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Abstract

Point Cloud Processing Algorithms for Environment Understanding in Intelligent Vehicle
Applications

Ahmed Cheikh Sidiya

Understanding the surrounding environment including both still and moving objects
is crucial to the design and optimization of intelligent vehicles. In particular, acquiring
the knowledge about the vehicle environment could facilitate reliable detection of moving
objects for the purpose of avoiding collisions. In this thesis, we focus on developing point
cloud processing algorithms to support intelligent vehicle applications. The contributions of
this thesis are three-fold.

First, inspired by the analogy between point cloud and video data, we propose to for-
mulate a problem of reconstructing the vehicle environment (e.g., terrains and buildings)
from a sequence of point cloud sets. Built upon existing point cloud registration tool such as
iterated closest point (ICP), we have developed an expectation-maximization (EM)-like tech-
nique that can automatically mosaic multiple point cloud sets into a larger one characterizing
the still environment surrounding the vehicle.

Second, we propose to utilize the color information (from color images captured by the
RGB camera) as a supplementary source to the three-dimensional point cloud data. Such
joint color and depth representation has the potential of better characterizing the surrounding
environment of a vehicle. Based on the novel joint RGBD representation, we propose training
a convolution neural network on color images and depth maps generated from the point cloud
data.

Finally, we explore a sensor fusion method that combines the results given by a Lidar
based detection algorithm and vehicle to everything (V2X) communicated data. Since Li-
dar and V2X respectively characterize the environmental information from complementary
sources, we propose to get a better localization of the surrounding vehicles by a linear sen-
sor fusion method. The effectiveness of the proposed sensor fusion method is verified by
comparing detection error profiles.
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Chapter 1

Introduction

Obtaining information about the surrounding environment is critical to the applications

related to intelligent vehicles. Environment-related information can help vehicles drive more

safely (e.g., avoid collisions) and efficiently (e.g., route planning). Various sensors including

visible-spectrum cameras, radars and LIDARs have provided a rich collection of data that

can be exploited by intelligent vehicles; though the cost and accuracy of different sensors

(e.g.,camera vs. LIDAR) could vary [1], [2]. Among those sensors, LIDAR-based data have

received increasingly more attention recently due to rapid advances in both hardware (e.g.,

from Velodyne HDL-16e, 32e to 64e) and software (i.e., point cloud registration [3],[4],[5],

segmentation [6] and classification [7]). Under the context of intelligent vehicles, LIDAR-

based approaches have been studied for the detection/tracking of pedestrian [8], [9] curb

[10],[11] and vehicle [12],[7].

The motivation behind this work is largely two-fold. On one hand, even though LIDAR-

based environment reconstruction was studied for online mobile mapping in [13], the issue of

outliers (e.g., moving objects should not contribute to the reconstruction of a still environ-

ment) has not been addressed yet. Therefore, it is desirable to develop a robust technique

capable of separating moving objects from the still background. Meanwhile, there is a need

to distinguish regular from irregular (e.g., jaywalking of a pedestrian, sudden lane change of

a vehicle) events. The latter – to the best of our knowledge – has not been considered in the

open literature of intelligent vehicles.

On the other hand, how to fuse data from multiple sources (e.g., LIDAR sensor vs.

vehicle-to-everything communication) is a problem that has been underresearched in the lit-

erature. LIDAR sensors capture local information but their capabilities are constrained by
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the physical limit of those sensors (e.g., operating range); vehicle-to-everything (V2X) com-

munication often supplies some supplementary information about the environment through

the vehicle communication system. Integrating these two kinds of data could help an in-

telligent vehicle better understand the surrounding environment and make more informed

decisions.

For environment reconstruction, we propose to develop a robust point cloud mosaicking

technique combining iterative closest point (ICP) based on registration [14] and EM-based

background estimation [15]. Our approach is similar to the work [5] of surface registration

but ours is specifically tailored for point cloud data and has been tested on large-scale data

set. Furthermore, we have trained a convolution neural network on depth maps obtained

by projecting the 3D points onto an image plane and applying filtering method. Our work

targets at exploiting the supplementary color information for better reconstruction and un-

derstanding of the vehicle environment.

