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Abstract

Polar Grassmann codes of orthogonal type have been introduced in [1]. They are subcodes of
the Grassmann code arising from the projective system defined by the Pliicker embedding of a
polar Grassmannian of orthogonal type. In the present paper we fully determine the minimum
distance of line polar Grassmann Codes of orthogonal type for ¢ odd.
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1. Introduction

Codes Cp,  arising from the Pliicker embedding of the k-Grassmannians of m—dimensional
vector spaces have been widely investigated since their first introduction in [10, 11]. They
are a remarkable generalization of Reed—Muller codes of the first order and their monomial
automorphism groups and minimum weights are well understood, see [8, 5, 6, 4].

In [1], the first two authors of the present paper introduced some new codes P, j arising
from embeddings of orthogonal Grassmannians A,, . These codes correspond to the projective
system determined by the Pliicker embedding of the Grassmannian A, ;, representing all totally
singular k—spaces with respect to some non-degenerate quadratic form 7 defined on a vector
space V(2n + 1,¢) of dimension 2n + 1 over a finite field F,. An orthogonal Grassmann code
Pn i can be obtained from the ordinary Grassmann code Cay, 1, by just deleting all the columns
corresponding to k—spaces which are non-singular with respect to 7; it is thus a punctured version
of Capt1,k- For ¢ odd, the dimension of P, i, is the same as that of Ga,11 &, see [1]. The minimum
distance dyin of Pk is always bounded away from 1. Actually, it has been shown in [1] that for
q odd, dpin > ¢F=R)+1 4 gk(n=Fk) _ ¢ By itself, this proves that the redundancy of these codes
is somehow better than that of Copy1 .

In the present paper we prove the following theorem, fully determining all the parameters for
the case of line orthogonal Grassmann codes (that is orthogonal polar Grassmann codes with
k = 2) for q odd.

Main Theorem. For q odd, the minimum distance dmin of the orthogonal Grassmann code Py, o

18
An—>5 3n—4
dmin =4q —q .
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Furthermore, for n > 2 all words of minimum weight are projectively equivalent; for n = 2 there
are two different classes of projectively equivalent minimum weight codewords.

Hence, we have the following.

Corollary 1.1. For q odd, line polar Grassmann codes of orthogonal type are [N, K, dmin]-
projective codes with

2n—2 _ 1 2n 1 2 1 .
N — (¢ _ )(g )7 K- (T i = M — g
(> =1)(¢—1) 2

1.1. Organization of the paper

In Section 2 we recall some well-known facts on projective systems and related codes, as
well as the notion of polar Grassmannian of orthogonal type. In Section 3 we prove our main
theorem.

2. Preliminaries

2.1. Projective systems and Grassmann codes
An [N, K, dmin]q projective system Q C PG(K —1,q) is a set of N points in PG(K — 1,q)
such that there is a hyperplane ¥ of PG(K — 1, q) with #(Q\ ¥) = dmin and for any hyperplane
¥ of PG(K —1,q),
#(Q \ Z/) 2 dmin-

Existence of [N, K, dmin]q projective systems is equivalent to that of projective linear codes
with the same parameters; see, for instance, [12]. Indeed, let 2 be a projective system and denote
by G a matrix whose columns G, ..., Gy are the coordinates of representatives of the points of
Q with respect to some fixed reference system. Then, G is the generator matrix of an [N, K, dpiy]
code over F,, say C = C(2). The code C(2) is not, in general, uniquely determined, but it is
unique up to code equivalence. We shall thus speak, with a slight abuse of language, of the code
defined by 2.

As any word ¢ of C(Q) is of the form ¢ = mG for some row vector m € Ff , it is straightforward
to see that the number of zeroes in c is the same as the number of points of €2 lying on the
hyperplane II. of equation m -z = 0, where m -z = Zfil mx; and m = (m;)&, x = (z;)K. The
weight (i.e. the number of non—zero components) of ¢ is then

wt(c) := Q] — |[QNTIL|. (1)

Thus, the minimum distance dp,;, of C is

dmin =|Q| - max» h max — Qnxl. 2
Q] = f, where f, pepiaX | | (2)
dim X=K -2

We point out that any projective code C(2) can also be regarded, equivalently, as an evaluation
code over Q of degree 1. In particular, when 2 spans the whole of PG(K — 1, ¢) = PG(W), with
W the underlying vector space, then there is a bijection, induced by the standard inner product
of W, between the points of the dual vector space W* and the codewords ¢ of C(2).

