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ABSTRACT

Channel estimation techniques are crucial for reliable communications. This thesis is

concerned with channel estimation in a filter bank multicarrier spread spectrum (FBMC-SS)

system. We explore two channel estimator options: (i) a method that makes use of a

periodic preamble and mimics the channel estimation techniques that are widely used in

OFDM-based systems; and (ii) a method that stays within the traditional realm of filter

bank signal processing. For the case where the channel noise is white, both methods are

analyzed in detail and their performance is compared against their respective Cramer-Rao

Lower Bounds (CRLB). Advantages and disadvantages of the two methods under different

channel conditions are also discussed to provide insight to the reader as to when one will

outperform the other. After the theoretical exercise of deriving these channel estimation

algorithms, we examine some practical considerations for the traditional channel estimation

approach such as the channel delay spread and the effects of signal interference. First, a set

of guidelines about designing the subcarrier spacing of FMBC-SS vs. the channel coherence

bandwidth are provided to ensure channel estimates are sufficiently unbiased. Next, we

provide a method for detecting the channel delay spread and rejecting in-band interference

that results in nearly unbiased channel estimation scheme that can achieve a performance

close to the CRLB in low SNR environments.
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CHAPTER 1

INTRODUCTION

In this chapter, we introduce the FBMC-SS waveform and its benefits. Next, we discuss

the channel estimation problem for FBMC and how it fits into the receiver design. Lastly,

we develop a mathematical signal model for the transmitted waveform that is a foundation

for the rest of the analysis presented in this thesis.

1.1 The Filter Bank Multicarrier Waveform

Filter bank multicarrier (FBMC) has been proposed as a desirable alternative to or-

thogonal frequency division multiplexing (OFDM) in applications where spectral efficiency

and spectral mobility are important [1]. A special class of spread spectrum waveforms that

are built based on FBMC (FBMC-SS) was introduced in [2]. It was noted that FBMC-SS

offers robust performance in high noise and high interference applications. The robustness

of the FBMC-SS can be attributed to the recombining of the spread data symbols in the

receiver through the principle of maximum ratio combining (MRC), which naturally filters

out those portions of the spectrum that have received a high level of interference. The

combining equation requires a reasonable estimate of the communications channel. This

motivates the study and development of the channel estimation algorithms presented in

this thesis.

1.2 Previous Literature on Channel Estimation for
Multicarrier Waveforms

The problem of estimating the channel has been well studied in OFDM literature. The

presence of the cyclic prefix (CP) in OFDM introduces a periodicity in its waveform which

in turn leads to a maximum likelihood (ML) channel estimator that easily achieve the

Cramer-Rao lower bound (CRLB) [3]. The CP absorbs the channel transient and the

samples of a single OFDM symbol (excluding the CP) contain sufficient information that
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can provide an unbiased estimate of the channel impulse/frequency response. The first

contribution of this thesis is to show how the channel estimation methods that have been

developed for OFDM-based systems can be extended to FBMC. This method, which is

examined in detail in Chapter 2, is referred to as the OFDM-like ML channel estimator.

In FBMC literature, most of the channel estimation methods are based on the as-

sumption that the channel over each subcarrier band can be approximated by a flat gain

[2, 4, 5]. Additional measures/steps for improving channel estimates have been explored for

OFDM, e.g., the transform-domain noise reduction techniques [6–8], are also applicable and

have been studied to improve the channel estimates in filter bank systems, e.g., see [9–15].

Nevertheless, some works assert that the flat-gain assumption in many cases may be too

coarse and thus alternative methods such as per-subcarrier multi-tap equalization [16] have

to be sought. In the second part of Chapter 2, we examine the flat-gain assumption in FBMC

channel estimation and provide a detailed mathematical comparison of its performance to

the approximation-free channel estimator that is obtained through the proposed OFDM-like

channel estimator. We refer to this second method as flat-gain ML channel estimator. The

results of both channel estimators are benchmarked against the CRLB. We find that while

the performance of the flat-gain ML channel estimator is limited by the channel frequency

selectivity, as one would expect, the proposed OFDM-like ML channel estimator remains

at CRLB as the number of training symbols/pilots are increased to obtain more accurate

estimates of channel.

1.3 FBMC-SS Signal Model

FBMC-SS builds its waveform using a filter bank consisting of multiple subcarriers.

The case of interest in this thesis is when the same data symbol is spread across all of the

subcarriers [2]. In this case, the transmitter baseband processing can be simplified to the

one presented in Fig. 1.1. The transmit data symbols are up-sampled by a factor of L and

passed through a synthesis filter bank g(n) with N active subcarriers; see [2] for details.

Accordingly, the synthesized transmit signal can be expressed as

x(n) =
∑
m

s(m)g(n−mL) (1.1)

where s(m) are data symbols. At the beginning of each data packet, s(m) is replaced by

a sequence of training/pilot symbols, a(m), that will be used for packet detection, timing
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recovery, and channel estimation. Packet detection and timing recovery are performed

separately and prior to channel estimation. A method for performing these tasks is discussed

in [17] and [18].

In this thesis, we assume a(m) is a periodic sequence with a period of K symbols.

When this sequence is sent through the FBMC-SS transmitter, the result, after passing

through its transient period, will be a sequence with a period of KL samples. We use x̃(n)

when reference is made to this periodic sequence. Periodicity of x̃(n) implies that it is a

summation of KL complex sine waves with frequencies fk = 2πk
KL for k = 0, 1, · · · ,KL− 1,

i.e.,

x̃(n) =
1√
KL

KL−1∑
k=0

X̃ke
j 2πkn
KL (1.2)

where X̃k are the Fourier series coefficients of x̃(n).

The derivations in the next chapter will be greatly simplified through use of a set of vec-

tors and matrices. With this in mind, we define the column vectors x = [x̃(0) x̃(1) · · · x̃(KL− 1)]T

and xf =
[
X̃0 X̃1 · · · X̃KL−1

]T
.

The terms x and xf are related according to the equation

xf = Fx. (1.3)

Also, to facilitate some of our derivations in the rest of the thesis, we define

Xf = diag (xf) (1.4)

where diag(·) refers to forming a diagonal matrix with the indicated elements.

