
ACMAC’s PrePrint Repository

An adaptive finite element method for laser surface hardening of steel
problem

Gupta Nupur and Nataraj Neela

Original Citation:

Nupur, Gupta and Neela, Nataraj

(2011)

An adaptive finite element method for laser surface hardening of steel problem.

(Submitted)

This version is available at: http://preprints.acmac.uoc.gr/81/
Available in ACMAC’s PrePrint Repository: February 2012

ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

http://preprints.acmac.uoc.gr/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ACMAC

https://core.ac.uk/display/10853754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preprints.acmac.uoc.gr/81/
http://preprints.acmac.uoc.gr/


Noname manuscript No.
(will be inserted by the editor)

An Adaptive Finite Element Method for Laser Surface Hardening of Steel

Problem

Nupur Gupta ⋆, Neela Nataraj ⋆⋆

the date of receipt and acceptance should be inserted later

Abstract The main focus of this article is on the development of an adaptive finite element method for the

laser surface hardening of steel, which is an optimal control problem governed by a dynamical system consisting

of a semi-linear parabolic equation and an ordinary differential equation. A posteriori error estimators are being

calculated, for the variable representing temperature and austenite, using residual method when a continuous

piecewise linear discretization has been used for the finite element approximation of space variables and a

discontinuous Galerkin method has been used for time and control discretizations. The estimators are used in

the implementation and numerical results are obtained.

Keywords: Laser surface hardening of steel problem, Adaptive finite element method, Residual type estima-

tors, a posteriori error estimates.

1 Introduction

In this paper, we develop a posteriori error estimates for the the approximation of the variables representing

temperature and austenite in the optimal control problem describing the laser surface hardening of steel. The

purpose of surface hardening is to increase the hardness of the boundary layer of a workpiece by rapid heating

and subsequent quenching (see Figure 1). The hardening effect is achieved as the heat treatment leads to a

change in micro-structure. A few applications include cutting tools, wheels, driving axles, gears, etc.

The mathematical model for the laser surface hardening of steel has been studied in [13] and [17]. For an

extensive survey on mathematical models for laser material treatments, we refer to [26]. In this article, we

follow the Leblond-Devaux model [13] which is described below:

Let Ω ⊂ R
2, denoting the workpiece, be a convex, bounded domain with piecewise Lipschitz continuous

boundary ∂Ω, Q = Ω × I and Σ = ∂Ω × I , where I = (0, T ), T < ∞. The evolution of volume fraction of
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Fig. 1: Laser Hardening Process

austenite a(t) for a given temperature evolution θ(t) is described by the following initial value problem:

∂ta = f+(θ, a) =
1

τ (θ)
[aeq(θ) − a]+ in Q, (1.1)

a(0) = 0 in Ω, (1.2)

where aeq(θ(t)), denoted as aeq(θ) for notational convenience, is the equilibrium volume fraction of austenite

and τ depends only on temperature. The term [aeq(θ) − a]+ = (aeq(θ) − a)H(aeq(θ) − a), where H is the

Heaviside function

H(s) =

(

1 s > 1

0 s ≤ 0,

denotes the non-negative part of aeq(θ) − a, that is, [aeq(θ) − a]+ =
(aeq(θ) − a) + |aeq(θ) − a|

2
.

Neglecting the mechanical effects and using the Fourier law of heat conduction, the temperature evolution

can be obtained by solving the non-linear energy balance equation given by

ρcp∂tθ −K∆θ = −ρLat + αu in Q, (1.3)

θ(0) = θ0 in Ω, (1.4)

▽θ.n = 0 on Σ, (1.5)

where the density ρ, the heat capacity cp, the thermal conductivity K and the latent heat L are assumed to

be positive constants. The term u(t)α(x, t) describes the volumetric heat source due to laser radiation, u(t)

being the time dependent control variable. Since the main cooling effect is the self cooling of the workpiece,

homogeneous Neumann conditions are assumed on the boundary. Also, θ0 denotes the initial temperature.

To maintain the quality of the workpiece surface, it is important to avoid the melting of surface. In the

case of laser hardening, it is a quite delicate problem to obtain parameters that avoid melting but nevertheless

lead to the right amount of hardening. Mathematically, this corresponds to an optimal control problem in

which we minimize the cost functional defined by:

J(θ, a, u) =
β1

2

Z

Ω

|a(T ) − ad|
2dx+

β2

2

Z T

0

Z

Ω

[θ − θm]2+dxds+
β3

2

Z T

0
|u|2ds (1.6)

subject to the state equations (1.1) − (1.5) in the set of admissible controls Uad,



3

where Uad = {u ∈ U : ‖u‖L2(I) ≤ M} is a closed, bounded and convex subset of U = L2(I), denoting

the admissible intensities of the laser, β1, β2 and β3 being positive constants and ad being the given desired

fraction of the austenite. The second term in (1.6) is a penalizing term that penalizes the temperature above

the melting temperature θm.

The authors of [1] and [17], have regularised the right hand side function in (1.1) and have established

results on existence, regularity and stability. This approach seems to be common in all subsequent literature

not only for existence results but also for numerical approximations. In [14], the existence of the solution of

the original problem has been established. Laser and induction hardening has been used to explain the model

and then a finite volume method has been used for the space discretization in [18]. In [19], the optimal control

problem is analyzed and error estimates for proper orthogonal decomposition Galerkin method for the state

system are derived. Also a penalized problem has been considered for the purpose of numerical simulations.

A finite element scheme combined with a nonlinear conjugate gradient method has been used to solve the

optimal control problem and a finite element method has been used for the purpose of space discretization

in [31]. In [15] (respectively, [16]), a priori error estimates are developed for a finite element scheme in which

the space discretization is done using conformal finite elements (respectively, discontinuous Galerkin method),

whereas the time and control discretizations are based on a discontinuous Galerkin method.

Adaptive Finite Element Methods (AFEMs) are amongst one of the important means to boost the accuracy

and efficiency of the finite element discretization. It ensures higher density of nodes in certain areas of computa-

tional domain, where it is more difficult to approximate the solution. Estimates obtained are called a posteriori

error estimates as they depend on the approximate solution and data given, and the refinement/coarsening

of meshes is done based on the estimate for the discretization error. A posteriori error estimation for finite

element methods for two point elliptic boundary value problems began with the pioneering work of Babuška

and Rheinboldt [2]. The use of adaptive technique based on a posteriori error estimation is well accepted in the

context of finite element discretization of partial differential equations, see Bank [3], Becker and Rannacher

[4], [7], [8], Eriksson and Johnson [10], [11], Verfurth [30].

