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Extension of the complete flux scheme to time-dependent
conservation laws
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P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

We present the stationary and transient complete flux schemes for the advection-diffusion-reaction
equation. In the first scheme, the numerical flux is derived from a local BVP for the corresponding
stationary equation. The transient scheme is an extension, since it includes the time derivative in
the flux computation. The resulting semidiscretisation is an implicit ODE system, which has much
smaller dissipation and dispersion errors than the semidiscretisation based on the stationary flux, at
least for smooth problems. Both schemes are validated for a test problem.

Keywords. Advection-diffusion-reaction equation, flux, finite volume method, integral representation
flux, numerical flux, dissipation and dispersion errors.
AMS subject classifications. 65M99, 76M12.

1 Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines like fluid mechanics,
combustion theory, plasma physics, semiconductor theory etc. These conservation laws are often of
advection-diffusion-reaction type, describing the interplay between different processes such as advection
or drift, diffusion or conduction and (chemical) reaction or recombination/generation.

The numerical solution of these equations requires accurate and robust space discretisation and time
integration methods and efficient (iterative) solution methods for the resulting algebraic system. In this
paper we address the first two topics for the model equation

∂ϕ

∂t
+

∂

∂x

(
uϕ− ε∂ϕ

∂x

)
= s, (1.1)

where u is the advection velocity, ε ≥ εmin > 0 a diffusion/conduction coefficient and s a source term.
The unknown ϕ(x, t) can be, e.g., the temperature or a species mass fraction of a reacting gas mixture.
Associated with (1.1) we introduce the flux f defined by

f := uϕ− ε∂ϕ
∂x

. (1.2)

For space discretisation we use the finite volume method (FVM) [1] in combination with the complete
flux (CF) scheme for the numerical fluxes [2, 4]. For stationary equations, the CF approximation is based
on the solution of a local boundary value problem for the entire equation and is therefore an extension of
exponentially fitted schemes, which are based on the corresponding constant coefficient, homogeneous
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2 NUMERICAL APPROXIMATION OF THE STATIONARY FLUX 2

equation; see e.g. [5]. The CF approximation is second order accurate, even for strongly advection
dominated flow, and gives rise to a tridiagonal system.

In this paper we consider the extension to time-dependent equations. A first obvious choice would
be to combine the stationary CF approximation with a suitable time integration method. We refer to
this flux approximation as the stationary complete flux (SCF) scheme. However, for strong advection,
the space discretisation error reduces to first order. Therefore, we propose to include the time derivative
∂ϕ/∂t already in the numerical approximation of the flux. More precisely, we put the time derivative in
the source term and solve the corresponding quasi-stationary BVP. The resulting scheme, referred to as
the transient complete flux (TCF) scheme, does not have this drawback, and moreover, has usually much
smaller dissipation and dispersion errors than the SCF scheme.

We have organised our paper as follows. The SCF scheme is briefly summarised in Section 2 and its
extension to time-dependent equations is presented in Section 3. The SCF and TCF semidiscretisations
are analysed in terms of dissipation and dispersion in Section 4. The performance of both schemes is
demonstrated in Section 5, and finally in Section 6, we present a summary and conclusions.

2 Numerical approximation of the stationary flux

In this section we present the complete flux scheme for the stationary equation, which is based on the
integral representation of the flux. The derivation is a summary of the theory in [2, 4].

The stationary conservation law can be written as df/dx = s with the flux f defined in (1.2). In the
FVM we cover the domain with a finite number of control volumes (cells) Ij of size ∆x. We choose the
grid points xj , where the variable ϕ has to be approximated, in the cell centres, the so-called cell centred
approach; see e.g. [6]. Consequently, we have Ij := [xj−1/2, xj+1/2] with xj+1/2 := 1

2(xj + xj+1).
Integrating the equation over Ij and applying the midpoint rule for the integral of s, we obtain the discrete
conservation law

Fj+1/2 − Fj−1/2 = sj ∆x, (2.1)

where Fj+1/2 is the numerical approximation of the flux f at the interface at x = xj+1/2 and where
sj := s(xj).