The rest of the thesis will be organized as follows. In Chapter 2, we derive the flat-gain

ML channel estimator and OFDM-like ML channel estimator. The performance of both

ML algorithms is analyzed in terms of MSE, and the theoretical MSE expressions for the

estimators are compared to the Cramer-Rao Lower Bound. Simulation results are provided

to confirm the analysis for the channel estimation algorithms. In Chapter 3, we examine

the flat-gain assumption and discuss the effects of interference and the channel delay spread

on the performance of the flat-gain ML channel estimator. An approach for removing

interference from the channel estimate and detecting the channel delay spread is presented

that allows the estimator to achieve good performance in realistic environments. Lastly,

conclusions of the thesis are presented in Chapter 4. The results in Chapter 2 were presented
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at IEEE ICC 2017 [19]. Also, the combination of Chapters 2 and 3 will be combined into

a journal paper [20].
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Figure 1.1. FBMC-SS transmitter model



CHAPTER 2

CHANNEL ESTIMATION

In this chapter, we present two channel estimation algorithms for the FBMC-SS system

that was introduced in Chapter 1. The first algorithm utilizes a periodic preamble sequence

to create a set of tones that can be used to estimate the channel in a manner that mimics

OFDM. We denote this estimator as the OFDM-like ML channel estimator throughout the

rest of this paper. The second FBMC-SS scheme makes the assumption that the channel

can be approximated as a flat-gain across each subcarrier, and these channel gains are

estimated at each subcarrier after performing matched filtering. Throughout the rest of this

paper, this scheme will be denoted as the Flat-Gain ML channel estimator. The theoretical

performance of these estimation algorithms is evaluated in terms of MSE, and the MSE

expressions are compared to the derived CRLB for each estimator. Simulation results are

provided to confirm the analysis presented in this chapter.

2.1 OFDM-like ML Channel Estimator

After the transmitted signal passes through a channel and leaves the corresponding

transient period behind, the periodic sequence x̃(n) leads to a periodic received signal with

the same period. The result, when expressed in the form of a Fourier series expansion, has

the following form:

ỹ(n) =
1√
KL

KL−1∑
k=0

CkX̃ke
j 2πkn
KL + v(n) (2.1)

where Ck is the channel frequency response at frequency fk and v(n) is the channel noise.

Note that v(n) in general is an aperiodic sequence.

Taking a single period of ỹ(n) and applying a DFT to it, the result in the frequency

domain may be written as

yf = Xfcf + vf (2.2)

where cf is a column vector with elements C0, C1, · · · , CKL−1, and definitions of yf and vf
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should be clear from the context. The goal here is to estimate the unknown vector cf from

(2.2). A system model depicting the placement of the OFDM-like channel estimator in the

FBMC-SS receiver is provided in Fig. 2.1.

Equation (2.2) has the familiar form of a linear model (see [21], Chapter 7). Accordingly,

assuming vf has a symmetric complex Gaussian distribution with covariance matrix Σ, (2.2)

leads to the ML estimate [21]

ĉf = X−1f yf . (2.3)

The above derivation implicitly assumes that the duration of the channel impulse re-

sponse (in the time domain) is equal to a period of x̃(n) (KL samples). Many wireless

channels encountered in practice have a duration of at most 1 or 2 µs, e.g., see [22–24].

However, for the case of interest in this thesis, a period of x̃(n) may be one or two orders

of magnitude longer than the channel impulse response duration. Making use of this

information reduces the MSE of the channel estimate by the same factor; i.e., orders of

magnitude improvement in the channel estimate is possible. Such an improved channel

estimate is obtained by adding the following modification to the previous formulation.

Let c be a length KL column vector denoting the time domain channel impulse response

samples corresponding to the IDFT of cf in (2.2). If we note that only the first Lc samples

in c contain channel information, we can denote a new column vector cp of length Lc < KL

that only retains the channel information and discards the KL − Lc samples at the end

of the vector. The frequency domain channel response cf can be formulated from cp by

applying a partial DFT matrix Fp which contains the first Lc columns of F :

bcf = Fpcp. (2.4)

By substituting (2.4) into (2.2), we get a new linear equation from which we obtain the

ML estimate of c as [21]

ĉD = ((XfFp)HΣ−1XfFp)−1(XfFp)HΣ−1yf , (2.5)

where the subscript D has been added to indicate that this is a ‘denoised’ estimate of the

channel. Taking the DFT of ĉD leads to the improved (denoised) frequency domain estimate

ĉf,D = FpĉD. (2.6)

The complexity of the estimator given in (2.5) is discussed in Section 2.6.
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2.2 Flat-Gain FBMC ML Channel Estimator

The estimator in this subsection makes the assumption that the channel frequency

response is flat across each of the N frequency bands. We also assume that the combination

of the transmitter pulse-shaping filter and its matched version at the receiver makes a perfect

Nyquist filter. The matched filter in this case corresponds to the analysis filter bank, which

has the structure defined in [2, Fig. 13]. With these assumptions and noting that the pilot

subcarriers are non-overlapping, the pilot symbols will be affected by the channel gains and

noise at the respective subcarriers. Note that the noise samples seen at different subcarriers

are independent from one another due to the fact that the subcarrier bands are disjoint.

A system model depicting the placement of the flat-gain ML channel estimator is shown

in Fig. 2.2. The matched filtered data out of the analysis filter bank’s kth subcarrier can

be written as

zk(n) = Cka(n) + vk(n). (2.7)

where a(n) are the pilots symbols known to the receiver and vk(n) are the noise samples at

the output of the kth subcarrier. Note that the packet detection and timing recovery block

in Fig. 2.2 assures that the receiver is correctly aligned with the pilot symbols.

Because the pilot symbols in (2.7) are known to the receiver, we can multiply the received

symbol by the inverse of a(n) to obtain

z′k(n) = Ck + v′k(n), (2.8)

where v′k(n) = vk(n)/a(n) is the scaled channel noise. The use of a Nyquist filter, as well

as correct timing, implies that the noise samples v′k(n) are independent and identically

distributed (i.i.d.) across time n. However, it should be noted that the variance of the noise

across different subcarriers need not be equal. Here, we define σ2v,k to be the variance of the

noise at subcarrier k. Additionally, we define the covariance matrix of the vector v′ with

elements v′0(n), v′1(n), · · · , v′N−1(n) to be the diagonal matrix Λ, where the kth element

along its diagonal is σ2v,k.

Based on (2.8), the minimum-variance unbiased (MVUB) estimator of Ck is found to be

the sample mean across the K pilot symbols [21], i.e.,

Ĉk =
1

K

K∑
n=1

z′k(n). (2.9)
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As one would expect, the variance of the MVUB estimator (2.9) decreases as the number

of pilot symbols increases. The column vector ĉf with elements Ĉ0, Ĉ1, · · · , ĈN−1 is, thus,

an unbiased estimate of cf with covariance matrix 1
KΛ.

The above derivations do not take into account the fact that the channel impulse

response length Lc may be smaller than the number of frequency domain samples N .