Two approaches, namely the residual and dual weighted residual (DWR) methods based a posteriori error

estimates have been studied for elliptic, parabolic, non-linear and optimal control problems in literature. While

residual based methods are useful in estimating error in L2 or energy based norms involving local residuals of

the computed solution, DWR method is useful in estimating the error bounds not only in energy norm and

L2 norm but also on some quantity of physical interest, like, point value error, point value derivative error,

mean normal flux etc. (see [7], [8] and [29]).

For a posteriori error estimates for elliptic equations using residual (resp. DWR) method, see [2], [3] and

[30] (resp. [4], [7], [8]), just to mention a few. AFEM for linear parabolic problems are also studied in [10],

[11] using residual type estimators and in [4] using DWR type estimators, and the references cited therein.

In [27], a priori and a posteriori estimates using DWR method have been developed for the optimal control

problem governed by parabolic equations, where laser surface hardening of steel problem is considered as one

of the applications. Energy type error estimation for the error in the control, state and adjoint variables using

residual method are developed in [21], [23] and [24] in the context of distributed optimal control problems

governed by elliptic equation subject to pointwise control constraints. These techniques are also been applied

to optimal control problem governed by linear parabolic differential equations, see [22] and [25].

In this article we will discuss residual AFEM for the laser surface hardening of steel. In [15] and [16], a

priori error estimates are developed for the same problem and non-uniform meshes (more refined near the

heated zone and coarse far from the operational area) are used in implementations. Even though it has been

observed that non-uniform meshes are helpful in yielding the desired numerical results which justify theoretical
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estimates, practically, they are quite expensive as the mesh used for the approximation, chosen a priori, is

independent of the approximate solution of the problem. To overcome this, in this article, residual based a

posteriori estimates has been developed and the refinement of the triangulation near the heating zone is done

based on these indicators.

The outline of this article is as follows. Section 1 is introductory in nature. In Section 2, the regularized

laser surface hardening of steel problem and its weak formulation are stated. Section 3 gives details of the space,

time and control discretizations. In Section 4, a posteriori error estimates corresponding to residual approach

is developed. In Section 5, adaptive refinement algorithm is described and the results of implementations are

presented.

2 The Regularized Laser Surface Hardening of Steel Problem

For theoretical, as well as computational reasons, the term [aeq −a]+ in (1.1) is regularized and the regularized

laser surface hardening problem is given by:

min
uǫ∈Uad

J(θǫ, aǫ, uǫ) subject to (2.1)

∂taǫ = fǫ(θǫ, aǫ) =
1

τ (θǫ)
(aeq(θǫ) − aǫ)Hǫ(aeq(θǫ) − aǫ) in Q, (2.2)

aǫ(0) = 0 in Ω, (2.3)

ρcp∂tθǫ −K△ θǫ = −ρL∂taǫ + αuǫ in Q, (2.4)

θǫ(0) = θ0 in Ω, (2.5)

∂θǫ
∂n

= 0 on Σ, (2.6)

where Hǫ ∈ C1,1(R) is a monotone approximation of the Heaviside function satisfying Hǫ(x) = 0 for x ≤ 0.

We now make the following assumptions [19]:

(A1) aeq(x) ∈ (0, 1) for all x ∈ R and ‖aeq‖C1(R) ≤ ca;

(A2) 0 < τ ≤ τ (x) ≤ τ̄ for all x ∈ R and ‖τ‖C1(R) ≤ cτ ;

(A3) θ0 ∈ H1(Ω), θ0 ≤ θm a.e. in Ω, where the constant θm > 0 denotes the melting temperature of steel;

(A4) α ∈ L∞(Q);

(A5) u ∈ L2(I);

(A6) ad ∈ L∞(Ω) with 0 ≤ ad ≤ 1 a.e. in Ω.

Remark 2.1 Now onwards, since the finite element approximation of the regularized problem will be considered

in the sequel, for the sake of notational simplicity (θǫ, aǫ, uǫ) and fǫ will be replaced by (θ, a, u) and f

respectively, throughout the paper.

Let V = H1(Ω) and H = L2(Ω), and (·, ·)(resp. (·, ·)I,Ω) and ‖ · ‖(resp. ‖ · ‖I,Ω) denote the inner product

and norm in L2(Ω)(resp. L2(I,L2(Ω))). The inner product and norm in L2(I) are denoted by (·, ·)L2(I) and

‖ · ‖L2(I), respectively. The weak formulation of the regularized version of laser surface hardening of steel
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problem (2.1)-(2.6) is given by:

min
u∈Uad

J(θ, a, u) subject to (2.7)

(∂ta,w) = (f(θ, a), w) ∀w ∈ H, a.e. in I, (2.8)

a(0) = 0, (2.9)

ρcp(∂tθ, v) + K(▽θ,▽v) = −ρL(∂ta, v) + (αu, v) ∀v ∈ V, a.e. in I, (2.10)

θ(0) = θ0, (2.11)

where (θ(t), a(t)) ∈ V × H . The following theorem ([31], Theorem 2.1) ensures the existence of a unique

solution of the system (2.8)-(2.11).

Theorem 2.1 [31] Suppose that (A1)-(A6) are satisfied. Then, the system (2.8)-(2.11) has a unique solution

(θ, a) ∈ H1,1 ×W 1,∞(I ;L∞(Ω)),

where H1,1 = L2(I ;H1(Ω)) ∩H1(I ;L2(Ω)). Moreover, a satisfies

0 ≤ a < 1 a.e. in Q.

For existence of the solution of the of the original laser surface hardening of steel problem, we refer to ([14],

Theorem 3.2).

Remark 2.2 [31] Using Theorem 2.1, (A1)-(A2) and the definition of the regularized Heaviside function Hǫ,

there exists a constant cf > 0 independent of θ and a such that

max(‖f(θ, a)‖L∞(Q), ‖fa(θ, a)‖L∞(Q), ‖fθ(θ, a)‖L∞(Q)) ≤ cf

for (θ, a) ∈ L2(Q) × L∞(Q) which satisfy (2.8) - (2.11).

The existence of the optimal control is guaranteed by the following Theorem ([31], Theorem 2.3).

Theorem 2.2 Suppose that (A1)-(A6) hold true. Then the optimal control problem (2.7)-(2.11) has at least

one (global) solution.

Let u∗ ∈ Uad be a solution of (2.7)-(2.11) and (θ∗, a∗) be the solution of the corresponding state system. In

the following lemma, we state the existence and uniqueness result of the corresponding adjoint system.