For information fusion, we propose a new fusion algorithm for fusing the data generated

by lidar detection algorithm with V2X Communicated Data. The proposed linear fusion

method works with the position (distance) data from LIDAR and GPS data over Dedicated

Short Range Communications(DSRC). A statistically optimal fusion strategy based on de-

tection error profile was developed and experimentally verified using real-world data. Our

experimental results have shown [Ahmed, you need to provide a summary of your experi-

mental results from Sec. 4.3 here]

1.1 Literature Review

When compared against image data, LIDAR admits computationally more efficient pro-

cessing and enjoys less vulnerability to adversary weather and lighting conditions. Therefore,

point cloud processing has received increasingly more attention in recent years. Registration

of 3D data originated from the seminal work of iterative closest point (ICP) [14] developed

in 1990s. Since then, many variants of ICP techniques have been developed and applied to

various data sets (e.g., [4], [5], [13]). However, most existing works assume that the data sets

are clean and complete. The issue of outlier detection robustness has not been addressed

in the open literature as far as we know. A related problem is the reconstruction of surface

from point cloud data [16]. This is a classical problem that has been extensively studied by

computer graphics community.
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Just like image data, clustering and segmentation of point cloud data are handy tools

supporting other high-level tasks such as classification and recognition. Existing works (e.g.,

[6],[17],[7],[18]) have mostly focused on the use of geometric features/clues for clustering and

segmentation. With the separation of moving objects from still background (vehicle envi-

ronment), we argue it is more fruitful to exploit motion-related information (e.g., trajectory,

speed and acceleration).

However, under the context of intelligent vehicles, efficient reconstruction and visualiza-

tion of point cloud data often faces new challenges due to their large size and arising from

the desire of exploiting structural a priori information (e.g., urban vs. rural environment).

Several techniques have been proposed in the literature for the purpose of object recog-

nition and detection in 3d environment. Just like in the case of images, the features used

can be manually engineered [19][17] or learned using a convolution neural network. Neural

network techniques are divided into two categories; one that uses 2D depth maps generated

from point cloud [20] and others that leverage the techniques of 3D convolution [21] [22] to

deal with the 3d nature of the data.

A lot of work has been carried in the topic of sensor fusion algorithms by researcher, R.E.

Kalman published his famous paper proposing a recursive solution to the discrete-data linear

filtering problem [23], [24] presents a fusion method that is based on Bayesian network, and

[25] solution is based on central limit theorem.

1.2 Contribution

The main contributions of this work can be stated as follows:

1. A robust point cloud mosaicking technique has been proposed combining iterative

closest point (ICP) based registration and EM-based background estimation.

2. A convolution neural network based detection of pedestrian in depth maps.

3. Adding color information to the vehicle environment

5. A sensor fusion method between local and V2X communicated data.

1.3 Organization of Thesis

This experiment can be organized in two different parts. The first part describes the

vehicle environment reconstruction and understanding (Chapter 2 ), and the next part ex-



Ahmed Cheikh Sidiya Chapter 1. 4

plains the algorithm we developed for fusion lidar and GPS sensors. Chapter 2 illustrates

the environment reconstruction technique and the convolution neural network we developed

for pedestrian detection in disparity maps. In Chapter 3, we go into details of our fusion

method. Result section is included in Chapter 4 . Finally, we conclude and mention some

future works in Chapter 5 .
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Chapter 2

Environment Reconstruction and

understanding

This section explains in detail the algorithms we are using to create and understand the

vehicle environment.

2.1 Constructing the vehicle environment from multi-

ple point clouds

In our scenario a Lidar sensor[usually Velodyne] is placed on top of a vehicle that is

moving forward, and is continuously rotating and emitting data at 10 fps. Each frame will

add new information to the previous frames as well as loose some information existing in the

previous ones therefore combining multiple ones will give us a better representation of the

scene.

Apparently the above environment reconstruction problem is analogous to the well-known

image mosaicking problem in the literature. Similar to image mosaicking, we are also facing

the interference from moving objects (in the foreground layer) when attempting to fuse

multiple point clouds. Unlike image mosaicking, it is often difficult to find salient feature

points (e.g., corners or SIFT keypoints) to facilitate the alignment/registration of 3D point

clouds. The only exception seems to be [17] which is based Point Feature Histograms (PFH)

but at the price of prohibitive complexity.

