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Abstract The increasing demand for underwater robotic intervention systems
around the world in several application domains requires more versatile and
inexpensive systems. By using a wireless communication system, supervised
semi-autonomous robots have freedom of movement, however, the limited and
varying bandwidth of underwater radio frequency (RF) channels is a major ob-
stacle for the operator to get camera feedback and supervise the intervention.
This paper proposes the use of progressive (embedded) image compression and
region of interest (ROI) for the design of an underwater image sensor to be in-
stalled in an Autonomous Underwater Vehicle (AUV), specially when there are
constraints on the available bandwidth, allowing a more agile data exchange
between the vehicle and a human operator supervising the underwater inter-
vention. The operator can dynamically decide the size, quality, frame-rate, or
resolution of the received images so that the available bandwidth is utilized
to its fullest potential and with the required minimum latency. The paper fo-
cuses first on the description of the system, which uses a camera, an embedded
Linux system and a RF emitter installed in an OpenROV housing cylinder.
The RF receiver is connected to a computer on the user side, which controls
the camera monitoring parameters, including the compression inputs, such as
ROI (Region of Interest), size of the image, and frame rate. The paper focuses
on the compression subsystem and does not attempt to improve the communi-
cations physical media for better underwater RF links. Instead, it proposes a
unified system that uses well integrated modules (compression and transmis-
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sion) in order to provide the scientific community with a higher level protocol
for image compression and transmission in sub-sea robotic interventions.

Keywords Progressive Image compression · Region of Interest (ROI) ·
Wavelet Transforms · Low Bandwidth Communications · Underwater Vehicles
for Intervention

1 Introduction

In the context of the MERBOTS research project (http://www.irs.uji.es/
merbots/), a three-year coordinated project funded by the Spanish govern-
ment for the period 2015-2017 under grant DPI2014-57746-C3 [1], one of the
objectives is to build a wireless communication system that can provide free-
dom of movements to the underwater robot and, at the same time, to allow the
operator to get feedback and supervise the intervention (Fig. 1). The robotic
system under development will assist the archaeologists in the detailed work
of monitoring, characterization, study, reconstruction and preservation of ar-
chaeological sites, always in accordance with the continuous supervision of the
human expert.

Fig. 1 Search and recovery envisioned concept in the context of archeology. A wireless
RF link provides feedback to the user that is supervising the intervention, Autonomous
Underwater Vehicle (AUV) Girona 500 and Sparus II

One of the objectives of the MERBOTS project is to provide different
communication technologies that can be used to allow the operation of a vehicle
without any physical connection to the surface operators, which are supervising
and controlling an intervention task, which differentiates this project from
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previous national and international research projects in the field of underwater
robotic intervention ((i.e. RAUVI [2], TRITON [3], EU FP7 TRIDENT [4]).

The present article describes the current state of the wireless underwater
vision system, that is able to transmit telemetry data as well as compressed
low-resolution images, allowing further implementation of cooperative inter-
vention missions. The Depth Embedded Block Tree (DEBT) compression sys-
tem has been designed specifically to maximize the efficiency of the underwater
intervention application, taking into account the following facts:

– It uses a progressive compression technique designed to reduce the latency,
taking into account that this is an essential part of the whole robotic control
system. Also, high quality images, even lossless, can be stored locally and
only a prefix of it of any size can be transmitted so that the original images
can be retrieved at a later time in order to be studied or archived in more
detail;

– The compression algorithm has been implemented in order to be used
in very low bandwidth scenarios. It can be applied in underwater radio-
frequency communications and other robotic applications;

– An implementation of the compression algorithm has been realized which is
capable of compressing more than 30 fps on low power embedded computers
(e.g. Raspberry Pi 3 Model B);

– The system is able to send usable images using only a few hundred bytes
per frame. The stream can simply be truncated in order to send a lower
quality version of the image;

– The user is able to select one or more Regions Of Interest (ROI) in order
to get more quality in specific parts of the image. This article explains how
this technique has been implemented;

– The compression algorithm was tested with a battery of underwater im-
ages in order to better adjust the compression parameters for underwater
intervention missions, remembering that JPEG2000 (Joint Photographic
Experts Group 2000) is optimized for larger packets that are unrealistic
for underwater acoustic or RF transmissions [5].

The use of underwater radio frequency (RF) links is a prime example of a
low-bandwidth scenario, but the techniques described here can also be applied
to any kind of bandwidth-constrained scenario. The techniques described here
can also be used to enhance usability by a great deal in normal bandwidth
scenarios, specially when dealing with remote image searching, by using either
a low quality or low resolution version of the original image and only requesting
more details when the target image has been found.

The RF link was used to test a low-bandwidth communication channel in
a real way and not in simulated mode, with less bandwidth than an ultra-
sonic modem commonly used in underwater applications. RF Modem are less
expensive and there was an acoustic modem available for testing. Thus the
RF modem allowed to test and validate the DEBT algorithm with progressive
image compression and ROI in conditions of lower bandwidth, even having dis-



4 Eduardo M. Rubino et al.

Table 1 Comparison between the proposed compression algorithm and other methods

DEBT JPEG JPEG2000
Quality and resolution progressive compression 3 7 3

Manual and automatic Region Of Interest (ROI) 3 7 3
Rate Distortion Optimized 3 7 3

Real time (fast) compression 3 3 7
Exact size (truncate) compression 3 7 7

Lossless and Lossy compression 3 7 3
Parallel algorithm 3 7 7

Applicable for underwater acoustic or RF transmissions 3 7 7

tance limitation for RF transmission. That is, if the DEBT algorithm works
properly with RF links it will certainly work with acoustic modems.

Table 1 makes a small comparison of the most important differences be-
tween the DEBT algorithm [6] and the well known JPEG (Joint Photographic
Experts Group) [7] and JPEG2000 [8] algorithms. JPEG is an aging algorithm
that, although being quite fast, performs poorly under high compression and
does not possess the necessary features. JPEG2000, on the other hand, is a
quite complex and sofisticated algorithm that compresses well under almost
all conditions and has most of the needed features but is quite slow. A more
detailed explanation of the compression features of the DEBT algorithm will
be given in section 4.

2 Related Works

Suzuki and Sasaki [9] was the first system to demonstrate image transmission
over a vertical path which was developed in Japan. The JPEG standard DCT
(Discrete Cosine Transform) was used to encode 256x256 pixel still images
with 2 bits per pixel. Transmission of about one frame per 10 seconds was
achieved using 4-DPSK (Differential Phase Shift Keying) at 16 kbps. Remark-
able results obtained with this system included a video of a slowly moving
crab, transmitted acoustically from a 6,500 m deep ocean trench. Another
vertical path image transmission system was developed in France and success-
fully tested in 2,000 m deep water. This system was also based on the JPEG
standard and used binary DPSK for transmission at 19 kbps.

An image transmission system has been developed in a Portuguese effort
called ASIMOV [10]. In this project, a vertical transmission link is secured
by a coordinated operation of an AUV and an ASC (Autonomous Surface
Craft). Once the site is chosen and the vehicles are positioned, transmission
of a sequence of still images of about 2 frames/sec is accomplished at 30 kbps
using an 8PSK (Phase-shift keying) modulation method. Other experimental
of underwater video transmission system, developed in Japan [9], employs
4PSK, 8PSK, and 16QAM (Quadrature Amplitude Modulation) signals with
40 KHz bandwidth to achieve transmissions at up to 128 kbps. The system
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uses 100 kHz carrier frequency and was tested over a short vertical path of 30
m.

Because underwater images have low contrast, their information is concen-
trated at low frequencies. Thus, by decomposing the image information into
low and high frequency subbands, and encoding the low bands with more pre-
cision, it is possible to achieve higher compression ratios. This is the basic
motivation behind the work in [11] which used the DWT (Discrete Wavelet
Transform) in place of the standard DCT. This algorithm was applied to a
sequence of underwater images, taken at 30 frames per second, each having
256x256 8-bit pixels. The achieved compression ratio of 100:1 provided very
good quality monochrome video. The resulting bit rate needed to support such
high quality is on the order of 160 kbps, which surpasses the capabilities of
the current acoustic modem technology.

Another system that exploits wavelet based compression together with mo-
tion compensation is proposed in [12]. Although it attains approximately the
same compression ratio (100:1) as in [11], it has better visual intelligibility
because it employs a generalized dynamic image model (GDIM) that decou-
ples the geometric and photometric variations in an image sequence commonly
encountered in deep sea imagery. This approach is in contrast with ordinary
terrestrial motion-compensated algorithms, where steady and uniform illu-
mination is the underlying assumption. Using 128x128 pixel frames and 30
frames/sec, the resulting bit rates needed to support real-time video transmis-
sion were in the order of 40 kbps.

Pelekanakis [13] presents a high bit rate acoustic link for underwater video
transmission. Currently, encoding standards support video transmission at bit
rates as low as 64 kbps. While this rate is still above the limit of commer-
cially available acoustic modems, prototype acoustic modems based on phase
coherent modulation/detection have demonstrated successful transmission at
30 kbps over a deep water channel.

An experimental system [13], based on DCT and Huffman entropy coding
for image compression, and variable rate Mary quadrature amplitude modu-
lation (QAM) was implemented. Phase-coherent equalization is accomplished
by joint operation of a decision feedback equalizer (DFE) and a second order
phase locked loop (PLL). System performance is demonstrated experimentally,
using a transmission rate of 25000 symbols/sec at a carrier frequency of 75 kHz
over a 10 m vertical path. Excellent results were obtained, thus demonstrating
bit rates as high as 150 kbps, which are sufficient for real-time transmission of
compressed video.

Eastwood et al. [14] presents techniques for compression of laser line scan
and camera images, as well as format specific data compression for quick-look
sonar mapping data. For image compression, both JPEG and a wavelet based
technique called Efficient Pyramid Image Coder (EPIC) are examined. JPEG
is found to be less efficient than the wavelet transform but has the advantage
of being robust with respect to lost data packets. The wavelet based transform
is more efficient at high compression rates though above a certain rate both
offer similar performance.
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Walter et al. [15] presents a new wavelet-based image compression system.
The compression system is based on a particular type of compressed encod-
ing of wavelet transforms called Wavelet Difference Reduction (WDR) and
describes experimental results in applying a compression algorithm to a suite
of underwater camera images. These underwater camera images were required
to be compressed at very high compression ratios (400:1, 200:1, 100:1, and
50:1) and the algorithm produced very high-fidelity decompressions. In fact,
it performed at a comparable level to a system based on the celebrated Daub
CDF-9/7 system (used in JPEG2000 [16]) yet employing 256 times less RAM
(Random Access Memory) and a 16-bit dynamic range (with 8-bit images)
instead of a 32-bit dynamic range.

Murphy [17] presents an analysis of the unique considerations facing teleme-
try systems for free-roaming Autonomous Underwater Vehicles used in explo-
ration. These considerations include high-cost vehicle nodes with persistent
storage and significant computation capabilities, combined with human sur-
face operators monitoring each node. He then proposes mechanisms for in-
teractive, progressive communications of data across multiple acoustic hops.
These mechanisms include wavelet-based embedded coding methods, and a
novel image compression scheme based on texture classification and synthesis.
The specific characteristics of underwater communication channels, including
high latency, intermittent communication, the lack of instantaneous end-to-
end connectivity, and a broadcast medium were taken into consideration.

Kaeli in his PHD thesis [5] shows that the fundamental problem in au-
tonomous underwater robotics is the high latency between the capture of image
data and the time at which operators are able to gain a visual understanding
of the survey environment. Typical missions can generate imagery at rates
hundreds of times greater than highly compressed images can be transmitted
acoustically, delaying that understanding until after the vehicle has been re-
covered and the data analyzed. His thesis presents a lightweight framework
for processing imagery in real time aboard a robotic vehicle. The work imple-
ments a framework on real underwater datasets and demonstrates how it can
be used to select summary images for the purpose of creating low-bandwidth
semantic maps capable of being transmitted acoustically.

Kaeli [5] compares JPEG, JPEG2000 and SPIHT(Set Partitioning in Hi-
erarchical Trees). JPEG is a common example of a lossy compression format
which uses the DCT for each 8x8 block to achieve roughly 10:1 compression
without major perceptual changes in the image. JPEG2000 employs variable
compression rates using progressive encoding, meaning that a compressed im-
age can be transmitted in pieces or packets that independently add finer detail
to the received image. This is particularly well-suited to underwater appli-
cations where acoustic channels are noisy and subject to high packet loss,
however, it is optimized for larger packets that are unrealistic for underwater
acoustic transmissions. Recent work has focused on optimizing similar wavelet
decomposition techniques for underwater applications using smaller packet
sizes with SPIHT.
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Zheng et al. [18] presents a special application of delay tolerant networks
(DTNs). Efficient data collection in deep sea poses some unique challenges, due
to the need for timely data reporting and the delay of acoustic transmission in
the ocean. Autonomous underwater vehicles are deployed in deep sea to surface
communications and frequently have to transmit collected data from sensors
(in a 2-dimensional or 3-dimensional search space) to the surface stations.
However, additional delay occurs at each resurfacing.