Lemma 2.1 [31] Let (A1)-(A6) hold true and (θ∗, a∗, u∗) ∈ X × Y ×Uad be a solution to (2.7)-(2.11). Then

there exists a unique solution (z∗, λ∗) ∈ H1,1 ×H1(I,L2(Ω)) of the corresponding adjoint system defined by:

−(ψ, ∂tλ
∗) + (ψ, fa(θ∗, a∗)(ρLz∗ − λ∗)) = 0 ∀ψ ∈ H, a.e. in I, (2.12)

λ∗(T ) = β1(a∗(T ) − ad), (2.13)

−ρcp(φ, ∂tz
∗) + K(▽φ,▽z∗) + (φ, fθ(θ∗, a∗)(ρLz∗ − λ∗)) = β2(φ, [θ∗ − θm]+) (2.14)

∀φ ∈ V, a.e. in I,

z∗(T ) = 0. (2.15)

Moreover, z∗ satisfies the following variational inequality

„

β3(u∗ − ud) +

Z

Ω

αz∗dx, p− u∗
«

L2(I)

≥ 0 ∀p ∈ Uad. (2.16)
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3 Discretizations

In this section, we describe a temporal discretization using a discontinuous Galerkin finite element method and

a space discretization using continuous piecewise polynomials. The control is being discretized using piecewise

constants in each discrete interval In, n = 1, 2, · · ·, N .

Time Discretization

In order to discretize (2.7)-(2.11) in time, we consider the following partition of I :

0 = t0 < t1 < .... < tN = T.

Set I1 = [t0, t1], In = (tn−1, tn], kn = tn − tn−1, for n = 2, ..., N and k = max
1≤n≤N

kn. We define the spaces

Xq
k

= {φ : I → V ; φ|In
=

q
X

j=0

ψjt
j , ψj ∈ V }, q ∈ N, (3.1)

Y q
k

= {φ : I → H ; φ|In
=

q
X

j=0

ψjt
j , ψj ∈ H}, q ∈ N. (3.2)

For a function v in Xq
k

or Y q
k

, we use the following notations:

vn = v(tn), v+n = lim
t→tn+0

v(t) and [v]n = v+n − vn.

Then the dG(q) discretization of (2.7)-(2.11) reads as:

min
uk∈Uad

J(θk, ak, uk) subject to (3.3)

N
X

n=1

(∂tak, w)In,Ω +
N−1
X

n=1

([ak]n, w
+
n ) + (a+

k,0, w
+
0 ) = (f(θk, ak), w)I,Ω , (3.4)

ak(0) = 0, (3.5)

ρcp

N
X

n=1

(∂tθk, v)In,Ω + K(▽θk,▽v)I,Ω + ρcp

N−1
X

n=1

([θk]n, v
+
n ) + ρcp(θ+k,0, v

+
0 )

= −ρL(f(θk, ak), v)I,Ω + (αuk , v)I,Ω + ρcp(θ0, v
+
0 ), (3.6)

θk(0) = θh,0 (3.7)

for all (v, w) ∈ Xq
k
× Y q

k
and θh,0 is suitable approximation of θ0.

The adjoint system corresponding to (3.3)-(3.7) obtained from Karush-Kuhn-Tucker (KKT) conditions is

defined by: find (z∗k, λ
∗
k) ∈ Xq

k
× Y q

k
such that

−
N

X

n=1

(ψ, ∂tλ
∗
k)In,Ω −

N−1
X

n=1

(ψn, [λ
∗
k]n) = −(ψ, fa(θ∗k, a

∗
k)(ρLz∗k − λ∗k))I,Ω , (3.8)

λ∗k(T ) = β1(a
∗
k(T ) − ad), (3.9)

−ρcp

N
X

n=1

(φ, ∂tz
∗
k)In,Ω + K(▽φ,▽z∗k)I,Ω − ρcp

N−1
X

n=1

(φn, [z
∗
k ]n) = −(φ, fθ(θ∗k, a

∗
k)(ρLz∗k − λ∗k))I,Ω

+β2(φ, [θ
∗
k − θm]+)I,Ω , (3.10)

z∗k(T ) = 0, (3.11)
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for all (ψ, φ) ∈ Xq
k
× Y q

k
. Moreover, z∗k satisfies the following variational inequality

„

β3u
∗
k +

Z

Ω

αzkdx, p− u∗k

«

L2(I)

≥ 0 ∀p ∈ Uad. (3.12)

Space Discretization

We describe a space discretization for (3.3)-(3.7) using a continuous Galerkin finite element method. Let

Th be an admissible regular triangulation of Ω̄ into triangles/quadrilaterals K. Let the discretization parame-

ter h be defined as h = max
K∈Th

hK , where hK is the diameter of K. Let the finite element space Vh ⊂ V consist

of globally continuous functions which when restricted to K ∈ Th are piecewise polynomials.

Let Xq
kh

= {φ : I → Vh; φ|In
=

q
X

j=0

ψjt
j , ψj ∈ Vh}, q ∈ N. (3.13)

Then the space-time discretization of (3.3)-(3.7) reads as:

min
ukh∈Uad

J(θkh, akh, ukh) subject to (3.14)

N
X

n=1

(∂takh, w)In,Ω +

N−1
X

n=1

([akh]n, w
+
n ) + (a+

kh,0, w
+
0 ) = (f(θkh, akh), w)I,Ω , (3.15)

akh(0) = 0, (3.16)

ρcp

N
X

n=1

(∂tθkh, v)In,Ω + K(▽θkh,▽v)I,Ω + ρcp

N−1
X

n=1

([θkh]n, v
+
n ) + ρcp(θ+kh,0, v

+
0 )

= −ρL(f(θkh, akh), v)I,Ω + (αukh, v)I,Ω + ρcp(θ0, v
+
0 ), (3.17)

θkh(0) = θh,0, (3.18)

for all (v, w) ∈ Xq
kh

×Xq
kh

and (θhk, ahk) ∈ Xq
kh

×Xq
kh

.

Remark 3.3 Although, for the computational ease, the finite element space Xq
kh

has been used to discretize

the variables θ and a, where approximation is done using continuous functions, the variable a can also be

approximated using discontinuous polynomials.