Let Gon+1,x be the Grassmannian of the k—subspaces of a vector space V := V(2n + 1,¢),
with £ <n and let  : V' — F, be a non-degenerate quadratic form over V.

Denote by ¢ : Gopy1.6 — PG(/\k V') the usual Pliicker embedding

e : Span(vy,...,vg) — Span(vy A -+ A vg).



The orthogonal Grassmannian A, j; is a geometry having as points the k—subspaces of V'
totally singular for 7. Let €;(Gant1,5) = {ex(Xk): Xk is a point of Gopt1 ) and ex (A, k) =
{ex(Xy): X} is a point of A, ;}. Clearly, we have e (A, 1) C ek(Gant1.k) C PG(/\I~C V). Through-
out this paper we shall denote by P, i the code arising from the projective system ex(A,, ). By
[3, Theorem 1.1], if n > 2 and k € {1,...,n}, then dim Span(ex (A, 1)) = (2”;1) for ¢ odd, while
dim Span(ex(Ap k) = (2"]:'1) - (2,?_‘"21) when ¢ is even.

We recall that for £ < n, any line of A, ; is also a line of Gayy1 5. For k = n, the lines of
Ay, are not lines of Gapy1,n; indeed, in this case ep|a, ,: Apn — PG(A" V) maps the lines of
A, , onto non-singular conics of PG(A" V).

. . . . . — (n—i) _
The projective system identified by e, (A,, 1) determines a code of length N = Hfzol qzﬁfll

and dimension K = (2";1) or K = (2”;1) - (2,?:“21) according to whether ¢ is odd or even. The
following universal property provides a well-known characterization of alternating multilinear

forms; see for instance [9, Theorem 14.23].

Theorem 2.1. Let V' and U be vector spaces over the same field. A map f : VE — U is
alternating k-linear if and only if there is a linear map f : /\k V — U with f(vi Avg A---Avg) =
for,v9,...,0x). The map f is uniquely determined.

In general, the dual space (A" V)* 2 A" V* of A"V is isomorphic to the space of all k-linear
alternating forms of V. For any given non-null vector v € /\2n+1 V=V({,q) = F,, we have
an isomorphism Jy : A" FV = (A" V)* defined by j(w)(z) = ¢ for any w € A>T and
T € /\k V, where ¢ € F, is such that w A x = cv. Clearly, as v # 0 varies in /\2”Jrl V we
obtain different isomorphisms. For the sake of simplicity, we will say that w € /\27”17’“ V acts
onze N VaswAuz.

For any k= 1,...,2n and ¢ € (A" V)*,v € A"V we shall use the symbol (p,v) to denote
the bilinear pairing

k k
(AV) x (AV) = Fg, (p,0) = (v).
Since the codewords of P, bijectively correspond to functionals on /\k V, we can regard a
codeword as an element of (A" V)* = AF v*.
In this paper we are concerned with line Grassmannians, that is we assume k = 2.
By Theorem 2.1, we shall implicitly identify any functional ¢ € (A>V)* with the (necessarily
degenerate) alternating bilinear form

VXV =T,
(,y) = oz Ay).

The radical of ¢ is the set
Rad(p) :={v eV :Vw e V,p(v,w) = 0}.

This is always a vector space and its codimension in V is even. As dimV is odd, 2n — 1 >
dim Rad(p) > 1 for ¢ # 0.

We point out that it has been proved in [8] that the minimum weight codewords of the line
projective Grassmann code Caj,1.2, correspond to points of €2,_1(G2nt1,2n—1); these can be
regarded as non-null bilinear alternating forms of V' of maximum radical. Actually, non-null
bilinear forms of maximum radical may yield minimum weight codewords also for Symplectic
Polar Grassmann Codes, see [2].