The integral representation of the flux fj+1/2 := f(xj+1/2) at the cell edge xj+1/2 located between
the grid points xj and xj+1 is based on the following model boundary value problem (BVP) for the
variable ϕ

d
dx

(
uϕ− εdϕ

dx

)
= s, xj < x < xj+1, (2.2a)

ϕ(xj) = ϕj , ϕ(xj+1) = ϕj+1. (2.2b)

We like to emphasize that fj+1/2 corresponds to the solution of the inhomogeneous BVP (2.2), implying
that fj+1/2 not only depends on u and ε, but also on the source term s. It is convenient to introduce the
variables λ, P , Λ and S for x ∈ (xj , xj+1) by

λ :=
u

ε
, P := λ∆x, Λ(x) =

∫ x

xj+1/2

λ(ξ) dξ, S(x) :=
∫ x

xj+1/2

s(ξ) dξ. (2.3)

Here, P and Λ are the Peclet function and Peclet integral, respectively, generalising the well-known
(numerical) Peclet number. Integrating the differential equation (2.2a) from xj+1/2 to x we get the
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Figure 1: Green’s function for the flux for P > 0 (left) and P < 0 (right).

integral balance f(x)− fj+1/2 = S(x). Using the definition of Λ in (2.3), it is clear that the flux can be
rewritten as f = −εeΛ d

(
ϕ e−Λ

)
/dx. Substituting this into the integral balance and integrating from xj

to xj+1 we obtain the following expression for the flux

fj+1/2 = f
(h)
j+1/2 + f

(i)
j+1/2, (2.4a)

f
(h)
j+1/2 = −

(
e−Λj+1ϕj+1 − e−Λjϕj

) /∫ xj+1

xj

ε−1e−Λ dx, (2.4b)

f
(i)
j+1/2 = −

∫ xj+1

xj

ε−1e−ΛS dx
/∫ xj+1

xj

ε−1e−Λ dx, (2.4c)

where f (h)
j+1/2 and f (i)

j+1/2 are the homogeneous and inhomogeneous part, corresponding to the homoge-
neous and particular solution of (2.2), respectively.

In the following we assume that u and ε are constant; extension to variable coefficients is discussed
in [2, 4]. In this case we can determine all integrals in (2.4b). Moreover, substituting the expression
for S(x) in (2.4c) and changing the order of integration, we can derive an alternative expression for the
inhomogeneous flux. This way we obtain

f
(h)
j+1/2 = − ε

∆x
(
B(P )ϕj+1 −B(−P )ϕj

)
, (2.5a)

f (i)(xj+1/2) = ∆x
∫ 1

0
G(σ;P )s(xj + σ∆x) dσ, σ(x) :=

x− xj
∆x

. (2.5b)

Here B(z) := z/
(
ez − 1

)
is the Bernoulli function and G(σ;P ) the Green’s function for the flux, given

by

G(σ;P ) =


1− e−Pσ

1− e−P
for 0 ≤ σ ≤ 1

2 ,

−1− eP (1−σ)

1− eP
for 1

2 < σ ≤ 1;

(2.6)

see Figure 1.
Next, we give the numerical flux Fj+1/2. For the homogeneous component F (h)

j+1/2 we simply take

(2.5a), i.e., F (h)
j+1/2 = f

(h)
j+1/2. Note that for dominant diffusion (|P | � 1) the integral (average) of
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G(σ;P ) is small, whereas for dominant advection (|P | � 1) G(σ;P ) has a clear bias towards the
upwind side of the interval. For this reason we replace s(x) in (2.5b) by its upwind value su,j+1/2, i.e.,
su,j+1/2 = sj if u ≥ 0 and su,j+1/2 = sj+1 if u < 0, and evaluate the resulting integral exactly. This
way we obtain

Fj+1/2 = F
(h)
j+1/2 +

(
1
2 −W (P )

)
su,j+1/2 ∆x, (2.7)

where W (z) :=
(
ez − 1 − z

)
/
(
z
(
ez − 1

))
. From this expression it is clear that the inhomogeneous

component is only of importance for dominant advection. We refer to (2.7) as the complete flux (CF)
scheme, as opposed to the homogeneous flux (HF) scheme for which we only take into account F (h)

j+1/2.
Finally, substituting (2.7) in (2.1) we obtain the discretisation

1
∆x

(
F

(h)
j+1/2 − F

(h)
j−1/2

)
=
(

1
2 +W (|P |)

)
sj +

(
1
2 −W (|P |)

)
sj(u), (2.8)

where j(u) is the index of the grid point upwind of j, i.e., j(u) = j − 1 if u ≥ 0 and j(u) = j + 1 if
u < 0.