The adjoint system corresponding to (3.14)-(3.18) is defined by: find (z∗kh, λ
∗
kh) ∈ Xq

kh
×Xq

kh
such that

−

N
X

n=1

(ψ, ∂tλ
∗
kh)In,Ω −

N−1
X

n=1

(ψn, [λ
∗
kh]n) = −(ψ, fa(θ∗kh, a

∗
kh)(ρLz∗kh − λ∗kh))I,Ω , (3.19)

λ∗kh(T ) = β1(a
∗
kh(T ) − ad), (3.20)

−ρcp

N
X

n=1

(φ, ∂tz
∗
kh)In,Ω + K(▽φ,▽z∗kh)I,Ω

−ρcp

N−1
X

n=1

(φn, [z
∗
kh]n) = −(φ, fθ(θ∗kh, a

∗
kh)(ρLz∗kh − λ∗kh))I,Ω (3.21)

+β2(φ, [θ
∗
kh − θm]+)I,Ω , (3.22)

z∗kh(T ) = 0, (3.23)

for all (ψ, φ) ∈ Xq
kh

×Xq
kh

. Here, z∗kh satisfies the following variational inequality
„

β3u
∗
kh +

Z

Ω

αz∗khdx, p− u∗kh

«

L2(I)

≥ 0 ∀p ∈ Uad. (3.24)
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Complete discretization

In order to completely discretize the problem (2.7)-(2.11), we choose a discontinuous Galerkin piecewise

constant approximation of the control variable, u. Let Ud be the finite dimensional subspace of U defined

by

Ud = {vd ∈ L2(I) : vd|In
= a constant} ∀n = 1, 2, · · ·, N.

Let Ud,ad = Ud ∩ Uad and σ = σ(h, k, d) be the discretization parameter. The completely discretized problem

reads as:

min
uσ∈Ud,ad

J(θσ, aσ, uσ) subject to (3.25)

N
X

n=1

(∂taσ, w)In,Ω +
N−1
X

n=1

([aσ]n, w
+
n ) + (a+

σ,0, w
+
0 ) = (f(θσ , aσ), w)I,Ω, (3.26)

aσ(0) = 0, (3.27)

ρcp

N
X

n=1

(∂tθσ , v)In,Ω + K(▽θσ ,▽v)I,Ω + ρcp

N−1
X

n=1

([θσ ]n, v
+
n ) + ρcp(θ+σ,0, v

+
0 ) (3.28)

= −ρL(f(θσ , aσ), v)I,Ω + (αuσ , v)I,Ω ,+ρcp(θ0, v
+
0 ),

θσ(0) = θh,0, (3.29)

for all (v, w) ∈ Xq
kh

×Xq
kh

and where (θσ , aσ) ∈ Xq
kh

×Xq
kh

.

The adjoint system corresponding to (3.25)-(3.29) is defined by: find (z∗σ , λ
∗
σ) ∈ Xq

kh
×Xq

kh
such that

−
N

X

n=1

(ψ, ∂tλ
∗
σ)In,Ω −

N−1
X

n=1

(ψn, [λ
∗
σ]n) = −(ψ, fa(θ∗σ , a

∗
σ)(ρLz∗σ − λ∗σ))I,Ω,(3.30)

λ∗σ,N = β1(a∗σ(T ) − ad), (3.31)

−ρcp

N
X

n=1

(φ, ∂tz
∗
σ)In,Ω + K(▽φ,▽z∗σ)I,Ω − ρcp

N−1
X

n=1

(φn, [z
∗
σ]n) = −(φ, fθ(θ∗σ, a

∗
σ)(ρLz∗σ − λ∗σ))I,Ω

+ β2(φ, [θ
∗
σ − θm]+)I,Ω , (3.32)

z∗σ,N = 0, (3.33)

for all (ψ, φ) ∈ Xq
kh

×Xq
kh

. Moreover, z∗σ satisfies the variational inequality,

„

β3u
∗
σ +

Z

Ω

αz∗σdx, p− u∗σ

«

L2(I)

≥ 0 ∀p ∈ Ud,ad. (3.34)

4 A Posteriori Error Estimates

In this section, a posteriori error estimates using residual method is developed for the purpose of adaptive

refinement. A use of AFEM helps in obtaining meshes which are solution and data dependent.

Residual methods are important, when estimating errors in global norms are crucial. We have used residual

method to calculate the a posteriori error estimates for the temperature θ, austenite a and control u, in

L∞(I,L2(Ω)) and L2(I) norm, respectively. These estimates are then used in the next section for the purpose

of numerical experiments. The following results would be necessary for developing the estimates.
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– Average interpolation Operator [20], [22] : The average interpolation operator πh : V −→ Vh satisfies

the following error estimates: for v ∈ H1(Ω),

‖v − πhv‖Hl(K) ≤ C
X

K′∈Th

K̄
T

K̄′ 6=φ

hm−l
K |v|Hm(K′), v ∈ Hm(K′), l = 0, 1, l ≤ m ≤ 2. (4.1)

– Trace Inequality [20], [22]: For ∀v ∈ H1(K),

‖v‖L2(∂K) ≤ C

„

h
− 1

2

K ‖v‖K + h
1

2

K |v|H1(K)

«

. (4.2)

– Space-time interpolation operator [20], [22]: Let φI ∈ Xq
hk

be the interpolant of φ defined by

φI |Ω×In
= πh,nπnφ n = 1, 2, · · ·, N, (4.3)

where πh,n is the average interpolation operator satisfying (4.1) and πn : C(Ī , V ) −→ Pq(In) is the

L2-projection operator, satisfying

‖φ− πnφ‖In,K ≤ Ckq+1
n ‖∂q+1

t φ‖In,K . (4.4)

Then,

‖φ− φI‖In,K ≤ ‖φ − πnφ‖In,K + ‖πnφ− φI‖In,K

≤ C

„

kq+1
n ‖∂q+1

t φ‖In,K + h2
K‖φ‖L2(In,H2(K))

«

. (4.5)

Now, we state and prove Theorems 4.4 and 4.5 in which the a posteriori estimates for the laser surface

hardening problem are derived. The development of a posteriori estimates for the optimal control problem

governed by a non linear system considered is quite technical and the ideas for the proof is motivated by a

posteriori estimates for optimal control problems governed by linear parabolic problems [22].

Theorem 4.3 let (θ, a, u) and (θσ , aσ, uσ) be respectively the solutions of (2.7)-(2.11) and (3.25)-(3.29) with

(z, λ) and (zσ, λσ) as the corresponding adjoint solutions. Then, we have

‖u− uσ‖
2
L2(I) ≤ C

„

max
Ω

|α|

N
X

n=1

X

T∈Th

‖zσ + β3uσ‖
2
L2(In,K) + ‖zσ − zuσ‖

2
I,Ω

«

∀k ≤ kǫ where ǫ > 0,(4.6)

where (zuσ , λuσ ) is the adjoint solution of (2.7)-(2.11) for control uσ and k is represented by σ = (h, k, d).

Proof: From mean value theorem for ν ∈ (0, 1), we have

(j′(u) − j′(uσ))(u− uσ) = j′′(u+ ν(u− uσ))(u− uσ)2

= j′′(u)(u− uσ)2 + j′′(u+ ν(u− uσ))(u− uσ)2 − j′′(u)(u− uσ)2

≤ j′′(u)(u− uσ)2 − |j′′(u+ ν(u− uσ))(u− uσ)2 − j′′(u)(u− uσ)2|. (4.7)

Function j′′ is defined by

j′′(u)(p1, p2) = β3(p1, p2) − (ρLz − λ, fθ,θ(θ, a)δθδθ + fθ,a(θ, a)δθδa+ fa,a(θ, a)δaδa+ fa,θ(θ, a)δθδa),(4.8)
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where (δθ, δa) is the solution of the problem, see [19]

ρcp(∂tδθ, v) + K(∇δθ,∇v) = −ρL(∂tδa, v) + (αδu, v),

δθ(0) = 0,

(∂tδa, w) = (fθ(θ, a)δθ + fa(θ, a)δa,w),

δa(0) = 0.

Using assumptions (A1)-(A2) and by (4.8), we obtain that j is C2 in L2(Ω). Therefore, there exists ǫ > 0

such that,

|j′′(u+ ν(u− uσ))(u− uσ)2 − j′′(u)(u− uσ)2| ≤
δ

2
‖u− uσ‖

2
L2(I) if ‖u− uσ‖

2
L2(I) ≤ ǫ.

From [14], we have uσ −→ u in L2(I), therefore there exists ǫ > 0 such that

‖u− uσ‖
2
L2(I) ≤ ǫ ∀k ≤ kǫ.

Using (4.9) in (4.7), we obtain

(j′(u) − j′(uσ))(u− uσ) ≤ j′′(u)(u− uσ)2 −
δ

2
‖u− uσ‖

2
L2(I). (4.9)

From second order optimality condition there exists δ > 0 (see [Thoerem 3.8,Lemma 4.6, [9]]) such that,

j′′(u)(u− uσ)2 ≥ δ‖u− uσ‖
2
L2(I). (4.10)

Using (4.10) in (4.9), (2.16) and (3.34), we obtain

δ

2
‖u− uσ‖

2
L2(I) ≤ j′(u)(u− uσ) − j′(uσ)(u− uσ)

≤ j′σ(uσ)(u− uσ) − j′(uσ)(u− uσ) + j′σ(uσ)(u− uσ)

= (

Z

Ω

α(zσ − zuσ )dx, u− uσ)I + (

Z

Ω

αzσdx+ β3uσ , u− uσ)I .

Using Cauchy-Schwartz and Young’s inequality with Young’s constant as δ/4, we obtain

δ

4
‖u− uσ‖

2
L2(I) ≤ C

„

max
Ω

|α|
N

X

n=1

X

T∈Th

‖zσ + β3uσ‖
2
L2(In,K) + ‖zσ − zuσ‖

2
I,Ω

«

∀k ≤ kǫ.

Theorem 4.4 For a fixed control uσ ∈ Ud,ad, let (θuσ , auσ ) and (θσ, aσ) be respectively the solutions of

(2.8)-(2.11) and (3.26)-(3.29) with (zuσ , λuσ ) and (zσ , λσ) as the corresponding adjoint solutions. Then,

‖zuσ − zσ‖
2 + ‖λuσ − λσ‖

2 ≤ C

„ 9
X

j=1

N
X

n=1

X

K∈Th

η2
j,n,K + ‖θuσ − θσ‖

2
«

,

where

η2
1,n,K = h4

K‖rz(x, t)‖2
In,K ,

rz(x, t) = −(ρcp∂tzσ + β2[θσ − θm]+ + K∆zσ + ρcp
[zσ]n−1

kn
− fθ(θσ , aσ)(ρLzσ − λσ))

η2
2,n,K = k2

n(‖[θσ − θm]+‖2
In,K + ‖∆zσ‖

2
In,K + ‖ρLzσ − λσ‖

2
In,K),

η2
3,n,K = h3

K‖K[▽zσ ].n‖2
L2(In,L2(∂K)), η

2
4,n,K = ‖zσ‖

2
In,K ,

η2
5,n,K = kn‖[zσ ]n−1‖

2
In,K , η

2
6,n,K = k2

n‖ρLzσ − λσ‖
2
In,K ,

η2
7,n,K = ‖λσ‖

2
In,K , η

2
8,n,K = ‖zσ‖

2
In,K , η

2
9,n,K = kn‖[λσ ]n−1‖

2
K .

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(4.11)
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Proof: Consider the auxiliary problem defined by: for given g ∈ L2(I,L2(Ω)), find φ such that

ρcp∂tφ−K∆φ+ ρLfθ(θuσ , auσ )φ = g in Q, (4.12)

▽φ.n = 0 on Σ, (4.13)

φ(0) = 0 in Ω, (4.14)

where ▽φ.n denotes the outward normal derivative to ∂Ω. Then the solution to (4.12)-(4.14) satisfies (see

[12]):

‖φ‖L∞(I;L2(Ω)) ≤ C‖g‖I,Ω , ‖φ‖L2(I;H1(Ω)) ≤ C‖g‖I,Ω , (4.15)

‖φ‖L2(I;H2(Ω)) ≤ C‖g‖I,Ω , ‖∂tφ‖I,Ω ≤ C‖g‖I,Ω . (4.16)

Substitute g = zσ − zuσ in (4.12) and consider

‖zσ − zuσ‖
2
I,Ω =

Z T

0
(zσ − zuσ , ρcp∂tφ−K∆φ+ ρLfθ(θuσ , auσ )φ) ds

=
N

X

n=1

Z

In

„

− ρcp(∂t(zσ − zuσ ), φ) + K(▽(zσ − zuσ ),▽φ)

+ (ρLfθ(θuσ , auσ )(zσ − zuσ ), φ)

«

ds− ρcp

N
X

n=1

([zσ]n−1, φn−1). (4.17)

Adding and subtracting the terms (β2[θσ−θm]+, φ), (fθ(θσ , aσ)(ρLzσ−λσ), φ), (fθ(θuσ , auσ )λuσ , φ), ρcp(
[zσ ]n−1

kn
, φ)

on the right hand side of (4.17) and using (2.12)-(2.15), we obtain

‖zσ − zuσ‖
2
I,Ω =

N
X

n=1

»

Z

In

„

− ρcp(∂tzσ, φ) − (β2[θσ − θm]+, φ) + K(▽zσ ,▽φ)

+ (fθ(θσ, aσ)(ρLzσ − λσ), φ) + β2([θσ − θm]+ − [θuσ − θm]+, φ)

− (ρcp
[zσ ]n−1

kn
, φ) + ρcp(

[zσ ]n−1

kn
, φ− φn−1) + (fθ(θσ , aσ)λσ − fθ(θuσ , auσ )λuσ , φ)

+ (ρL(fθ(θuσ , auσ ) − fθ(θσ , aσ))zσ , φ)

«

ds

–

(4.18)