In the case of orthogonal line Grassmannians, not all points of Gapy1,2n—1 yield codewords
of P2 of minimum weight. However, as a consequence of the proof of our main result, we
shall see that for n > 2 all the codewords of minimum weight of P, » do indeed correspond
to some (2n — 1)-dimensional subspaces of V', that is to say, to bilinear alternating forms of
maximum radical. In the case n = 2, there are two classes of minimum weight codewords: one
corresponding to bilinear alternating forms of maximum radical and another corresponding to
certain bilinear alternating forms with radical of dimension 1.

2.2. A recursive condition
Since A*V* = (A"V)* = A"V for any ¢ € (A"V)* there is an element § €

A7 RV such that
k

(p,2) =P Az, Vxe/\V.

Fix now u € V and ¢ € (A" V)*. Then, there is a unique element ¢, € A" ' V* such that
Pu=gAuec NV

Let Q be the parabolic quadric defined by the (non-degenerate) quadratic form . For any
u € Q, put V,, := ut?/Span(u). Observe that as (., u Aw) = PAuAuAw = 0 for any
uAwe A"V, the functional

_ Ak71VU—>IE‘q
b x—i—(u/\k*QV)—Mpu(x)

with 2 € A" 'V and u A" 2V := {uny:y € A" 2V} is well defined. Furthermore, V,, is
endowed with the quadratic form 7, :  + Span(u) — n(x). Clearly, dimV,, = 2n — 1. Tt is well
known that the set of all totally singular points for 7, is a parabolic quadric of rank n — 1 in V;,
which we shall denote by Resgu. In other words the points of Resgu are the lines of Q through
u.

We are now ready to deduce a recursive relation on the weight of codewords, in the spirit of

8].

Lemma 2.2. Let ¢ € \*V*. Then,

Proof. Recall that

wt(p) = #{Span(vi,...,vg): (p,v1 A--- Avg) # 0,Span(v1,...,v5) € Ay} =

1
m#{(m, ces V) (v A s Awg) # 0,Span(ve, ..., 0k) € A k), (3)
where the list (vy,...,v;) is an ordered basis of Span(vy,...,vx) C Q.

For any point v € Q, we have Span(u,vs,...,vs) € A,k if and only if Span, (ve,...,vx) €
Ap_15-1(Resgu), where A, _1 ;_1(Resgu) is the (k — 1)-Grassmannian of Resgu and by the
symbol Span, (ve,...,v;) we mean Span(u,vs,...,v;)/Span(u). Furthermore, given a space
Span,, (v, ..., vk) € Ap_15—1(Resgu), any of the ¢* 1 lists (u, va + aou, . .., vk, + aiu) is a basis
for the same totally singular k-space through u, namely Span(u,ve,...,vg). Conversely, given



any totally singular k—space W € A, , with v € W there are vs,...v; € Resgu such that
W = Span(u, v, ..., v;) and Span, (ve, ..., v;) € A,_1 k—1(Resgu). Let

Q= {(u,vg + aou, ..., v + agu): (p,u Avg A+ Avg) # 0,
Span,, (ve, ..., vk) € Ap_1 k—1(Resgu), ag,...,ar € F}.

Then, we have the following disjoint union

{(v1,...,00): (01 A=+ Ag) #0,Span(vy, ..., vx) € An i} = | Qu. (4)
ucQ
Observe that if u is not singular, then, ,, = (), as Span(u, va, ..., v ) Z Q; likewise, if p,, = 0,
then, (@,,v2 A--- Avg) =0 for any ve,..., v, and, consequently, 2, = ().

The coefficients «;, 2 < i < k, are arbltrary in F; thus,

#Q, = qk_l#{(u, Vo, ..y V) (B V2 A Avg) # 0,Span,, (ve, ..., vk) € Ay—1 k-1 (Resou)}.

Hence,

IGLk(q)|wt(p) = > #Q

ueQ
7,70
= ¢! Z #{(u,v2,..., ) (Qu, V2 A--- Avg) # 0,Span, (ve, ..., vk) € A1 k—1(Resgu)}.
u€eQ
3. #0