Senapati et al. [19] presents a listless implementation of a wavelet based
block tree coding (WBTC) algorithm of varying root block sizes. The WBTC
algorithm improves the image compression performance of SPIHT at lower
rates by efficiently encoding both inter and intra scale correlation using block
trees. Though WBTC lowers the memory requirement by using block trees
compared to SPIHT, it makes use of three ordered auxiliary lists. The proposed
algorithm is combined with DCT and DWT to show its superiority over DCT
and DWT based embedded coders, including JPEG2000 at lower rates. The
compression performance on most of the the standard test images is nearly
the same as WBTC but it outperforms SPIHT by a wide margin particularly
at lower bit rates.

Pearlman et al. [20] proposes an embedded, block-based, image wavelet
transform coding algorithm of low complexity. It uses a recursive set parti-
tioning procedure to sort subsets of wavelet coefficients by maximum mag-
nitude with respect to thresholds that are integer powers of two. It exploits
two fundamental characteristics of an image transform: the well defined hier-
archical structure and and energy clustering in frequency and in space. They
describe the use of this coding algorithm in several implementations, includ-
ing reversible (lossless) coding and its adaptation for color images, and show
extensive comparisons with other state-of-the-art coders, such as SPIHT and
JPEG2000.

Zhang et al [21] presents a new underwater video compression technique
based on adaptive hybrid wavelets and directional filter banks to achieve both
high coding efficiency and good reconstruction quality at very low-bit rates. A
key application is the real-time transmission of video through acoustic channels
with limited bandwidth from an autonomous underwater vehicle to a surface
station, e.g., for man-in-the-loop monitoring and inspection operations.

According to Esmaiel ([22] and [23]) the SPIHT coder based on the wavelet
algorithm is probably the most widely used for image compression, as well as
being a basic standard of compression for all subsequent algorithms [24], [25]
and [26]. In SPIHT, the information bits are sorted according to the bit infor-
mation significance. The protection level of transmitted data must take this
feature into account and progressive protection is provided to the transmitted
bits. This methodology is used to reduce the distortion in the reconstructed im-
age (reduce the difference between the original and the reconstructed images).
After image decomposition with CDF-9/7 wavelet, the general SPIHT coding
algorithm encodes images by splitting the decomposed image into considerable
sections on the basis of the significance classification function [27].
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Mohammed and Hamada [28] propose new scheme for efficient rate allo-
cation in conjunction with reducing peak-to-average power ratio (PAPR) in
orthogonal frequency-division multiplexing (OFDM) systems. Modification of
the SPIHT image coder is proposed to generate four different groups of bit-
streams relative to its significances. The significant bits, the sign bits, the set
bits and the refinement bits are transmitted in four different groups.

None of the references presented use a solution based on progressive im-
age compression and ROI (Region of Interest) and, together, these are the
main contributions of the currently developed algorithm, DEBT. In [6], Ru-
bino et al., presents some initial results for the Raspberry Pi Model 2B plat-
form that allowed for the validation of the proposed approach in a simu-
lated way without using an real RF link. In this work we present real re-
sults obtained with an RF link using the Raspberry Pi 3B platform and
also describe the system in more depth in experimental tests carried out
at the University of Girona using two AUVs, the Girona 500 and Sparus II
(http://cirs.udg.edu/auvs-technology/auvs/), Fig. 1.

3 The Intervention Domain

Robotic applications and, particularly, Autonomous Underwater Vehicles for
Intervention (I-AUV) use images from its built-in camera(s) as one of its main
sources of data, among others, in order to control its internal algorithms. In
a supervised system, these images should reach the operator with the lowest
latency and with the highest quality possible so that he can interact with the
system and adjust the task execution in a supervised manner.

As an example, this kind of control has been experimented in the FP7
TRIDENT project, to perform autonomous visually guided grasping in the
sea [29].

Besides this, communications is a crucial subsystem in any robotic appli-
cation, specially the ones that permit the user to interact remotely with the
system. Because of that, image compression and transmission is necessary in
order to send the required information with the lowest latency and without
compromising the network and the whole system.

Although recent studies demonstrate that, using the most efficient modu-
lation methods, it is possible to transmit video through an underwater channel
using acoustic signals [30,31] and Blue Light [32], both acoustic and optical
signals are not capable to pass through solid objects that could be in the line
of sight of the wireless transceivers. Moreover, the performance of these meth-
ods depends heavily on the characteristics of the underwater scenario and the
type of the channel. On one hand, acoustic systems are greatly affected due to
multi-path if the link is horizontal, and also by the acoustic noise originated
by human activity or the noise of the sea waves, animals, and other sources.
The acoustic noise constrains the range of typical frequencies used in acoustic
systems between 8 and 155 KHz [33], which makes it very difficult to achieve
high data rates. On the other hand, communication methods based on visible
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light only work fine on very clear waters, are greatly affected by scattering,
suffer attenuation by absorption, and usually need accurate alignment.

Nevertheless, RF based solutions are not as affected by the typical prob-
lems of the acoustic and optical methods, and are much cheaper. Moreover,
RF signals can propagate easier from a medium to another, allowing the es-
tablishment of a communication link to an underwater transducer from the
surface.

The main problem of using RF is the high attenuation that it suffers when
the waves go through the water. However, different studies [34,35,36] indicate
that, with the necessary antennas, at lower frequencies, and using the best
modulation methods, it is possible to set up a communication link up to several
tens of meters through the water.

It is worth to mention that the objective of the present work is not to
improve the communications physical media for better underwater RF links,
but the design of a unified system that uses well integrated modules (i.e.
compression and transmission), in order to provide the scientific community
with a higher level protocol for image compression and transmission in sub-sea.

The application of the most advanced progressive image compression al-
gorithms, as the ones presented in this document, allows image transmission
rates of several frames per second, at the typical latency of the radio-frequency
communications.

In the proposed system, a progressive image compression technique and
the use of ROI are demonstrated.

3.1 Overall System Description

As can be seen in figure 2 the system has two main parts: (1) the sensor
side, and (2) the operator one. At the vehicle side the developed circuitry is
installed in the OpenROV (https://www.openrov.com/) housing cylinder. It
includes a Raspberry PI computer running Linux, the camera acquisition, the
compressor and ROI, and the transport layer modules. This is connected to
an Arduino board that controls the RF Radiometrix transmitter.

At the user side, the underwater RF receiver is connected to the user
computer through an USB (Universal Serial Port) port, and provides the user
interface that enables the operator to get the compressed images and select
the corresponding Region Of Interest for further inspection.

