.com
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in science articles. While some of the features in this prior work were relevant to our task, our goal

is different and more aligned to [146], since we aim to model success in books of different genres.

Ganjigunte Ashok, Feng, and Choi [146] investigated the correlation between writing style and

number of downloads. The authors analyzed lexical features, production rules, constituents, and

sentiment features of books downloaded from Project Gutenberg 1. They obtained an average

accuracy of 70.38% using only unigram features with Support Vector Machines (SVM) as the

classifier.

Deep learning representations have seen their share of successes in Natural Language Processing

(NLP) tasks [149–153]. In particular, RNN models have been successfully applied in several sce-

narios where temporal dependencies provide relevant information [1, 142]. Kiros et al. [154] used

RNN models to learn language models from books using an unsupervised approach. Also, word

embedding [101] and Paragraph Vector [155] have been shown to achieve state-of-the-art perfor-

mance in several text classification and sentiment classification tasks. These techniques are able to

learn distributed vector representations that capture semantic and syntactic relationships between

words. Collobert and Weston [156] trained jointly a single Convolutional Neural Network (CNN)

architecture on different NLP tasks and showed that multitask learning increases the generalization

of the shared tasks. Other researchers [142, 157, 158] have also reached to similar conclusions.

We provided a new benchmark dataset for predicting successful books in a more realistic class

distribution. This data set is available to the community from this link 2. We provide the first

results on using recurrent neural networks (RNN) to discover book content representations that

are useful for classification tasks such as success prediction and genre detection. We show that the

GMU model benefits the training to obtain better performance than the single success prediction

task approach.

7.2 Goodreads dataset

The EMNLP13 collection Ganjigunte Ashok, Feng, and Choi [146] 3 contained Project Gutenberg

books from eight different genres. We manually reviewed the dataset and found missing or irrelevant

content in 58 books: a total of 53 books contained Project Gutenberg license information repeated

verbatim, and five books contained only the audio recording certificate in place of the actual book

content. We also identified some odd adjudications. For example, ‘The Prince And The Pauper’

is a popular book by Mark Twain that was adapted into various films and stage plays. Also, ‘The

Adventures of Captain Horn’ was the third best selling book of 1895 [159]. Both these books are

labeled as unsuccessful due to their low download counts. We suspect as well that some of the

counts are inflated by college students doing English or Literature assignments that may not be

directly related to the potential commercial success of a book.

To address these concerns, we propose a new approach to creating gold labels for successful books

based on public reviews rather than download counts. We collected a new set of Project Gutenberg

books for this benchmarking. This data also came from Project Gutenberg. We mapped the books

1 https://www.gutenberg.org/
2The data can be downloaded from http://ritual.uh.edu/resources/ page.
3The data can be downloaded from http://www3.cs.stonybrook.edu/songfeng/success/

https://www.gutenberg.org/
http://ritual.uh.edu/resources/
http://www3.cs.stonybrook.edu/ songfeng/success/ 
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Genre Unsuccessful Successful Total

Detective Mystery 60 46 106

Drama 29 70 99

Fiction 30 81 111

Historical Fiction 16 65 81

Love Stories 20 60 80

Poetry 23 158 181

Science Fiction 48 39 87

Short Stories 123 135 258

Total 349 654 1,003

Table 7-1: Goodreads Data Distribution

EMNLP13 Success definition

Unsuccessful Successful

Goodreads

Success definition

Unsuccessful 73 32

Successful 110 184

Table 7-2: Confusion matrix between two different definitions of success

to their review pages on Goodreads4, a website where book lovers can search, review, and rate

books. We consider only those books that have been rated by at least 10 people. We use the

average star rating and total number of reviews for labeling each book. We then set an average

rating of 3.5 as the threshold for success, such that books with average rating < 3.5 are classified

as Unsuccessful. Table 7-1 shows the data distribution of our books. To our knowledge, we have

one of the largest collection of books, as researchers generally work with a low number of books

[160–162].

Success Definitions Comparison: After compiling and labeling both the datasets, we drew a

comparison between the two definitions of success. To do this, we downloaded the Project Guten-

berg download counts for the books in Goodreads dataset and labeled them using the Ganjigunte

Ashok, Feng, and Choi [146] definition of success. Since they only considered books in the extremes

of download counts, we could only label 399 books in the Goodreads dataset using their definition.

