
ACMAC’s PrePrint Repository

Interior a posteriori error estimates for time discrete approximations of
parabolic problems

Christian Lubich and Charalambos Makridakis

Original Citation:

Lubich, Christian and Makridakis, Charalambos

(2012)

Interior a posteriori error estimates for time discrete approximations of parabolic problems.

(Unpublished)

This version is available at: http://preprints.acmac.uoc.gr/95/
Available in ACMAC’s PrePrint Repository: February 2012

ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

http://preprints.acmac.uoc.gr/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ACMAC

https://core.ac.uk/display/10853768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preprints.acmac.uoc.gr/95/
http://preprints.acmac.uoc.gr/


INTERIOR A POSTERIORI ERROR ESTIMATES FOR
TIME DISCRETE APPROXIMATIONS OF PARABOLIC PROBLEMS

CHRISTIAN LUBICH AND CHARALAMBOS MAKRIDAKIS

ABSTRACT. We derive a posteriori estimates for single-step methods, including Runge–
Kutta and Galerkin methods for the time discretization of linear parabolic equations. We
focus on the estimation of the error at the nodes and derive a posteriori estimates that
show the full classical order (superconvergence order) in the interior of the spatial domain
without any compatibility assumptions.

1. INTRODUCTION

This paper is devoted to a posteriori error estimation of one-step time discretization
methods for linear parabolic differential equations. The expected order of accuracy at the
time nodes is higher than the order expected in other points provided compatibility condi-
tions are satisfied that are, however, unrealistic with all kinds of (Dirichlet or Neumann or
Robin) boundary conditions except periodic boundary conditions. In the case of Runge-
Kutta methods, the maximal order at the nodal points is the classical order of the method.
Thus if the required compatibility conditions are not fully satisfied an order reduction with
respect to the classical order is observed.

In the present paper our goal is twofold, we first give a new proof of the a posteriori
error bounds at the nodes and next we show that the order reduction does not occur in the a
posteriori control of the error in the interior of the spatial domain. Here we use the unified
treatment of essentially all single-step time-stepping schemes of [3] and of the correspond-
ing reconstructions. A key novel feature of our analysis is an error representation formula
based on Duhamel’s principle. Through this expression a direct superconvergence analysis
for Runge-Kutta and Galerkin time discretization schemes is possible. Our interior results
are a posteriori analogs of the a priori estimates of [9].

For previous a posteriori results using various one step time discretization methods we
refer, e.g., to [1, 2, 3, 5, 6, 7, 8, 10, 12]. A posteriori time-superconvergence results for fully
discrete schemes based on dG piecewise linear time discretization methods were derived
in [5].
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2 CH. LUBICH AND CH. MAKRIDAKIS

1.1. Discretization methods. We consider linear parabolic equations in a Hilbert space
setting: Find u : [0, T ]→ D(A) satisfying

(1.1)

{
u′(t) + Au(t) = f(t), 0 < t < T,

u(0) = u0,

with A a positive definite, self-adjoint, linear operator on a Hilbert space (H, 〈·, ·〉) with
domain D(A) dense in H, and a given forcing term f : [0, T ]→ H.

We will use the notation and formalism of [3] to describe the numerical methods con-
sidered. We consider piecewise polynomial functions in arbitrary partitions 0 = t0 < t1 <

· · · < tN = T of [0, T ], and let Jn := (tn−1, tn] and kn := tn − tn−1. We denote by
Vd
q , q ∈ N0, the space of functions that are piecewise polynomials of degree at most q in

time in each subinterval Jn with coefficients in V = D(A1/2), without continuity require-
ments at the nodes tn. The elements of Vd

q are taken continuous to the left at the nodes tn;

Vq(Jn) consist of the restrictions to Jn of the elements of Vd
q . The spacesHd

q andHq(Jn) are
defined similarly by requiring that the coefficients are in H. Let Vc

q andHc
q be the spaces of

the continuous elements of Vd
q andHd

q. For v ∈ Vd
q we let vn := v(tn), vn+ := limt↓tn v(t).