Built upon existing point cloud registration tool such as iterated closest point (ICP),
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we have developed an expectation-maximization (EM)-like technique that can automatically

mosaic multiple point cloud sets into a larger one characterizing the still environment sur-

rounding the vehicle and as a byproduct we can get the moving objects in the environment.

We call our algorithm HIERARCHICAL EM-ICP and it consists of two parts the align-

ment and outlier rejection.

Figure 2.1: Two successive unaligned point clouds, Pk and Pk+1

2.1.1 Simultaneous Alignment of Multiple Point Clouds:Hierarchical

Extension of ICP

A widely used tool to align two point clouds is the iterative closest point (ICP) [14] and

its variants [1][4][5]. To align multiple (N>2) point clouds P1, P2, . . . , PN, one has to come

up with clever strategies of extension. One ad-hoc approach is to sequentially group P1 and

P2 into P12 then group P12 and P3 into P123 and so on. In other words, one can think of

using P1 as the reference point cloud and align the remaining N-1 point clouds with respect

to P1. A moment of thought will conclude this strategy is suboptimal – e.g., due to the

motion of self-driving vehicle, P1 and PN could have little overlap and therefore P1 is not

an appropriate reference while aligning PN.

Under the assumption that the vehicle is moving at a constant speed, one can derive the

optimal reference frame for aligning both P1 and PN should be the frame in the middle.

Applying this argument recursively to the first half and second half of P1, P2, . . . , PN, we

can obtain the following hierarchical extension of ICP algorithm:

• Perform pairwise alignment to P1, P2, . . . , PN and obtain N/2 point clouds after the

merging;
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• Recursively apply pairwise alignment to the merged point clouds until only one is left.

The above hierarchical strategy of extending ICP nicely fits octree-based 3D data repre-

sentation such as Octomap [26]. Tree-based representation offers great flexibility of achieving

the tradeoff between complexity and accuracy. For example, one might opt to take the av-

eraging of two aligned point clouds as a coarse-resolution representation (by contrast, the

union of them would form a fine-resolution representation). Such hierarchical reconstruc-

tion of vehicle environment is beneficial to support various analytical tasks later (e.g., query

and matching). To gain a deeper understanding of hierarchical ICP, we propose to analyze

its behavior asymptotically – i.e., as the speed of autonomous vehicle decreases to zero, the

overlap among adjacent sampling intervals (i.e., Pk vs. Pk+1) would increase implying more

computations (larger N) are required for environment reconstruction. To cut back the waste

of computation, one can easily skip the pairwise alignment at the first few iterations (equiv-

alent to temporally downsampling the point cloud data set). As the vehicle moves faster,

less overlap is introduced which also increases the probability of misalignment.

2.1.2 Outlier Rejection by Robust EM-ICP

The basic idea behind ICP-based alignment [14] is to find out the optimal transformation

(e.g., translation and rotation) such that the matching errors between two point clouds can

be minimized. To cope with noisy and incomplete observation data, robust ICP based on

Least Trimmed Square was developed in [27]. Under the context of intelligent vehicles,

outliers in point cloud arise from two primary sources: one is the moving objects (e.g.,

walking pedestrians, moving vehicles and motorcycles); the other is the objects located at

the border of the scene (i.e., analogous to covered/uncovered pixels in image mosaicing).

Inspired by previous work on robust surface registration [5], we propose to robustly align

two point clouds with outlier rejection. The key motivation is based on the observation

that point cloud registration and outlier detection have characteristics of chicken-and-egg

problem – i.e., solving one immediately unlocks the solution to the other. Formally, we

might treat unknown transformation parameters and class labels (whether a point is inlier

or outlier) as a pair of peer hidden variables. Such perspective allows us to leverage classical

expectation-maximization (EM) method into ICP as follows (similar treatment can be found

in [28]).
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• E-step: For an estimated transformation, align two point clouds and calculate the

closest distance for each point. Declare a point to be an outlier if the closest distance

is above a pre-selected threshold

• M-step: For a given set of inliers, apply ICP to update the estimate of transformation

parameters (i.e., translation and rotation).

Figure 2.2: The distribution of matching errors in ICP algorithm as a function of displace-
ment (outliers are declared by those a certain threshold for example .12m).

2.1.3 Segmentation of the background

For a better representation of the vehicle environment, We propose to cluster our en-

vironment using algorithm such as DBSCAN [29]. The result is presented in the following

figure where objects are color coded.