Since u is fixed,
#{(u,v2,...,0): (Qu,v2a A--- Avg) # 0,Span, (ve, ..., vx) € Ap_1 p—1(Resou)} =
#{(va,...,v): (Qu,v2 A+ Avg) # 0, Span,, (va, . .., vk) € Ap_1 x—1(Resgu)}.
On the other hand, by (3) and by the definition of 3,,,
|GLk—1(q)|Wt(¢u) = #{(UQa s 7Uk): <¢uv [5YARN '/\Uk> 7& 07 Spanu(”% ce. 7Uk) € An—l,k—l(ReSQu)};

thus,

GL 1 _
wily) = 1 e O] Z Wi(E) = g 30 Wi, (©

u€Q
?.70

3. Proof of the Main Theorem

As dim V is odd, all non—degenerate quadratic forms on V' are projectively equivalent. For the
purposes of the present paper we can assume without loss of generality that a basis (e1,. .., €2n+1)
has been fixed such that

n(x) == 25521'71%21' + m%nH. (7)
i=1



Let B(x,y) := n(x +y) — n(z) — n(y) be the bilinear form associated with 7. As in Section 2.2,
denote by Q the set of the non-zero totally singular vectors for 7. Clearly, for any k—dimensional
vector subspace W of V, then W € A,, j, if and only if W C Q.

Henceforth we shall work under the assumption & = 2. Denote by ¢ an arbitrary alternating
bilinear form defined on V' and let M and S be the matrices representing respectively 5 and ¢
with respect to the basis (e1,...,ea,41) of V. Write Lo for the orthogonal relation induced by
n and Ly for the (degenerate) symplectic relation induced by ¢. In particular, for v € V, the
symbols v+2 and v will respectively denote the space orthogonal to v with respect to n and
. Likewise, when X is a subspace of V, the notations X2 and X" will be used to denote
the spaces orthogonal to X with respect to 7 and . We shall say that a subspace X is totally
singular if X < X+2 and totally isotropic if X < XV,

Lemma 3.1. Let Q be a parabolic quadric with equation of the form (7), and let p € V, p # 0.
Denote by p a codeword corresponding to the hyperplane p~<. Then,

! ifn(p) =0
L—g=t  ifn(p) is a non-zero square

=14 gn=t  ifn(p) is a non-square.

2n—
2n—

q
wt(p) = 4 ¢q
q

Proof. If n(p) = 0, then p € Q and p*< N Q is a cone with basis a parabolic quadric of rank
n —1; it has 1+ (¢! — q)/(q — 1) projective points, see [7]. The value of wt(p) now directly
follows from (1).

Suppose now p to be external to Q, that is p~ <N Q is a hyperbolic quadric; it is immediate to
see that in this case wt(p) = ¢>"~1—¢"~!. Likewise, when p is internal to Q, wt(p) = ¢?"*~t+¢" 1.

The orthogonal group O(V') stabilizing the quadric Q has 3 orbits on the points of V; these
correspond respectively to totally singular, external and internal points to @. By construction,
all elements in the same orbit are isometric 1-dimensional quadratic spaces. In other words,
the quadratic class of n(p) is constant on each of these orbits. In particular, the point es,11 is
external to @ and n(ezn4+1) = 1 is a square. Thus we have that external points to Q correspond
to those p for which 7(p) is a square, n(p) # 0 and internal points correspond to those for which
7(p) is a non-square. O

3.1. Some linear algebra

Lemma 3.2. 1. For any v € V, v1t2 = oW if and only if v is an eigenvector of non-zero
eigenvalue of T := M~18S.

2. The radical Rad(p) of ¢ corresponds to the eigenspace of T of eigenvalue 0.

Proof. 1. Observe that v+< = v*W if and only if the equations 7 Mv = 0 and 27 Sv = 0
are equivalent for any « € V. This means that there exists an element A € Fy \ {0} such
that Sv = AMwv. As M is non-singular, the latter says that v is an eigenvector of non-zero
eigenvalue \ for T .

2. Let v be an eigenvector of T' of eigenvalue 0. Then M ~1Sv = 0, hence Sv = 0 and 27 Sv = 0

for every x € V, that is v = V. This means v € Rad(yp). -

We can now characterize the eigenspaces of 7.

Lemma 3.3. Let p be a non-zero eigenvalue of T' and V), be the corresponding eigenspace. Then,

1) Yo € V,, and r € Rad(yp), r Lo v. Hence, V,, < r+2.
I 14 Q W



(2) The eigenspace V), is both totally isotropic for ¢ and totally singular for .