We found that 142 books had different labels according to the two definitions. 19.7% of these

mismatched books were labeled as unsuccessful despite having ratings ≥ 3.5 and being reviewed

by more than 100 reviewers. Table 7-2 details the discrepancies between the two definitions.

7.3 GMU for feature fusion

Previous results gave two main insights in the way the GMU model can be used to perform feature

fusion. First, the usage of genre information improved results in every experiment[25]. Second,

the combination of hand-crafted features and learned features benefits the success prediction [25].

Accordingly to these insights, we proposed the integration of learned and handcrafted features

4https://www.goodreads.com/

https://www.goodreads.com/
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Figure 7.1: GMU integration with learned features and handcrafted features.

through a GMU layer. The proposed model is presented in Figure 7.1. The model builds two

representations, one extracted with handcrafted features (see Section 7.4.1) and one learned with

word embeddings and recurrent neural networks (see Section 7.4.2). Then, both features are fused

through a GMU layer. A logistic classifier is stacked on top. Recurrent and word embeddings

modules are pretrained and kept fixed during the training of the multimodal approach.

7.4 Data representation

We investigated a wide range of textual features in an attempt to capture the topic, sentiment,

writing style, and readability for each book. This set included both new and previously used

features. We also explored techniques for automatically learning representations from text using

neural networks, which have been shown to be successful in various text classification tasks [1, 154].

These techniques include word embeddings, document embeddings, and recurrent neural networks.

7.4.1 Hand-crafted text features

Lexical: We used skip-grams, word and char n-grams, and typed char n-grams [163] with term

frequency-inverse document frequency (TF-IDF) as the weighting scheme. Sapkota et al. [163]
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showed that classical character n-grams lose some information in merging instances of n-grams

like the which could be a prefix (thesis), a suffix (breathe), or a standalone word (the). They

separated character n-grams into ten categories representing grammatical classes, like affixes, and

stylistic classes, like beg-punct and mid-punct which reflect the position of punctuation marks in

the n-gram. The purpose of these features is to correlate success with an author’s word choice.

Constituents: We computed the normalized counts of ‘SBAR’, ‘SQ’, ‘SBARQ’, ‘SINV’, and

‘S’ syntactic tag sets from the parse tree of each sentence in each book, following the method of

Ganjigunte Ashok, Feng, and Choi [146] to determine the syntactic style of the authors.

Sentiment: We computed sentence neutrality, positive and negative, using SentiWordNet [164]

along with the counts of nouns, verbs, adverbs, and adjectives. We averaged these scores for every

50 consecutive sentences in order to evaluate change in sentiment throughout the course of each

book, because we anticipate consecutive change in these scores by substantiating scores of two

consecutive sections. These deltas are then feed to the classifier. emotions, like suspense, anger,

and happiness to contribute to the success of the book.

SenticNet Concepts: We extracted sentiment concepts from the books using the Sentic Concept

Parser 5. The parser chunks a sentence into noun and verb clauses, and extracts concepts from

them using Part Of Speech (POS) bigram rules. We modeled these as binary bag-of-concepts (BoC)

features. We also extracted average polarity, sensitivity, attention, pleasantness, and aptitude scores

for the concepts defined in the SenticNet-3.0 knowledgebase, which contains semantics and sentics

associated with 30,000 common-sense concepts [165].

Writing density: We computed the number of words, characters, uppercase words, exclamations,

question marks, as well as the average word length, sentence length, words per sentence, and

lexical diversity of each book, with the expectation that successful and unsuccessful writings will

have dissimilar distributions of these density metrics. them relevant features in our computational

models.

Readability: We computed multiple readability measures including Gunning Fog Index [166],

Flesch Reading Ease [167], Flesch Kincaid Grade Level [168], RIX, LIX [169], ARI [170], and Smog

Index [171] and used their mean normalized values for training. Intuitively, the use of simple

language will resonate with a larger audience and contribute to book success.