Adding (3.32), with φ replaced by φI , to the right hand side of (4.18) and then, adding and subtracting

(ρcp
[zσ ]n−1

kn
, φI), we have

‖zσ − zuσ‖
2
I,Ω =

N
X

n=1

»

Z

In

„

− ρcp(∂tzσ , φ− φI) − (β2[θσ − θm]+, φ− φI) + K(▽zσ ,▽(φ− φI))

+ (fθ(θσ , aσ)(ρLzσ − λσ), φ− φI) + (ρL(fθ(θuσ , auσ ) − fθ(θσ, aσ))zσ, φ)

+ β2([θσ − θm]+ − [θuσ − θm]+, φ) − (ρcp
[zσ ]n−1

kn
, φ− φI) + (fθ(θσ , aσ)λσ − fθ(θuσ , auσ )λuσ , φ)

+ρcp(
[zσ]n−1

kn
, (φI)n−1 − φI + φ− φn−1)

«

ds

–
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Integrating the 3rd term on the right hand side by parts and grouping the terms, we obtain

‖zσ − zuσ‖
2
I,Ω

=
N

X

n=1

X

K∈Th

»

Z

In

„

− (ρcp∂tzσ + K∆zσ − fθ(θσ, a
∗
σ)(ρLzσ − λσ) + ρcp

[zσ ]n−1

kn
+ β2[θσ − θm]+, φ− φI)K

+ K([▽zσ ].n, φ− φI)L2(∂K) + β2([θσ − θm]+ − [θuσ − θm]+, φ)K + (fθ(θσ , aσ)λσ − fθ(θuσ , auσ )λuσ , φ)K

+ (ρL(fθ(θuσ , auσ ) − fθ(θσ , aσ))zσ, φ)K + ρcp(
[zσ ]n−1

kn
, (φI)n−1 − φI + φ− φn−1)K

«

ds

–

= J1 + J2 + J3 + J4 + J5 + J6, say, (4.19)

Let rz(x, t) = −(ρcp∂tzσ + K∆zσ − fθ(θσ , aσ)(ρLzσ − λσ) + ρcp
[zσ]n−1

kn
+ β2[θσ − θm]+). Then

J1 =
N

X

n=1

X

K∈Th

Z

In

(rz(x, t), πnφ− φI)Kds+
N

X

n=1

X

K∈Th

Z

In

(rz(x, t), φ− πnφ)Kds (4.20)

Using Cauchy-Schwarz’s inequality and (4.1), we obtain

N
X

n=1

X

K∈Th

Z

In

(rz(x, t), πnφ− φI)Kds ≤ C

N
X

n=1

X

K∈Th

h2
K‖rz(x, t)‖In,K‖φ‖L2(In;H2(K)). (4.21)

Use Cauchy-Schwarz’s inequality and definition of the L2-projection operator to obtain

N
X

n=1

X

K∈Th

Z

In

(rz(x, t), φ− πnφ)Kds ≤ C

N
X

n=1

X

K∈Th

kn(‖[θσ − θm]+‖In,K + ‖∆zσ‖In,K

+ ‖ρLzσ − λσ‖In,K)‖∂tφ‖In,K , (4.22)

Using (4.21) and (4.22) in (4.20), we obtain

J1 ≤ C
N

X

n=1

X

K∈Th

„

h2
K‖rz(x, t)‖In,K‖φ‖L2(In;H2(K)) + kn(‖[θσ − θm]+‖In,K + ‖∆zσ‖In,K

+ ‖ρLzσ − λσ‖In,K)‖∂tφ‖In,K

«

.

Using Cauchy-Schwarz’s inequality, (4.1) and (4.2), we obtain

J2 ≤ C

„ N
X

n=1

X

K∈Th

h
3

2

K
‖K[▽zσ ].n‖L2(In,L2(∂K))‖φ‖L2(In,H2(K))

«

Consider,

J3 =
N

X

n=1

X

K∈Th

Z

In

(β2([θσ − θm]+ − [θuσ − θm]+), φ)Kds ≤ C
N

X

n=1

X

K∈Th

‖θσ − θuσ‖In,K‖φ‖In,K .

Using Remark 2.2 and Cauchy-Schwarz’s inequality, we obtain

J4 =

N
X

n=1

X

K∈Th

Z

In

„

(fθ(θσ , aσ)λσ − fθ(θuσ , auσ )λuσ , φ)K

«

ds ≤

N
X

n=1

X

K∈Th

‖λσ − λuσ‖In,K‖φ‖In,K .

Repeating similar calculations as for the term J4, we obtain

J5 =
N

X

n=1

X

K∈Th

Z

In

(ρL(fθ(θuσ , auσ ) − fθ(θσ, aσ))zσ, φ)Kds ≤ C

„ N
X

n=1

X

K∈Th

‖zσ‖In,K‖φ‖In,K

«

.
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Also, we have

J6 =
N

X

n=1

X

K∈Th

Z

In

„

ρcp(
[zσ]n−1

kn
, (φI)n−1 − φI + φ− φn−1)K

«

ds

≤ C

„ N
X

n=1

X

K∈Th

k
1

2

n ‖[zσ ]n−1‖K

„

‖∂tφI‖In,K + ‖∂tφ‖In,K

««

.

Now consider the auxiliary problem: for G ∈ L2(I,L2(Ω)), find ψ ∈ H1(I,L2(Ω)) such that

∂tψ − fa(θuσ , auσ )ψ = G in Q, (4.23)

ψ(0) = 0 in Ω. (4.24)

(4.23)-(4.24) has a unique solution and we have (see [12]):

‖ψ‖L∞(I;L2(Ω)) ≤ C‖G‖I,Ω , ‖∂tψ‖I,Ω ≤ C‖G‖I,Ω . (4.25)

Let G = λσ − λuσ in (4.23) to obtain

‖λσ − λuσ‖
2
I,Ω =

Z T

0
(λσ − λuσ , ∂tψ − fa(θuσ , auσ )ψ)ds

=
N

X

n=1

»

Z

In

„

− (∂t(λσ − λuσ ), ψ) − (fa(θσ , aσ)(λσ − λuσ ), ψ)

«

ds

−([λσ]n−1, ψn−1)

–

. (4.26)

Adding (3.30), with ψ replaced by ψI , to the right hand side of the (4.26), we obtain

‖λσ − λuσ‖
2
I,Ω =

N
X

n=1

X

K∈Th

»