When Lc < N , one may obtain an improved/denoised version of ĉf by converting it to

time domain, truncating the result to Lc samples, and converting back to the frequency

domain. Mathematically, this can be written as

ĉf,D = cf + FPcF−1v′′, (2.10)

where Pc is a diagonal matrix with Lc ones in the first part of its diagonal and zeros in the

remaining portion of the diagonal and

v′′ =
1

K

K∑
n=1

v′(n). (2.11)

2.3 Performance Analysis

The performance of the two channel estimators can be evaluated in terms of their

respective MSE. To simplify the analysis and provide more intuitive equations, we derive

the MSE for each estimator under the assumption that noise introduced by the channel has

a white Gaussian distribution. It will be shown that the ML estimator derived under the

flat gain assumption achieves similar performance to the OFDM-like ML estimator when

the flat gain assumption is accurate.

2.3.1 OFDM-like MLE Performance

To derive an expression for the OFDM-like channel estimator’s MSE, we first prove that

the OFDM-like ML channel estimator derived in Section 2.1 is unbiased. Starting with (2.5),

and denoting Z = Fp((XfFp)HΣ−1XfFp)−1(XfFp)HΣ−1, the probability distribution of

the MLE has a mean

E[ĉf,D] = ZXfFpcp (2.12)

and covariance

cov[ĉf,D] = ZΣZH . (2.13)
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Simplifying the terms in (2.12) and (2.13) leads to the Gaussian PDF

P (ĉf,D) ∼ CN (Fpcp,B) , (2.14)

where B = Fp((XfFp)HΣ−1XfFp)−1FH
p . The mean of the probability density function in

(2.14) is the channel frequency response. This clearly shows that the estimator is unbiased.

The MSE of this unbiased estimator is expressed as

MSE = E
[
(ĉf − cf)

H(ĉf − cf)
]
, (2.15)

which is simply the sum of the diagonal elements of the estimator’s covariance matrix B. If

we introduce the assumption that the additive noise is white and Gaussian where Σ = σ2I,

the estimator MSE is

MSE = σ2tr
[
Fp(FH

p XH
f XfFp)−1FH

p

]
(2.16)

where tr[·] means the trace of a matrix. As will be shown in Section 2.4.1, this theoretical

mean square error corresponds to the CRLB.

2.3.2 Flat-Gain MLE Performance

In order to evaluate the performance of the flat-gain ML estimator, we first note that the

estimator in (2.10) is clearly unbiased if v′ is assumed to be zero mean. We note, however,

that this is only true if the assumption of the channel being flat across each subcarrier

remains accurate. When the flat gain assumption becomes less accurate, a bias ε will be

introduced into the estimate.

The covariance of the estimator is given by

cov [ĉf,D] =
1

K
ΣDΛΣH

D , (2.17)

where ΣD = FPcF−1. If we assume the noise is AWGN and has a variance σ2, the

covariance matrix (2.17) simplifies to σ2

K ΣD. With this simplification, and following a

similar line of derivations to those in [3], we get

MSE =
σ2

K
tr [ΣD] + ε =

Lcσ
2

K
+ ε. (2.18)
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2.4 Cramer-Rao Lower Bound Derivation

In this section, we derive the CRLB of both channel estimation methods and compare

the results to each estimator. Throughout this section, we assume that the channel noise

is white and Gaussian.

2.4.1 CRLB for the OFDM-like Formulation

In order to reduce the complexity of the derivation for the CRLB, we choose to compute

the CRLB for estimating the impulse response vector cp. To relate the CRLB for the

impulse response estimate to the frequency domain estimate, we note that the efficiency of

estimators is maintained over linear transformations [21, p. 37], [3].

Starting with the PDF of the receiver input data defined in (2.2), the Fisher Information

Matrix I(cp) is derived as [21]

I(cp) = −E
[
∂2ln(P (Yf ; cp))

∂cp∂cpH

]
=

1

σ2
(XfFp)HXfFp. (2.19)

An estimator meets the CRLB if it satisfies the following relation between its covariance

matrix and the Fisher Information Matrix [21]:

Σĉp =
1

I(cp)
. (2.20)

In order to compute the covariance matrix of the time domain channel estimate, we begin

by taking the IDFT of (2.6):

ĉp = F−1p ĉf . (2.21)

The equation in (2.21) is simply the product of a complex Gaussian vector with a linear

operator. If the channel noise is assumed to be white and Gaussian, this results in the

following PDF:

P (ĉp, c) ∼ CN
(
F−1p Fpcp,

σ2F−1p Fp((XfFp)HXfFp)−1FH
p (F−1p )H

)
∼ CN

(
cp, σ

2
(
(XfFp)HXfFp)−1

))
. (2.22)
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The covariance matrix of the channel impulse estimate in (2.22) clearly satisfies the re-

lationship defined in (2.20). Additionally, the time domain estimator remains unbiased.

Therefore, the OFDM-like channel estimator achieves the CRLB.

2.4.2 CRLB for the Flat-Gain Formulation

In this section, we show that the flat-gain ML channel estimator derived in (2.10)

achieves the CRLB if the flat-gain assumption is true. In addition to performing the

standard derivation for the CRLB, we note that the expression for mean square error for the

flat-gain ML estimator should be conditioned by the known length of the channel impulse

response Lc. In the time domain, this conditioning can be expressed as limiting the noise to

only the samples that corrupt the impulse response samples c(n) in the range 0 ≤ n ≤ Lc−1,

which reduces the noise power by a factor Lc/N for a white noise environment. Relating this

result to the frequency domain noise process, the variance of the noise at each subcarrier is

also scaled by Lc/N . Starting by writing the conditional PDF as p(z′k, Ck | len{c} = Lc),

the Fisher Information can be written as

I(Ck) = −E
[
∂2ln(p(z′k, Ck | len{c} = Lc))

∂Ck∂C
∗
k

]
= −E

[
−KN
σ2Lc

]
=

KN

σ2Lc
. (2.23)

The CRLB can be written in terms of the Fisher Information as

var(Ĉk)) ≥
1

I(Ck)

≥ σ2Lc

KN
, (2.24)

where K is the number of samples used in the computation of the estimate. If the error

term ε is zero in (2.18), it can be seen that the flat-gain channel estimator meets the CRLB:

σ2

K
[ΣD]ii =

[
I−1(cf)

]
ii
. (2.25)

2.5 Results

In this section, we provide MATLAB simulation results to confirm the theoretical work

developed in the previous sections and provide intuition for practical applications. The

simulation configuration is given below:
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• Filter Bank Upsampling Rate L = 128.

• Number of Active Subcarriers N = 64.

• Periodic Pilot Sequence Length K = 16.

• The channel is static over the duration of the FBMC-SS Packet.

• Pilot symbols a(n) are transmitted on all subcarriers during the preamble.

• The filter bank subcarrier spacing = 500 kHz.