(3) Let A\, # 0 be two not necessarily distinct eigenvalues of T' and u, v be two corresponding
eigenvectors. Then, one of the following holds:

(a) ulgv andu Ly v.
(b) p=—A
(4) If X\ is an eigenvalue of T then —\ is an eigenvalue of T.

Proof. 1. Take v € V,,. As Tv = M~'Sv = pv we also have pv” = o7 STM~T. So, v MT =
p T ST, Let r € Rad(y). Then, as ST = —S, vT Mr = p= 1T STr and 7' Sr = 0 for any
v, we have vI' Mr = 0, that is r 1o v.

2. Let v € V. Then M~'Sv = pv, which implies Sv = pMwv. Hence, v7Sv = po’ M.
Since v7'Sv = 0 and p # 0, we also have v"Mv = 0, for every v € V,. Thus, V, is
totally singular for 5. Since V,, is totally singular, for any u € V,, we have uT Mv = 0; so,
uT'Sv = pu” Mv = 0, that is V.. is also totally isotropic.

3. Suppose that either u f o v or u Ly v. Since, by Lemma 3.2, < = u*" and 1< = oW,

we have Mu = A~'Su and Mv = p~1Sv. So, u fo v or u Ly v implies vT Mu # 0 #
vT'Su. Since M~'Su = A\ and M ~1Sv = pv, we have

v Su =0T SANTIMTISu) = X H (=M Su) T Su = —( At p)vT Su;
hence, —A\"1p = 1.

4. Let A # 0 be an eigenvalue of T and z a corresponding eigenvector. Then M 'Sz = Az if
and only if SM 1Sz = A\Sx, which, in turn, is equivalent to —(M ~1S)T Sz = A\Sz, that is
(M—18)T(Sx) = —ASz. Since X # 0, Sz is an eigenvector of (M ~1S)7 of eigenvalue —\.
Clearly, (M~1S)T and M~1S have the same eigenvalues, so —\ is an eigenvalue of T

Corollary 3.4. Let V\ and V,, be two eigenspaces of non-zero eigenvalues A # —p. Then,
Va @V, is both totally singular and totally isotropic.

3.2. Minimum weight codewords

Recall that ¢ € /\2 V* and, for any u € Q, p, € V*. In particular, ¢, either determines a
hyperplane of V,, = u2 /Span(u) or it is null on V.

Lemma 3.5. @, =0 if and only if u is an eigenvector of T.

Proof. By Lemma 3.2, u is an eigenvector of T' if and only if u~< C uw. By definition of Lo,
for every v € u+2 N Q, we have Span(u,v) € A,, 5. However, as v € u" also (¢, uAv) = 0. So,
%,(v) =0, Yo € ut<. Thus, %, = 0 on Resgu. Conversely, reading the argument backwards,
we see that if , = 0 then u is eigenvector of T. O

We remark that ¢, = 0 if and only if u € ker T' (by Lemma 3.2(2)).

Lemma 3.6. Suppose u € Q not to be an eigenvector of T'. Then,

¢ ? if n(Tu) =0
wt(?,) =1 ¢®" 2 — ¢ 2 ifn(Tu) #0 is a square
@3 +¢" 2% if n(Tu) is a non-square



Proof. Let a, :=Twand let Q, := anﬂQ. Note that v € Q,Nut?. Indeed, u" MTu = u¥' Su =
0. So, wt(®,) = wt(®,, ). The quadric Resg,u := (Q, N ut?)/Span(u) is either hyperbolic,
elliptic or degenerate according as a, is external, internal or contained in Q. The result now

follows from Lemma 3.1. O
Define
A':={u: u € Q and u non-eigenvector of T' }, Al =#A
B:={u:u e and Tu € Q}, B :=#8B;
¢ :={u: u e W and n(Tu) is a non-square}, C =#c.

By definition, both 9B and € are subset of 2. Using (6) we can write

q2n—3 _ qn—2 qn—2 2qn—2

!/
oA B G (8)

wt(p) =

Put A =¢?""2 — 1 — #{u: u € Q and u eigenvector of T}; then, (8) becomes

wt(p) = ¢ 0 — ¢+ L ("' —1)A+ B+20). 9)

Clearly, B,C > 0. We investigate A more closely. Let Spec’(T') be the set of non-zero eigenvalues
of T and let Vi, = ker(T — \I) be the corresponding eigenspaces for A € Spec’(T'). By Lemma 3.3,
each space V) is totally singular; thus

A=¢"2—1- Y (#Nh—-1)—#kerTNQ). (10)

A€Spec’(T)

Let r € N be such that dimRad(p) = dimker T' = 2(n — r) + 1, where by Theorem 2.1, we may
regard ¢ as a bilinear alternating form.