2.2 Constructing depth maps from the point cloud data

In the previous section we were interested in constructing the environment and dividing it

into inliers and outliers. In this section we will try to better understand the environment by

trying to detect and recognize the objects that constitute said environment. Such knowledge

is crucial for many applications of autonomous vehicles.

We will generate depth maps from the point cloud and apply a convolution neural network

on them.
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Figure 2.3: Segmentation of still background objects in a complex scene (different objects
are highlighted by different colors).

2.2.1 Depth maps creation

Our method for depth map creation is based on the following work [30].

First we eliminate the points in the data with a depth value (x direction in world coor-

dinate) inferior to 0 meter; then we transform the rest of the points from world coordinate

to camera coordinate using transformation matrix and then we project to image plane using

camera calibration matrices; both matrices are already given. After the projection each point

in the point cloud will have pixel coordinates; these coordinates can be floating values.

Let’s suppose a point after projection has the px and py pixel coordinates. To create

our Sparse map I, we will give a pixel which coordinates are between [px-k,px+k] and [py-

k,py+k] (where k is a fixed kernel) the normalized value of the x component of the point

(depth; normalized between [0,255]); we apply this to each point in the data. After that we

apply bilateral filter (equation 3.1) to smooth the image and get the final depth map D.

1

Wp

∑
q∈N

Gσs((||p− q||)Gσr(|Iq|)Iq (2.1)

Where Gσs weights points q inversely to their distance to position p,Gσr penalizes the

influence of points as function of their range values, and finally Wp is a normalization factor

that ensures weights sum to one,i.e., Wp =
∑

q∈N Gσs((||p− q||)Gσr(|Iq|).
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Figure 2.4: RGB and point cloud data

Figure 2.5: Sparse I map and final depth map D

We can imagine that instead of using the x component of each point to create the depth

map, we can use the y and z components; if we do so on the same point cloud we get the

two following depth maps respectively.
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Figure 2.6: Depth generated respectively with the y and z components

As a byproduct of our depth map creation and due to the perfect alignment between

depth map and the RGB image; we are able to assign to each point cloud an RGB value and

create a 6 dimension XYZRGB data. (figure 3.6 illustrates that).
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Figure 2.7: the RGB data and the XYZRGB data for comparison

Furthermore we can use our alignment method on the multiple XYZRGB data to create

a vehicle environment that contains the color information for each figure. When we do that

we have the following results in figure 3.7.
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Figure 2.8: Results after combining multiple XYZRGB data to create the vehicle
environment

In this section we showed how to create the depth map now, we will move on to the task

of object detection specifically pedestrian detection.

2.2.2 Using convolution neural network on depth map for the pur-

pose of pedestrian detection

Convolution neural network is the state of art machine learning technique for object

recognition and detection in images. A Convolutional Neural Network (CNN) is comprised

of one or more convolutional layers (often with a subsampling step) and then followed by one

or more fully connected layers as in a standard multilayer neural network. The architecture

of a CNN is designed to take advantage of the 2D structure of an input image (or other

2D input such as a speech signal). This is achieved with local connections and tied weights

followed by some form of pooling which results in translation invariant features. Another

benefit of CNNs is that they are easier to train and have many fewer parameters than fully

connected networks with the same number of hidden units. In this article we will discuss the

architecture of a CNN and the back propagation algorithm to compute the gradient with

respect to the parameters of the model in order to use gradient based optimization.

We will be working with KITTI dataset [31] to generate our training and testing data

for the experiment.
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a- Generating training and testing data from KITTI dataset

Kitti database contains about 7000 point cloud data files; each file has a corresponding

labeled RGB image. We use these labels to extract the ground truths from the depth maps

because a depth map is perfectly aligned with the RGB image.

To generate the training and testing data for the CNN we use the sliding window approach

and process each window to see it is a positive or negative sample and resize it to 64x64.

The processing is done in the following way:

• Generating positive samples: If the overlap between the window and the bounding box

given by the labeling is greater or equal to 0.5; consider as positive sample and also

include the original bounding box.

• For negative samples we have three categories:

1.Hard negative: Take four samples randomly with overlapping <0.4 and >=0.3.