• The channel length Lc is known a priori by the receiver for both estimation methods.

• White Gaussian noise is added to the channel output with the SNR swept from −10

dB Es/No to 40 dB Es/No.

• Perfect timing synchronization and carrier synchronization are assumed.

• The transient introduced by the channel is absorbed by the beginning of the preamble

during packet detection such that the estimate is performed on the non-transient part

of the preamble.

In order to compare the relative performance of the estimators, we compute the Nor-

malized Mean Square Error (NMSE) of each estimator using the following equation:

NMSE =
(ĉf − cf)

H(ĉf − cf)

cHf cf
. (2.26)

In order to quantify the measured NMSE, we proceed to normalize the theoretical expres-

sions that met the CRLB. The theoretical MSE for the OFDM-like estimator in (2.16) is

normalized according to the following equation:

NMSEtheory,OL =
tr
[
σ2Fp(FH

p XH
f XfFp)−1FH

p

]
cHf cf

. (2.27)

Additionally, the flat-gain channel estimator’s theoretical MSE in (2.18) is normalized as

follows:

NMSEtheory,FG =
tr
[
σ2

K ΣD

]
cHf cf

. (2.28)

The NMSE measured in simulation is compared to the normalized theoretical MSE for each

estimator.



14

Two different channel models are used to evaluate the OFDM-like channel estimator and

the flat-gain channel estimator. The first channel model used is an LTE EPA channel with a

Doppler frequency of 5Hz, as defined in [22]. A snapshot of the impulse response of the LTE

EPA channel is shown with its estimate in Fig. 2.3. This channel model is time-limited to

approximately 500 ns, which results in a fairly wide coherence bandwidth in the frequency

domain and increases the accuracy of the flat-gain assumption. The measured NMSE of the

estimators and the theoretical NMSE for the estimators are shown in Fig. 2.4. It can be

seen that the flat-gain channel estimator matches theory until the bias begins to dominate

the NMSE at high SNR. The bias, modeled as ε in (2.18), is considered negligible in this

scenario. Additionally, we note that the OFDM-like estimator does not suffer from any bias

and matches theory across all SNR points. It is also worth noting that both theoretical

NMSE curves are identical.

The second channel model used to evaluate the estimators is an LTE EVA channel with

a Doppler frequency of 5Hz, as defined in [22]. We chose to use this channel model to

illustrate the effectiveness of the estimators when the channel impulse response has a longer

duration in time and significant frequency selectivity. In the comparison of the impulse

response to the estimated impulse responses in Fig. 2.5, the bias of the flat-gain channel

estimator is apparent. The stronger bias, dominated by the inaccuracy of the flat-gain

assumption, is also reflected in the plot of the estimator NMSE in Fig. 2.6. These results

show that the flat-gain channel estimator is a reasonable method for estimating channels

with short delay spreads, but has limited performance in urban environments where the

channel delay spread is larger. On the other hand, the OFDM-like channel estimator, with

a proper choice of the periodic sequence length K, is very effective for estimating practical

channels with a variety of delay spreads and higher frequency selectivity.

2.6 Implementation Complexity

In this section, we provide details about the practical implementation of the OFDM-like

channel estimator and the flat-gain channel estimator. In both implementations, we assume

that the noise introduced by the channel is white with variance σ2. For the OFDM-like

estimator, we begin with (2.6) and note that the terms Fp and Xf are known by the receiver.

Therefore, the ML estimate of the channel frequency response can be simplified as
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ĉf,D = FpΛFH
p XH

f yf . (2.29)

The matrix Λ in equation (2.29) is a diagonal matrix formed by (FH
p XH

f XfFp)−1. It can

be shown that Λ is diagonal due to the periodicity of the transmitted signal. Using this

new notation for the channel estimate, we can compute the estimate using computationally

efficient FFT and IFFT blocks as shown in Fig. 2.7. While the FFT components in Fig. 2.7

can be large, depending on KL, two of the FFTs have pruned architectures that can be

implemented efficiently following the guidelines in [25, 26]. Using pruned FFT architectures,

we compute the computational complexity of this estimator as KL log2KL+KL log2 Lc +

3KL − Lc complex multiplications and KL log2KL + KL log2 Lc + 2KL − 2Lc complex

additions.

The flat-gain channel estimator relies on the analysis filter bank to perform matched

filtering prior to the estimate, so its complexity is incorporated into this analysis. Ad-

ditionally, the denoising algorithm can be implemented with a pruned FFT architecture

having a complexity defined in [25]. Assuming the analysis filter bank uses a P -tap

polyphase filter size and an L-point IFFT, the channel estimator described by (2.10) requires

KPL+KL log2 L+KN +KN (log2 Lc + 2)−2KLc complex multiplication operations and

KPL+KL log2 L+K2N +KN (log2 Lc + 2)− 2KLc −K complex additions.

To compare the implementations more directly, we evaluate the estimator complexities

using parameter values that are sufficient for estimating a channel similar to the LTE EPA

model. For this example, we let K = 4, L = 128, P = 6, N = 64, and assume a channel

impulse response duration of 0.5 µs (Lc = 16). Using these parameters, the OFDM-like ML

channel estimator requires 8176 complex multiplications and 7648 complex additions. On

the other hand, the flat-gain ML channel estimator requires 8320 complex multiplications

and 9084 complex additions. Due to the complexity of the filter bank, it is apparent that

the OFDM-like ML channel estimator is a more computationally efficient algorithm.
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Figure 2.1. System model for the OFDM-like channel estimator
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Figure 2.2. System model for the flat-gain channel estimator

Figure 2.3. Channel impulse response estimates for the LTE EPA 5 Hz channel at High
SNR
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Figure 2.4. NMSE vs. received SNR for the LTE EPA 5 Hz multipath channel

Figure 2.5. Channel impulse response estimates for the LTE EVA 5 Hz channel at High
SNR

Figure 2.6. NMSE vs. received SNR for the LTE EVA 5 Hz channel
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Figure 2.7. OFDM-like channel estimator implementation



CHAPTER 3

PRACTICAL IMPLEMENTATION OF THE

FLAT-GAIN ML CHANNEL ESTIMATOR

In this chapter, we pursue the implementation of the Flat-gain ML Channel estimator.

While the OFDM-like ML channel estimator is a more novel architecture that can achieve

the CRLB for highly frequency selective channels, the high resolution of the estimate cannot

be used in the current FBMC-SS receiver architecture. The FBMC-SS receiver utilizes

the principle of Maximum Ratio Combining (MRC) to optimally recover data symbols.

Currently, the MRC is only designed for one sample/symbol per subcarrier, rather than

the K samples/subcarrier that the OFDM-like estimator provides. Therefore, we seek to

determine how the flat-gain estimator can be integrated into the FBMC-SS receiver in

practical scenarios.