The RF transmission system is at an early stage and, for evaluation pur-
poses, a low-power radio module has been used. Further work will concentrate
on using antennas and transceivers better suited for longer distances. The RF
devices used for this experiment are the commercial low power UHF (Ultra
High Frequency) modules BiM3B (http://www.radiometrix.com/content/
bim3b), which work over the 868.3 MHz at 25 mW, and 1/4 wave antennas. On
the transmitter side, the electronics involved are the RPi2B and RPi3B, the
RaspiCam, an Arduino Pro Micro and a RF module. On the receiver side, an
Arduino and a RF module. All the electronics have been encapsulated properly
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Fig. 2 Overall System Architecture: (left) Sensor Side installed in the OpenROV platform
including Raspberry PI for high the compression module, ROI, and network protocol, as well
as the physical RF transceiver controlled via an Arduino board. (right) User interface that
enables user monitoring of the compressed camera information, as well as the specification
of regions of interest by the user

within a watertight container. Transmitter and receiver containers have been
attached and fixed to a wooden stick which has been immersed approximately
at a depth of 15 cm.

For this experiment, 100 encoded images were transmitted for each dis-
tance point at 20, 40, 60, 70, 80 and 100 cm. A prefix of 400 bytes of each
encoded image has been transmitted, and each one within a single PDU (Pro-
tocol Data Unit). The prefix corresponds to the whole image input for a given
quality, that fits in a particular size (e.g. 400 bytes). The number of reception
errors (packets lost plus packets with errors) and the RSSI (Received Signal
Strength Indicator) were measured for each distance. The receiver (Arduino +
RF module) was connected to a PC (Personal Computer) through an USB bus,
where a process decoded and displayed each received image and also showed
an error counter. The RF link was established at 9600 baud. Each packet has
an overhead length of 15 bytes and contains not only the 400 bytes of the
encoded image, but also 26 bytes of extra data.

With this preliminary implementation it was possible to transmit each
one of the 100 images without errors at a maximum distance of 60 cm in
fresh water. Once a distance of 70 cm was reached, only 36 of the 100 images
were received properly. For larger ranges (> 70 cm), it was not possible to
receive any image using the transceivers and antennas used in this particular
experiment. Fig. 3 shows the RSSI sampling at each position and Fig. 4
shows the FPS (Frames per Second) obtained with the same configuration of
the protocol used in the water experiments, for different lengths of the encoded
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Fig. 3 RSSI in a 8x4 freshwater pool using the BiM3B (868.3 MHz at 25 mW). The RSSI
mean is shown with the green line, whereas the red lines represent the standard deviation.
Each point is the distance where a sampling has been performed

Fig. 4 FPS obtained for each prefix length with the experimental protocol and the RF link
established at 9600 baud

image prefix. As it is shown in the image, with a length less than or equal to 800
bytes, a transmission at a frame rate greater than 1 FPS is possible. Usually,
a length of 800 bytes allows an operator on the surface to properly monitor
the camera sensor input.
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3.2 Image Compression

Image compression is a transformation applied to an image in order to reduce
its size as much as possible in order to store or transmit it in a more efficient
manner. There is a clear distinction between lossless and lossy compression.
In lossless compression, the decompressed image will be exactly the same as
the original image while, in lossy compression, the decompressed image will
be an approximation of the original image. Digital images usually have 3 color
components, which means that what we perceive as one color image is (without
loss of generality), in fact, composed of a luminance channel (black and white
version of the color image) and 2 color difference channels (which can usually
be sub sampled without much visual loss).

As opposed to video compression, which takes advantage of the high tem-
poral correlation between adjacent frames in a video sequence and creates
inter-frames which are dependent on previous frames, image compression ex-
clusively creates intra-frames, which are independently compressed frames.
Intra-frames have the advantage of being able to rapidly adapt to changing
conditions in the communications channel as well as increased flexibility in dy-
namically changing the frame rate and quality parameters, which are of great
importance in low bandwidth and low latency communications.

Compression in general and image compression in particular is a very ap-
plication specific task, with many available trade-offs and many different algo-
rithms that try to maximize (or minimize) some design criteria. Most image
compression algorithms are lossy algorithms designed with the sole purpose
of minimizing the resulting size of the image with minimal regards to other
constraints and usually the whole compressed data is necessary in order to be
able to decompress it. A prime example example of this class of algorithms is
the JPEG algorithm which is a de facto standard but performs very poorly
under high compression.

Progressive or embedded image compression is such that it is trivial and
very inexpensive in terms of processing power (there is no need to decompress
and recompress the image) to supply an image which is either a lower reso-
lution or a lower quality approximation of the original image. Preferably, the
compressed image could be simply truncated at any point, yielding a lower res-
olution or lower quality version of the original image (in this sense, progressive
lossless streams can become lossy by simple truncation). In the case of color
images, we could also prepare the image in such a way that a monochrome
version of it could be obtained with the same progressive characteristics as
before.

4 The Depth Embedded Block Tree (DEBT) algorithm

The main properties sought for a proper implementation of our communica-
tions framework are:
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– Quality, Resolution, and Color Channel Scalability - Truncating the stream
should result in the ”best” approximation for the original image or, by
rearranging and truncating the stream, in the ”best” approximation to a
scaled, monochrome or color version of the image;

– ROI (Region of Interest) - Definition of certain areas of the image that
should be compressed with lower distortion than the rest of the image,
allowing for very high compression ratios while keeping these areas with
high quality. The ROI areas could be either chosen automatically by an
object recognition mechanism, or by the user, who desires a higher quality
on an region that is currently not detailed enough;

– Embedded Lossless - Allow for lossless compression with a stream that
yields the “best” possible image at any truncation point and interpreting
the truncated stream as a lossy version of the image which was compressed.
The image could be stored losslessly for later archival but any desired trun-
cated part of it could be transmitted in real time, only compressing the
image once and giving the flexibility of dynamically choosing the transmit-
ted quality or size;

– Fast and Parallelizable - It should perform well on low power, small SBCs
(Single Board Computer) with optional hardware floating point arithmetic
support and with compression speeds comparable to the JPEG (Joint Pho-
tographic Experts Group) algorithm. Also, the algorithm should be paral-
lelizable in order to take advantage of current and future multi-core pro-
cessors, allowing both lower latency and higher throughput;

– High compression - While this seems to be an obvious property for any
image compression algorithm, the goal is to be competitive with current
state-of-the-art image compressors.

Scalable compression usually takes advantage of multiresolution signal de-
composition, which is natural for dyadic wavelet decomposition but can also
be used with DCT [37] or other block transforms by simply rearranging its
coefficients.

There are two major classes of transform-based image compression algo-
rithms. The first follows the transform-model-code paradigm with a very dis-
tinctive separation of the 3 main steps; the transformation (either a block or
wavelet transform), followed by statistical modeling of the coefficients and bit
allocation, followed by entropy coding in the form of some sort of context-
adaptive arithmetic coding. All JPEG coders are in this category and depend
strongly on the final step, which is usually quite slow and needs many op-
erations for each output bit. The JPEG2000 standard, which is the current
state-of-the-art image compressor, is an example of this traditional scheme (it
is based on the Embedded Block Coding with Optimized Truncation (EBCOT)
[38] algorithm).