2. Medium negative : Take three samples randomly with overlapping < 0.3 and > 0.

3. Easy negative : Take 2 samples randomly with overlapping equal 0.

Therefore we have 9 negative samples for 2 positive sample and in total we have around

4000 positive samples and 2000x9 negative samples

Figure 2.9: Positive samples

Figure 2.10: Hard negative samples

We take 80 for training and 20 for testing, The ratio of positive to negative is 2:9 in the

training phase; And 1:1 in the testing phase.
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Figure 2.11: Medium and Easy negative samples respectively

Now we are going to move to the discuss the detail of our CNN.

b-CNN architecture

The CNN architecture is as follow using the following notation.

Input Grayscale image of size 64x64.

k = kernel size; f = number of feature maps; p = padding value and s = stride.

C(k,s,p,f) represents a convolution layer.

P(k,s,p) represents pooling layer.

F(N) represents a fully connected layer with N output

• C(k=5,s=1,p=0,f=16) and Relu; output of size 60x60

• P(k=2,s=2,p=0) ; output of size 30x30

• C(k=5,s=1,p=0,f=16) and Relu; output of size 26x26

• P(k=2,s=2,p=0); output of size 13x13

• C(k=3,s=3,p=0,f=16) and Relu; output of size 6x6

• P(k=2,s=2,p=0); output of size 3x3

• C(k=3,s=1,p=0,f=16) and Relu; output is 16 scalar values

• F(2); output 2 scalar values

• Softmax Classifier; output 2 scalar representing the probability of each class.
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Figure 2.12: Graphical representation of CNN using a Caffe[1] tool

c-CNN hyperparameters

For training and testing we use caffe [32] with the following hyper-parameters for our

network:

Test iteration 100

Test interval 200

Learning rate 1e-03 for variable stride and then 1e-05 for fixed stride of 32.

maximum ieration 200000

learning policy polynomial

Power 3.0

momentum 0.9

weight decay 1e-3

machine CPU
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Chapter 3

Fusion of Information from Lidar

sensor and V2X Communicated Data

for Automated Driving

Sensor fusion is the process of combining data from different sensors to get a result

that is better that any one sensor (lower error variance for example). There exists many

proposed more formal definition,in [33] Wald uses “data fusion” for a formal framework that

comprises means and tools for the alliance of data originating from different sources that aims

at obtaining resulting information of superior quality; however the exact definition of superior

quality depends on the application. The term “data fusion” is used in this meaning by the

Geoscience and Remote Sensing Society, by the U. S. Department of Defense [69], and in

many papers regarding motion tracking, remote sensing, and mobile robots. Unfortunately,

the term was not used in the same meaning in the last years, in some models data fusion

denotes the fusion of raw data[18].

To avoid the confusion Dasarathy[ [34] distinguish the term information fusion from

sensor fusion. Information fusion encompasses theory, techniques and tools conceived and

employed for exploiting the synergy in the information acquired from multiple sources (sen-

sor, databases, information gathered by human, etc.) such that the resulting decision or

action is in some sense better (qualitatively or quantitatively, in terms of accuracy, robust-

ness, etc.) than would be possible if any of these sources were used individually without

such synergy exploitation. While sensor fusion, is the combination of sensory data and data

derived from sensors.
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One sensor exhibits many limitations : sensor deprivation due to the breakdown of a

sensor; limited spacial coverage usually an individual sensor covers only a restricted region,

limited temporal coverage; imprecision and uncertainty. In turn, using sensor fusion we can

expect many gains like [35] [36]: robustness and reliability, extended spatial and temporal,

increased confidence, robustness against inference...etc.

However sensor fusion is not without limitations; Fowler stated a harsh criticism in 1979:

One of the grabbiest concepts around is synergism. Conceptual application of synergism is

spread throughout military systems but is most prevalent in the “multisensor” concept. This

is a great idea provided the input data are a good quality. Massaging a lot of crummy data

doesn’t produce good data; it just requires a lot of extra equipment and may even reduce

the quality of the output by introducing time delays and/or unwarranted confidence. [. . .

] It takes more than correlation and fusion to turn sows’ ears into silk purses. [31, page 5].

Many have tried to prove the opposite, Nahin and Pokoski [37] presented a theoretical

proof that the addition of sensors improves the performance in the specific cases for ma-

jority vote and maximum likelihood theory in decision fusion. Performance was defined as

probability of taking the right decision without regarding the effort on processing power and

communication.