The first analysis examines the flat-gain assumption, and when it is valid relative to

the coherence bandwidth of the channel. Bit-error rate simulations are provided to support

the analysis. Next, we examine the issue of interference within the received signal band,

and how to handle such interference in the channel estimator. Last, we provide a method

for detecting the channel impulse response delay spread in order to prevent the denoising

operation from removing valid channel samples.

3.1 Flat-Gain Assumption Analysis

In Chapter 2, it was shown that the denoising ML channel estimator achieves the

CRLB if the flat-gain assumption is accurate. The “flatness” of the channel frequency

response corresponds to the channel coherence bandwidth, which is dependent on statistical

properties of the channel. Here, we introduce a constraint that dictates when our system

will perform adequately, or meet the flat-gain assumption within a good approximation,

relative to statistical properties of the channel. In the thesis, we verify the constraint’s

accuracy through a set of BER simulations with an LTE channel model.
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3.1.1 Coherence Bandwidth Constraint

The impulse response of the channel is denoted as c(τ, t) where τ is the time spread

variable for the channel impulse response at the time instant t. The channel is assumed to

be a wide-sense stationary uncorrelated scattering (WSSUS) Rayleigh fading channel [27].

The time variation of c(τ, t) is assumed to be slow, and may be ignored over the interval of

the interest; the preamble period of each packet. We thus remove the time variable from

c(τ, t) and consider the time independent channel impulse response c(τ) for the rest of our

study in this chapter. Under this condition, considering the fact that the channel is WSSUS,

the only statistical quantity of the channel that is of interest to us is its power delay profile,

defined as

ρ(τ) = E[|c(τ)|2]. (3.1)

The Fourier transform of ρ(τ), that we denote by Aκ(f), is a frequency domain function

whose value at a given frequency ∆f is a equal the correlation between channel frequency

response samples that are at a spacing of ∆f , [27]. Various definitions have appeared in

the literature for the coherence bandwidth, Bc, of the channel. One common and useful

definition for this thesis is

Bc =
k

σrms
, (3.2)

where σrms is the RMS delay spread of the channel and k is a constant that may be chosen

to match a case of interest, [28].

In this thesis, we let k = 0.2 and note that this definition defines Bc as a bandwidth

over which the correlation between the channel impulse response samples (with a high

probability) is greater then 0.5, [28]. That is, we define the coherence bandwidth as

Bc,50% =
k

σrms
. (3.3)

Moreover, based on our empirical results, we propose that the subcarrier bandwidth must be

less than one eighth of this coherence bandwidth in order to avoid significant inter-symbol

interference (ISI). This constraint can be expressed as

fs
L
<

0.2

8σrms
, (3.4)

where fs is the sampling rate. The ratio of
fs
L

is the bandwidth of a single subcarrier.
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3.1.2 Simulation Results

To evaluate the validity of the constraint in (3.4), we simulate the performance of the

FBMC-SS waveform with the LTE EVA channel model defined in [22]. The simulation was

configured as follows:

• The Filter Bank Upsampling Rate L is varied between 128 and 512.

• The number of Active Subcarriers N =
L

2
.

• The channel is static over the duration of the FBMC-SS Packet.

• The channel length Lc is known a priori by the receiver, and denoising is performed

according to (2.10).

• The data symbols are BPSK and there is no channel code.

• White Gaussian noise is added to the channel output with the SNR swept from

Eb/No=4 dB to 10 dB. We note that with BPSK signaling and no channel coding,

Eb/No is equal to SNR at the receiver input times the processing gain 2N of FBMC-SS.

• Perfect timing synchronization and carrier synchronization are assumed.

• The transient introduced by the channel is absorbed by the beginning of the preamble

during packet detection such that the estimate is performed on the non-transient part

of the preamble.

The power delay profile of the LTE EVA channel defined in [22, Table B.2.1-3] and has

an RMS delay spread of 357 ns. Based on the constraint equation (3.4), the FBMC-SS

subcarrier bandwidth should be less than 70 kHz:

fs
L
< 70 kHz. (3.5)

If the system sampling rate is assumed to be 32.5 MHz, then the power-of-two upsampling

factor L in the filter bank must be greater than or equal to 512. To validate this constriant,

we provide the results of a bit-error rate simulation in Fig. 3.1.

The BER curves in Fig. 3.1 correspond to the performance of the FBMC-SS receiver with

different filter bank sizes under the same conditions. From the results, it is evident that the
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L = 512 configuration significantly outperforms the L = 128 and L = 256 configurations.

The receiver with the largest subcarrier bandwidth experienced an approximately 1 dB loss

in performance, while the other receiver configurations have BER performance closer to

theory. It is also worth noting that the L = 512 configuration suffers from less performance

loss than the L = 256 case. Beyond L = 512, there is about 0.1 dB gain to be made. This

confirms the theoretical constraint introduced in (3.4).

3.2 Interference Detection and Rejection

The maximum-likelihood channel estimation algorithm proposed in (2.10) was derived

under the assumption that the channel noise is white and Gaussian. Additionally, it

was shown that the denoising operation introduces correlation between the noise samples

on adjacent subcarriers in (2.17). If the input noise is correlated due to the presence

of interference, the denoising operation will spread the correlated interference across all

subcarriers. This distribution of interference is particularly problematic for sinusoidal

narrow-band interference, where the denoising operation can distribute the interference

across the subcarriers. Therefore, it is critical to detect this interference and remove it

prior to denoising the channel estimate.

There are a variety of methods for detecting the presence of interference within a

frequency band of interest. In cognitive radio applications, spectrum sensing is utilized to

identify regions of the spectrum that are occupied by interferers [29], [30], [31]. It has also

been shown that filter banks are an effective and computationally efficient spectrum sensing

tool [32]. By using these spectrum sensing tools, it is possible to have a priori knowledge

of interference locations when FBMC-SS packets are received and simply ignore interferred

subcarriers in the channel estimation process. However, there are a number of complications

with this spectrum sensing approach. First, the sensing algorithm needs an adequate

amount of time for detection in order to meet a desired receiver operating characteristic

(ROC) [33]. There are also additional practical considerations such as imperfect analog

filters, finite precision A/D converters, and non-white Gaussian noise that lead to “SNR

Walls” [34] for sensing algorithms. These considerations have motivated the development

of an independent interference detection algorithm that operates on a per-packet basis.