7.4.2 Neural network learned representations

Representation learning techniques are able to learn a set of features automatically from the raw

data. Our hypothesis is that the learned representation can capture the complex factors that

influence the success of a book. In the case of textual data, word embeddings learned by using neural

networks have been found to be very useful in various natural language processing applications.

Word embeddings with Book2Vec: In contrast with Word2Vec, which learns a representation

for individual words, Doc2Vec learns a representation for text fragments or even for full documents.

We trained the Doc2Vec module of the Gensim [172] Python library, on all the books in the

Goodreads dataset to obtain a 500 dimensional dense vector representation for each book. Using

Doc2Vec, we first trained a distributional memory (DM) model with two approaches: concatenation

of context vectors (DMC) and sum of context word vectors (DMM). Then we trained a distributional

5https://github.com/pbhuss/Sentimental/blob/master/parser/SenticParser.py

https://github.com/pbhuss/Sentimental/blob/master/parser/SenticParser.py
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Figure 7.2: Multitask method. Words are represented in the Word2Vec space. Such representations

are averaged per window. Sequences are feed to GRU network. Finally, the features

are feed to two softmax components to predict genre and success simultaneously.

bag of words (DBoW) model and combined it with the DMC and the DMM for a total of five

different models. We set the number of iterations to 50 epochs and shuffled the training data in

each pass. We called these book vectors Book2Vec. Furthermore, we created two 300 dimensional

vector representations for each book by averaging the vectors of each word in the book using pre-

trained Word2Vec vectors from the Google News dataset6 and our own Word2Vec trained with

∼350M words from 5,000 random books crawled from Project Gutenberg.

Multitask RNN method: When dealing with variable length data such as time series or plain

text, traditional approaches like feed-forward neural networks are not easily adapted since they

expect fixed-size input to model sequential data. One limitation of RNNs is that it has problems

dealing with long sequences [173]. We propose a strategy to represent large documents, such as

books, with an aggregated representation. Figure 7.2 depicts the proposed multitask method. The

overall strategy uses a RNN to learn a model of sequences of sentences. Each sentence is represented

by the average of the Word2Vec representation of its constituent words. The RNN is composed of 2

hidden layers with 32 hidden gated recurrent units (GRU) [174] each, and the output is a softmax

layer. We train the RNN in a supervised fashion using the success categorization and the book

genre as labels. The RNN serves a feature extractor and the last hidden states for each sequence

acts as its representation. At training time, all sentences from one book are extracted and divided

in chunks of 128 sentences. The book’s success/genre labels are assigned to each sequence. A

sentence is then represented as the average of its constituent word vectors. To make the book label

assignment at testing time, we average the predictions of all sequences extracted from each book.

6The pre-trained Word2Vec was downloaded from https://code.google.com/p/word2vec/

https://code.google.com/p/word2vec/
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Using 128 sentences has threefold a motivation: (1) mitigate vanishing gradient problem [173], (2)

obtain more examples from one book, and (c) be a power of 2 to efficiently use the GPU.

An interesting property of neural networks is that the same learning approach, i.e stochastic

gradient descent, still holds for more complex architectures as long as the objective cost function is

differentiable. We take advantage of this property to build a unified neural network that addresses

both genre and success prediction using a single model. These kinds of multitask architectures are

also useful as regularizers [142]. In particular, our cost function J (X,Y ) is defined as follows:

hi = rnn (xi)

ŷsucci =
ez

succ
i∑

k e
zsucck

ŷgeni =
ez

gen
i∑

l e
zgenl

J (X,Y ) = −
∑
i

(ysucci ln ŷsucci + ygeni ln ŷgeni )

where xi represents the i-th sample and ysucc and ygen are success and genre labels respectively.

The rnn (·) function represents the forward propagation over the recurrent neural network and h

represents the last hidden state. ŷsucc and ŷgen represent predictions for the two labels. Notice

that both of them are computed using the same unified representation h. zsucc and zgen represent

two different linear transformations over h that map to the number of classes.

7.5 Experimental setup

We merged books from different genres, and then randomly divided the data into a 70:30 train-

ing/test ratio, while maintaining the distribution of Successful and Unsuccessful classes per genre.