3 Extension to time-dependent conservation laws

In this section we present the extension of the complete flux scheme to time-dependent conservation
laws.

Equation (1.1) can be written as ∂ϕ/∂t + ∂f/∂x = s. Integrating this equation over the control
volume Ij and applying the midpoint rule to the integrals of ∂ϕ/∂t and s, we obtain the semidiscrete
conservation law

ϕ̇j ∆x+ Fj+1/2 − Fj−1/2 = sj ∆x, (3.1)

where ϕ̇j = dϕj/dt. Note that the numerical flux Fj+1/2 still depends on t.
For the numerical flux Fj+1/2 in (3.1) we have two options. First, we can simply take the stationary

flux (2.7); henceforth referred to as the SCF scheme. Alternatively, we can take into account ∂ϕ/∂t if
we determine the numerical flux from the following quasi-stationary BVP

∂

∂x

(
uϕ− ε∂ϕ

∂x

)
= s− ∂ϕ

∂t
, xj < x < xj+1, (3.2a)

ϕ(xj) = ϕj , ϕ(xj+1) = ϕj+1. (3.2b)

Thus, we have a modified source term s̃ := s− ∂ϕ/∂t. Repeating the derivation in the previous section,
we obtain

Fj+1/2 = F
(h)
j+1/2 +

(
1
2 −W (P )

)(
su,j+1/2 − ϕ̇u,j+1/2

)
∆x. (3.3)

This flux contains the upwind value ϕ̇u,j+1/2 of the time derivative and is referred to as the transient
complete flux (TCF) scheme. Analogous to the stationary case, we conclude that inclusion of the time
derivative is only of importance for dominant advection.

Combining the expression in (3.3) with the semi-discrete conservation law (3.1) we find(
1
2 +W (|P |)

)
ϕ̇j +

(
1
2 −W (|P |)

)
ϕ̇j(u) +

1
∆x

(
F

(h)
j+1/2 − F

(h)
j−1/2

)
=(

1
2 +W (|P |)

)
sj +

(
1
2 −W (|P |)

)
sj(u).

(3.4)

Finally, we have to apply a suitable time integration method to (3.4) for which we will take the trapezoidal
rule.
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4 Dissipation and dispersion of the semidiscrete system

It is interesting to compare the SCF and TCF semidiscretisations in terms of dissipation (damping) and
dispersion. Therefore, consider the constant coefficient homogeneous equation

∂ϕ

∂t
+ u

∂ϕ

∂x
= ε

∂2ϕ

∂x2
. (4.1)

In the following we assume that u ≥ 0; the analysis for u ≤ 0 is similar. Following [3], we look for a
planar wave solution

ϕ(x, t) = ei(κx−ωt), (4.2)

where κ is the wave number and ω is the frequency. Substituting (4.2) in (4.1) we obtain the dispersion
relation

iω(κ) = iuκ+ εκ2. (4.3)

The frequency ω determines the time evolution of the solution (4.2). Comparing the (exact) solution of
(4.1) at two consecutive time levels, we can define the amplification factor g = g(κ) as follows

g(κ) := ϕ(x, tn+1)/ϕ(x, tn) = e−iω∆t, (4.4)

where tn := n∆t (n = 0, 1, 2, . . .) and ∆t > 0 is the time step. Note that g is independent of x.
Combining the relations (4.3) and (4.4) we find the following amplification factor for equation (4.1), i.e.,

g(ψ) = e−dψ
2
e−icψ, (4.5)

with d := ε∆t/∆x2 the diffusion number, c := u∆t/∆x the Courant number and ψ := κ∆x the phase
angle (0 ≤ ψ < π).