To define the time stepping methods we introduce the operator Πq−1 to be a projection
operator to piecewise polynomials of degree q−1,Πq−1 : C([0, T ];H)→ ⊕Nn=1Hq−1(Jn).

Also, Π̃q : Hq(Jn) → H`(Jn) is an operator mapping polynomials of degree q to polyno-
mials of degree `, with ` = q or ` = q − 1; Πq−1 and Π̃q are defined in a reference time
interval and then transformed into Jn.

The time discrete approximation U to the solution u of (1.1) is defined as follows: We
seek U ∈ Vc

q satisfying the initial condition U(0) = u0 as well as

(1.2) U ′(t) +Πq−1F (t, Π̃qU(t)) = 0 ∀t ∈ Jn,

where F (t, v) = Av − f(t). An equivalent Galerkin formulation is

(1.3)
∫
Jn

[
〈U ′, v〉+ 〈Πq−1F (t, Π̃qU(t)), v〉

]
dt = 0 ∀v ∈ Vq−1(Jn),

for n = 1, . . . , N, see [3]. The above formalism covers a large class of one-step time
discretization schemes. In particular, the continuous Galerkin (cG) method is

(1.4) U ′(t) + Pq−1F (t, U(t)) = 0 ∀t ∈ Jn,

with Πq−1 := Pq−1, with P` denoting the L2 orthogonal projection operator onto H`(Jn).

Furthermore, in [3] was shown that (1.3) describes other important implicit single-step time
stepping methods: the RK collocation methods (RK-C) with Πq−1 := Iq−1 and Π̃q = I ,
with Iq−1 denoting the interpolation operator at the collocation points; all other interpola-
tory RK methods with Πq−1 := Iq−1, and appropriate Π̃q (with ` = q) ; the discontinuous
Galerkin (dG) method with Πq−1 := Pq−1 and Π̃q = Iq−1, where Iq−1 is the interpolation
operator at the Radau points 0 < c1 < · · · < cq = 1 (so ` = q − 1).
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1.2. Superconvergence – classical order. A key assumption for the time-discretization
methods related to the accuracy at the time nodes is: We assume that the method (1.2) is
associated to q pairwise distinct points c1, . . . , cq ∈ [0, 1] with the property

(1.5)
∫ 1

0

q∏
i=1

(τ − ci)v(τ) dτ = 0 for all polynomials v of degree ≤ r.

This condition induces orthogonality conditions at each interval Jn with tn,i := tn−1+cikn,

i = 1, . . . , q. These points will be associated to projections (or interpolants) used to define
the method (1.2); see [3] for details. The superconvergence order or classical order p of
the method at the nodes is denoted

(1.6) p = q + 1 + r ,

which is equal to the order of the interpolatory quadrature with nodes ci.

2. NODAL ERROR ANALYSIS IN H

2.1. Main error equation. As in [3] we compare the solution u to the reconstruction Û
of U defined through

(2.1) Û(t) := U(tn−1)−
∫ t

tn−1

Π̂q

[
AΠ̃qU − f

]
(s) ds ∀t ∈ Jn.

where the projection operators Π̂q onto Hq(Jn), n = 1, . . . , N, are chosen to agree with
Πq−1 at tn,i:

(2.2) (Π̂q −Πq−1)w(tn,i) = 0, i = 1, . . . , q, ∀w ∈ C([0, T ];H).