As a preprocessing step we converted all words to lowercase and removed infrequent tokens having

document frequency ≤ 2. For our tagging and parsing needs, we used the Stanford parser [175]. We

then trained a LibLinear Support Vector Machine (SVM)7 classifier with L2 regularization using

the hand-crafted features described in Section 7.4. We tuned the C parameter in the training set

with 3-fold grid search cross-validation over different values of 1e{-4,...,4}.
With the features used by Ganjigunte Ashok, Feng, and Choi [146], we obtained the highest

weighted F1-score of 0.659 with word bigram features. We set this value as our baseline. In order

to study the effect of the multitask approach, we devised analogous experiments to our proposed

multitask RNN method and predicted both genre and success together for the features described

in Section 7.4. Hence we have two settings for the classification experiments, Single task (ST) and

Multitask (MT).

Since we had average rating information, we also modeled the problem as a regression problem

and predicted the average rating using only the content of the books. Our work differs from other

researchers in this aspect, as most of them [176–178] use review content instead of the actual book

content to predict the average rating. We used the Elastic Net regression algorithm with l1 ratio

7We use LibLinear SVM wrapper from http://scikit-learn.org/stable/

http://scikit-learn.org/stable/
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Features ST (F1) MT (F1) MSE

Word Bigram 0.659 0.685 0.152

2 Skip 2 gram 0.645 0.688 0.156

2 Skip 3 gram 0.506 0.680 0.156

Char 3 gram 0.669 0.700 0.155

Char 4 gram 0.676 0.689 0.155

Char 5 gram 0.683 0.699 0.154

Typed beg punct 3 gram 0.621 0.672 0.151

Typed mid punct 3 gram 0.598 0.641 0.151

Typed end punct 3 gram 0.626 0.677 0.151

Typed mid word 3 gram 0.653 0.687 0.156

Typed whole word 3 gram 0.658 0.666 0.154

Typed multi word 3 gram 0.607 0.657 0.154

Typed prefix 3 gram 0.624 0.624 0.154

Typed space prefix 3 gram 0.589 0.646 0.155

Typed suffix 3 gram 0.624 0.637 0.154

Typed space suffix 3 gram 0.626 0.664 0.154

Clausal 0.506 0.558 0.156

Writing Density (WR) 0.605 0.640 0.156

Readability (R) 0.506 0.634 0.144

SentiWordNet Sentiments(SWN) 0.582 0.610 0.156

Sentic Concepts and Scores (SCS) 0.657 0.670 0.155

GoogleNews Word2Vec 0.669 0.692 0.156

Gutenberg Word2Vec 0.672 0.673 0.140

Book2Vec (DBoW) 0.643 0.654 0.130

Book2Vec (DMM) 0.686 0.731 0.142

Book2Vec (DMC) 0.640 0.674 0.131

Book2Vec (DBoW+DMC) 0.647 0.677 0.131

Book2Vec (DBoW+DMM) 0.695 0.729 0.142

RNN 0.529 0.686 0.125

Table 7-3: Results for classification (ST = Single task setting, MT = Multi-task setting) and re-

gression tasks on Goodreads dataset. MSE = Mean Square Error, F1 score is weighted

F1 scores across Successful and Unsuccessful classes.

tuned over range {0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99} with 3-fold grid search cross-validation of

the training data.

Parameter tuning for RNN: We trained 25 models with random hyper-parameter initialization

for learning rate, weights initialization ranges and regularization parameters. We chose the best

validation performance model. This is preferable over grid search when training deep models [106].

We used the ADAM algorithm [105] to update the gradients. Since these models are prone to

overfitting because of the high number of parameters, we applied clip gradient, max-norm weights,

early stopping and dropout regularization strategies. still with these strategies the model was able

to achieve perfect classification in training data.
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Features ST (F1) MT (F1) MSE

