144 research outputs found

    Cortical networks show characteristic recruitment patterns after somatosensory stimulation by pneumatically evoked repetitive hand movements husin newborn infants

    Get PDF
    Controlled assessment of functional cortical networks is an unmet need in the clinical research of noncooperative subjects, such as infants. We developed an automated, pneumatic stimulation method to actuate naturalistic movements of an infant's hand, as well as an analysis pipeline for assessing the elicited electroencephalography (EEG) responses and related cortical networks. Twenty newborn infants with perinatal asphyxia were recruited, including 7 with mild-to-moderate hypoxic-ischemic encephalopathy (HIE). Statistically significant corticokinematic coherence (CKC) was observed between repetitive hand movements and EEG in all infants, peaking near the contralateral sensorimotor cortex. CKC was robust to common sources of recording artifacts and to changes in vigilance state. A wide recruitment of cortical networks was observed with directed phase transfer entropy, also including areas ipsilateral to the stimulation. The extent of such recruited cortical networks was quantified using a novel metric, Spreading Index, which showed a decrease in 4 (57%) of the infants with HIE. CKC measurement is noninvasive and easy to perform, even in noncooperative subjects. The stimulation and analysis pipeline can be fully automated, including the statistical evaluation of the cortical responses. Therefore, the CKC paradigm holds great promise as a scientific and clinical tool for controlled assessment of functional cortical networks.Peer reviewe

    Sensory perceptual metrics: design and application of biologically based methods for the assessment of systemic cortical alterations

    Get PDF
    A large number of neurological disorders (neurodegenerative, neurodevelopmental or trauma induced) are difficult to diagnose or assess, thus limiting treatment efficacy. Existing solutions and products attempting to fill this gap are costly, extremely slow, often invasive, and in many cases fail to definitively (and quantitatively) diagnose or assess treatment. Our innovative low-cost sensory testing device and accompanying software package can be used to non-invasively assess the central nervous system (CNS) health status in minutes for numerous patient populations. The somatosensory system is ideally suited for the design of a CNS diagnostic system. First, the organization of the system is such that adjacent skin regions project to adjacent cortical regions (i.e., it is somatotopic). Second, ambient environmental noise in the system can be easily controlled (i.e., it is less likely that a patient will be exposed to distracting tactile input than auditory or visual input). Third, the somatosensory system is the only sensory system that is highly integrated with the pain system, and this is often an important aspect of a patient's diagnosis. The diagnostic system delivers a battery of somatosensory-based tests that are conducted rapidly, much like an eye exam with verbal feedback. Neuro-adaptation, functional connectivity (e.g. cortical synchronization), and feed-forward inhibition are just a few of the cortical mechanisms that can be quantified using somatosensory testing protocols. Many of these protocols leverage tactile illusions which act as confounds on top of a basic somatosensory test, allowing each subject to serve as his or her own control. Design and validation of the perceptual metrics was/is accomplished via correlative studies that compare non-invasive observations of human sensory percepts with non-human primate neurophysiological studies. Additional validation has been demonstrated through the use of a magnet-compatible version of the device in both functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) studies. Based on pilot data (currently an ontological database of roughly 3000 subjects), the system can be used to enable clinicians to have a much better view of a patient's CNS health status.Doctor of Philosoph

    Robot-assisted fMRI assessment of early brain development

    No full text
    Preterm birth can interfere with the intra-uterine mechanisms driving cerebral development during the third trimester of gestation and often results in severe neuro-developmental impairments. Characterizing normal/abnormal patterns of early brain maturation could be fundamental in devising and guiding early therapeutic strategies aimed at improving clinical outcome by exploiting the enhanced early neuroplasticity. Over the last decade the morphology and structure of the developing human brain has been vastly characterized; however the concurrent maturation of brain function is still poorly understood. Task-dependent fMRI studies of the preterm brain can directly probe the emergence of fundamental neuroscientific notions and also provide clinicians with much needed early diagnostic and prognostic information. To date, task-fMRI studies of the preterm population have however been hampered by methodological challenges leading to inconsistent and contradictory results. In this thesis I present a modular and flexible system to provide clinicians and researchers with a simple and reliable solution to deliver computer-controlled stimulation patterns to preterm infants during task-fMRI experiments. The system is primarily aimed at studying the developing sensori-motor system as preterm infants are often affected by neuro-motor dysfunctions such as cerebral palsy. Wrist and ankle robotic stimulators were developed and firstly used to study the emerging somatosensory “homunculus”. The wrist robotic stimulator was then used to characterize the development of the sensori-motor system throughout the mid-to-late preterm period. An instrumented pacifier system was also developed to explore the potential sensorimotor modulation of early sucking activity; however, despite its clear potential to be employed in future fMRI studies, results have not yet been obtained on preterm infants. Functional difficulties associated with prematurity are likely to extend to multi-sensory integration, and the olfactory system currently remains under-investigated despite its clear developmental importance. A custom olfactometer was developed and used to assess its early functionality.Open Acces

    Advances in Clinical Neurophysiology

    Get PDF
    Including some of the newest advances in the field of neurophysiology, this book can be considered as one of the treasures that interested scientists would like to collect. It discusses many disciplines of clinical neurophysiology that are, currently, crucial in the practice as they explain methods and findings of techniques that help to improve diagnosis and to ensure better treatment. While trying to rely on evidence-based facts, this book presents some new ideas to be applied and tested in the clinical practice. Advances in Clinical Neurophysiology is important not only for the neurophysiologists but also for clinicians interested or working in wide range of specialties such as neurology, neurosurgery, intensive care units, pediatrics and so on. Generally, this book is written and designed to all those involved in, interpreting or requesting neurophysiologic tests

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore