2,495 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    A Hybrid Vision-Map Method for Urban Road Detection

    Get PDF

    Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

    Full text link
    Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.Comment: 10 pages in Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Multi-Sensor Data Fusion for Robust Environment Reconstruction in Autonomous Vehicle Applications

    Get PDF
    In autonomous vehicle systems, understanding the surrounding environment is mandatory for an intelligent vehicle to make every decision of movement on the road. Knowledge about the neighboring environment enables the vehicle to detect moving objects, especially irregular events such as jaywalking, sudden lane change of the vehicle etc. to avoid collision. This local situation awareness mostly depends on the advanced sensors (e.g. camera, LIDAR, RADAR) added to the vehicle. The main focus of this work is to formulate a problem of reconstructing the vehicle environment using point cloud data from the LIDAR and RGB color images from the camera. Based on a widely used point cloud registration tool such as iterated closest point (ICP), an expectation-maximization (EM)-ICP technique has been proposed to automatically mosaic multiple point cloud sets into a larger one. Motion trajectories of the moving objects are analyzed to address the issue of irregularity detection. Another contribution of this work is the utilization of fusion of color information (from RGB color images captured by the camera) with the three-dimensional point cloud data for better representation of the environment. For better understanding of the surrounding environment, histogram of oriented gradient (HOG) based techniques are exploited to detect pedestrians and vehicles.;Using both camera and LIDAR, an autonomous vehicle can gather information and reconstruct the map of the surrounding environment up to a certain distance. Capability of communicating and cooperating among vehicles can improve the automated driving decisions by providing extended and more precise view of the surroundings. In this work, a transmission power control algorithm is studied along with the adaptive content control algorithm to achieve a more accurate map of the vehicle environment. To exchange the local sensor data among the vehicles, an adaptive communication scheme is proposed that controls the lengths and the contents of the messages depending on the load of the communication channel. The exchange of this information can extend the tracking region of a vehicle beyond the area sensed by its own sensors. In this experiment, a combined effect of power control, and message length and content control algorithm is exploited to improve the map\u27s accuracy of the surroundings in a cooperative automated vehicle system

    Point Cloud Processing Algorithms for Environment Understanding in Intelligent Vehicle Applications

    Get PDF
    Understanding the surrounding environment including both still and moving objects is crucial to the design and optimization of intelligent vehicles. In particular, acquiring the knowledge about the vehicle environment could facilitate reliable detection of moving objects for the purpose of avoiding collisions. In this thesis, we focus on developing point cloud processing algorithms to support intelligent vehicle applications. The contributions of this thesis are three-fold.;First, inspired by the analogy between point cloud and video data, we propose to formulate a problem of reconstructing the vehicle environment (e.g., terrains and buildings) from a sequence of point cloud sets. Built upon existing point cloud registration tool such as iterated closest point (ICP), we have developed an expectation-maximization (EM)-like technique that can automatically mosaic multiple point cloud sets into a larger one characterizing the still environment surrounding the vehicle.;Second, we propose to utilize the color information (from color images captured by the RGB camera) as a supplementary source to the three-dimensional point cloud data. Such joint color and depth representation has the potential of better characterizing the surrounding environment of a vehicle. Based on the novel joint RGBD representation, we propose training a convolution neural network on color images and depth maps generated from the point cloud data.;Finally, we explore a sensor fusion method that combines the results given by a Lidar based detection algorithm and vehicle to everything (V2X) communicated data. Since Lidar and V2X respectively characterize the environmental information from complementary sources, we propose to get a better localization of the surrounding vehicles by a linear sensor fusion method. The effectiveness of the proposed sensor fusion method is verified by comparing detection error profiles

    16-01 Paths to ADA-Compliance: the Performance and Cost Efficiency of Measurement Technologies that Support ADA-Mandated, Self-Evaluations of Pedestrian Rights of Way

    Get PDF
    This study used terrestrial laser scanner and open source processing algorithms to develop an approach to automate the evaluation of transportation infrastructure in public rights of way. We estimated compliance or noncompliance of specific roadway features with the design standards adopted by the US Access Board and required under the Americans with Disabilities Act (ADA) such as minimum sidewalk width, maximum cross slopes and presence/absence of pedestrian connectivity automatically with extracting roadway features from point cloud data (PCD). We then compared the accuracy and cost efficiency of the automated with more conventional evaluative techniques to identify the potential risks, gains and the overall efficacy of these approaches. The collected raw data were processed through a sequential process including simplification, optimization, segmentation, and road feature categorization. Finally, the road elements were detected as the road feature objects. By developing a more thorough assessment process, this research provided communities with the information necessary to strategically plan transportation infrastructure improvements for people with limited mobility
    • …
    corecore