Unigram+Bigram 0.660 0.691 0.15

Unigram+Bigram+Trigram 0.660 0.700 0.149

Char 3,4,5 gram 0.682 0.689 0.153

All Typed ngram 0.663 0.691 0.144

SCS+WR+Typed mid word 0.720 0.710 0.155

SCS+Book2Vec 0.695 0.731 0.139

R+Book2Vec 0.695 0.729 0.139

WR+Book2Vec 0.693 0.726 0.139

Word Ngram+ RNN 0.691 0.688 0.125

Skip gram + RNN 0.689 0.683 0.125

Typed char ngram+ RNN 0.689 0.702 0.125

Char 3 gram + RNN 0.689 0.688 0.125

Clausal+ RNN 0.689 0.688 0.125

SCS + RNN 0.691 0.688 0.125

WR+Book2Vec+ RNN 0.701 0.735 0.129

SCS+WR+RNN 0.675 0.696 0.123

All hand-crafted 0.670 0.689 0.148

All hand-crafted+neural 0.667 0.712 0.129

Table 7-4: Feature combination results for goodreads dataset. (ST = Single Task, MT =Multi-task,

SCS = Sentic concept+average scores of sensitivity, attention, pleasantness, aptitude,

polarity, WR = Writing Density, R = Readability)

7.6 Results

Table 7-3 shows the results with the proposed feature sets for the classification and regression

tasks. In the ST setting, except for the character n-gram features, all proposed hand-crafted

features individually had a weighted F1-score less than the word bigram baseline. On the other

hand, the neural network methods obtained better results than the baseline. We obtained the

highest weighted F1-score of 0.695 and 0.731 with the Book2Vec method in the ST and MT settings,

respectively. The results show that the MT approach is better than the ST approach. The genre

prediction task must have acted as a regularizer for the success prediction task. Also, we found

that modeling the entire book as a vector, rather than modeling it as the average of word vectors,

gave better performance. Although the ST Book2Vec performs better than the MT RNN method,

the difference is very small. We performed McNemar’s test on these methods and found that the

results were not statistically significant, with p=0.5. The MT RNN method had the lowest mean

square error (MSE) for the regression task, at 0.125.

The character n-gram proved to be one of the most important hand-crafted features, whereas

clausal feature was the least important one. Individually, writing density and readability features

seemed to be weak features. We assumed that the sentiment changes in books would be an impor-

tant characteristic for the task. However, the results in Table 7-3 show an unimpressive F1-score

of 0.610 for sentiment features. On the other hand, the bag of sentic concepts model with average

scores for sensitivity, attention, pleasantness, aptitude, and polarity gave a more impressive F1-

score of 0.670, much higher than the baseline. This result points to the relevance of performing a

more nuanced sentiment analysis beyond lexical statistics for this task.
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Model Accuracy F1-weighted ROC AUC

GMU ST 0.772 0.761 0.745

GMU MT 0.766 0.751 0.755

Table 7-5: Results for feature fusion strategy using GMU model. Single Task worked better than

Multi-task approach.

Our next set of experiments included the combinations of hand-crafted and neural network rep-

resentations. Some of the best combination results are shown in Table 7-4. Out of the different

possible feature combinations, we obtained the highest weighted F1 score of 0.735 by combining

hand-crafted and learned representations in the MT setting. We observed that combining low

performing hand-crafted features like readability, syntactic clauses, and skip grams with neural

representation boosted their performance. Likewise for the regression task, the MT RNN represen-

tation proved to be a better choice, as its combination with other features generally lowered the

MSE. The best combinations for the regression task lowered the MSE to 0.123. Deep learning and

hand-crafted methods may capture complementary sources of information, which upon combination

boost performance.

7.6.1 GMU fusion

We evaluated the model in two different setups: ST and MT. Table 7-5 shows the results of this

approach. This result outperformed all other previous results. The model learned to effectively

combine handcrafted features and learned features by dynamically weighting each sample. This

behavior is consistent with results reported in Chapter 6: To apply the GMU in multimodal and

information fusion tasks is a reasonable strategy to boost results of single classifiers and standard

early and late fusion strategies.