In view of (1.5) for v(τ) = 1 and (2.2), we obtain Û(tn) = U(tn) and conclude that Û is
continuous. Furthermore, Û satisfies

(2.3) Û ′(t) = −Π̂q[AΠ̃qU(t)− f(t)] = −Π̂qF (t, Π̃qU(t)) ∀t ∈ Jn,

which has a similar structure to (1.2). The motivation for introducing Û goes back to [1, 2]
and details for its various properties are discussed in [3]. In the sequel we will specify the
choices of the projections for different methods. At this point we just mention two key
properties of Û : The first one is the orthogonality property which follows by (2.2)

(2.4)
∫
Jn

〈(Π̂q −Πq−1)w(s), v(s)〉 ds = 0 ∀w ∈ C([0, T ];H), v ∈ Hr(Jn),

for n = 1, . . . , N. The second one is a further assumption on Πq−1, namely for all V ∈
Hq(Jn),

(2.5)
∫
Jn

〈V −Πq−1V, v〉dt = 0 ∀v ∈ Hr−1(Jn),

which, in view of (2.4), yields

(2.6)
∫
Jn

〈Π̂qV − V, v〉dt = 0 ∀v ∈ Hr−1(Jn).
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Condition (2.5) is verified by both cG and dG methods, for which Πq−1 = Pq−1, as well as
by RK methods, for which Πq−1 = Iq−1.

We state now the main error equation, which is the starting point of our analysis. Let R̂
be the residual of Û ,

(2.7) − R̂(t) := Û ′(t) + AÛ(t)− f(t).

Subtracting (2.7) from the differential equation in (1.1), we obtain the equation

(2.8) ê′(t) + Aê(t) = R̂(t),

for the error ê := u− Û , which we rewrite in the form

(2.9) ê′(t) + Aê(t) = RÛ(t) +RΠ̃q
(t) +RΠ̂q

(t) +Rf (t)

with

(2.10) RÛ := A(U − Û), RΠ̂q
:= A(Π̂q − I)Π̃qU, Rf := f − Π̂qf,

and

(2.11) RΠ̃q
(t) := A(Π̃qU − U).

Notice that RΠ̂q
vanishes when Π̂q is a projector overHq(Jn) whereas RΠ̃q

vanishes when

Π̃q = I.

2.2. Error representation via Duhamel’s principle. We now apply Duhamel ’s principle
to (2.8):

(2.12) ê(t) =

∫ t

0

EA(t− s)R̂(s) ds ,

where EA(t) = e−At is the solution operator of the homogeneous equation

(2.13) v′(t) + Av(t) = 0, v(0) = w,

i.e., v(t) = EA(t)w. The family of operators EA(t) is athe ope semigroup of contractions
on H with generator −A. The following properties are well known, cf., e.g., Crouzeix [4],
Thomée [12],

(2.14)
d`

dt`
EA(t)w = (−A)`EA(t)w , ` ≥ 0 ,

and

(2.15) |A`EA(t)w| ≤ CA
1

t`−m
|Amw| ` ≥ m ≥ 0 .

Since A and EA commute, (2.15) implies

(2.16) |EA(t)A`w| ≤ CA
1

t`−m
|Amw| , ` ≥ m ≥ 0 ,

whence |EAw| ≤ CAt
−m|A−mw|.
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Starting from (2.12) we derive now a different error representation formula involving
time derivatives ofEA. In the interval tn−1 ≤ s ≤ tn we define the scaled jth antiderivative
of R̂ as

(2.17) R̂[j]
n (s) := k−jn

∫ s

tn−1

∫ sj−1

tn−1

· · ·
∫ s1

tn−1

R̂(τ) ds1ds2 . . . dsj−1dτ , j ≥ 1 .

Then, one has,

(2.18) kjnR̂
[j]
n (s) =

∫ s

tn−1

(s− τ)j−1

(j − 1)!
R̂(τ)dτ , j ≥ 1 .

Using (2.14) ,(2.18) and integrating by parts in (2.12) we obtain,∫ t

tn−1

EA(t− s)R̂(s) ds =

∫ t

tn−1

EA(t− s)kn
d

ds
R̂[1]
n (s) ds

=

∫ t

tn−1

EA(t− s)AknR̂[1]
n (s) ds+ knR̂

[1]
n (t) .

