7,368 research outputs found

    Detection of OFDM Signals Using Pilot Tones and Applications to Spectrum Sensing for Cognitive Radio Systems

    Get PDF
    Nowadays there are an increasing number of wireless devices which support wireless networking and the need for higher data rate communication is increasing rabidly. As more and more systems go wireless, approaching technologies will face spectral crowding and existence of wireless devices will be an important issue. Because of the limited bandwidth availability, accepting the request for higher capacity and data rates is a challenging task, demanding advanced technologies that can offers new methods of using the available radio spectrum. Cognitive radio introduces a key solution to the spectral increasing issue by presenting the opportunistic usage of spectrum that is not heavily occupied by licensed users. It is a latest idea in wireless communications systems which objective to have more adaptive and aware communication devices which can make better use of available natural resources. Cognitive radio appears to be an attractive solution to the spectral congestion problem by introducing the notion of opportunistic spectrum use. Cognitive radios can operate as a secondary systems on top of existence system which are called primary (or licensed) systems. In this case, secondary (cognitive) users need to detect the unused spectrum in order to be able to access it. Because of its many advantages, orthogonal frequency division multiplexing (OFDM) has been successfully used in numerous wireless standards and technologies. It\u27s shown that OFDM will play an important role in realizing the cognitive radio concept as well by providing a proven, scalable, and adaptive technology for air interface. Researches show that OFDM technique is considered as a candidate for cognitive radio systems. The objective of this dissertation is to explore detecting of OFDM modulated signals using pilot tones information. Specifically we applying Time-Domain Symbol Cross-Correlation (TDSC) method in the confect of actual 4G wireless standards such as WIMAX and LTE. This detection is only based upon the knowledge of pilot structures without knowledge of received signal so that, it can be performed on every portion of the received signal. The approach induces Cross-Correlation between pilots subcarriers and exploits the deterministic and periodic characteristics of pilot mapping in the time frequency domain

    Master of Science

    Get PDF
    thesisChannel estimation techniques are crucial for reliable communications. This thesis is concerned with channel estimation in a #12;lter bank multicarrier spread spectrum (FBMC-SS) system. We explore two channel estimator options: (i) a method that makes use of a periodic preamble and mimics the channel estimation techniques that are widely used in OFDM-based systems; and (ii) a method that stays within the traditional realm of #12;lter bank signal processing. For the case where the channel noise is white, both methods are analyzed in detail and their performance is compared against their respective Cramer-Rao Lower Bounds (CRLB). Advantages and disadvantages of the two methods under di#11;erent channel conditions are also discussed to provide insight to the reader as to when one will outperform the other. After the theoretical exercise of deriving these channel estimation algorithms, we examine some practical considerations for the traditional channel estimation approach such as the channel delay spread and the e#11;ects of signal interference. First, a set of guidelines about designing the subcarrier spacing of FMBC-SS vs. the channel coherence bandwidth are provided to ensure channel estimates are su#14;ciently unbiased. Next, we provide a method for detecting the channel delay spread and rejecting in-band interference that results in nearly unbiased channel estimation scheme that can achieve a performance close to the CRLB in low SNR environments

    On detection of OFDM signals for cognitive radio applications

    Get PDF
    As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation.As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation

    Robust joint synchronization and channel estimation approach for frequency-selective environments

    Get PDF
    Supporting spontaneous low-latency machine type communications requires fast synchronization and channel estimation at the receiver. The problems of synchronizing the received frame and estimating the channel coefficients are often addressed separately with the later one relying on accurate timing acquisition. While these conventional approaches can be adequate in flat fading environments, time dispersive channels can have a negative impact on both tasks and severely degrade the performance of the receiver. To circumvent this large degradation, in this paper we consider the use of a sparse based reconstruction approach for joint timing synchronization and channel estimation by formulating the problem in a form that is closely related to Compressive Sensing(CS) framework. Using modified versions of well-known sparse reconstruction techniques, which can take into account the additional signal structure in addition to sparsity, it is shown through numerical simulations that, even with short training sequences, excellent timing synchronization and channel estimation performance can be achieved, both in single user and multiuser scenarios.info:eu-repo/semantics/publishedVersio

    Secure OFDM System Design for Wireless Communications

    Get PDF
    Wireless communications is widely employed in modern society and plays an increasingly important role in people\u27s daily life. The broadcast nature of radio propagation, however, causes wireless communications particularly vulnerable to malicious attacks, and leads to critical challenges in securing the wireless transmission. Motivated by the insufficiency of traditional approaches to secure wireless communications, physical layer security that is emerging as a complement to the traditional upper-layer security mechanisms is investigated in this dissertation. Five novel techniques toward the physical layer security of wireless communications are proposed. The first two techniques focus on the security risk assessment in wireless networks to enable a situation-awareness based transmission protection. The third and fourth techniques utilize wireless medium characteristics to enhance the built-in security of wireless communication systems, so as to prevent passive eavesdropping. The last technique provides an embedded confidential signaling link for secure transmitter-receiver interaction in OFDM systems

    Preprint: Using RF-DNA Fingerprints To Classify OFDM Transmitters Under Rayleigh Fading Conditions

    Full text link
    The Internet of Things (IoT) is a collection of Internet connected devices capable of interacting with the physical world and computer systems. It is estimated that the IoT will consist of approximately fifty billion devices by the year 2020. In addition to the sheer numbers, the need for IoT security is exacerbated by the fact that many of the edge devices employ weak to no encryption of the communication link. It has been estimated that almost 70% of IoT devices use no form of encryption. Previous research has suggested the use of Specific Emitter Identification (SEI), a physical layer technique, as a means of augmenting bit-level security mechanism such as encryption. The work presented here integrates a Nelder-Mead based approach for estimating the Rayleigh fading channel coefficients prior to the SEI approach known as RF-DNA fingerprinting. The performance of this estimator is assessed for degrading signal-to-noise ratio and compared with least square and minimum mean squared error channel estimators. Additionally, this work presents classification results using RF-DNA fingerprints that were extracted from received signals that have undergone Rayleigh fading channel correction using Minimum Mean Squared Error (MMSE) equalization. This work also performs radio discrimination using RF-DNA fingerprints generated from the normalized magnitude-squared and phase response of Gabor coefficients as well as two classifiers. Discrimination of four 802.11a Wi-Fi radios achieves an average percent correct classification of 90% or better for signal-to-noise ratios of 18 and 21 dB or greater using a Rayleigh fading channel comprised of two and five paths, respectively.Comment: 13 pages, 14 total figures/images, Currently under review by the IEEE Transactions on Information Forensics and Securit
    corecore