The non-degenerate symmetric bilinear form S induces a symmetric bilinear form 8* on V*,
defined as §*(vy,v3) = B(v1, v2) where v}, v3 are functionals determining respectively the hyper-

planes vf‘g and vj‘g. In particular, the given basis (e, . . ., ea,+1) of V, the above correspondence
determines a basis (e!,...,e?" 1) of V*, where ¢, as a functional, describes the hyperplane ej‘Q

for 1 <7< 2n+1. As before, let also O(V') be the orthogonal group stabilizing Q. We have the
following theorem.

Theorem 3.7. For any ¢ € /\2 V* exactly one of the following conditions holds:

(1) r = 1; then wt(p) > ¢*"~°—¢*>"~* with equality occurring if and only if ¢ is in the O(V')-orbit
Of el A e2n+1’.

(2) r>1 and A > 0: in this case wt(p) > ¢*" > — ¢3=4;

(3) r>1and A <O0: in this case r =n =2 and p is in the O(V)-orbit of e* A e? + €3 A et with
wt(p) = ¢° - ¢*.

Proof. If r = 1, then dimRad(¢) = 2n — 1. As ¢ € A>V* has tensor rank 1 (ie. is fully
decomposable), ¢ determines a unique 2-dimensional subspace W, of V*. In particular, the
subspace W, is endowed with the quadratic form obtained from the restriction of 8* to W..
There are just 5 types of 2-dimensional quadratic spaces; they correspond respectively to the
forms fi(z,y) = 0, fo(z,y) = v*, fa(r,y) = ev?, falz,y) = 2° —ey® and f5(z,y) = xy, where ¢
is a non-square in F, and the coordinates are with respect to a given reference system of W,.



For each f;, 1 <1 <5, there are some ¢; € /\2 V* such that ﬁ*|W¢:i = f;. Examples of such
¢; inducing, respectively, f; for i = 1,...,5 are the following: ¢; = e! A €3, po = el A2 F1
w3 =¢el A(e3 +eet), ps =TI A (e! —ee?) and 5 = el Ae?.

Using Witt’s extension theorem we see that there always is an isometry between a given W,
and any of these spaces W, (1 < ¢ < 5) which can be extended to an element of O(V). In other
words any form with » = 1 is equivalent to one of the aforementioned five elements of /\2 V.

A direct computation shows that the list of possible weights is as follows:

Wt(el A 62) — Wt(62’n+1 A (el _ 562)) — q4n75 _ q2’ﬂ73,
Wt(el A 63) — q4n75’ Wt(el A 62n+1) — q4n75 _ q3n74,
Wt(el A (63 + 564)) — q4n—5 + q3’l’L—4.

As an example we will explicitly compute wt(e! A e?). The remaining cases are analogous. Since
5 = el Ae?, we have, by (3),

wt(ps) = #{(v1,v2): v1,v2 € {el,eg}J‘Q N Q,B(e1 + v1,e2 + v2) = 0}.
In particular, as

Bler + v1,e2 + v2) = f(er, v2) + B(v1, e2) + Bler, e2) + B(v1,v2) = 1+ S(v1,v2)

we have B3(vy,v2) = —1. Observe that Q' := {ej,e2} N Q is a non-singular parabolic quadric
Q(2n — 2, q) of rank n — 1; thus it contains (¢"~2 — 1) non-zero vectors and we can choose v; in
(¢>"=2 — 1) ways. For each projective point p € Q' with p ¢ Uf‘Q there is exactly one vector v
such that vy € p and 3(v1,v2) = —1. The number of such points is

2n—2 _ 1 2n—4

#Q — #(°NQ) = S 1) = g

q—1
In particular, the overall weight of wt(ys) is

Wt((p5) — q2n73(q2n72 _ 1) — q4n75 _ q2n73'

The case e! A e?" ! will yield words of minimum weight.

