3,489 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Recombinant spidroins from infinite circRNA translation

    Get PDF
    Spidroins are a diverse family of peptides and the main components of spider silk. They can be used to produce sustainable, lightweight and durable materials for a large variety of medical and engineering applications. Spiders’ territorial behaviour and cannibalism precludes farming them for silk. Recombinant protein synthesis is the most promising way of producing these peptides. However, many approaches have been unsuccessful in obtaining large titres of recombinant spidroins or ones of sufficient molecular weight. The work described here is focused on expressing high molecular weight spidroins from short circular RNA molecules. Mammalian host cells were transfected with designed circular-RNA-producing plasmid vectors. A backsplicing approach was implemented to successfully circularise RNA in a variety of mammalian cell types. This approach could not express any recombinant spidroins based on a variety of qualitative protein assays. Further experiments investigated the reasons behind this. Additionally, due to the diversity of spidroins in a large number of spider lineages, there are potentially many spidroin sequences left to be discovered. A bioinformatic pipeline was developed that accepts transcriptome datasets from RNA sequencing and uses tandem repeat detection and profile HMM annotation to identify novel sequences. This pipeline was specifically designed for the identification of repeat domains in expressed sequences. 21 transcriptomes from 17 different species, encompassing a wide selection of basal and derived spider lineages, were investigated using this pipeline. Six previously undescribed spidroin sequences were discovered. This pipeline was additionally tested in the context of the suckerin protein family. These proteins have recently been investigated for their potential properties in medicine and engineering including adhesion in wet environments. The computational pipeline was able to double the number of suckerins known to date. Further phylogenetic analysis was implemented to expand on the knowledge of suckerins. This pipeline enables the identification of transcripts that may have been overlooked by more mainstream analysis methods such as pairwise homology searches. The spidroins and suckerins discovered by this pipeline may contribute to the large repertoire of potentially useful properties characteristic of this diverse peptide family

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Natural stimuli for mice: environment statistics and behavioral responses

    Get PDF

    Applications of Molecular Dynamics simulations for biomolecular systems and improvements to density-based clustering in the analysis

    Get PDF
    Molecular Dynamics simulations provide a powerful tool to study biomolecular systems with atomistic detail. The key to better understand the function and behaviour of these molecules can often be found in their structural variability. Simulations can help to expose this information that is otherwise experimentally hard or impossible to attain. This work covers two application examples for which a sampling and a characterisation of the conformational ensemble could reveal the structural basis to answer a topical research question. For the fungal toxin phalloidin—a small bicyclic peptide—observed product ratios in different cyclisation reactions could be rationalised by assessing the conformational pre-organisation of precursor fragments. For the C-type lectin receptor langerin, conformational changes induced by different side-chain protonations could deliver an explanation of the pH-dependency in the protein’s calcium-binding. The investigations were accompanied by the continued development of a density-based clustering protocol into a respective software package, which is generally well applicable for the use case of extracting conformational states from Molecular Dynamics data

    Ensembles of Pruned Deep Neural Networks for Accurate and Privacy Preservation in IoT Applications

    Get PDF
    The emergence of the AIoT (Artificial Intelligence of Things) represents the powerful convergence of Artificial Intelligence (AI) with the expansive realm of the Internet of Things (IoT). By integrating AI algorithms with the vast network of interconnected IoT devices, we open new doors for intelligent decision-making and edge data analysis, transforming various domains from healthcare and transportation to agriculture and smart cities. However, this integration raises pivotal questions: How can we ensure deep learning models are aptly compressed and quantised to operate seamlessly on devices constrained by computational resources, without compromising accuracy? How can these models be effectively tailored to cope with the challenges of statistical heterogeneity and the uneven distribution of class labels inherent in IoT applications? Furthermore, in an age where data is a currency, how do we uphold the sanctity of privacy for the sensitive data that IoT devices incessantly generate while also ensuring the unhampered deployment of these advanced deep learning models? Addressing these intricate challenges forms the crux of this thesis, with its contributions delineated as follows: Ensyth: A novel approach designed to synthesise pruned ensembles of deep learning models, which not only makes optimal use of limited IoT resources but also ensures a notable boost in predictability. Experimental evidence gathered from CIFAR-10, CIFAR-5, and MNIST-FASHION datasets solidify its merit, especially given its capacity to achieve high predictability. MicroNets: Venturing into the realms of efficiency, this is a multi-phase pruning pipeline that fuses the principles of weight pruning, channel pruning. Its objective is clear: foster efficient deep ensemble learning, specially crafted for IoT devices. Benchmark tests conducted on CIFAR-10 and CIFAR-100 datasets demonstrate its prowess, highlighting a compression ratio of nearly 92%, with these pruned ensembles surpassing the accuracy metrics set by conventional models. FedNets: Recognising the challenges of statistical heterogeneity in federated learning and the ever-growing concerns of data privacy, this innovative federated learning framework is introduced. It facilitates edge devices in their collaborative quest to train ensembles of pruned deep neural networks. More than just training, it ensures data privacy remains uncompromised. Evaluations conducted on the Federated CIFAR-100 dataset offer a testament to its efficacy. In this thesis, substantial contributions have been made to the AIoT application domain. Ensyth, MicroNets, and FedNets collaboratively tackle the challenges of efficiency, accuracy, statistical heterogeneity arising from distributed class labels, and privacy concerns inherent in deploying AI applications on IoT devices. The experimental results underscore the effectiveness of these approaches, paving the way for their practical implementation in real-world scenarios. By offering an integrated solution that satisfies multiple key requirements simultaneously, this research brings us closer to the realisation of effective and privacy-preserved AIoT systems

    Roadmap on ferroelectric hafnia- and zirconia-based materials and devices

    Get PDF
    Ferroelectric hafnium and zirconium oxides have undergone rapid scientific development over the last decade, pushing them to the forefront of ultralow-power electronic systems. Maximizing the potential application in memory devices or supercapacitors of these materials requires a combined effort by the scientific community to address technical limitations, which still hinder their application. Besides their favorable intrinsic material properties, HfO2–ZrO2 materials face challenges regarding their endurance, retention, wake-up effect, and high switching voltages. In this Roadmap, we intend to combine the expertise of chemistry, physics, material, and device engineers from leading experts in the ferroelectrics research community to set the direction of travel for these binary ferroelectric oxides. Here, we present a comprehensive overview of the current state of the art and offer readers an informed perspective of where this field is heading, what challenges need to be addressed, and possible applications and prospects for further development
    • …
    corecore