7.7 Conclusions

In this chapter we propose new features for predicting the success of books. We used two main

feature categories: hand-crafted and RNN-learned features. Hand-crafted features included typed

character n-grams and sentic concepts. For the learned features we proposed two different strate-

gies based on neural networks. The first extends Word2Vec-type representations to work in large

documents such as books, and the second one uses an RNN to capture sequential patterns in large

texts. Finally, we used the GMU architecture con effectively combine both representations. We

evaluated the methods in the Goodreads dataset, whose classes are not based on download counts,

but rather are a function of average star ratings and number of reviewers. Our results outperform

state-of-the-art methods. We conclude that instead of having either deep-learning or hand-crafted

features outperform the other, both methods capture complementary information, which upon com-

bination gives better performance. An interesting research direction would be to explore features

that capture plot-related aspects, such as character profiles and interaction through social network

analysis, historical setting, and other feature-learning strategies.
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Machine learning methods have received a lot of attention because of its successful application ad-

dressing complex problems. These promising results are mainly due to the development of methods

that automatically learn the representation of complex objects directly from large amounts of train-

ing data. These methods are an evolution of neural networks and the main topic of this research,

known as deep learning. Deep learning leads the state-of-the-art in different areas with success

cases in object recognition, scene image labeling, autonomous car driving and speech recognition

among others. Despite huge advances during last decade, representation learning faces unique chal-

lenges. One of them is how to take advantage of different types of information. This research was

conducted to address such challenge: to use deep learning models for combining multiple modalities

and jointly learn an unified representation for supervised tasks.

A novel strategy was proposed to learn fusion transformations from multimodal sources. Sim-

ilarly to the way recurrent models control the information flow, the proposed model is based on

multiplicative gates. The Gated Multimodal Unit (GMU) receives two or more input sources and

learns to determine how much each input modality affects the unit activation. This contrasts the

traditional fusion methods that adjust weights for each modality and are fixed for all instances,

while the GMU weights are determined by the input. In synthetic experiments the GMU was

able to learn hidden latent variables. A key property of the GMU is that, being a differentiable

operation, it is easily coupled in different neural network architectures and trained with standard

gradient-based optimization algorithms. In the following, the four supervised tasks used to validate

the proposed model are described.

Medical image analysis Before the deep learning era, traditional approaches for pattern recogni-

tion problems used to engineer a set of feature extractors that performed the best for a particular

task. For instance, in medical image classification, the bag-of-visual-words approach was a com-

mon strategy to represent the medical image content. This strategy splits the image in square

patches and finds a dictionary with the most common ones. Then, the image is represented as a

frequency histogram of occurrence of those patches in the image. The feature engineering approach

requires high specialization for each problem. With this kind of methods, automatic analysis sys-

tems can take advantage of the prior knowledge given by the experts. On the other hand, researches

integrated the feature extraction stage in the learning process. This allows the algorithms to auto-

matically learn what transformations are required to extract the meaningful content of the input.

We initially explored simple concatenation of engineered and learned representation to improve

performance in breast mass lesion classification [14]. However, when the learned features went

better, the classifier did not benefit from the handcrafted features. We extended such work with

the integration of GMU in the architecture and the model was able to better fuse handcrafted and

learned features to outperform previous state-of-the-art results.
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Multimodal genre prediction In recent years, multimodal tasks have received attention by the

representation learning community. Strategies for visual question answering, or image captioning

have developed interesting ways of combining different representation learning architectures. Most

of these models are focused on mapping from one modality to another or solving an auxiliary task

to create a common representation with the information of all modalities. This research addressed

the task of predicting the target variable using two or more modalities as input. We built the

MMImdb dataset which, to the best of our knowledge, is the largest publicly available multimodal

dataset for genre prediction on movies. Then, the GMU was evaluated on a multilabel scenario for

genre classification of movies using the plot and the poster. The GMU improved the macro f-score

performance of single-modality approaches and outperformed other fusion strategies, including

early, late and mixture of experts models.

Multimodal image segmentation The GMU has been integrated with convolutional networks for

addressing natural image segmentation where it outperformed the single-modality, early and late

fusion approaches. The gated multimodal network involved an end-to-end convolutional architec-

ture taking as input the RGB and depth images and output the segmented image with 6 semantic

concepts. Likewise, the model outperformed other single and multimodal approaches measuring

the Intersection-over-union score. The activations of the GMU layer were mapped to the output

concepts finding correlations between input modalities and output concepts, e.g. depth informa-

tion was more correlated with “sky” and “tree” while RGB is more correlated with “grass” and

“vegetation”. It should be noted that even though the model is capable of combining information,

the content representation is critical to correctly take advantage of the different modalities.