We will now compute the amplification factors of the SCF and TCF semidiscretisations and compare
these to (4.5). First, consider the SCF semidiscretisation of equation (4.1), which coincides with the HF
semidiscretisation, given by

ϕ̇j ∆x+
ε

∆x
B−(ϕj − ϕj−1

)
− ε

∆x
B+
(
ϕj+1 − ϕj

)
= 0, (4.6)

with B± := B(±P ). Substituting ϕ(xj , t), with ϕ defined in (4.2), we obtain the discrete dispersion
relation

iω(κ) = iuκ
sinψ
ψ

+ εκ2 1
2

(
B+ +B−)(sinψ/2

ψ/2

)2
=: iuκξ + εκ2η. (4.7)

The variables ξ and η in the right hand side define the deviation of ω from the expression in (4.3). From
(4.4) and (4.7) we obtain the following expression for the amplification factor, i.e.,

g(ψ) = e−dψ
2ηe−icψξ. (4.8)

To quantify dissipation and dispersion, we define the (relative) amplitude error εa and the (relative) phase
error εf as follows:

εa(ψ) := 1− edψ
2(1−η), εf(ψ) := 1− ξ. (4.9)
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Figure 2: The amplitude error (left) and the phase error (right). Parameter values are P = 1 (top),
P = 50 (bottom) and c = 1.

Plots of εa and εf are given in Figure 2 (solid lines).
Next, consider the TCF semidiscretisation of (4.1), which reads(

1
2−W

+
)
ϕ̇j−1 ∆x+

(
1
2 +W+

)
ϕ̇j ∆x+

ε

∆x
B−(ϕj−ϕj−1

)
− ε

∆x
B+
(
ϕj+1−ϕj

)
= 0, (4.10)

with W+ := W (P ). Note that substituting W+ = 1
2 in (4.10) we recover the SCF semidiscretization

(4.6). Once more substituting ϕ(xj , t) we find the discrete dispersion relation

iω(κ) =
ε

∆x2

−B+
(
eiψ − 1

)
+B−(1− e−iψ

)(
1
2 −W+

)
e−iψ +

(
1
2 +W+

) =: iuκξ + εκ2η. (4.11)

This relation implicitly defines the factors ξ and η. After a tedious computation we find

ξ =
sinψ
ψ

cos2 ψ/2 + F1(P ) sin2 ψ/2
cos2 ψ/2 + 4W 2(P ) sin2 ψ/2

, (4.12a)

η =
(sinψ/2

ψ/2

)2 cos2 ψ/2 + F2(P ) sin2 ψ/2
cos2 ψ/2 + 4W 2(P ) sin2 ψ/2

, (4.12b)

where the functions F1(z) and F2(z) are defined by

F1(z) := 2W (z)−
(
B(z) +B(−z)

)2W (z)− 1
z

, F2(z) := W (z)
(
B(z) +B(−z)

)
. (4.12c)

The corresponding amplification factor is given in (4.8). Combining (4.9) with (4.12) we can determine
the amplitude and phase errors, which are shown in Figure 2 (dashed lines).

From these figures we conclude the following. For dominant diffusion, i.e. small P , the TCF scheme
has slightly smaller amplitude and phase errors than the SCF scheme. On the other hand, for dominant
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advection, i.e. large P , the amplitude and phase errors of the TCF scheme are significantly smaller than
those of the SCF scheme, at least for low wave number modes with typically 0 ≤ ψ ≤ 1

2 . For smooth
solutions this can always be attained if we choose ∆x small enough. However, for high wave number
modes, say 2 ≤ ψ ≤ π, the dispersion error of the TCF scheme is large. Therefore, spurious oscillations
cannot be excluded for nonsmooth solutions with steep interior/boundary layers.

5 Numerical example

In this section we apply the SCF and TCF schemes to a model problem to asses their (order of) accuracy.
We consider both diffusion-dominated and advection-dominated flow.