(2.19)

Further,∫ t

tn−1

EA(t− s)AknR̂[1]
n (s) ds =

∫ t

tn−1

EA(t− s)A d

ds
k2
nR̂

[2]
n (s) ds

=

∫ t

tn−1

EA(t− s)A2 k2
nR̂

[2]
n (s) ds+ Ak2

nR̂
[2]
n (t) .

(2.20)

Thus, for any ρ,∫ t

tn−1

EA(t− s)R̂(s) ds =

∫ t

tn−1

EA(t− s)Aρ kρnR̂[ρ]
n (s) ds

+

ρ∑
j=1

Aj−1kjnR̂
[j]
n (t) .

(2.21)

Notice that, still for t ≥ tn−1, and for s ∈ Jm, EA(t− s) = EA(t− tm)EA(tm − s), thus∫
Jm

EA(t− s)R̂(s) ds = EA(t− tm)

∫ tm

tm−1

EA(tm − s)R̂(s) ds .(2.22)

Treating the last integral as (2.21) we have proved the following proposition.

Proposition 2.1. Let t ∈ Jn, then with R̂[j]
n defined by (2.17), the following error represen-

tation formula holds:

ê(t) =

∫ t

tn−1

EA(t− s)kρ−1
n Aρ−1R̂[ρ−1]

n (s) ds+

ρ−1∑
j=1

kjnA
j−1R̂[j]

n (t)

+
n−1∑
m=1

(∫
Jm

EA(t− s)kρmAρR̂[ρ]
m (s) ds+ EA(t− tm)

ρ∑
j=1

kjmA
j−1R̂[j]

m (tm)

)
.

(2.23)
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The error representation formula (2.23) will be the starting point of our analysis. We
mainly consider t = tn, which leads to a posteriori error control at the time nodes. We will
treat separately Galerkin schemes and Runge-Kutta methods. We use (2.16) in the above
error representation formula to obtain

|e(tn)| = |ê(tn)| ≤ CA

∫
Jn

∣∣∣kρ−1
n Aρ−1 R̂[ρ−1]

n (s)
∣∣∣ ds+

∣∣∣ ρ−1∑
j=1

kjnA
j−1R̂[j]

n (tn)
∣∣∣

+ CA

n−1∑
m=1

(∫
Jm

∣∣∣ 1

(tn − s)
kρmA

ρ−1 R̂[ρ]
m (s)

∣∣∣ ds+
∣∣∣ ρ∑
j=1

kjmA
j−1R̂[j]

m (tm)
∣∣∣) .

The terms in the above relation are treated in a different manner. The expression (2.18)
yields ∫

Jn

∣∣∣kρ−1
n Aρ−1 R̂[ρ−1]

n (s)
∣∣∣ ds ≤ kρn

ρ!
sup
s∈Jn

∣∣Aρ−1R̂(s)
∣∣,

and
n−1∑
m=1

∫
Jm

∣∣∣ 1

(tn − s)
kρmA

ρ−1 R̂[ρ]
m (s)

∣∣∣ ds ≤ max
m

kρm
ρ!

sup
s∈Jm

∣∣Aρ−1R̂(s)
∣∣ ∫ tn−1

0

1

tn − s
ds

≤ log
tn
kn

max
0≤m≤n

kρm
ρ!

sup
s∈Jm

∣∣Aρ−1R̂(s)
∣∣ .

Let

(2.24) Ln := log
tn
kn

+ 1,

then we have

(2.25) |e(tn)| ≤ CALn max
1≤m≤n

kρm
ρ!

sup
s∈Jm

∣∣Aρ−1R̂(s)
∣∣+

n∑
m=1

∣∣∣ ρ∑
j=1

kjmA
j−1R̂[j]

m (tm)
∣∣∣ .

We are ready now to derive the main estimates of this section.