In contrast to other weighted fusion or feature selection strategies, the GMU is able to give

independent weights for each sample, and those weights are automatically assigned depending on

the values for each modality. The evaluation went beyond multiple modalities and was applied

to perform feature combination showing that the gated approach can be also applied to unimodal

escenarios, provided that there are more than one representation. We also explored ways to under-

stand how the model gives importance to each input. The analysis associated input modalities with

the output categories. Interesting findings in genre prediction show, for instance, that the model

associates the visual information with animation movies while textual information is more asso-

ciated with Drama or Romance movies. Similar behavior appeared in image segmentation where

the closest and farthest concepts in an image where associated with depth information. while more

complex structures like trees are more related to RGB representation. It is also noteworthy that the

GMU is easily adapatable with different neural network architectures provided that the function

used to guide the learning be differentiable. In consequence, we integrated the GMU with convo-

lutional and fully connected networks. We also observed that the GMU does not present learning

vanishing or exploding gradient, problems that are common in mixture-of-experts approaches. Fi-

nally, this dissertation supported reproducible research by contributing three public datasets, all

of them created in this project.

A future research direction in this area is to build a more general unit that can learn more complex

transformations and interactions between input modalities, as well as dealing with scenarios where,

at inference time, some modalities are absent.
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[21] Sebastian Otálora et al. “Combining Unsupervised Feature Learning and Riesz Wavelets for

Histopathology Image Representation: Application to Identifying Anaplastic Medulloblas-

toma”. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015:

18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part I.

Ed. by Nassir Navab et al. Cham: Springer International Publishing, 2015, pp. 581–588.

isbn: 978-3-319-24553-9. doi: 10.1007/978-3-319-24553-9_71. url: https://doi.org/

10.1007/978-3-319-24553-9_71.

[22] Luis Pellegrin et al. “INAOE-UNAL at ImageCLEF 2015: Scalable Concept Image Annota-

tion.” In: CLEF (Working Notes). 2015.

[23] Luis Pellegrin et al. “A Two-Step Retrieval Method for Image Captioning”. In: International

Conference of the Cross-Language Evaluation Forum for European Languages. Springer In-

ternational Publishing. 2016, pp. 150–161.

http://ai.stanford.edu/%7B~%7Dang/papers/icml11-MultimodalDeepLearning.pdf
http://ai.stanford.edu/%7B~%7Dang/papers/icml11-MultimodalDeepLearning.pdf
http://dx.doi.org/10.1007/978-3-319-24553-9_71
https://doi.org/10.1007/978-3-319-24553-9_71
https://doi.org/10.1007/978-3-319-24553-9_71


Bibliography 66

[24] John Arevalo et al. “Gated Multimodal Units for Information Fusion”. In: 5th International

conference on learning representations 2017 workshop. 2017.

[25] Suraj Maharjan et al. “A Multi-task Approach to Predict Likability of Books”. In: Proceed-

ings of the 15th Conference of the European Chapter of the Association for Computational

Linguistics: Volume 1, Long Papers. Vol. 1. 2017, pp. 1217–1227.

[26] John Arevalo, Raúl Ramos-Pollan, and Fabio A González. “Distributed Cache Strategies

for Machine Learning Classification Tasks over Cluster Computing Resources”. In: High

Performance Computing. Springer Berlin Heidelberg. 2014, pp. 43–53.

[27] Oscar Perdomo et al. “A Novel Machine Learning Model Based on Exudate Localization to

Detect Diabetic Macular Edema”. In: (2016).

[28] Oscar Perdomo, John Arevalo, and Fabio A González. “Convolutional network to detect
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[112] László Tabár et al. “Swedish two-county trial: impact of mammographic screening on breast

cancer mortality during 3 decades”. In: Radiology 260.3 (2011), pp. 658–663. doi: 10.1148/

radiol.11110469.

[113] Turgay Ayer et al. “Computer-aided diagnostic models in breast cancer screening”. In:

Imaging in medicine 2.3 (2010), pp. 313–323.

[114] Daniel C. Moura and Miguel A. Guevara López. “An evaluation of image descriptors com-
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