Z

In

„

(rλ(x, t), ψ − ψI)K − ((fa(θuσ , auσ ) − fa(θσ , aσ))λσ, ψ)K

− (ρL(fa(θσ, aσ) − fa(θuσ , auσ ))zσ , ψ)K − (ρLfa(θuσ , auσ )(zσ − zuσ ), ψ)K

+ (
[λσ ]n−1

kn
, (ψI)n−1 + ψ − ψI − ψn−1)K

«

ds

–

= J7 + J8 + J9 + J10 + J11, say (4.27)

where rλ(x, t) = −∂tλσ + fa(θσ, aσ)(ρLzσ − λσ) −
[λσ ]n−1

kn
. Using Remark 2.2, Cauchy Schwarz inequality,

(4.5) and proceeding in a similar way as (4.21) and (4.22), we obtain

J7 =

N
X

n=1

X

K∈Th

Z

In

(rλ(x, t), ψ − ψI)K ds ≤ C

„ N
X

n=1

X

K∈Th

kn‖ρLzσ − λσ‖In,K‖∂tψ‖In,K

«

(4.28)

J8 =

N
X

n=1

X

K∈Th

Z

In

((fa(θuσ , auσ ) − fa(θσ , aσ))λσ, ψ)Kds ≤ C

N
X

n=1

X

K∈Th

‖λσ‖In,K‖ψ‖In,K . (4.29)

Similarly,

J9 ≤ C
N

X

n=1

X

K∈Th

‖zσ‖In,K‖ψ‖In,K (4.30)
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and

J10 ≤ C
N

X

n=1

X

K∈Th

‖zσ − zuσ‖In,K‖ψ‖In,K . (4.31)

J11 ≤ C

„ N
X

n=1

X

K∈Th

k
1

2

n ‖[λσ ]n−1‖K(‖∂tψI‖In,K + ‖∂tψ‖In,K)

«

. (4.32)

Now adding (4.19) and (4.27), using estimates for J1 to J11 and then using (4.15)-(4.16) with g = zuσ − zσ,

(4.25) with G = λuσ − λσ and Young’s inequality, with Young’s constants chosen appropriately, we obtain

‖zσ − zuσ‖
2
I,Ω + ‖λσ − λuσ‖

2
I,Ω ≤ C

„ 9
X

i=1

η2
i,n,K + ‖θσ − θuσ‖

2
I,Ω

«

, (4.33)

where ηi,n,k, i = 1, · · ·, 11 are defined in (4.11). This completes the proof. ⊓⊔

Theorem 4.5 For a fixed control uσ ∈ Ud,ad, let (θuσ , auσ ) and (θσ, aσ) be respectively the solutions of

(2.8)-(2.11) and (3.26)-(3.29). Then,

‖θuσ − θσ‖
2 + ‖auσ − aσ‖

2 ≤ C
N

X

n=1

X

K∈Th

„ 13
X

j=10

η2
j,n,K + η2

a,n,K

«

,

where
η2
10,n,K = h4

K‖rθ(x, t)‖2
In,K ,

rθ(x, t) = ρcp∂tθσ − αuσ + ρLf(θσ , aσ) −K∆θσ + ρcp
[θσ]n
kn

,

η2
11,n,K = k2

n‖ρLf(θσ , aσ) −K∆θσ‖
2
In,K ,

η2
12,n,K = h3

K‖K[▽θσ ].n‖2
L2(In,L2(∂K)), η2

13,n,K = kn‖[θσ ]n‖
2
K ,

η2
a,n,K = k2

n‖f(θσ , aσ)‖2
In,K + kn‖[aσ ]−n ‖2

K .

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(4.34)

Proof: Consider the problem: for a given g ∈ L2(I, L2(Ω)), find v ∈ H1(Ω) such that

−ρcp∂tv −K∆v + ρLFv = g1 in Q, (4.35)

∂v.n = 0 on Σ (4.36)

v(T ) = 0 in Ω, (4.37)

where

F =

8

<

:

−
f(θuσ , auσ ) − f(θσ , aσ)

θσ − θuσ

whenever θσ 6= θuσ

fθ(θσ, aσ) θσ = θuσ .

Moreover, we have (see [12]):

‖v‖L∞(I;L2(Ω)) ≤ C‖g1‖I,Ω , ‖v‖L2(I;H1(Ω)) ≤ C‖g1‖I,Ω , (4.38)

‖v‖L1(I;H2(Ω)) ≤ C‖g1‖I,Ω , ‖∂tv‖I,Ω ≤ C‖g1‖I,Ω . (4.39)

Put g1 = θσ − θuσ in (4.35) and consider

‖θσ − θuσ‖
2
I,Ω =

Z T

0
(θσ − θuσ ,−ρcp∂tv −K∆v + ρLFv)ds

=

N
X

n=1

Z

In

„

(ρcp∂t(θσ − θuσ ), v) + K(▽(θσ − θuσ ),▽v)

− (ρL(f(θuσ , auσ ) − f(θσ , aσ)), v) + ρcp(
[θ]n
kn

, vn)

«

ds. (4.40)
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Replacing v by vI in (3.29) and adding to the right hand side of (4.40), we obtain

‖θσ − θuσ‖
2
I,Ω =

N
X

n=1

X

K∈Th

Z

In

„

(ρcp∂tθσ − αuσ + ρLf(θσ , aσ) −K∆θσ , v − vI)K

+ K(▽θσ .n, v)L2(∂K) + ρcp(
[θσ ]n
kn

, vn − (vI )n)K

«

ds

Letting rθ(x, t) = ρcp∂tθσ −αuσ + ρLf(θσ , aσ)−K∆θσ + ρcp
[θσ ]n
kn

and adding, subtracting (ρcp
[θσ]n
kn

, v− vI )

to the right hand side of the above equation, we obtain

‖θσ − θuσ‖
2
I,Ω =

N
X

n=1

X

K∈Th

Z

In

„

(rθ(x, t), v − vI)K + K(▽θσ .n, v)L2(∂K)

− ρcp(
[θσ ]n
kn

, (vI)n + v − vI − vn)K

«

ds

= J1 + J2 + J3, say (4.41)

Using Cauchy-Schwarz inequality, (4.1), (4.38)-(4.39) with g1 = θσ − θuσ and proceeding in a similar way as

(4.21) and (4.22), we obtain

J1 ≤
N

X

n=1

X

K∈Th

„

h2
K‖rθ(x, t)‖2

In,K + kn‖ρLf(θσ , aσ) −K∆θσ‖
2
In,K

«

‖θσ − θuσ‖In,K

Repeating the same steps used in the calculation of the term J2 in Theorem 4.3, we obtain

J2 ≤ C

N
X

n=1

X

K∈Th

„

h
3

2

K‖K[▽θσ ].n‖L2(In,L2(∂K))

«

‖θσ − θuσ‖In,K

Also,

J3 ≤ C
N

X

n=1

X

K∈Th

k
1

2

n ‖[θσ ]n‖In,K‖θσ − θuσ‖In,K .