2.3. Nodal estimates for Galerkin schemes. In the case of Galerkin schemes (continuous
or discontinuous) the error estimates are direct consequences of (2.25). The main point here
is that the terms involving R̂[j]

m (tm) all vanish due to the orthogonality. In this case we have
the following result.

Theorem 2.1. Let q ≥ 2 and R̂ ∈ D(Aρ−1) hold for some 1 ≤ ρ ≤ q − 1. Then, the error
of the continuous Galerkin method of order q and of the discontinuous Galerkin method
dG(q − 1) satisfies

(2.26) |e(tn)| ≤ CALn max
1≤m≤n

kρm
ρ!
|Aρ−1R̂|L∞(Jm),

where CA is the stability constant in (2.15) and Ln is given in (2.24).
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Proof. Recall that both methods are written in the form

(2.27) U ′(t) + Pq−1F (t, Π̃qU(t)) = 0 ∀t ∈ Jn,

where Π̃q = I for the cG method, and for the dG method Π̃q = Iq−1, where Iq−1 is the
interpolation operator at the Radau points. Notice that in both cases Πq−1 = Pq−1. In view
of (2.3),

(2.28) Û ′(t) + Π̂qF (t, Π̃qU(t)) = 0 ∀t ∈ Jn,

with Π̂q = Pq . Therefore in the case of the cG method R̂(t) = RÛ(t)+RΠ̃q
(t)+RΠ̂q

(t)+

Rf (t) where

(2.29) RÛ = A(U − Û), RΠ̂q
= A(Pq − I)U, RΠ̃q

(t) = 0, Rf = f − Pqf .

Hence by (2.4) we have

(2.30)
∫
Jn

〈R̂, v〉 dt = 0 ∀v ∈ Vq−2(Jn).

In view of the definition of R̂[j]
m of (2.18), we obtain

(2.31) R̂[j]
m (tm) = 0,

so that the terms involving R̂[j]
m (tm) in (2.25) vanish and (2.26) follows.

In the case of the dG method, the properties of Gauss-Radau quadrature imply

(2.32)
∫
Jn

〈A(Iq−1U − U), v〉 dt = 0 ∀v ∈ Vq−2(Jn).

Thus, given that in the expression for R̂ the difference to the cG case is that RΠ̃q
+RΠ̂q

=

A(Iq−1U − U), (2.30) still holds in this case as well. The proof is thus complete. �

Remark 2.1 (Rate of convergence). One notices that the highest possible order of the
residual R̂ for dG is q in (2.26), whereas it is q + 1 for cG. Hence the highest order in
(2.26) is 2q in for cG and 2q − 1 for dG, as expected. The difference is due to the fact that
in the dG case the residual R̂ contains an additional term of the formRΠ̃q

= A(U−Iq−1U).

Note, however, that the full order is attained only if R̂ ∈ D(Aq−2). For q > 2 this is usually
not satisfied, since it requires unnatural compatibility conditions at the boundary when A
is an elliptic operator with Dirichlet or Neumann boundary conditions.

2.4. Nodal estimates for collocation methods. In this section we establish a posteriori
estimates for the nodal error for RK collocation methods. We recall that the classical order
p of the RK-C method satisfies q + 1 ≤ p ≤ 2q, i.e., 1 ≤ ρ ≤ r = p − q − 1. The main
difference to the case of Galerkin schemes is that the terms involving R̂[j]

m (tm) give rise
to non-zero expressions involving the inhomogeneity f. In this case we choose Π̂q = Îq,

[2, 3]. Îq is an extended interpolation operator defined on continuous functions v with the
following two key properties

(2.33) Îqv ∈ Hq(Jn), (Îqv)(tn,i) = v(tn,i), i = 1, . . . , q .
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Îq interpolates v at one more point, either inside Jn either outside given that v is defined at
an extended interval. This issue was discussed in detail in [3].