We distinguish the following methods of sensor fusion: Smoothing, Filtering, and Predic-

tion which refers to the task of fusion different noisy measurements construct the parameter

of interest.The stochastic Kalman Filter [38] uses a mathematical model for filtering signals

using measurements with a respectable amount of statistical and systematical errors. Gen-

erally; The filter uses a discrete-time algorithm to remove noise from sensor signals in order

to produce fused data that, for example, estimate the smoothed values of position, velocity,

and acceleration at a series of points in a trajectory. Inference methods specifically bayesian

inference [6] based on bayes theorem quatify the probability of hypothese H given that an

event E has occured. Examples for applications based on Bayesian inference can be found

in [39] for merging multiple sensor readings, in automatic classification of sensor inputs (e.

g., the computer program AUTOCLASS [40] developed by the NASA), or in map building

for mobile robots [41]. However when bayesian inference is used for sensor fusion certain

drawbacks can happen [42].
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3.1 Proposed Framework

Our method fuses data from local sensor and data obtained from outside. Automated

Vehicles use a number of sensing technologies, such as Lidar, Radar, and Cameras, which all

rely on “line of sight” (LOS) view and favourable environmental conditions. Lack of these

conditions leads to safety issues. Wireless communication is essential to acquire non line-of-

sight view and information regarding objects beyond the area directly sensed by local sensors

. Such communicated data may even be more precise than what local sensors can observe

in line of sight. Data Fusion mechanisms should be devised to allow fusion of information

from local and remote (V2X communicated) sensors.

Each car combines information (fig 3.1) received from different sources to create and

update a local map of objects around it:

Information derived from local sensing modalities Previous map knowledge about the

driving environment information derived through processing data sent by other cars.

Figure 3.1: Fusion Framework
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3.2 fusion algorithm

The fusion algorithm generates a position estimate using a fusion of information from

different sources. For example, a linear combination of detected distance. Fusion can happen

at different levels: Processing of raw data from different sources to determine the position

or Fusion of point-wise positions from different sensors (this work).

Figure.3.2 represents a rough sketch of how the error of the two different sensors compares.

Figure 3.2: A rough sketch of how the different methods compare
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3.3 Fusion method

We use a linear fusing method.Assume the position (distance) from LIDAR and GPS

over Dedicated Short Range Communications(DSRC) are denoted as XL, and XG. Assuming

error can be represented in a Gaussian form, for actual distance X we have:

XG = X + EG(X) and XL = X + EL(X) (3.1)

EG(X) and EL(X) are the error terms with variance σG(X) and σL(X) which increase

with distance X.

A linear fusion method as follows is proven to provide lower error variance if a is selected

properly (assuming the errors are normally distributed):

X̂ = aXG + (1− a)XL (3.2)

The error variance of the fused result is defined as follow:

σ2(X̂) = a.σ2
G(X) + (1− a).σ2

L(X) (3.3)

To find appropriate weights, we need to calculate error profiles of detection methods

3.4 Detection Error Profile

We assume that the error of the lidar based method will increase with the distance of

the object from the sensor and V2X error should remain relatively constant.

3.4.1 Lidar method error profile

For LIDAR based system we take the example of CSoR (CSHOT on Laser Reflectance)

by Leonard Plotkin [43]. Leonard Potkin propose a vehicle detection method using only

Lidar data. This method uses data from KITTI [31]. We use the KITTI [31] groundtruth

for to get the error profile.

Figure 3.3 shows the result of his detection method when applied to the corresponding

RGB images and shows the corresponding point cloud data frame.
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Figure 3.3: Examples of the point cloud data from LIDAR, as well as a snapshot of a scene
and detected vehicles are shown at the top

Leonard Plotkin [43] uses k-means, Adaboost [?] and KNN with CSHOT [44] features

to estimate the object position. When we run the algorithm we find that it gives some

negative detection samples; to choose the right detection sample we consider the values with

a bounding box that has intersection with the groundtruth ¿=0.5.

Figure 3.4 shows the scatter plot between the real X values and the predicted ones. X is

the x-axis in camera coordinates.
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Figure 3.4: Scatter plot of X predicted and X real

Figure 3.5 shows the scatter plot between the real Z values and the predicted ones. Z is

the z-axis on the camera coordinate

We also plot the histogram based on the euclidean error value for all the data (Fig.3.6).

