1,540 research outputs found

    A posteriori error control for discontinuous Galerkin methods for parabolic problems

    Full text link
    We derive energy-norm a posteriori error bounds for an Euler time-stepping method combined with various spatial discontinuous Galerkin schemes for linear parabolic problems. For accessibility, we address first the spatially semidiscrete case, and then move to the fully discrete scheme by introducing the implicit Euler time-stepping. All results are presented in an abstract setting and then illustrated with particular applications. This enables the error bounds to hold for a variety of discontinuous Galerkin methods, provided that energy-norm a posteriori error bounds for the corresponding elliptic problem are available. To illustrate the method, we apply it to the interior penalty discontinuous Galerkin method, which requires the derivation of novel a posteriori error bounds. For the analysis of the time-dependent problems we use the elliptic reconstruction technique and we deal with the nonconforming part of the error by deriving appropriate computable a posteriori bounds for it.Comment: 6 figure

    A posteriori error bounds for discontinuous Galerkin methods for quasilinear parabolic problems

    Get PDF
    We derive a posteriori error bounds for a quasilinear parabolic problem, which is approximated by the hphp-version interior penalty discontinuous Galerkin method (IPDG). The error is measured in the energy norm. The theory is developed for the semidiscrete case for simplicity, allowing to focus on the challenges of a posteriori error control of IPDG space-discretizations of strictly monotone quasilinear parabolic problems. The a posteriori bounds are derived using the elliptic reconstruction framework, utilizing available a posteriori error bounds for the corresponding steady-state elliptic problem.Comment: 8 pages, conference ENUMATH 200

    Adaptive discontinuous Galerkin approximations to fourth order parabolic problems

    Full text link
    An adaptive algorithm, based on residual type a posteriori indicators of errors measured in L(L2)L^{\infty}(L^2) and L2(L2)L^2(L^2) norms, for a numerical scheme consisting of implicit Euler method in time and discontinuous Galerkin method in space for linear parabolic fourth order problems is presented. The a posteriori analysis is performed for convex domains in two and three space dimensions for local spatial polynomial degrees r2r\ge 2. The a posteriori estimates are then used within an adaptive algorithm, highlighting their relevance in practical computations, which results into substantial reduction of computational effort

    Multi-Adaptive Time-Integration

    Full text link
    Time integration of ODEs or time-dependent PDEs with required resolution of the fastest time scales of the system, can be very costly if the system exhibits multiple time scales of different magnitudes. If the different time scales are localised to different components, corresponding to localisation in space for a PDE, efficient time integration thus requires that we use different time steps for different components. We present an overview of the multi-adaptive Galerkin methods mcG(q) and mdG(q) recently introduced in a series of papers by the author. In these methods, the time step sequence is selected individually and adaptively for each component, based on an a posteriori error estimate of the global error. The multi-adaptive methods require the solution of large systems of nonlinear algebraic equations which are solved using explicit-type iterative solvers (fixed point iteration). If the system is stiff, these iterations may fail to converge, corresponding to the well-known fact that standard explicit methods are inefficient for stiff systems. To resolve this problem, we present an adaptive strategy for explicit time integration of stiff ODEs, in which the explicit method is adaptively stabilised by a small number of small, stabilising time steps

    Interior a posteriori error estimates for time discrete approximations of parabolic problems

    Get PDF
    a posteriori error estimates for time discrete approximations o

    An adaptive finite element method for laser surface hardening of steel problem

    Get PDF
    ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC
    corecore