On the other hand, there are other algorithms which do not have a clear
distinction between the model and code steps and do not rely on any sort
of final entropy coding, which should make them quite fast as well as good
candidates for a parallel implementation. However, most of them rely on or-
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Fig. 6 Bit scan order

thogonal wavelets which makes them unsuitable for lossless compression and
most of them have implementation issues dealing with list manipulation and
high memory use. Also, none of these algorithms have an efficient implemen-
tation available and none of them possess all our requirements simultaneously.
Some of the best known algorithms in this class are EZW [39] (Embedded Ze-
rotree Wavelet), SPIHT [40] (Set Partitioning In Hierarchical Trees), SPECK
[20] (Set Partition Embedded bloCK), HBC [41] (Hybrid Block Coder), WBTC
[42] (Wavelet Block Tree Coder), and GTW [43] (Group Testing for Wavelets),
among many others.

The DEBT algorithm has been designed according to this second class of
algorithms and possess all the stated properties above. Basically, it consists
of:
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2T(i,j)
1T(2i+1,2j)
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Fig. 7 Variable-depth tree partition

2T(i,j)

2B

3T(i,j)

(i,j)

Fig. 8 Variable-depth tree decomposition

1. Wavelet transform - Transform the image using a wavelet transform in
N levels (fig. 5 shows a 3 level dyadic wavelet decomposition). Currently,
the 5/3, 9/3, 9/7, and 13/7 symmetric biorthogonal integer transforms
built from the interpolating Deslauries-Dubuc scaling functions [44] were
implemented, along with the the popular real-valued CDF-9/7 symmetric
biorthogonal transform [44];

2. The concept of variable-depth trees (simply referred as trees) and variable-
depth blocks (simply referred as blocks) is introduced and these are the
main data structures used to group similar magnitude coefficients so that
the necessary significant coefficient addressing information is conveyed in
an efficient manner while exploring the intra and inter band coefficient cor-
relation. Trees and blocks have an associated depth value, which indicates
the actual first pyramidal layer where the coefficients are located (the first
”depth” layers do not exist). Variable-depth trees make the DEBT algo-
rithm perform extremely well specially in very low bit-rate scenarios. Figs.
7 and 8 both show a depth 2 tree on the left;

3. Group coefficients into trees - A novel method of dynamically subdividing
these trees into variable-depth subtrees (simply called subtrees) of a lower
depth called “partition” (fig. 7) or into a block of the same depth and
a subtree of a higher depth called “decompositon” (fig. 8) allows for the
efficient exploration of both intra and inter band correlation while keep-
ing the algorithm simple, effective and fast. In fact, the DEBT algorithm
can be viewed as a superset, generalization, unification, and improvement
of many of the existing set partition algorithms (SPIHT, SPECK, HBC,
WBTC and others) by simply changing a single parameter. Blocks are al-



16 Eduardo M. Rubino et al.

Table 2 Laplace root distortion per bit (σ2 = 1282)

0.864
0.500 1.724
0.500 1.000 3.430
0.500 1.000 2.000 6.794
0.500 1.000 2.000 3.996 13.324
0.500 1.000 2.000 3.996 7.969 25.634
0.500 1.000 2.000 3.996 7.969 15.753 47.508
0.500 1.000 2.000 3.996 7.969 15.753 30.099 82.304
0.500 1.000 2.000 3.996 7.969 15.753 30.099 50.770 128.961

0 1 2 3 4 5 6 7 8
bitplane

ways partitioned into lower depth variable-depth subblocks (simply called
subblocks);

4. In order to achieve good embeddedness (bit allocation), a modeling of the
coefficient distribution must be taken into account so that the instant dis-
tortion reductions for significant and refinement coefficients are predicted,
which will lead to the desired distortion reduction per bit. Currently, the
ordering is done assuming a laplacian distribution for the wavelet coeffi-
cients but a more precise modeling, using a generalized power distribution,
is under investigation and should yield a better ordering and, therefore,
better embeddedness;
Table 2 shows the square root of the instant distortion decrease per bit
for significant (diagonal values) and refinement coefficients (the laplacian
distribution, just like the uniform distribution, has the nice property that
all refinement distortion decreases for bits in the same bitplane are equal,
irrespective of this coefficient’s significant bitplane).
For a laplacian distribution with variance σ2, the values of the distortion
decrease per significant coefficient in an interval [a, b) are given by

∆D =

[
1

λ
+ a− b− a

eλ(b−a) − 1

]2
(1)

and the values of the distortion decrease per refinement coefficient which
are significant in an interval [a, b) are given by

∆Dn =

[
δn+1

cosh(λδn+1)

]2
, n = 1, 2, . . . (2)

where

λ =

√
2

σ2
, δn =

b− a
2n

, cosh(x) =
ex + e−x

2
(3)

and n represents the refinement level.
The number of bits per significant coefficient for coefficients that are sig-
nificant in interval [a, b) is given by

η = 1 +
H(ps)

ps
(4)
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Table 3 Weights for ibior-13/7 DWT

k LLk HLk | LHk HHk

1 1.640625 1.03654814 0.654891968
2 3.20977783 1.73186421 0.934442759
3 6.40856028 3.39070654 1.79398966
4 12.8155956 6.77010059 3.57644415
5 25.630991 13.5386333 7.15128803
6 51.2619553 27.0770607 14.3023653
7 102.523911 54.1540947 28.604702
8 205.047821 108.308182 57.2094002
9 410.095642 216.616364 114.4188

10 820.191284 433.232727 228.837601
11 1640.38257 866.465454 457.675201
12 3280.76514 1732.93091 915.350403
13 6561.53027 3465.86182 1830.70081
14 13123.0605 6931.72363 3661.40161
15 26246.1211 13863.4473 7322.80322
16 52492.2422 27726.8945 14645.6064

where

ps =
e−λa − e−λb

1− e−λb
(5)

and H(x) is the binary entropy function (in bits) defined for 0 ≤ x ≤ 1 as

H(x) = E(x) + E(1− x) (6)

where E is the entropy function (in bits) defined as E(0) = 0 and, for
0 < x <= 1, as

E(x) = −x log2(x) (7)

The distortion decrease per bit for significant coefficients is then calculated
by dividing equation 1 by equation 4, i.e., ∆D/η. In the case of the DEBT
algorithm (and most set partitioning algorithms), the number of bits per
refinement coefficient is 1, even though this is not their real entropy;

5. In general, most DWT are not energy preserving so that each subband
contributes differently to the total distortion. The weight for each subband
can be calculated as a function of its respective reconstruction filter [45]
and should be used as a factor for all the values in table 2 for each respective
subband. Table 3 shows the weights for each subband for the ibior-13/7
wavelet;