We can see from the histogram that the vast majority of the samples exit where the error

is between 0 and 1 meters. Therefore it might be a good idea to try to plot the histograms

where the error is between 0 and 1 m and errors superior to 1.
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Figure 3.5: Scatter plot of Z predicted and Z real

Fig. 3.7 shows the histogram for errors values between 0 and 1. and Fig 3.8 shows the

corresponding PDF.
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Figure 3.6: Histogram of the error

Fig 3.9 shows the histogram for the errors superior to 1m.
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Figure 3.7: Histogram of the error values between 0 and 1

For a better understanding of the error profile we also analyze the 95 percentile. Fig.3.10

is a table containing the values of each percentile with the range representing the distance

from the detected vehicle and the number of samples in each range, for all errors.

Fig.3.11 shows plot the 95 percentile for all errors

Fig 3.12 shows a table containing the values of each percentile with the range representing

the distance from the detected vehicle and the number of samples in each range, for errors

between 0 and 1 m.

Fig.3.13 shows plot the 95 percentile for errors between 0 and 1m.

Fig 3.14 shows the trend of the error.
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Figure 3.8: PDF of the error values between 0 and 1

Figure 3.9: Histogram of error values superior to 1m
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Figure 3.10: table containing the 95 percentile for all error values

Figure 3.11: plot of the 95 percentile for all error values
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Figure 3.12: table containing the 95 percentile for error values between 0 and 1m

Figure 3.13: plot of the 95 percentile for error values between 0 and 1m
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Figure 3.14: Error profile of Lidar based method
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3.4.2 GPS error profile

The Global Positioning System (GPS),is a space-based radionavigation system owned by

the United States government and operated by the United States Air Force. It is a global

navigation satellite system that provides geolocation and time information to a GPS receiver

anywhere on or near the Earth where there is an unobstructed line of sight to four or more

GPS satellites. We will focus on differential GPS sensors; Differential Global Positioning

System (DGPS) is an enhancement to Global Positioning System that provides improved

location accuracy, from the 15-meter nominal GPS accuracy to about 10 cm in case of the

best implementations. DGPS uses a network of fixed ground-based reference stations to

broadcast the difference between the positions indicated by the GPS satellite systems and

the known fixed positions. These stations broadcast the difference between the measured

satellite pseudoranges and actual (internally computed) pseudoranges, and receiver stations

may correct their pseudoranges by the same amount. The digital correction signal is typically

broadcast locally over ground-based transmitters of shorter range.

Information in Basic Safety Messages is mainly derived from GPS sensors. and With

Differential GPS sensor, error variance is under 1 m: σG(X) ∼ 0.6m for all X.
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3.4.3 Defining the weights

For point-wise fusion of remote vehicle position from GPS and LIDAR, we propose dis-

tance dependent weight of :

a = (σL(X)/σG(X)) ∗ C; C < max(σG(X)/σL(X)) (3.4)

The constant C ensures that a<1.
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Chapter 4

Results and Analysis

In this section we will presents the results of our environment reconstruction and under-

standing plus our sensor fusion method. We tested our approaches on two publicly available

lidar and RGB databases.

4.1 EM-ICP algorithm

In this section, we report our experimental results on KITTI data set [31]. The LIDAR

sensor used in [31] is Velodyne HDL-64E (64 channels and range of 120m). The height of

LIDAR scanner is 1.73m and spins at 10 frames per second (capturing approximately 100k

points per cycle).

In the first set of experiments, we report the environment reconstruction results of the

proposed EM-ICP for a variety of point clouds – urban vs. rural (refer to Fig. 4.1) and

road vs. intersection (refer to Fig. 4.2). In our experiments, we have aligned and combined

N=40 point clouds (each cloud contains around 200,000 points). It can be observed that the

density of point cloud increases along the moving direction of HV. This is consistent with

the fact that more overlaps exist in the point clouds in the front of than behind the vehicle.

