588,689 research outputs found

    Line Polar Grassmann Codes of Orthogonal Type

    Get PDF
    Polar Grassmann codes of orthogonal type have been introduced in I. Cardinali and L. Giuzzi, \emph{Codes and caps from orthogonal Grassmannians}, {Finite Fields Appl.} {\bf 24} (2013), 148-169. They are subcodes of the Grassmann code arising from the projective system defined by the Pl\"ucker embedding of a polar Grassmannian of orthogonal type. In the present paper we fully determine the minimum distance of line polar Grassmann Codes of orthogonal type for qq odd

    Tits Geometry and Positive Curvature

    Full text link
    There is a well known link between (maximal) polar representations and isotropy representations of symmetric spaces provided by Dadok. Moreover, the theory by Tits and Burns-Spatzier provides a link between irreducible symmetric spaces of non-compact type of rank at least three and irreducible topological spherical buildings of rank at least three. We discover and exploit a rich structure of a (connected) chamber system of finite (Coxeter) type M associated with any polar action of cohomogeneity at least two on any simply connected closed positively curved manifold. Although this chamber system is typically not a Tits geometry of type M, we prove that in all cases but two that its universal Tits cover indeed is a building. We construct a topology on this universal cover making it into a compact spherical building in the sense of Burns and Spatzier. Using this structure we classify up to equivariant diffeomorphism all polar actions on (simply connected) positively curved manifolds of cohomogeneity at least two.Comment: 43 pages, to appear in Acta Mathematic

    Radiation-detector optical-imaging device is of simplified construction

    Get PDF
    A simplified radiation detector was designed which employs an activated continuous front surface consisting of either the diffused or barrier type of semiconducting material with a grid structure on the nonactivated side of the detector. Its form may be either a rectangular coordinate or a polar coordinate system

    The Anisotropic Distribution of M 31 Satellite Galaxies: A Polar Great Plane of Early-Type Companions

    Full text link
    The highly anisotropic distribution and apparent alignment of the Galactic satellites in polar great planes begs the question how common such distributions are. The satellite system of M31 is the only nearby system for which we currently have sufficiently accurate distances to study the three-dimensional satellite distribution. We present the spatial distribution of the 15 presently known M31 companions in a coordinate system centered on M31 and aligned with its disk. Through a detailed statistical analysis we show that the full satellite sample describes a plane that is inclined by -56 deg with respect to the poles of M31 and that has an r.m.s. height of 100 kpc. With 88% the statistical significance of this plane is low and it is unlikely to have a physical meaning. The great stellar stream found near Andromeda is inclined to this plane by 7 deg. There is little evidence for a Holmberg effect. If we confine our analysis to early-type dwarfs, we find a best-fit polar plane within 5 deg to 7 deg from the pole of M31. This polar great plane has a statistical significance of 99.3% and includes all dSphs (except for And II), M32, NGC 147, and PegDIG. The r.m.s. distance of these galaxies from the polar plane is 16 kpc. The nearby spiral M33 has a distance of only about 3 kpc from this plane, which points toward the M81 group. We discuss the anisotropic distribution of M31's early-type companions in the framework of three scenarios, namely as remnants of the break-up of a larger progenitor, as tracer of a prolate dark matter halo, and as tracer of collapse along large-scale filaments. (Abridged)Comment: 14 pages, 5 figures, accepted for publication in the Astronomical Journa

    d-Wave Superfluidity in Optical Lattices of Ultracold Polar Molecules

    Get PDF
    Recent work on ultracold polar molecules, governed by a generalization of the t-J Hamiltonian, suggests that molecules may be better suited than atoms for studying d-wave superfluidity due to stronger interactions and larger tunability of the system. We compute the phase diagram for polar molecules in a checkerboard lattice consisting of weakly coupled square plaquettes. In the simplest experimentally realizable case where there is only tunneling and an XX-type spin-spin interaction, we identify the parameter regime where d-wave superfluidity occurs. We also find that the inclusion of a density-density interaction destroys the superfluid phase and that the inclusion of a spin-density or an Ising-type spin-spin interaction can enhance the superfluid phase. We also propose schemes for experimentally realizing the perturbative calculations exhibiting enhanced d-wave superfluidity.Comment: 22 pages, 12 figures; v2: revised discussion

    Photometric structure of the peculiar galaxy ESO 235-G58

    Full text link
    We present the near-infrared and optical properties of the peculiar galaxy ESO 235-G58, which resembles a late-type ringed barred spiral seen close to face-on. However, the apparent bar of ESO 235-G58 is in reality an edge-on disk galaxy of relatively low luminosity. We have analyzed the light and color distributions of ESO 235-G58 in the NIR and optical bands and compared them with the typical properties observed for other morphological galaxy types, including polar ring galaxies. Similar properties are observed for ESO 235-G58, polar ring galaxies, and spiral galaxies, which leads us to conclude that this peculiar system is a polar-ring-related galaxy, characterized by a low inclined ring/disk structure, as pointed out by Buta & Crocker in an earlier study, rather than a barred galaxy.Comment: 16 pages, 15 figures, accepted for publication in Astronomy & Astrophysic

    Prediction of thickness limits of ideal polar ultrathin films

    Get PDF
    Competition between electronic and atomic reconstruction is a constantly recurring theme in transition-metal oxides. We use density functional theory calculations to study this competition for a model system consisting of a thin film of the polar, infinite-layer structure ACuO2 (A=Ca, Sr, Ba) grown on a nonpolar, perovskite SrTiO3 substrate. A transition from the bulk planar structure to a chain-type thin film accompanied by substantial changes to the electronic structure is predicted for a SrCuO2 film fewer than five unit cells thick. An analytical model explains why atomic reconstruction becomes more favorable than electronic reconstruction as the film becomes thinner, and suggests that similar considerations should be valid for other polar films

    Line polar Grassmann codes of orthogonal type

    Get PDF
    Polar Grassmann codes of orthogonal type have been introduced in I. Cardinali and L. Giuzzi, \emph{Codes and caps from orthogonal Grassmannians}, {Finite Fields Appl.} {\bf 24} (2013), 148-169. They are subcodes of the Grassmann code arising from the projective system defined by the Pl\"ucker embedding of a polar Grassmannian of orthogonal type. In the present paper we fully determine the minimum distance of line polar Grassmann Codes of orthogonal type for q odd
    • …
    corecore