6. Precise distortion decrease assignment to each significant and refinement
(subband, bitplane) pair indicates the most important one to send serv-
ing as an embedded bit allocation. Fig. 6 shows an example of a 6 level
transform resulting in coefficients where the maximum absolute value has
9 bits, ranging from bitplanes 0 to 8. Each cell contains the n-th column
of table 2 (where n corresponds to the bitplane level) scaled by the respec-
tive subband gain. As there is a single column for the LL subband, and N
columns for each of the HL, LH, and HH subbands (N is the number of
decompositions) there is a total of (3N +1)B(B+1)/2 weighted distortion
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reduction per bit values, where B is the number of bitplanes, in the general
case. In the case of a laplacian distribution, as all refinement values are the
same for each column, the number of weighted distortion reduction per bit
values can be reduced to (3N + 1)(2B − 1);

7. Scan all weighted distortion reduction per bit values in decreasing order,
output the necessary significance and refinement information, and keep the
set partition and decomposition (addressing) information. All housekeep-
ing is done on a fixed size memory pool with size dependent on the image
dimensions. Roughly speaking, for an N ×M 8-bit image, the DEBT al-
gorithm needs one N ×M 16-bit array for the transform coefficients, one
N ×M 16-bit array for coefficient management and and one N/2 ×M/2
32-bit array for set management.

There are many ways in which different compression algorithms can be
evaluated and compared. For quantifying the error between images, two mea-
sures are commonly used. They are the MSE (Mean Square Error) and the
PSNR (Peak Signal to Noise Ratio). The MSE between an image {yk} and its
approximation {ŷk} is given by:

MSE =

N−1∑
k=0

(yk − ŷk)
2

N

where N is the total number of pixels in each image. The PSNR between two
(8 bpp) images, in decibels is given by

PSNR = 10 log10

(
2552

MSE

)
and is used more often since it is a logarithmic measure and the human brain
seem to respond logarithmically to changes in intensity. Increasing PSNR
means increasing fidelity of compression and, as a rule of thumb, when the
PSNR is greater than or equal to 40 dB, it is said that the two images are
virtually indistinguishable by human observers.

In order to compare the compression ratio obtained by the DEBT algo-
rithm, standard test images were used. Fig. 9 shows the standard “lena” and
“barbara” 512 × 512, 8-bit grey level images and fig. 10 shows the respective
PSNR curves obtained by using the CDF-9/7 wavelet transform and 6 levels
of decomposition with the DEBT algorithm. Table 4 compares DEBT versus
JPEG2000 for various compression rates. The resulting sizes were obtained by
applying the respective rate for the JPEG2000 compressor which were then
used to make DEBT compress exactly to those sizes. Even though the current
DEBT algorithm is not yet finished and still needs tuning, it does a better job
at compressing the test images than the JPEG2000 algorithm by up to 0.5db
without using any kind of entropy coding and while being much faster.

Embedded image compression is a very efficient way to cope with varying
transmission bandwidth problems in hard real time systems, where it would
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Fig. 9 Standard test images “lena” “barbara”
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Fig. 10 PSNR for “lena” and “barbara” (6 level CDF-9/7 wavelet - DEBT)

be better to have a low quality version of the current image instead of a high
quality version of an old image. The main idea behind using embedded image
compression in the current scenario is to group the source of the data (im-
age) with the transmission channel into one manageable whole, increasing the
adaptability of the whole system by varying the amount of data transmitted
when the channel capacity changes, i.e., increase the image quality when there
is bandwidth available and decrease it when there is not, in order to meet a
predefined maximum latency or bandwidth. Also, in order to cope with the
need of very low latency, the current algorithm has been developed with par-
allelism in mind, being able to use many threads of execution in order to
decrease the latency as much as possible.
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Table 4 JPEG2000 comparison

lena barbara
Size PSNR (db) Size PSNR (db)

Rate (bytes) JPEG2000 DEBT (bytes) JPEG2000 DEBT
0.01 2602 28.45 28.87 2572 23.46 23.61
0.02 5202 31.20 31.67 5109 25.45 25.75
0.03 7835 33.07 33.41 7851 27.18 26.95
0.04 10461 34.28 34.67 10479 28.43 28.66
0.05 13090 35.31 35.83 12997 29.56 30.02
0.06 15721 36.10 36.36 15726 30.65 30.89
0.07 18285 36.81 36.89 18177 31.55 31.68
0.08 20842 37.35 37.50 20926 32.37 32.78
0.09 23583 37.95 38.33 23556 33.25 33.79
0.10 26188 38.39 38.85 26152 33.97 34.47
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Fig. 11 TasCPC images for rates 0.0005 and 0.001

5 Underwater test images

In order to test and tune some parameters of the algorithm to underwa-
ter imagery, we used a set of 1258 underwater gray-scale images from the
Australian Center for Field Robotics (http://marine.acfr.usyd.edu.au/
datasets/data/TasCPC/TasCPC_LC.tar.gz). A low bitrate compression per-
formance comparison against the JPEG2000 algorithm was done using the
same parameters we used for the lena and barbara images. The PSNR differ-
ence between the DEBT and JPEG2000 algorithm was plotted for 4 different
rates (0.0005, 0.001, 0.005, and 0.01). All images are 1360 × 1024 pixels and
were numbered in lexical order from 1 up to 1258.

Fig. 11 shows the compression difference in db for all images for rates
0.0005 and 0.001. It is quite clear that the DEBT algorithm performs better
for all images, without exception, for these lower rates by quite a significant
margin, reaching a difference of 2.69 db in the 0.0005 case and 2.19 db in the
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Fig. 12 TasCPC images for rates 0.005 and 0.01

0.001 case. On average, the gain of DEBT over JPEG2000 is 0.43 db and 0.30
db for rates 0.0005 and 0.001, respectively.

As the rate goes up (less compression and more quality), the DEBT al-
gorithm is still superior to the JPEG2000 for all 1258 images in this dataset
except for 1 in the 0.005 case and 2 in the 0.01 case and in all these cases
the compression quality was very high (the images were very dark), over 40
db or higher for both algorithms. Fig. 12 shows the results for these rates. On
average, the gain of DEBT over JPEG2000 is 0.23 db and 0.25 db for rates
0.005 and 0.01, respectively.

A few images were randomly selected from this dataset and are presented
in figure 13. Each row shows the original image (1st column) and compressed
with the DEBT algorithm at exactly 500, 1000, and 2000 bytes on the 2nd,
3rd, and 4th columns, respectively.