Now, as before we start from R̂(t) = RÛ(t) +RΠ̃q
(t) +RΠ̂q

(t) +Rf (t) where

(2.34) RÛ = A(U − Û), RΠ̂q
= A(Îq − I)U, RΠ̃q

(t) = 0, Rf = f − Îqf .

Therefore by the assumptions on Îq we have

(2.35)
∫
Jn

〈RÛ +RΠ̂q
+RΠ̃q

(t), v〉 dt = 0 ∀v ∈ Hr−1(Jn).

Concerning the remaining term Rf , we introduce the notation

(2.36) E
[j]
f,n =

∫
Jn

(tn − τ)j−1

(j − 1)!
Rf (τ) dτ , 1 ≤ j ≤ r .

This is just the quadrature error of the function (tn− τ)j−1/(j− 1)! · f(τ) over the interval
Jn,

E
[j]
f,n =

∫
Jn

(tn − τ)j−1

(j − 1)!
f(τ) dτ − kn

q∑
i=1

bi
((1− ci)kn)j−1

(j − 1)!
f(tn−1 + cikn),

which is of optimal order O(kp+1
n ) if f is p-times continuously differentiable. Then, in

view of the definition of R̂[j]
n of (2.18) and due to (2.35), we have

kjnR̂
[j]
n (tn) = E

[j]
f,n .

With (2.25) we therefore obtain the following result. A similar result holds for perturbed
collocation methods, [11], compare to [3].

Theorem 2.2. Let the classical order p of a q−stage Runge-Kutta collocation method
satisfy p ≥ q + 2 and let R̂, f ∈ D(Aρ−1) for 1 ≤ ρ ≤ r = p− q − 1. Then the following
a posteriori error estimate is valid at the nodes tn :

|e(tn)| ≤ CALn max
1≤m≤n

kρm
ρ!
|Aρ−1R̂|L∞(Jm) +

n∑
m=1

ρ∑
j=1

∣∣∣Aj−1E
[j]
f,m

∣∣∣.
The full classical order p is attained when R̂, f ∈ D(Ar−1), which for r > 1 again

imposes unnatural compatibility conditions.

Remark 2.2. The estimate in [3] for RK collocation methods is similar. The first term on
the right hand side is the same but the term involving the quadrature errors E[j]

f,m differs to
the one of [3] which is

(2.37) CALn

ρ−1∑
j=0

max
1≤m≤n

(
kjm|Aj−1

(
f − Îq+ρ−jf

)
|L∞(Jm)

)
.

The auxiliary interpolator operators Î` are defined as follows: Let t̂m,j ∈ Jm, with j =

1, . . . , ρ, be pairwise distinct and different from tm,i, with i = 0, . . . , q. The operator Î`
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is an interpolation operator of order ` with ` = q + 1, . . . , q + ρ, defined on continuous
functions v on [0, T ] and values onH`(Jm):

(Î`v)(σ) = v(σ), σ = tm,i, t̂m,j, i = 0, . . . , q, j = 1, . . . , `− q.

Here, in contrast to [3] we have chosen not to include the non-homogeneous term in the
argument involving the strong stability of EA. For that reason our bound has one higher
power of A. In both cases the required regularity of R̂ remains the same. Nevertheless,
the second term in Theorem 2.2 can be controlled by the terms appearing in (2.37). To see
why, notice that our assumptions imply∫

J`

Îqv dx =

∫
J`

v dx , v ∈ Hp−1 .

Then, with Î` as above we have,

E
[j]
f,m =

∫
J`

(tm − τ)(j−1)

(j − 1)!
(f − Îqf)(τ)dτ

=

∫
Jm

(tm − τ)(j−1)

(j − 1)!
(f − Îp−jf)(τ)dτ +

∫
Jm

(tm − τ)(j−1)

(j − 1)!
(Îp−jf − Îqf)(τ)dτ .

The last integral is zero and therefore,

∣∣Aj−1E
[j]
f,m

∣∣ ≤ kjm
(j − 1)!