The interference identification algorithm here utilizes the preamble sequence at the
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beginning of the FBMC-SS packet. Interference is identified through a noise variance

estimator, which is performed after the analysis filter bank, or at the same location as

the channel estimator in Fig. 2.2. Because of the orthogonality of the individual filters in

the analysis filter bank, the noise at each subcarrier can be assumed to be independent from

other subcarriers. To estimate the noise variance at the kth subcarrier, the noise is assumed

to be white and Gaussian such that successive samples in (2.8) can be linearly combined to

remove channel information and obtain

βk(n) = z′k(n)− z′k(n− 1) = v′k(n)− v′k(n− 1). (3.6)

There are a number of assumptions made in (3.6). First, the channel is assumed to be static

across the duration of the FBMC-SS packet’s preamble. Additionally, we assume that any

carrier offset has been compensated for such that the phase rotation between successive

samples is negligible. The distribution of the expression in (3.6) is

P (βk) ∼ CN (0, 2σ2k). (3.7)

Neyman-Fischer factorization is used to find a sufficent statistic for the noise variance,

which is simply
1

2
β2k. Additionally, this statistic is the minimum variance unbiased (MVUB)

estimator because (3.7) belongs to the exponential family of distributions [21], and can be

written as

ψk =
1

2K

K∑
i=1

|βk(i)|2. (3.8)

The estimator in (3.8) is the sum of scaled squared standard normal random variables,

which results in a scaled Chi-squared (Gamma) distribution:

P (ψk, α,Θ) ∼ 1

|σ2k|
χ2

∼ Γ

(
α =

K

2
,Θ =

2

σ2k

)
=

1

Γ

(
K

2

)(
2

σ2k

)K ψK−1k exp

(
−2ψk

σ2k

)
u(ψk), (3.9)

where u(ψk) is the unit step function and K is the preamble length. The theoretical PDF in

(3.9) is shown in blue in Fig. 3.2 for a received symbol energy to noise ratio (SNR) of 0 dB

and a preamble length of 32 symbols. Additionally, the distribution of the noise estimate

was experimentally verified through a Monte Carlo simulation of the FBMC-SS receiver

with the same SNR and preamble length and is plotted against the theoretical curve in
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orange. From the results, it is evident that the noise estimate closely matches theory under

the assumptions of a static channel and negligible carrier offset.

In the case of interference, the noise samples observed at each subcarrier might not be

independent and identically distributed (i.i.d.) across time and the resulting distribution

might not be zero mean. However, this is not a concern because any bias will drive the noise

variance estimate higher and indicate the presence of interference at individual subcarriers.

To detect interference, we identify subcarriers with a variance a scalar factor above the

subcarrier containing the lowest noise variance estimate. Mathematically, this thresholding

method can be written as

H0 : ψk < aψmin

H1 : ψk ≥ aψmin, (3.10)

where a is a constant and ψmin is smallest noise variance estimate.

The lowest noise estimate (ψmin) is assumed to be near the mean of the PDF in (3.9)

due to the lower variance of the Gamma distribution. The relative interference detection

threshold is coarsely set based on a desired probability of false alarm, resulting in a constant

false alarm rate (CFAR) detection algorithm. Due to the inaccuracy that stems from scaling

the smallest noise variance estimate sample, the scale factor a and consequent probability

of false alarm should be constrained to a very low (e.g., 10−9) level to minimize estimation

error.

After identifying subcarriers with interference, they are zeroed and a simple linear

interpolation algorithm is used to compute an approximate channel response at the gaps.

An example of the interference detection algorithm output is provided in Fig. 3.3. In this

simulation, a wideband signal is transmitted over approximately 20 FBMC-SS subcarriers

with a signal to interference ratio of -5 dB. Additionally, the transmitted signal was con-

volved with a multipath channel having a RMS delay spread of 45 ns and noise was added

to achieve an SNR of 0 dB. The relative detection threshold was set to five, which scaled

the lowest variance measurement of 0.22 to create an interference detection threshold of 1.1.

The corresponding probability of false alarm for the estimated mean of 0.22 and threshold

of 1.1 is 9× 10−4.
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3.3 Channel Delay Spread Detection

The maximum-likelihood channel estimator described in (2.6) relies on a priori knowl-

edge of the channel impulse response duration in order to achieve the CRLB. In a practical

system, it is difficult to assume the channel impulse response will be constrained to a specific

set of samples. The main problem is that the timing recovery algorithm in the FBMC-SS

receiver identifies the time index that corresponds to the peak symbol magnitude and aligns

the receiver to that index. This time alignment operation also has the effect of circularly

shifting the observed impulse response. In multipath environments that approach Rayleigh

fading, there is no guarantee that the path with the largest power corresponds to the

shortest delay. Therefore, the circular shift resulting from symbol time alignment can shift

some impulse response samples with significant energy to the end of the N-sample impulse

response estimate. If the denoising operation in (2.10) does not adapt to these shifts,

then the truncation operation will remove valid information and bias the estimate. Here,

we develop a robust detection algorithm that can identify large channel impulse response

samples that have circularly shifted and adjust the denoising operation accordingly.

An example of the wrapping problem is provided in Fig. 3.4 and Fig. 3.5. A near-

Rayleigh fading multipath channel without a dominant line-of-sight path is shown in Fig. 3.4.

In the FBMC-SS packet detection algorithm, there is a high probability of selecting one of

the many different paths that are close to the peak amplitude. If a path is picked with a

larger delay, the response will shift in the receiver similar to what is shown in Fig. 3.5. Our

motivation is to prevent the denoising algorithm from removing significant paths that wrap

to the end of the observed response.

The problem of estimating the channel power delay profile has been studied in OFDM

literature, as the channel length often has a direct effect on the computational complexity of

channel estimation [7], [35]. However, few of these previous studies target low SNR scenarios

where the observed channel response is near the noise floor. Several methods utilize the

fact that the channel impulse response is correlated such that the cyclic correlation can be

computed to identify significant paths [36], [37]. With these cyclic correlation methods,

the channel length is estimated based on the position of the last detected significant path.

However, these methods suffer from poor performance in low SNR conditions and high

interference environments due to the corruption of the correlation result. Other promising
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methods for estimating the channel length compute a statistical threshold for identifying

impulse response samples above the noise floor. The work in [38] estimates the power delay

profile and computes a detection threshold using the most significant sample (MSS) method,

which assumes all samples in the power delay profile estimate below the mean amplitude

are noise. However, the MSS thresholding method becomes increasingly biased when there

are more paths in the power delay profile and with higher levels of noise. In [39], the

authors derive an ML estimator that jointly estimates the multipath time delays and noise

variance. Our approach in this thesis is similar to that in [39], as we jointly estimate the

noise variance and channel delay spread. However, our approach does not make a central

limit theorem approximation to simplify the analysis. Additionally, we choose to estimate

the channel delay spread using the power delay profile, which allows us to reuse the noise

variance estimate in Section. 3.2 for reduced complexity in computing a detection threshold.

In order to estimate the power delay profile in the FBMC-SS system, we leverage

techniques introduced in the OFDM literature. The power delay profile (PDP) estimation

technique in [40, Eq. 16] is chosen for this application. We use the PDP estimate to identify

all of the significant channel response samples, rather than identifying the largest sample

as in [40]. The PDP is estimated by averaging the magnitude squared of the IDFT of (2.7):

Ŝ =
1

K

K∑
n=1

F−1z′(n)� (F−1z′(n))∗. (3.11)

The power delay profile estimate Ŝ contains N samples, and only Lc samples contain

power delay profile samples where Lc < N . Therefore, we seek to identify all samples in Ŝ

that are above the noise floor with a threshold. Mathematically, this can be expressed as a

hypothesis test with H0 being the noise-only condition and H1 being the condition where

a channel impulse response sample is present:

H0 : Ŝn = ζ

H1 : Ŝn = |cn|2 + ζ. (3.12)

Additionally, we note that ζ =
1

NK

∑K
n=1 |v′(n)|2 and Ŝn is the power delay profile at time

index n. The noise variance term ζ is normalized by the additional factor of
1

N
due to the

N-point IFFT operation.
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Prior to estimation of the power delay profile, interference is rejected using the method

in Section. 3.2 such that the noise process v′(n) in (2.7) is assumed to be a symmetric

Gaussian distribution with a covariance matrix σ2wI. Under this assumption, the distribution

of noise-only samples ζ is equivalent to the distribution of the noise estimate under the white

noise condition (3.9). Utilizing this information, we form an accurate estimate of the channel

noise variance by taking a mean of the noise variance estimates at different subcarriers (3.8)

that do not contain interference:

σ̂2w =
1

NKn

∑
m∈Kn

ψm, (3.13)

where m ∈ Kn denotes all subcarriers that contain no interference.

Using the channel noise variance estimate in (3.13), we then compute a detection

threshold using the same CFAR technique in Section. 3.2. However, in this case, we have

obtained a significantly more accurate estimate of the mean of (3.9) by averaging the noise

samples. The accuracy of the noise estimate allows us to precisely set a threshold based on

a desired false alarm rate. Here, we choose to minimize the probability of missed detection

in order to limit the bias on the channel estimate, so we choose a relatively high probability

of false alarm of 5 × 10−3. The detection threshold that achieves this probability of false

alarm is

γc = µσ̂2w, (3.14)

where µ is dependent on the number of preamble symbols used for the power delay profile

estimate. The scale factor can be obtained by solving the following equation, where

P (ψk, α,Θ) is the PDF of the noise variance estimate defined in (3.9), for an arbitrary

receiver configuration by finding the value of µ that satisfies

5× 10−3 =

∫ ∞
µ

P (ψk, α,Θ)dψk. (3.15)

The decisions made based on this threshold can be expressed as

H0 : Ŝn < γc

H1 : Ŝn ≥ γc. (3.16)

To reduce the effects of the high false alarm rate given by the threshold in (3.14), we

add a second step to the channel delay spread estimator. This step takes advantage of the
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fact that false detections are uniformly distributed across the vector Ŝ, while valid channel

samples will likely be clustered closely together. Therefore, a sliding window can be used

to identify PDP samples that belong to a cluster of valid channel samples and identify lone

samples that are likely due to a false detection. The size of the window, W , can be chosen

based on some prior knowledge about the wireless environment, or it can be chosen based

on a desired lower probability of false alarm.

Within the sliding window, we model the probability of false detection at each sample

index with a Bernoulli distribution and denote p as the probability of false alarm given by

the threshold in (3.14). Because we reject lone samples that surpass the detection threshold

within the window, the new false alarm rate is the probability of more than one false

detection within the window. This can be computed as

PFA,window =
W∑
n=2

(
W

n

)
pn(1− p)W−n. (3.17)

For a numeric example of the improvement in performance gained from the window-

based false alarm reduction technique, we start with the threshold in (3.14) that has a

corresponding probability of false alarm of 5× 10−3. If a window size of W = 8 is selected,

the probability of false alarm is reduced to 6.9× 10−4.

To link all of the work developed in the thesis together, we add the interference rejection

and channel length detection algorithms to Fig. 2.2 for a block diagram of the full design

in Fig. 3.6. In Fig. 3.6, the analysis filter bank output is passed to the noise estimation

algorithm, which identifies interference in accordance with the process in Section 3.2 and

passes the interference locations to an interpolation algorithm. Additionally, the channel

noise estimate is passed to the channel length detection algorithm, which provides an

estimate of Lc to the denoising flat-gain estimation algorithm. With these additional

components in the design, performance near to the CRLB can be obtained.

3.4 Simulation Results

To validate the theory developed in the previous sections, the channel length detection

algorithm was evaluated in several Monte Carlo simulations. All simulations were run with

the following configuration:

• Filter Bank Upsampling Rate (L) = 512.
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• Number of Active Subcarriers (N) = 256.

• Periodic Pilot Sequence Length (K) = 32.

• The channel is static over the duration of the FBMC-SS Packet.

• Pilot symbols (a(n)) are transmitted on all subcarriers during the preamble.

• Perfect timing synchronization and carrier synchronization are assumed.

• The transient introduced by the channel is absorbed by the beginning of the preamble

during packet detection such that the channel estimate is performed on non-transient

data.

• No interference is present in the signal band.

• The channel length detection algorithm proposed in [38] was configured for a proba-

bility of error (Pe) of 1× 10−6.

3.4.1 Simulation Results for a Short Channel Response

The first test evaluates the channel length detection algorithm for a short multipath

channel similar to Fig. 2.3. In this scenario, the channel length detection algorithm can

accurately identify valid channel impulse response samples in very low SNR environments.

This can be attributed to the fact that the channel samples are relatively closely spaced

together and have similar path gains. As a result of this accurate channel identification,

the denoising algorithm can be adjusted for near-CRLB performance.

The performance of the flat-gain channel estimator with the channel length detection

algorithm was compared to several alternative methods. The first alternative is the current

channel estimation implementation, which forms a channel estimate using (2.9) and does not

perform denoising. We refer to this algorithm as the “sample mean estimator” in the results.

The second alternative is the flat-gain channel estimator with channel length detection given

by [38]. The results corresponding to this method are labeled as “flat-gain estimator with

Zhu et al. channel length detection”. In these results, it will be shown that the combination

of the channel length detection and flat-gain channel estimation methods presented in this

thesis provide better performance than the alternatives in low SNR environments.
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We measured several parameters to validate the theory developed for the channel length

detection algorithm. The first result we examine is the false alarm rate of the channel length

detection algorithm proposed in the thesis. For this configuration, the probability of false

alarm in the channel length detection algorithm was achieved by setting µ in (3.14) to 1.76.

The measured simulation results are shown in Fig. 3.7. It is evident that the results closely

match theory, with a constant measured probability of false alarm of 6× 10−3 measured in

relation to the expected value of 5×10−3. Additionally, the false alarm rate after windowing,

shown in red, is close to the expected value of 6.9× 10−4.

The proposed algorithm’s performance is quantified by the bias of the channel estimator,

which indicates how many channel impulse response samples were wrongfully removed by

the denoising operation. The bias of the flat-gain channel estimator with the channel length

estimation algorithm proposed in this thesis is shown in blue in Fig. 3.8. Additionally, the

bias is evaluated in relation to the channel length detection algorithm proposed in [38]. It

is evident that the algorithm proposed in this thesis has a more accurate threshold that

results in less bias in the channel estimate at low SNR levels.

Additionally, the overall NMSE performance of the estimation algorithms were evaluated

relative to the CRLB computed in Section 2.4. The NMSE metric evaluates how accurate

the channel estimate is, and encompasses both the estimation bias and the amount of

noise in the estimate. The simulated NMSE results between the three channel estimation

schemes are presented in Fig. 3.9. The flat-gain estimator with channel length detection

from [38] is shown in yellow, and the NMSE follows a similar pattern to Fig. 3.8 due

to the large bias caused by the removal of valid channel samples. It is evident that

the bias significantly degraded the performance of the estimator and offset any benefits

from the noise removal. On the other hand, the flat-gain estimator with the joint noise

estimation (in red) and channel length detection algorithm presented in this thesis performed

near the CRLB. Based on these results, the denoising estimator with channel detection

achieves superior performance to the current estimation algorithm and also outperforms an

alternative method in the literature at low signal to noise ratios.

Lastly, the bit-error rate (BER) performance was evaluated between the different algo-

rithms in Fig. 3.10. These results provide similar conclusions to the NMSE measurements,

where the accurate channel length measurement provided by the thesis (red line) allowed
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the receiver to meet the theoretical BER performance for BPSK modulation (dashed ma-

genta line). The alternative method (yellow line) suffered from an approximately 0.5 dB

implementation loss due to estimator bias.

3.4.2 Simulation Results for a Long Channel Response

The purpose of this subsection is to evaluate the channel length detection algorithm on

the longer channel response in Fig. 3.5. In this test case, a subset of the channel impulse

response samples were wrapped around to the end of the vector to emulate the effects of

the FBMC-SS timing acquisition process. The purpose of this is to illustrate the benefits

of coupling the channel estimate denoising process with a channel length detection scheme

to prevent bias. The BER performance of the FBMC-SS receiver is used to measure the

impact of detecting wrapping channel impulse response samples. These results are provided

in Fig. 3.11.

In Fig. 3.11, we evaluated three different algorithms. The first algorithm is the Flat-gain

ML estimator (blue line) that assumes the channel length is N/2 samples long, or approx-

imately 4 µs long in time. This is meant to emulate a conservative receiver configuration

that has no a priori knowledge of the channel impulse response length, but wishes to remove

noise without biasing the estimate. However, for this conservative configuration, the channel

length assumption does not account for any wrapping in the channel samples. The second

algorithm (red line) is the FBMC-SS receiver with the Flat-gain channel estimator and the

channel length detection algorithm proposed in this thesis. The third algorithm (yellow

line) utilizes the channel length detection algorithm proposed in [38]. It is evident from the

results that the bias introduced by removing channel samples that wrapped to the end of

the vector caused significant performance degradation for the first case. However, with both

channel length detection algorithms, the loss in performance was mitigated by detecting the

wrap-around - with the channel length detection algorithm presented in this thesis slightly

outperforming the alternative from the literature.
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Figure 3.1. BER performance test for the coherence bandwidth constraint with an LTE
EVA channel

Figure 3.2. Theoretical PDF of the noise variance estimate vs. measured PDF of noise
variance estimate in a white noise channel with an SNR (Es/No) of 0 dB
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Figure 3.3. Interference identification with the noise variance estimate
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Figure 3.4. Example Rayleigh multipath channel impulse response
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Figure 3.5. Circularly shifted Rayleigh multipath channel response after timing acquisition
in the FBMC-SS receiver
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Figure 3.6. System model for the full flat-gain channel estimator
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Figure 3.7. Channel length detection (CLD) probability of false alarm simulation
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Figure 3.8. Bias of the channel estimate with CLD for a short multipath channel

Figure 3.9. Normalized MSE of the channel estimate with CLD for a short multipath
channel
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Figure 3.10. BER performance assessment of the flat-gain estimator with CLD for a short
multipath channel

Figure 3.11. BER performance assessment of the flat-gain estimator with CLD for a long
multipath channel with wrapping



CHAPTER 4

CONCLUSION

In this thesis, we presented two maximum likelihood channel estimation schemes for

FBMC-SS and evaluated their performance against their respective Cramer-Rao Lower

Bounds. An OFDM-like channel estimator was derived that utilizes the tones generated

by a periodic pilot sequence to estimate the channel frequency response, and it was shown

through analysis that this estimator meets the CRLB with perfect knowledge of the channel

impulse response duration. A standard alternative channel estimation method, denoted as

the flat-gain channel estimator, was analyzed and shown to also meet the CRLB when

the assumptions surrounding the formulation of the estimator are accurate. We provided

simulation results which show the flat-gain channel estimator only meets the CRLB for

relatively time-limited channels at lower SNR levels. On the other hand, the simulation

results confirmed that the OFDM-like channel estimator meets the CRLB for channels with

either a short time duration or high frequency selectivity, regardless of the SNR. We also

provided details regarding the implementation of these two algorithms, and showed that

the OFDM-like channel estimator can be implemented more efficiently than the flat-gain

channel estimator under the assumption that the channel noise is flat across the received

frequency bands.

Next, we pursued the practical implementation of the flat-gain channel estimator by

investigating interference rejection and channel length detection. A simple CFAR thresh-

olding method was proposed to identify subcarriers that contain significant interference, and

rejecting these subcarriers allows us to make a good assumption that the noise in the channel

estimate is approximately white and Gaussian. After rejecting colored noise (interference),

the proposed channel length detection algorithm utilizes the noise variance estimate to

accurately identify time indexes that contain channel samples and maximizes the ability of

the denoising operation in the flat-gain estimator to remove noise without biasing the result.
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It was demonstrated that for a short channel length, the channel length detection algorithm

could be used to achieve performance near the CRLB. For longer channel responses, the

algorithm is an effective method for reducing bias when the FBMC-SS timing recovery

algorithm causes channel samples to circularly shift.
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