Using the estimates for J1 to J3 in (4.41) and Young’s inequality, we obtain

‖θσ − θuσ‖
2
I,Ω ≤ C

„ 13
X

i=10

N
X

n=1

X

K∈Th

η2
i,n,K + µ3‖θσ − θuσ‖

2
I,Ω

«

, (4.42)

where ηi,n,K , i = 10, 11, 12, 13 are defined by (4.34). Choosing Young’s constant in (4.42) such that Cµ3 < 1,

we have

‖θσ − θuσ‖
2
I,Ω ≤ C

„ 13
X

i=10

N
X

n=1

X

K∈Th

η2
i,n,K

«

. (4.43)

Now we proceed to estimate ‖auσ − aσ‖.

Consider the problem: given g ∈ L2(Ω), find w such that

−∂tw = F1w +G1 in Q, (4.44)

w(T ) = 0, (4.45)
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where

F1 =

8

<

:

f(θσ , aσ) − f(θuσ , auσ )

aσ − auσ

whenever auσ 6= aσ

fa(θσ , aσ) auσ = aσ .

Moreover, we have:

‖w‖L∞(I;L2(Ω)) ≤ C‖G1‖I,Ω , ‖∂tw‖I,Ω ≤ C‖G1‖I,Ω . (4.46)

Substitute G1 = aσ − auσ in (4.44), use Cauchy-Schwarz’s inequality, Young’s inequality, (4.4) and (4.46) to

obtain

‖aσ − auσ‖
2
I,Ω =

Z T

0
(aσ − auσ ,−∂tw − F1w)ds

=
N

X

n=1

X

K∈Th

Z

In

„

(∂t((aσ − auσ ), w)K − (F1(aσ − auσ ), w)K + (
[aσ]n
kn

, wn)

«

ds

=
N

X

n=1

X

K∈Th

Z

In

„

(∂taσ − f(θσ , aσ) +
[aσ ]n
kn

, w −wI )K

+ (
[aσ]n
kn

, (wI)n − w + wI − wn)

«

ds

≤ C
N

X

n=1

X

K∈Th

„

k2
n‖f(θσ , aσ)‖In,K + kn‖[aσ ]−n ‖2

K

«

+ µ4‖auσ − aσ‖
2
I,Ω ,

≤ C

„ N
X

n=1

X

K∈Th

η2
a,n,K + µ4‖auσ − aσ‖

2
I,Ω

«

.

Choose Young’s constant such that Cµ4 < 1 to obtain

‖auσ − aσ‖
2 ≤ C

N
X

n=1

X

K∈Th

η2
a,n,K , (4.47)

where η2
a,n,K is defined in (4.34). Adding (4.43) and (4.47), we obtain the required result. This completes the

proof. ⊓⊔

Remark 4.4 The a posteriori error estimates obtained in Theorem 4.4 can be divided into errors due to space

and time discretizations, that is,

‖θ∗(u∗σ) − θ∗σ‖
2
I,Ω + ‖z∗(u∗σ) − z∗σ‖

2
I,Ω + ‖a∗(u∗σ) − a∗σ‖

2
I,Ω + ‖λ∗(u∗σ) − λ∗σ‖I,Ω

≤ ηh + ηk,

where ηh and ηk are the errors occurred due to space and time discretizations and are given by

ηk = C

„

X

i=2,5,6,9,11,13

N
X

n=1

X

K∈Th

η2
i,n,K +

N
X

n=1

X

K∈Th

η2
a,n,K

«

,

ηh = C
X

i=1,3,4,7,8,10,12

N
X

n=1

X

K∈Th

η2
i,n,K .

Remark 4.5 Note that a cg(1)dg(0) space-time discretization yields us the a posteriori error estimates. Higher

order polynomial approximation help to obtain better estimates in Theorems 4.3 and 4.4, provided we have

higher regularity assumptions on the solution.
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5 Numerical Experiments

In this section, the AFEM algorithm using residual method is presented. We use the error estimates obtained in

Theorem 4.4 and Theorem 4.5 for the adaptive refinement. A cg(1)dg(0) approximation has been used for space

and time discretizations in the implementation. The control variable is discretized using piece wise constants.

The parameters in (2.11) used are given by [31] ρcp = 4.91 J
cm3K

, k = 0.64 J
cm3K

and ρL = 627.9 J
cm3K

. The

regularized monotone function Hǫ is chosen as

Hǫ(s) =

8

>

<

>

:

1 s ≥ ǫ

10( s
ǫ )6 − 24( s

ǫ )5 + 15( s
ǫ )4 0 < s ≤ ǫ

0 s ≤ 0

where ǫ = 0.15. The initial temperature θ0 and the melting temperature θm are chosen as 20 and 1800,

respectively. Pointwise data for aeq(θ) and τ (θ) are given by

θ 730 830 840 930

aeq(θ) 0 0.91 1 1

τ (θ) 1 0.2 0.18 0.05

The shape function α(x, y, t) is given by α(x, y, t) = 4k1A
πD2 exp(−

2(x−vt)2

D2 )exp(k1y), where D = 0.47cm, k1 =

60/cm,A = 0.3cm and v = 1cm/s. Nonlinear conjugate gradient method has been used for implementation

and the tolerance is chosen as 10−7.

To start with the adaptivity procedure first the problem is solved on the initial triangulation given by Figure

2. Table 1 shows the convergence of solution as the mesh refinement is performed using aposteriori estimates.

 0  1  2  3  4  5
-1

-0.8

-0.6

-0.4

-0.2

 0

-50 0 50 100 150 200 250 300 350 400 450

"solution-1.gnuplot"

Fig. 2: Initial approximate triangulation

Figure 3 shows the development of meshes over adaptive loop. It depicts that the triangulation gets more

and more refined near the zone of heating, which is the boundary area. Figure 4 shows that increment in the

mesh size causes the decrease in the error. Figure 5 depicts the austenite value at the final step on the final

adaptive mesh using residual type estimator. Figure 6 shows temperature θ on the final mesh. Figure 7 shows

the control at the final time T = 5.25.
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(a) Step = 1
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(b) Step = 2
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(c) Step = 3

Fig. 3: Adaptive refinement
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Fig. 4: Error graphs
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Fig. 5: The volume fraction of the austenite at time t = T
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Fig. 6: The temperature at time t = T
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Fig. 7: Control
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Nn ηh/J

81 0.00022

143 0.00019

463 0.00007

Table 1: Error in space for fixed time partition 100

Conclusion

An adaptive finite element method has helped in obtaining the mesh which depends on approximate solution

and data. It has been shown that the mesh obtained using residual type a posteriori error estimate has helped

in getting a approximate solution to the laser surface hardening of steel problem.
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