∣∣Aj−1(f − Îp−jf)
∣∣
L∞(Jm)

.(2.38)

3. INTERIOR A POSTERIORI ERROR BOUNDS

We prove the following main result, which yields full-order a posteriori error bounds in
the interior of the domain without requiring any compatibility conditions on the boundary.
By Hk(S) we denote the standard Sobolev space of order k defined on a domain S.

Theorem 3.1. Let A be the negative Laplacian on a bounded domain Ω ⊂ Rd, equipped
with Dirichlet boundary conditions. Let ω ⊂ ω̂ ⊂ Ω be subdomains such that the bound-
aries of the three domains have pairwise distances of at least δ > 0.

Let q ≥ 2 and R̂|ω̂ ∈ H2ρ(ω̂) for some 1 ≤ ρ ≤ r = p− q − 1, where p is the classical
order of the method. Then, the following holds:

1. The error of the continuous Galerkin method of degree q and of the discontinuous
Galerkin method dG(q − 1) satisfies

(3.1) ‖e(tn)‖L2(ω) ≤ C1

n∑
m=1

kρm

∫
Jm

(
‖R̂(t)‖H2ρ(ω̂) + ‖R̂(t)‖L2(Ω)

)
dt,

where C1 depends only on Ω and δ.



10 CH. LUBICH AND CH. MAKRIDAKIS

2. The error of a q-stage Runge-Kutta collocation method satisfies

‖e(tn)‖L2(ω) ≤ C1

n∑
m=1

kρm

∫
Jm

(
‖R̂(t)‖H2ρ(ω̂) + ‖R̂(t)‖L2(Ω)

)
dt

+ C2

n∑
m=1

ρ∑
j=1

(
‖E[j]

f,m‖H2(j−1)(ω̂) + ‖E[j]
f,m‖L2(Ω)

)
,(3.2)

where E[j]
f,m is the quadrature error defined in (2.36) and C1, C2 depend only on Ω and δ.

The interior nodal error bounds are of optimal order p when R̂ is sufficiently regular
in a neighbourhood of the subdomain ω. The regularity away from ω and the boundary
behaviour play no role. We further remark that the dependence of C1, C2 on the domain Ω

is only through the constants in Poincaré–Friedrichs inequalities. The result could straight-
forwardly be generalized to any second-order elliptic differential operator with smooth
coefficients and appropriate essential boundary conditions.

For the proof we consider a finite chain of domains

ω = ω0 ⊂ ω1 ⊂ · · · ⊂ ω`−1 = ω̂ ⊂ ω` = Ω,

where ` = 2ρ + 2 and the distance from ωj to the boundary of ωj+1 is for all j bounded
from below by a constant times δ. To these regions we associate smooth cutting functions
χj on Ω such that

χj ≡ 1 in ωj , χj ≡ 0 outside ωj+1

for j = 0, 1, . . . , ` − 1, and χ` ≡ 1 on Ω. Viewed as multiplication operators, these
functions have the following property with respect to the norm | · | of H = L2(Ω):

(3.3) |A−(j+1)/2(Aχj − χjA)v| ≤ β |A−j/2χj+1v|.

For A = −∆, this bound is a consequence of the fact that the commutator Aχj − χjA is a
first-order differential operator.

Lemma 3.1. If operators χ0, . . . , χ` satisfy (3.3) and χ` = id, then

|χ0EA(t)v|2 ≤ |χ0v|2 + β2|A−1/2χ1v|2 + . . .+ β2`|A−`/2χ`v|2.

Proof. We denote w(t) = EA(t)v andBj = χjA−Aχj . Since w(t) satisfies w′+Aw = 0,
w(0) = v, we have

χ0w
′ + Aχ0w = B0w, χ0w(0) = χ0v.