Consider the test equation [6]

∂ϕ

∂t
+ u

∂ϕ

∂x
− ε∂

2ϕ

∂x2
= s, s(x, t) = β2ε cos

(
β(x− ut)

)
, 0 < x < 1, t > 0. (5.1)

Initial and boundary condition are chosen such that the exact solution is given by

ϕ(x, t) = cos
(
β(x− ut)

)
+ e−α

2εt cos
(
α(x− ut)

)
. (5.2)

We take the following parameter values: α = 4π, β = 2π, u = 1.1 and ε = 2 × 10−2 (dominant
diffusion) or ε = 10−8 (dominant advection). Furthermore, we choose ∆x = ∆t =: h. To determine
the accuracy of a numerical solution we compute the average error eh := h ||ϕ − ϕ∗||1 at t = 1, where
ϕ∗ denotes the exact solution restricted to the grid, as a function of the reciprocal grid size h−1. Table 1
shows eh and the reduction factors eh/eh/2. Clearly, for ε = 2× 10−2, eh/eh/2 → 4 for h→ 0 for both
the SCF and TCF scheme, and consequently, both schemes display second order convergence behaviour
for h → 0. The numerical errors are approximately the same for both schemes. However, the situation
is quite different for the case ε = 10−8. In this case eh/eh/2 → 2 for h→ 0 for the SCF scheme, which
means that the method is only first order convergent. The TCF-scheme still displays second convergence
behaviour. Obviously, the TCF-solution is in this case much more accurate than the SCF-solution.

ε = 2 × 10−2 ε = 10−8

SCF TCF SCF TCF

h−1 eh eh/eh/2 eh eh/eh/2 eh eh/eh/2 eh eh/eh/2

20 7.479 · 10−2 3.36 1.415 · 10−2 2.72 3.879 · 10−1 1.26 2.430 · 10−2 3.69
40 2.224 · 10−2 3.81 5.197 · 10−3 3.33 3.070 · 10−1 1.50 6.586 · 10−3 3.87
80 5.843 · 10−3 3.94 1.563 · 10−3 3.66 2.046 · 10−1 1.71 1.703 · 10−3 3.93

160 1.482 · 10−3 3.98 4.268 · 10−4 3.83 1.200 · 10−1 1.84 4.333 · 10−4 3.97
320 3.723 · 10−4 3.99 1.114 · 10−4 3.92 6.532 · 10−2 1.92 1.092 · 10−4 3.98
640 9.324 · 10−5 4.00 2.844 · 10−5 3.96 3.411 · 10−2 1.96 2.742 · 10−5 3.99

1280 2.333 · 10−5 7.186 · 10−6 1.743 · 10−2 6.868 · 10−6

Table 1: Average errors and error quotients.

Finally, we show in Figure 3 the SCF and TCF numerical approximations of the highly oscillatory
solution with α = 4π and β = 20π. The TCF scheme is superior to the SCF scheme; the TCF solution
for N = h−1 = 160 control volumes is much better than the SCF solution on a 16 times finer grid! The
SCF solution is damped too much due to the large dissipation error. Notice that the TCF solution for
N = 160 has a little phase shift compared to the exact solution, due to the dispersion error. However, for
N = 320 this phase shift has disappeared.
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Figure 3: Highly oscillatory numerical solutions of (5.1). Parameter values are α = 4π, β = 20π,
u = 1.1 and ε = 10−8. Number of control volumes: N = 2560 (left) and N = 160 (right).

6 Concluding remarks

In this paper we have presented the SCF and TCF schemes for the advection-diffusion-reaction equation.
The SCF scheme is based on the solution of a local boundary value problem, excluding the time derivative
∂ϕ/∂t. As an extension of this scheme, we proposed the TCF scheme, where the time derivative is
included in the flux computation. The resulting semidiscretisation is an implicit ODE system, which
has much smaller dissipation and dispersion errors than the SCF scheme, at least for smooth solutions.
The performance of both schemes is demonstrated for a model problem. We conclude that for dominant
diffusion there is not much difference between both schemes, however, for dominant advection, the space
discretisation error of the SCF scheme reduces to first order, whereas the TCF scheme is still second
order accurate. In contrast to the SCF scheme, for nonsmooth solutions spurious oscillations cannot be
excluded in the TCF scheme due to the large dispersion errors of the scheme. These have to be controlled
by a (dissipative) time integration method. This is topic of current research.
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