Suppose now r > 1. Clearly,
#ker(T)N Q < #ker(T) — 1 =¢* 2" — 1.

Furthermore, if A € Spec’(T") then also —\ € Spec’(T") by Lemma 3.3 (4). Thus, we can write
Spec’(T) = {1, ..., M} U{=A1,...,—A¢} with \; # £); if i # j. By Corollary 3.4, the space
Xt = EszlV)\i is totally singular; hence, dim X < n and

¢
S #WNO) S#XT - 1<q" - 1
i=1
likewise, considering X~ := @/_,V_,,, we get Zle #(Vox, \ {0}) < ¢" — 1. Thus,
AZ @2 = g - 1). (1)

If A > 0, then wt(p) > ¢** =5 — ¢®>*~*. We now distinguish two cases.



Suppose that Rad(y) contains a singular vector w; then, by statement (1) of Lemma 3.2
X+ @ Span(u) would then be a totally singular subspace; thus, dim X* < n — 1 and

A> q2n—2 _ q2n—2r+1 _ 2(qn—1 o 1) > qn—1<qn—1 _ qn—2 _ 2) > ();

therefore, A > 0. By Chevalley-Warning theorem for 2(n—r)+1 > 3, the set Rad(¢) N Q always
contains a non-zero singular vector.

Suppose now that Rad(y) does not contain any non-zero singular vector; then n = r and,
consequently, A > ¢?"~2—1—2(q" — 1) (where we have replaced by 1 the term ¢2("~")+1 of (11),
which was an upper bound for the number of singular vectors in Rad(y)). This latter quantity
is positive unless n = 2.

Therefore, A < 0 and r > 1 can occur only for r =n = 2.

If A =0 then

#{u: u € Q and u eigenvector of T} U {0} = ¢°.

This happens only if there exists an eigenvalue A # 0 such that V), C Q and dim(V)) = 2. By
Lemma 3.3(4), also — A\ is an eigenvalue, so V_ C Q. Then

#{u: v e Q and u eigenvector of T} U {0} > ¢?, a contradiction.
g

Hence A < 0 and r > 1. In this case Rad(y) would be a one dimensional subspace of V' not
contained in Q. We claim that actually ¢ is in the O(V*)-orbit of e! A e? + €3 A e. As before,
let Spec(T) = {\1,..., Ae} U{=X1,...,=A¢}. Since X7 is totally singular, dim X < 2, whence
¢ <2 If £ =2, then dim X+ = dim X~ = 2. Thus, all four eigenspaces Vi, have dimension
Land 37\ cqperr(ry #(Va \ {0}) = 4(¢ — 1). It follows A > P —-1-4(qg—1)=(q-2%-1>0
and we are done. Therefore, ¢ < 1. If £ = 0, then A > ¢> —1 > 0. Likewise, if £ = 1 and
dimVy, = dimV_y, =1, then A > ¢> — 1 —2(¢ — 1) > 0. There remain to consider only the
case { = 1 and dim V), = dim V_, = 2. Observe first that if there were a vector b3 € V_, N V/\LQ,
then V) @ Span(bs) would be totally singular — a contradiction, as the rank of Q is 2. Therefore
we can choose a basis (by,ba,...,b5) for V such that V) = Span(by,bs), V_n = Span(bs, bs),
B(b2,b1) = 1, B(bs,ba) = 0, Rad(¢) = Span(bs) and Span(by, b, bs)2 = Span(bs, bs). Indeed,
we may assume that bz, by are a hyperbolic pair. By construction 8(Tby,b;) = —B(bs, Th;) = 0
for i = 1,2,4,5. Hence T has matrix diag(A, —A, A, —X,0) with respect to this basis, that is
© = b Ab? 4 b3 A b*. We now compute wt(y) directly, under the assumption n = 2 and obtain

wt(p) = ¢° —¢*.
This completes the proof of the Main Theorem. O

Corollary 3.8. If n > 2 the codewords of minimum weight all lie on the orbit of e' A e2"H1

under the action of the orthogonal group O(V'). For n = 2 the minimum weight codewords either
lie in the orbit of e! A ed or in the orbit of e! Ae? +e3 Ae?.
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