The standard parabolic energy estimate yields

|χ0w(t)|2 +

∫ t

0

|A1/2χ0w(s)|2 ds ≤ |χ0v|2 +

∫ t

0

|A−1/2B0w(s)|2 ds

and hence, by (3.3),

|χ0w(t)|2 ≤ |χ0v|2 + β2

∫ t

0

|χ1w(s)|2 ds.



INTERIOR A POSTERIORI ESTIMATES FOR SINGLE-STEP METHODS 11

Since χ1w(t) solves χ1w
′ + Aχ1w = B1w, χ1w(0) = χ1v, we obtain by the same argu-

ment ∫ t

0

|χ1w(s)|2 ds ≤ |A−1/2χ1v|2 + β2

∫ t

0

|A−1/2χ2w(s)|2 ds.

Continuing in this way, we have for j = 1, . . . , `− 1∫ t

0

|A−(j−1)/2χjw(s)|2 ds ≤ |A−j/2χjv|2 + β2

∫ t

0

|A−j/2χj+1w(s)|2 ds.

Since χ` = id, for j = `− 1 the last integral term equals∫ t

0

|A−(`−1)/2w(s)|2 ds ≤ |A−`/2v|2.

Concatenating the above estimates completes the proof. �

Proof. (of Theorem 3.1) We work in the Hilbert space H = L2(Ω) with the norm | · | =

‖ · ‖L2(Ω). We begin by noting

‖e(tn)‖L2(ω) ≤ |χ0e(tn)|

and e(tn) = ê(tn). For Galerkin methods we obtain from (2.23) and the Galerkin orthogo-
nality (2.31) that

|χ0e(tn)| ≤
n−1∑
m=1

∫
Jm

kρm
∣∣χ0EA(tn − s)AρR̂[ρ]

m (s)
∣∣ ds.

By Lemma 3.1 with ` = 2ρ+ 2 we have, for w = R̂
[ρ]
m (s),∣∣χ0EA(tn − s)Aρw

∣∣2 ≤ ∣∣χ0A
ρw
∣∣2 + β2

∣∣A−1/2χ1A
ρw
∣∣2 + . . . β2`

∣∣A−`/2χ`Aρw∣∣2.
We now show that we can estimate∣∣A−j/2χjAρw∣∣ ≤ C ‖w‖H2ρ−j(ωj+2).

For this we use a duality argument:∣∣A−j/2χjAρw∣∣ = sup
ϕ∈C∞0 (Ω), ϕ 6=0

〈χjAρw,ϕ〉
|Aj/2ϕ|

= sup
ϕ6=0

〈Aρ−j/2χj+1w,A
j/2χjϕ〉

|Aj/2ϕ|
.

Since the norm |Aj/2 · | is equivalent to the Hj(Ω) Sobolev norm on C∞0 (Ω), we have∣∣Aj/2χjϕ∣∣ ≤ C ′
∣∣Aj/2ϕ∣∣ ∀ϕ ∈ C∞0 (Ω).

Hence,∣∣A−j/2χjAρw∣∣ ≤ C ′
∣∣Aρ−j/2χj+1w| ≤ C ′′ ‖χj+1w‖H2ρ−j(Ω) ≤ C ‖w‖H2ρ−j(ωj+2),

which is the desired estimate. Combining the above estimates, we obtain

|χ0e(tn)| ≤ C

n−1∑
m=1

kρm

∫
Jm

(
‖R̂[ρ]

m (s)‖H2ρ(ω2) + β‖R̂[ρ]
m (s)‖H2ρ−1(ω3) + . . .

+ β`−3‖R̂[ρ]
m (s)‖H1(ω`−1) + (β`−2 + β`−1 + β`)‖R̂[ρ]

m (s)‖L2(Ω)

)
ds,
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which implies the error bound of Theorem 3.1 for the Galerkin methods. For the Runge–
Kutta methods, there appear in addition the quadrature errors E[j]

f,m of (2.36), which are
treated in the same way. �
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