An important point to note is that the DEBT algorithm makes it very
easy, by simply changing the weights on each cell shown in fig. 6, to create
a stream which is not optimal in the MSE sense but which could be better
suited to highlight other characteristics of the image at very low bitrates. These
alternate metrics should be the subject of further investigation.

6 Region Of Interest (ROI)

In a low-bandwidth scenario or when the images are highly compressed, there
may be circumstances where the image is still not good enough for an operator
to distinguish the necessary details. In this case, the use of ROI is an elegant
solution to the problem of being able to see the details in part of the image
while still maintaining a very high compression level, at the expense of making
the other areas in the image less detailed. ROI has been most extensively used
in conjunction with medical imaging and are an integral part of the JPEG2000
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Fig. 13 Underwater images 16, 227, 274, 813, 977, 1082, and 1219 compressed at original,
500, 1000, and 2000 bytes
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Non-ROI bitplanes

ROI bitplanes

Fig. 14 ROI coding methods: (a) Uniform compression, (b) bitplane shifts for the maxshift
method, and (c) bitplane shifts for the scaling-based method [6]

Fig. 15 (a) ROI mask, and (b) Wavelet mask for 2 levels of DWT [6]

standard. Most ROI techniques are usually used in conjunction with wavelet
based image coding techniques [46].

For ROI processing, there must be a way for the decoder to know which
regions were encoded with higher priority than others. A common method
known as maxshift [47] [48] is commonly used so that the bitplanes of the
ROI region are encoded in its entirety before any bitplanes of the rest of the
image (background) (see Fig.14). This has the advantage of almost no overhead
(only the number of extra bitplanes are sent so the decoder knows that after
reaching this number of bitplanes it should unscale the received coefficients
by the amount of bitplanes remaining) but has the disadvantage of having to
send the whole ROI, with all its details, before receiving a single bit from the
rest of the image.

A more useful method known as scaling [47] [48] consists of simply shifting
the ROI coefficients by a certain number of bits so that they fool the bit alloca-
tion algorithm into thinking that they are more important than they actually
are and coding them before other coefficients that became smaller due to the
scaling (see Fig. 14). In fact, this effectively blends the ROI coefficients with
background coefficients which are also important (same order of magnitude)
such that the results are seen with good quality in a lower quality background.
The main disadvantage of this method is that a ROI map must be sent as ex-
tra information to the decoder (overhead), increasing the minimum amount of
bits necessary to recover a suitable approximation to the original image.

This map information can consist of object coordinates (rectangles, ellipses,
or arbitrary polygons) or, in case of an arbitrary region, a bitmap of the
ROI. In this last case, in order to reduce the amount of overhead, this map
could be the resulting map on the last decomposition subband (LL) thereby
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Fig. 16 Effect of ROI in PSNR: without ROI in black and with ROI in red

significantly decreasing the bitmap size but having the drawback of using a
coarser scale, depending on the number of dyadic decompositions (for an n-
level dyadic decomposition the grid would be 2n × 2n pixels). This bitmap
usually consists of a small region and, therefore, is a good candidate for some
form of run-length encoding (Fig. 15).

Other methods, which interleave the ROI coefficients with the background
coefficients, in a predetermined and alternating order, have also been devised in
order to minimize the transmission of overhead information but most of them
require fundamental algorithmic changes so that both the encoder and the
decoder scan the bitplanes in the same order and are more complex than the
maxshift and scaling method. The examples used in this paper were prepared
with the scaling algorithm with arbitrary coarse regions as described above.

It should be observed that, in general, the use of ROI will impact negatively
in the PSNR of the whole reconstructed image but will improve significantly
the fidelity in the ROI region itself. In our example, Fig. 16 shows the difference
for coding the region around the text with 4 bits of shifting in comparison of
the coding of the image without any ROI. The image used for this is the
monochrome 1920×1080 image used in fig. 17 and the ROI is the rectangle of
dimensions 128× 64 with top left corner at (x0, y0) = (1024, 192) and bottom
right corner at (x1, y1) = (1151, 255).
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Without ROI

Original with 2.1 Mbytes

With ROI on the word ”GIRONA 500”

Original with 2.1 Mbytes

4000 bytes 4000 bytes

2000 bytes 2000 bytes

1000 bytes 1000 bytes

500 bytes 500 bytes

250 bytes 250 bytes

Fig. 17 Comparison of compressed image with and without ROI - DEBT
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7 Implementation

A working implementation has been developed in the C programming lan-
guage with special vector code for both Intel and ARM processors to speed
up the inner loop of the wavelet transform routine. A few wavelet transforms
were implemented: integer wavelet transforms (interpolating biorthogonal in-
teger transforms 5/3, 9/3, 9/7 and ibior-13/7) and the CDF-9/7 real-valued
transform. The wavelet used for the examples in this paper was the ibior-13/7
transform, which has a highpass filter with 7 taps and a lowpass filter with 13
taps. This wavelet allows for lossless compression and can also be truncated
at any point yielding performance within 0.5 db of the CDF-9/7 real-valued
transform but being much faster due to the all-integer arithmetic and 16-bit
coefficients.

For the 1920 × 1080 pixels, 8 bpp graylevel image used (fig.17) we ran
the compressor in both a Raspberry Pi 2 Model B (RPi2B) and Raspberry
Pi 3 Model B (RPi3B). The RPi2B is based on a 1.0 GHz quad code ARM
processor (quad core ARM Cortex-A7 with 512KB L2 cache) manufactured by
Broadcom (BCM2836 SoC) while the RPi3B, the third generation Raspberry
Pi, uses a Broadcom BCM2837 SoC (quad core ARM Cortex-A53 with 512KB
of L2 cache) operating at 1.3 GHz with 1 GB of DDR2 RAM. Both use a 32-bit
memory bus which was operated at 500 MHz.

The timings for each board for compressing the image on the upper left
corner of Fig. 17 with and without ROI are displayed on Tables 5 and 6. The
algorithm has a parameter that specifies either the max size or a “quality”
factor (which bears some inverse relation with the PSNR). The normal usage
(if lossless compression is not required) is to use a “good” quality parameter
for local storage and transmission of any prefix of this file for lower quality
versions of the compressed image. The “quality” used for each line of the
tables was 0, 4, 8, 12, 16, and 24. The wavelet used was the ibior-13/7 b-spline
interpolating integer transform with 6 decomposition levels. The first line of
each table (where the “quality” parameter is 0) is for the lossless case, where
MSE = 0 (PSNR = ∞) and all timings were based on the single-threaded
version of the algorithm.

The column labeled “pre” (tables 5 and 6) is the time (in milliseconds)
for the wavelet transformation and all other tasks needed to actually start
running the compression algorithm (mean extraction, significance map, etc).
This step is independent of the amount of bits output and is in fact a lower
bound for images of this size (it is almost independent of the contents of the
image itself and mostly dependent on the image dimensions alone).