We also notice that the reconstruction of urban environment appears to be more accurate

than that of rural one. One possible explanation is that man-made structures in urban

environments (e.g., buildings, traffic signs etc.) better fit the proposed EM-ICP algorithm

than those natural objects such as trees in rural environments. Indeed, similar findings can

be found in the previous work on efficient variants of ICP algorithms [45].
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Figure 4.1: Urban environment reconstruction from Ford and KITTI data

Figure 4.2: Road intersection plus rural environments reconstruction from KITTI data

To qualitatively evaluate the accuracy of our EM-ICP algorithm, we have used the

ground-truth (GT) data supplied by KITTI database [31]. In Fig. 4.4), we have plotted

the comparison of predicted vehicle speed and GT – note that no filtering has been ap-

plied to the measurement speed. Assuming the errors of predicted speed can be modeled by

Gaussian, some low-pass filtering can be used to significantly improve the accuracy of speed

prediction. In Fig. 4.4), we have plotted the comparison between the predicted and actual

x component of translation characterizing how much the sensor has moved from frame to

frame in the x direction. It can be observed that the prediction is fairly close to the GT

values justifying the accuracy of the proposed EM-ICP alignment method.

In figure 4.3, We show an example of the extracted foreground, where the overlay indicate
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Figure 4.3: Example of Extracted Foreground

the moving objects.

Figure 4.4: X component translation and vehicle speed
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4.2 Convolution neural network on depth maps

Figure 4.5: Graph of the results of training the CNN

Our baseline method is Histogram of oriented gradient as features plus linear support

vector machine as the classifier. The histogram of oriented gradients (HOG) is a feature

descriptor used in computer vision and image processing for the purpose of object detection.

The technique counts occurrences of gradient orientation in localized portions of an image.

It is similar to that of edge orientation histogram.

In figure 4.4, we give the plot of three quantities that defines our training and testing

experiments. The Training loss starts decreasing at the 50000 iteration and stabilize to a

value between 0.2 and 0.35. Another curve is the testing loss curve, that is calculated on

the testing data (which is never seen before data for our model) , the testing loss stabilize

between 0.5 and 0.6. The most important curve that represents the accuracy of our model,

is the testing accuracy. It defines the ratio of correctly classified data; the accuracy as shown

in the table below is at 0.79.

Experiment Accuracy

Baseline:

HOG with

L-SVM

0.77

CNN 0.79

Our baseline method trained on our depth map generated data and tested on our testing

data is of 0.79 as shown in the result table.
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4.3 Lidar and GPS data fusion

As we saw in the previous chapter, the fusion equation depends on the weight a which

in terms depends on a constant C that ensures that a < 1.

a = (σL(X)/σG(X)) ∗ C; C < max(σG(X)/σL(X)) (4.1)

We experimented with different values of C and found that C=0.3 is the value that result

in fusion error less than individual sensor errors as shown in the graph below.

Figure 4.6: Graph of the results of the fusion algorithm - σL from experiment and σG from
simulation

We can see from the above graph that the fusion gives a lower error variance. When

either sensor determines lack of accuracy, fusion should not be used; e.g., with low GPS

satellite count <5

Fusion can also be done at the level of vehicle tracking (BSM info filtered into tracks).

This requires understanding the distance dependent error of V2V based position. Such error

depends on many factors: channel congestion, fading, vehicle dynamic, etc. With a known

error profile, the same adaptive method above will work with the V2V data, since the weight

is distance dependent.
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Chapter 5

Conclusion

We have presented a robust EM-ICP algorithm for reconstructing the vehicle environ-

ment from a collection of point clouds. Moving objects including vehicles, pedestrians and

cyclists are treated as outliers and can be interpreted as the byproduct of reconstruction.

Our preliminary experimental results have shown successful reconstruction of vehicle envi-

ronments for a variety of situations (urban and rural, road and intersection). Along with

this line of research, we were able to fuse the scene information extracted from LIDAR data

with other sensors (e.g., video imagery). We also presented a linear sensor fusion method

and we have shown that it performs better than individual sensors.

A multimodal approach toward pedestrian detection might offer improved performance

over any single sensor. Future work may also includes efficient representation of 3D vehi-

cle environment (e.g., octomap-based [24]) and communication of such information among

connected vehicles.

Concerning our fusion method, we showed that even a simple fusion methods can provide

significant benefits. The challenges we face are as follow; we need the Knowledge of the

precision of different methods. Such knowledge may be derived a priori, but sometimes it

needs to be determined in real time (e.g., use DOP ¡ 2 or satellite count of GPS, using PER

in V2V, or LIDAR SNR) also object matching and synchronization of data in both time

and space is necessary. Future work may include the study of other fusion mechanisms and

adaptive adjustment of fusion weights using accuracy indicators.
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