The column labeled “code” (Tables 5 and 6) is the time (in milliseconds) for
the actual compression algorithm and is directly proportional to the amount
of bits output. Therefore, the specification of a quality factor or a maximum
size will have a great impact on this part and in the total running time for the
image compression.



Title Suppressed Due to Excessive Length 27

Table 5 RPi2B and RPi3B timings (without ROI)

RPi2B RPi3B
Q Size PSNR Pre Code Total Pre Code Total

(bytes) (db) (ms) (ms) (ms) (ms) (ms) (ms)
0 754627 ∞ 61.9 298.6 360.4 30.3 201.7 232.0
4 59456 43.00 62.5 35.0 97.5 30.4 24.5 54.9
8 23180 41.18 62.0 13.5 75.5 30.4 9.5 39.9

12 16219 40.27 62.6 9.7 72.4 30.3 6.8 37.1
16 10575 39.13 62.6 6.0 68.6 30.4 4.2 34.6
24 6051 37.37 62.0 3.5 65.5 30.4 2.4 32.8

Table 6 RPi2B and RPi3B timings (with ROI)

RPi2B RPi3B
Q Size PSNR Pre Code Total Pre Code Total

(bytes) (db) (ms) (ms) (ms) (ms) (ms) (ms)
0 758378 ∞ 62.7 298.8 361.5 30.6 201.7 232.3
4 63516 43.03 62.7 35.7 98.4 30.8 25.2 56.0
8 27023 41.25 62.5 14.7 77.2 30.7 10.3 40.9

12 19648 40.36 63.0 10.9 73.9 30.7 7.6 38.3
16 13710 39.26 63.1 7.3 70.4 30.8 4.9 35.7
24 8768 37.52 63.2 4.6 67.8 30.5 3.1 33.6

Table 7 JPEG2000 X DEBT with ibior-13/7 and CDF-9/7 (no ROI)

Rate Size PSNR (db)
(bytes) JPEG2000 DEBT ibior-13/7 DEBT cdf-9/7

0.0001 179 19.15 26.79 27.67
0.0002 400 28.15 29.99 30.08
0.0005 1027 31.87 32.39 32.53
0.001 2055 33.78 34.26 34.52
0.002 4080 35.96 36.11 36.69
0.005 10339 38.60 39.03 39.58
0.01 20702 40.66 40.87 41.69
0.02 41238 42.63 42.39 43.25
0.05 103634 44.60 43.98 44.80
0.1 207315 45.98 45.75 46.00

7.1 Benchmark: DEBT x JPEG2000

Table 7 compares DEBT with JPEG2000. The JPEG2000 implementation
used was the “JasPer” program [49] version 2.0.12 with 6 levels of decomposi-
tions and the CDF-9/7 wavelet transform. In order to do a “fair” comparison,
we have also included a run of our algorithm with the same number of decom-
postions (6) and the same wavelet (CDF-9/7) along with the previously used
6 levels of decompositions and the ibior-13/7 integer wavelet transform (used
for the timing results in the previous tables).

It is important to note that, because JPEG2000 does not has an option of
exact output size, the amount of bytes used in the comparison was given by the
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resulting size of the JPEG2000 file by using the following: jasper --input

tank.pgm --output tank.jpc --output-format jpc -O rate=X, where X

is the rate (first column) for the compression. The resulting file size was then
used to compress the same image using our algorithm to this exact size, once
with our current parameters (6 decomposition levels and the ibior-13/7 DWT)
and another with the same parameters as the ones used in the JPEG2000 case
(6 decomposition levels and the CDF-9/7 DWT).

The results show that, for the example image used, our algorithm is quite
competitive with the current state-of-the-art JPEG2000 codec, even when us-
ing the ibior-13/7 DWT and is vastly superior for very small rates using either
DWT. In our example, DEBT constantly outperforms JPEG2000 when us-
ing the same number of decompositions (6) and both transforms, while being
much faster.

8 Conclusions and Further Work

This paper proposes the use of progressive image compression and region of
interest (ROI) for a RF underwater image sensor to be installed in a robotic
platform. The operator can dynamically decide the size, quality, frame-rate and
resolution of the received images so that the available bandwidth is utilized to
its fullest potential and with the required minimum latency.

The system is capable of dynamically and precisely adjust the image com-
pression to either a predefined size or quality and it proved that it was capable
of sending good quality images using 400-800 bytes. The frame rate is directly
proportional to the channel capacity and can be precisely established by vary-
ing the size of the compressed images. Quality is enhanced by letting the
operator specify a Region Of Interest in the camera input, which means that
more details can be observed in this specific part of the image, maintaining
the final image size and the consumed network channel.

Related to the compression algorithm, which is explained in detail in the
previous sections, results show that one core of a RPi3B can compress high-
resolution full-HD images (1920 × 1080) in very high quality. It can be seen
from table 5 that it can process close to 30 frames per second with a PSNR
around 40 db and there are still 3 more cores to be used by other processes.

Currently, a vectorized and parallel implementation of the DEBT algorithm
(https://tinyurl.com/y722ecbf), including a parallel wavelet transform im-
plementation for the above mentioned transforms, is being developed which
should make it able to process very large images in real time on embedded
multi-processor single board computers (SBC). Also, the use of a better PDF
match for the DWT coefficients instead of the laplace PDF is being imple-
mented (work is being done on the Exponential Power Distribution, also know
as the Generalized Gaussian Distribution of Generalized Normal Distribution)
which should improve the rate distortion curve of the compression allowing for
an optimized stream in case the coefficients are really modeled by such a PDF.



Title Suppressed Due to Excessive Length 29

The RPi2B is a less powerful board for images of this dimension but is still
able to compress around 15 frames per second at the same 40 db PSNR using
a single core. In this case, either the quality, frame size, or frame rate could
be tuned so that the desired rate is achieved. Also, once the parallel version of
both the DWT and DEBT are implemented, all cores could be used yielding
a substantially faster compression rate.

As long as the ROI is a small region, there is not much difference in en-
coding times for using it, even though there is a small penalty to pay in
compression efficiency for the whole image, as expected.

In summary, a specially designed progressive compression algorithm has
been implemented so that it possesses both quality and resolution scalability,
ROI, and is simple and fast enough with the goal of being usable in limited
resource computers while producing compression comparable or better than
current state-of-the-art compressors. The results show that it is quite compet-
itive with state-of-the-art compression algorithms like JPEG2000 while being
an order of magnitude faster.

Further work will concentrate on improving the communications physical
layer in order to obtain communication distances around 5 meters, according
to the project needs. Also, the higher level transport protocol will be enhanced
by using congestion techniques that obtain a better use of the available band-
width.
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